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Abstract

Efficient construction of checkpoints/snapshots

is a critical tool for training and diagnosing deep

learning models. In this paper, we propose a lossy

compression scheme for checkpoint constructions

(called LC-Checkpoint). LC-Checkpoint simul-

taneously maximizes the compression rate and

optimizes the recovery speed, under the assump-

tion that SGD is used to train the model. LC-

Checkpoint uses quantization and priority promo-

tion to store the most crucial information for SGD

to recover, and then uses a Huffman coding to

leverage the non-uniform distribution of the gra-

dient scales. Our extensive experiments show that

LC-Checkpoint achieves a compression rate up

to 28× and recovery speedup up to 5.77× over a

state-of-the-art algorithm (SCAR).

1. Introduction

Efficient construction of checkpoints (snapshots) has been

increasingly important to deep learning research. In the

arms race of developing more accurate models, researchers

utilize heavier computing infrastructure and develop deeper

and larger models. Without proper infrastructure support,

the research process inevitably becomes fragile. For exam-

ple, distributed computation fails from time to time, leading

to the excessive need to re-train models (Qiao et al., 2018b).

Diagnosing deep learning models also evolves to a complex

procedure partly because that the community has a better

understanding of deep learning models and produces more

rules for “debugging” them. Some common errors include

gradient explosion (Goodfellow et al., 2016), “divide by

zero” (Ioffe & Szegedy, 2015), and dead activation. This

calls for the need to construct “breakpoints,” resembling

those used in debugging computer programs, so that re-

searchers can conveniently jump to the state right before the

model “crashes” in the training.
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Producing checkpoints frequently enables failed training

process to restart with minimum wasted time, and serves

as breakpoints for debugging models. So far the standard

practice of constructing checkpoints is primitive. The most

common practice is to save the model state directly, counting

on that the backend system is sufficiently robust so that

this operation does not become a bottleneck (Baylor et al.,

2017). Attempts of partially storing model states are also

examined (Qiao et al., 2018b) but these works usually focus

on recovery speed, instead of directly tackling system issues.

The most pronounced technical challenge here is that deep

models are usually large, so producing frequent checkpoints

creates unmanageable burdens to both I/O and storage, even

under modern distributed platforms (Abadi et al., 2016; Li

et al., 2014; Low et al., 2012). Therefore, this leads to our

question:

Research Q: How can we compress model checkpoints?

We specifically aim to design a lossy compressing scheme,

addressing two criteria simultaneously. First, like standard

compression problems, we need to maximize the compres-

sion rate. Second, the scheme needs to be optimized for the

downstream application of training. When a model restarts

from our lossy checkpoints, it needs to efficiently resume to

the most recent state (e.g., restart from a failed process or

reach the state preceding the crash).

Compression of model states is a new technical problem that

requires addressing cross-cutting constraints from informa-

tion theory, learning algorithm, and system design. We need

to leverage statistical patterns encoded in the model state and

factor in how the model states interact with a learning algo-

rithm (more specifically, stochastic gradient type algorithms

in the deep learning setting). This means neither standard

lossy compression algorithms nor recently developed model

compression algorithms (Han et al., 2015a; Courbariaux

et al., 2015; Hong et al., 2016; Leng et al., 2018; Lin et al.,

2016) directly work in our setting. Standard lossy compres-

sion algorithms aim to minimize reconstruction error but

our end goal is to enable a learning algorithm to “quickly

recover.” Model compression techniques aim to transform

a (static) model into a simpler one while ensuring the fore-

casts are not perturbed much whereas in our setting we need

a reliable coding scheme that functions well throughout the
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entire dynamic process of learning, which is an orthogo-

nal and perhaps more challenging goal. In addition, our

algorithm must be efficient and scalable so that it can be

executed frequently.

Our solution. To achieve our aims, we focus on a delta-

encoding scheme (Mogul et al., 1997), tracking only the

information on the difference between two checkpoints. Un-

der this scheme, we examine whether we can cut the least

useful information (with respect to training) from the model

state, and ensure that the remaining information is amenable

for compression. A perhaps surprising message here is that

ℓ2-norm reconstruction error for the “delta” appears to be

an ineffective metric for minimizing the recovery time. In-

stead, our algorithm first removes all the parameters with

inconsequential updates, and then quantizes the remain-

der information. These strategies resemble those used in

distributed training with the goal of minimizing communi-

cation cost (Alistarh et al., 2017). After we obtain the most

significant information for portion of parameter updates, we

represent them in suitable format and apply a Huffman cod-

ing to further compress these bits, so that the compression

rate can be at the information theoretic limit. This strategy

resembles recent techniques for model compression (Han

et al., 2015a; Wu et al., 2016; Park et al., 2017; Zhou et al.,

2017; Rastegari et al., 2016).

The contribution of this paper includes:

• Proposal of a fundamental research question on com-

pressing model states for training recovery.

• Characterization of a family of compression schemes

that can efficiently track the learning process, based on

a stylized model we develop.

• Design of a lossy coding scheme with high-

compression rate that integrates both classical com-

pression techniques and recent ones developed for dis-

tributed learning and model compression.

• Optimization of training systems that minimizes the

overhead of producing checkpoints on the fly.

Our extensive evaluation demonstrates that by simultane-

ously leveraging techniques from distributed training and

model compression, our algorithm delivers a solution (called

LC-Checkpoint, LC refers to Lossy Compression) with

a compression rate of up to 28x and superior recovering

time—achieving up to 5.77× recovery speedup over a state-

of-the-art algorithm (SCAR).

2. Our approach

We now describe our compression framework. We introduce

a stylized model for the learning process to facilitate the

analysis of the system design trade-off. Then we explain our

design principles, determined by both the stylized model

and our extensive experiments.

Our model. A “high-dimensional” vector u ∈ R
n repre-

sents the model state. An iterative algorithm (e.g., stochastic

gradient descent) is used to gradually move the model state

vector u toward a local optimal point u∗. Let ut be the

model state at the t-th round. In our stylized model, we

assume ut performs a (drifted) random walk that converges

to u
∗. Specifically, we use the following process to model

ui’s trajectory. Let L = ‖u0 − u
∗‖.

ut+1 = u
∗ + η(ut − u

∗) + ǫt, (1)

where η and L jointly model the convergence rate of the

algorithm, and ǫt is a random noise component to reflect

the stochastic nature of SGD. When η is set to be a small

constant, the model characterizes those algorithms that have

linear convergence rate. When η = (1− 1/L), this model

characterizes those algorithms whose convergence rates are

1 − 1/t (Boyd & Vandenberghe, 2004). While our model

does not captures the detail of many SGD algorithms, be-

cause different SGD algorithms have different convergence

rate, designing a unifying model that highlights design trade-

offs requires us to make simplifying assumptions.

Our design principles. We next describe our design prin-

ciples.

P1. Minimize irritation to SGD. When we design lossy

compression scheme, a portion of information is inevitably

lost, causing performance degradation to a learning algo-

rithm. We find that we should not simply use ℓ2 recon-

struction error to measure degradation of SGD. This can

be best illustrated by the stylized model. For simplicity,

let u∗ = 0, so ut+1 = ut − ((1− η)ut + ǫt). The delta

term we want to compress is ