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Abstract—As a tool to infer the internal state of a network that
cannot be measured directly (e.g., the Internet and all-optical
networks), network tomography has been extensively studied
under the assumption that the measurements truthfully reflect the
end-to-end performance of measurement paths, which makes the
resulting solutions vulnerable to manipulated measurements. In
this work, we investigate the impact of manipulated measurements
via a recently proposed attack model called the stealthy DeGrading
of Service (DGoS) attack, which aims at maximally degrading path
performances without exposing the manipulated links to network
tomography. While existing studies on this attack assume that
network tomography only measures the paths actively used for
data transfer (by passively recording the performance of data
packets), our model allows network tomography to measure a
larger set of paths, e.g., by sending probes on some paths not
carrying data flows. By developing and analyzing the optimal
attack strategy, we quantify the maximum damage of such an
attack and shed light on possible defenses.

Index Terms—Network tomography, Degrading of Service at-
tack, combinatorial optimization, integer linear programming.

I. INTRODUCTION

Network tomography [1] is a family of inference-based
techniques to monitor the internal state (e.g., link delays or
loss rates) of a network from external measurements. The
need of such techniques arises in many networks where the
internal network elements are accessible in the data plane but
inaccessible in the control plane, e.g., the public Internet and
all-optical networks.

Theoretically, network tomography works by inverting a
given observation model that captures the relationship between
the unknown link states and the observed path states, where
specific solutions differ in the observation models they assume,
e.g., a linear model for inferring additive link metrics such as
delays [2], [3], [4], a Boolean model for localizing failures [5],
[6], or various probabilistic models for accommodating perfor-
mance fluctuations (see [1] and references therein). However,
most of the existing works assumed that the measurements
truthfully reflect the performance of measurement paths, leav-
ing open what will happen when measurements can be manip-
ulated by an attacker.

Manipulated measurements fundamentally change the prob-
lem of network tomography, because instead of only changing
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the link states (e.g., by delaying all the packets traversing a
link), the attacker may manipulate different packets traversing
the same link differently (e.g., by adding delays for packets
with one source-destination pair but not adding delays for
packets with another source-destination pair), thus changing
the observation model. For example, a link showing two
different behaviors for two groups of flows is effectively two
different links, each traversed by one group of flows. For
linear observation models, recent studies [7], [8] revealed novel
attacks that can substantially degrade path performances while
misleading network tomography to believe that the manipulated
links perform well. However, these studies implicitly assumed
that network tomography only collects passive measurements,
i.e., the performances of data packets, and thus only measures
the paths used for data transfer.

In practice, however, network tomography can monitor a
larger set of paths via active measurements obtained from
probes. Intuitively, augmenting passive measurements with
active measurements exposes the performances of a larger set
of paths and thus should help defending against attacks. In
this work, we harden this intuition by quantifying the damage a
stealthy attacker can inflict on a network monitored by network
tomography with both passive and active measurements.

A. Related Work

Network tomography is a rich family of network monitoring
techniques that infer network internal characteristics from
external measurements [1], [9]. Early works focused on best-
effort solutions, which tried to find the most likely network
state from given measurements, obtained by unicast [10],
multicast [11], and their variations (e.g., back-to-back unicast
[12]). After observing that an arbitrary set of measurements
is frequently insufficient for identifying all the link metrics
[13], [14], later works aimed at either reducing the ambiguity
with given measurements (e.g., [10], [13]), or ensuring identi-
fiability by carefully designing the monitor locations and the
measurement paths (e.g., [2], [3], [4]). All these works assume
a benign setting, where the links behave consistently and the
measurements are truthful.

Very few works have considered network tomography in an
adversarial setting. In [7], optimizations were formulated to
design the manipulations at compromised nodes in order to



cause the maximum degradation while scapegoating certain
benign links as the cause of poor performance; however, the set
of compromised nodes is not optimized. In [8], a similar but
more sophisticated attack model, called the stealthy DeGrading
of Service (DGoS) attack, was proposed, where the attacker
jointly optimizes where to attack (in terms of compromised
links) and how to attack (in terms of the manipulation at
each path traversing at least one compromised link). However,
both works assumed that only the data paths are monitored
by network tomography, and thus the manipulation of any
measurement path will affect the end user’s performance.

B. Summary of Contributions

Our goal is to quantify the impact of DGoS attack in
networks monitored by network tomography based on both
passive and active measurements.

1) We extend the attack model in [8] to include both passive
measurement paths (for data packets) and active measurement
paths (for probes), where only the performance degradation on
passive measurement paths counts towards the damage caused
by an attack.

2) We derive sufficient/necessary conditions for an attack
strategy to be optimal under the above attack model. Based on
these conditions, we establish the hardness of designing the
optimal attack strategy and develop efficient approximations.

3) We evaluate the proposed attack strategies on real In-
ternet topologies. Our evaluations show that: (i) the proposed
strategies achieve more severe performance degradation than
intuitive alternatives and thus better reveal the potential damage
of DGoS attack, (ii) even a few compromised links can cause
significant damage to end-to-end communications, and (iii)
adding active measurements provides little protection if these
measurements are only between the communicating terminals.

Roadmap. Section II formulates the generalized DGoS
attack. Section III presents the optimality conditions and the as-
sociated algorithms for attack design. Section IV evaluates the
proposed algorithms. Finally, Section V concludes the paper.

II. PROBLEM FORMULATION

A. Network Model

We model the network as an undirected graph G = (N,L),
where N is the set of nodes and L the set of links. Each link
lj ∈ L is associated with an unknown metric xj that describes
its performance (the smaller, the better). We assume that these
link metrics are additive, i.e., a path metric equals the sum
of its link metrics. This is a canonical assumption satisfied by
several important performance metrics including delays, jitters,
log-success rates, and their statistics.

We assume that this network is monitored by a tomography-
based detection system that measures the end-to-end metrics
on a set P of paths to detect anomalies on link metrics. Let
R = (rij)pi∈P,lj∈L be the matrix representation of P , called
the measurement matrix, where rij ∈ {0, 1} indicates if path pi

traverses link lj . Let ri = (rij)lj∈L be the i-th row in R. Given
the measured path metrics y = (yi)pi∈P , network tomography
detects link anomalies by finding a solution x̂ to Rx̂ = y
and then comparing each inferred link metric x̂j with the
maximum normal delay τ : lj is considered “normal” if x̂j ≤ τ
and “abnormal” otherwise. To focus on anomalies caused by
the attack, we assume that the before-attack link metrics are
all normal, i.e., xj ≤ τ (∀lj ∈ L). Let τmax denote the
maximum possible link metric, which can be infinity; assume
that τ ≤ τmax.

We note that the solution to Rx̂ = y may not be unique as
R may not have a full column rank [13], [14]. In this case,
we consider a powerful network tomography solver that can
compute all the possible solutions to the link metrics.

B. Attack Model

Suppose that an attacker wants to degrade the performance
of a subset of paths Pd ⊆ P . Paths in P \ Pd are monitored
by network tomography but not carrying data flows of interest.
For example, paths in P \ Pd may be only used by probes or
non-performance-sensitive packets.

The attack is mounted by first controlling a subset Lm ⊆ L
of links and then modifying the path metrics by z = (zi)pi∈P
through these links. Let cj (lj ∈ L) denote the cost of
compromising link lj , and k denote the budget of the attacker.
We call Lm the compromised links and Ln := L \ Lm the
uncompromised links. We call the paths Pm ⊆ P traversing at
least one link in Lm the compromised paths, and the rest Pn :=
P \Pm the uncompromised paths. To ensure that the attack is
feasible, we adopt the following assumptions from [7], [8]:

1) Only the metrics of compromised paths can be manipu-
lated, i.e., zi = 0 for any pi ∈ Pn.

2) The manipulation can only degrade (not improve) path
performance, i.e., zi ≥ 0 for any pi ∈ Pm.

Moreover, the attacker wants to stay stealthy to the detection
system by ensuring that (i) the network tomography problem
remains feasible under the manipulation, i.e., Rx̂ = Rx+ z is
feasible, and (ii) there exists a feasible solution x̂ according
to which all the compromised links appear normal.

Using a change of variable z = R(x̂−x), we formulate the
problem of optimal attack design as follows:

max
Lm,x̂

∑
pi∈Pd

ri(x̂− x) (1a)

s.t. ri(x̂− x) = 0, ∀pi ∈ Pn, (1b)
τmax ≥ x̂j ≥ 0, ∀lj ∈ Ln, (1c)
τ ≥ x̂j ≥ 0, ∀lj ∈ Lm, (1d)∑
lj∈Lm

cj ≤ k, (1e)

Lm ⊆ L. (1f)



In words, (1) designs “where to attack” (represented by Lm)
and “how to attack” (represented by x̂) to maximize the
total degradation on the paths of interest (1a), subject to
feasibility (1b), stealthiness (1c)(1d), and budget constraints
(1e). The above formulation generalizes the stealthy DGoS
attack proposed in [8, (1)] in that: (i) only degradation on the
paths in Pd is included in the objective, which allows us to
model network tomography based on both passive and active
measurements, and (ii) a budget constraint (1e) is added to
capture the resource constraint faced by a realistic attacker. As
shown later, these differences lead to subtle but critical changes
in the solution.

III. OPTIMAL ATTACK STRATEGY

Given the set of compromised links Lm, (1) is a linear
program (LP) in x̂ that can be solved in polynomial time by
standard LP solvers. Meanwhile, optimizing Lm is a combi-
natorial optimization problem, with an objective F (Lm) that
denotes the optimal value of (1a) under a given Lm. The main
challenge is that the objective function F (Lm) is not an explicit
function of the decision variable Lm. Below, we propose two
approaches to turn F (Lm) into an explicit function of Lm,
which then lead to efficient algorithms.

A. The Case of k =∞
First, consider the case that the attacker has an unlimited

budget, i.e. the constraint (1e) is removed.
1) Property of the Optimal Lm: In the unbudgeted case,

we establish the sufficient and the necessary conditions for a
given Lm to be optimal for (1). To this end, we introduce the
following definitions.

Definition 1. Given P and Pd, we define:
1) the traversal number wj :=

∑
pi∈Pd

rij for link lj as the
number of paths in Pd that traverse lj ,

2) T (L′) :=
∑
lj∈L′ wj as the total traversal number of a set

of links L′,
3) a set of links L′ as a cut of a set of paths P ′ if every

pi ∈ P ′ traverses at least one link in L′,
4) CP ′ as the collection of all the cuts of P ′, and
5) C∗P ′ as the collection of all the cuts of P ′ with the minimal

total traversal number, i.e., C∗P ′ := {L′ ∈ CP ′ |T (L′) ≤
T (L′′), ∀L′′ ∈ CP ′}.

Based on these definitions, we can state the optimality
conditions as follows.

Theorem III.1. A set of compromised links Lm is optimal if
it is a cut of P with the minimal total traversal number, i.e.,
Lm ∈ C∗P .

Proof. see [15].

Remark: Theorem III.1 generalizes [8, Theorem III.1], which
states that in the case of Pd = P , the minimal traversal cut

of P achieves optimality, where the traversal number of a link
is defined as the total number of paths in P that traverse it.
Theorem III.1 extends this statement to the case of Pd ⊆ P
by redefining the traversal number for a link to only count the
paths in Pd that traverse this link.

Fig. 1. Lm ∈ C∗P is not necessary for optimality.

While Theorem III.1 gives a sufficient condition to achieve
optimality, it does not rule out other possibilities. We show
that Lm ∈ C∗P is not necessary by a simple example. In the
example shown in Fig. 1, suppose that

∑n
k=2 xk ≥ τmax. It

is easy to see that the optimal solution can be Lm = {l1}
(x̂1 = τ, x̂2 = τmax) or Lm = {l2} (x̂1 = τmax, x̂2 = τ ).
The optimal solution {l1} /∈ C∗P shows that Lm ∈ C∗P is not a
necessary condition. Nevertheless, we will show that forming
a cut of Pd is necessary under mild conditions.

Theorem III.2. If τ > xj (∀lj ∈ L), a set of compromised
links Lm is optimal only if Lm ∈ CPd

.

Proof. See [15].

Theorems III.1 and III.2 imply the following condition.

Corollary III.3. If Pd = P and τ > xj (∀lj ∈ L), then a set
of compromised links Lm is optimal if and only if Lm ∈ C∗P .

Proof. See [15].

2) Hardness and Algorithm Design: Theorem III.1 implies
that finding a minimum-traversal cut Lm ∈ C∗P will give
an optimal solution to (1). This reduces (1) to the following
combinatorial optimization problem.

Definition 2. Given a set of paths P and a subset Pd ⊆ P , the
generalized adversarial link selection (GALS) problem aims at
finding the cut of P with the minimum total traversal number
by Pd:

min
Lm

∑
lj∈Lm

wj (2a)

s.t. Lm ∈ CP , (2b)
Lm ⊆ L (2c)

GALS is similar to the adversarial link selection (ALS)
problem in [8], except that the traversal number wj only
counts the traversals by paths in Pd. Nevertheless, given Pd,
the traversal number of each link is a constant, and thus the
solutions for ALS and GALS are the same.

Specifically, since ALS is NP-hard [8], GALS is also NP-
hard. Moreover, similarly to the reduction of ALS to the
weighted set cover (WSC) problem [8], GALS can also be



Algorithm 1: Greedy GALS
input : P , Pd
output: Compromised links Lm

1 Pm ← ∅;
2 Lm ← ∅;
3 wj ←

∑
pi∈Pd

rij ;
4 while Pm 6= P do
5 Find the link lj with the smallest ratio wj

|Pj\Pm| ;
6 Pm ← Pm ∪ Pj ;
7 Lm ← Lm ∪ {lj};
8 return Lm;

reduced to WSC, and can thus leverage existing algorithms
designed for WSC. One such algorithm is the greedy algorithm,
shown in Algorithm 1. The algorithm iterates until all the paths
are compromised (line 4), where in each iteration, it picks a
link with the smallest cost-value ratio (line 5) and adds it to
the set of compromised links (lines 6–7). Here, we define the
cost-value ratio of link lj by wj/|Pj \ Pm|, where Pj is the
set of paths traversing link lj . It is known [16] that this greedy
algorithm has the best approximation factor for WSC, which
is Θ(log |P |) in our case.

B. The Case of k <∞
In the general case, the attacker may not have sufficient

budget to compromise the minimum-traversal cut, and thus the
optimal strategy needs to be adapted.

1) Property of the Asymptotically Optimal Lm: For a gen-
eral Lm, it is difficult to write the optimal value of (1a) wrt
x̂ as an explicit function of Lm. Nevertheless, we find the
following approximation to be asymptotically accurate.

Definition 3. Given a set of paths P , a subset Pd ⊆ P , and the
cost cj for each link lj , the generalized constrained adversarial
link selection (GCALS) problem aims at:

max
Lm

Tm :=
∑
lj∈L′

n

wj (3a)

s.t.
∑
lj∈Lm

cj ≤ k, (3b)

Lm ⊆ L, (3c)

where L′n := Ln \ ∪p∈Pnp is the set of uncompromised links
that are only traversed by compromised paths.

We show that when τmax is large, GCALS is asymptotically
equivalent to the original optimization (1).

Theorem III.4. As τmax → ∞, Lm = L∗m is optimal for (1)
if and only if L∗m is an optimal solution to GCALS.

Proof. See [15].

2) Hardness and Algorithm Design: First, we will show that
GCALS problem is NP-hard.

Theorem III.5. The GCALS problem (3) is NP-hard.

Algorithm 2: LP relaxation with Rounding (LP-R)
input : P, Pd, k
output: Compromised links Lm

1 k′ ← k // remaining budget
2 Lc ← L \ {lj ∈ L|cj > k′} // candidate links
3 Lm ← ∅;
4 Pm ← ∅;
5 (α′j , β

′
j , γ
′
j)lj∈L ← solving the LP relaxation of (4);

6 while Pm ⊂ P and Lc 6= ∅ do
7 Find the link lj ∈ Lc with the largest ratio

α′
j |Pj\Pm|

cj
;

8 k′ ← k′ − cj ;
9 Lc ← (Lc \ {lj}) \ {lj′ ∈ Lc|cj′ > k′};

10 Lm ← Lm ∪ {lj};
11 Pm ← Pm ∪ Pj ;
12 return Lm;

Proof. See [15].

Next, we will develop a solution by formulating this problem
as an integer linear programming (ILP) problem (wj is defined
as in Definition 1, the other parameters defined as in (1)):

max
αj ,βj ,γj

∑
lj∈L

γjwj (4a)

s.t.
∑
k

αkrik ≥ rijβj ∀lj ∈ L,∀pi ∈ P, (4b)∑
lj∈L

cjαj ≤ k ∀lj ∈ L, (4c)

γj ≤ 1− αj ∀lj ∈ L, (4d)
γj ≤ βj ∀lj ∈ L, (4e)
γj ≥ βj − αj ∀lj ∈ L, (4f)
αj , βj , γj ∈ {0, 1} ∀lj ∈ L. (4g)

Lemma III.6. The optimization (4) is equivalent to the opti-
mization (3), where lj ∈ Lm if and only if αj = 1.

Proof. see [15].

The ILP formulation (4) allows us to leverage techniques
for solving ILP to solve the GCALS problem (3). In particular,
one commonly-used approach is to relax the ILP into an LP
by relaxing the integer constraint (4g) into αj , βj , γj ∈ [0, 1].
After solving this LP relaxation for a fractional solution, we
can use various rounding techniques to convert it into a feasible
solution to the original problem. A rounding scheme we find to
be particularly effective is as follows. For a link lj , we define
the value-cost ratio as

α′
j |Pj\Pm|
cj

, where Pj is the set of paths
traversing link lj and α′j is the fractional solution of αj from
the LP relaxation. We then iteratively select links into Lm until
reaching the budget, where in each iteration, we select the link
lj with the largest value-cost ratio. We refer to this algorithm
as “LP relaxation with rounding (LP-R)”, for which the pseudo
code is given in Algorithm 2.



IV. PERFORMANCE EVALUATION

In order to understand the potential damage of the gener-
alized DGoS attack, we evaluate the proposed algorithms as
well as benchmarks on real network topologies.

A. Experiment Setup

1) Network topology: We use real network topologies from
public datasets, whose parameters are shown in the TABLE I.
The first four topologies are Point of Presence (PoP)-level
topologies from the Internet Topology Zoo [17], and the last
two topologies are router-level topologies from the CAIDA
project [18].

2) Paths: For each topology, we select a given number of
terminals from low-degree nodes (degree ≤ 2), and compute
P as the shortest paths (in hop count) between terminals, with
ties broken arbitrarily. We then select a subset of paths in P
as Pd uniformly at random.

3) Other parameters: Before the attack, each link has a
delay sampled from the interval of [0, 20) (ms) uniformly
at random. The cost1 of compromising each link is drawn
uniformly at random from the interval of [0, 2). A link is
considered “normal” if its delay is within 150 ms, i.e., τ = 150.
The maximum delay at a link is 2000 ms, i.e., τmax = 2000.

4) Benchmarks: We compare the proposed algorithms,
Greedy GALS (Algorithm 1) and LP-R (Algorithm 2), with
three heuristics and an optimal solution:

i) “Random selection” (‘random’): This algorithm selects
links uniformly at random within the given budget.

ii) “Top traversal” (‘top traversal’): Based on the intuition
that compromising the most traversed links will allow the
attacker to control the most paths, this algorithm sorts the
links by their traversal numbers in descending order, and
then selects links in this order under the budget.

iii) “LP relaxation with Randomized Rounding” (‘LP-RR’):
To benchmark the proposed rounding scheme in Algo-
rithm 2, we evaluate a randomized rounding scheme,
where the fractional solution (α′j)lj∈L to the LP relaxation
of (4) is used as probabilities for selecting links.

iv) “ILP” (‘ILP’): This solution directly solves the ILP (4) by
a commercial optimizer called Gurobi, which performs an
exhaustive search in the worst case.

Under each selection of the compromised links Lm, we solve
the optimization (1) in x̂ to compute the total performance
degradation under the optimal manipulations (measured by the
total delay injected by the attacker over all the paths in Pd).

1The cost is relative to the budget and is thus unitless. We set the average
cost to 1 so that a budget of k will allow the attacker to compromise
k randomly selected links on the average, while the optimal strategy may
compromise more or fewer.

2For Bics, these are all the nodes with degree ≤ 2; for the other networks,
these are all the nodes with degree one.

TABLE I
PARAMETERS OF ISP TOPOLOGIES

Network size #nodes #links #candidate terminals2

Bics small 33 48 16
BTN small 53 65 25
Colt medium 153 191 45
Cogent medium 197 245 21
AS 20965 large 968 8283 75
AS 8717 large 1778 3755 1075

TABLE II
PARAMETERS FOR EVALUATING ATTACKS UNDER VARIED BUDGET

Network #terminals budget k |Pd| |P |
Bics 15 5, 7, 9, 11, 13,∞ 50 105
BTN 15 5, 7, 9, 11, 13,∞ 50 105
Cogent 20 5, 7, 9, 11, 13,∞ 100 190
Colt 20 5, 7, 9, 11, 13,∞ 100 190
AS 8717 30 5, 7, 9, 11, 13,∞ 200 435
AS 20965 30 5, 7, 9, 11, 13,∞ 200 435
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Fig. 2. Average delay degradation per path when budget k varies

B. Experiment Results

We evaluate the average performance degradation over the
paths in Pd (plus/minus one standard deviation) under each
attack design, computed over 100 Monte Carlo runs.

First, we increase the budget k as in Table II to evaluate the
impact of a stronger attacker. Fig. 2 shows that the proposed
algorithm for the budgeted case (LP-R) achieves much bigger
damage than the benchmark heuristics for a wide range of
k, whereas the proposed algorithm for the unbudgeted case
(Greedy GALS) is only effective when k is large. Moreover,



TABLE III
PARAMETERS FOR EVALUATING ATTACKS UNDER VARIED |P | (k = 10)

Network #terminals |Pd| |P |
Bics 15 50 50 , 60, 70, 80, 90, 105
BTN 15 50 50 , 60, 70, 80, 90, 105
Cogent 20 100 100, 120, 140, 160, 180, 190
Colt 20 100 100, 120, 140, 160, 180, 190
AS 8717 30 240 240, 280, 320, 360, 400, 435
AS 20965 30 240 240, 280, 320, 360, 400, 435
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Fig. 3. Average delay degradation per path when |P | varies

the attacker can cause significant damage with only a few
compromised links (e.g., causing > 1 second of delay per path
when compromising an average of 5 links). Note that LP-R is
non-monotone for Colt because it does not utilize the budget
optimally (recall that the optimal solution is NP-hard as shown
in Theorem III.5).

Next, we fix k and |Pd| but increase |P | (and hence |P | −
|Pd|) as in Table III to evaluate the impact of monitoring more
paths by network tomography. Fig. 3 shows that the damage
achieved by all the attack strategies, especially the optimal
strategy (ILP), decreases very slowly in |P |.

Discussion: The above results provide a number of insights
for defending against DGoS attacks: (i) it is important to
defend against intelligent attack strategies as they can achieve
substantially more damage than simplistic ones, (ii) it is
important to guard against compromised network elements
(nodes/links) from the bottom up as even a few compromised
elements can cause a big damage, and (iii) simply monitoring
more paths is not sufficient to make network tomography
robust against DGoS attacks. For (iii), however, the added

paths in our experiments are only between the terminals, and
it remains open how much protection can be achieved by
carefully designing the paths, which is left for future work.

V. CONCLUSION

We have quantified the impact of DGoS attack by formulat-
ing and computing the maximum damage that an attacker can
inflict on end-to-end communications through compromised
links, without exposing these links to a tomography-based
detection system based on both passive and active measure-
ments. By establishing optimality conditions, we convert the
attack design problem into novel combinatorial optimization
problems and develop efficient algorithms. Our evaluations on
real network topologies reveal significant damage of the DGoS
attack and provide insights for future defenses.
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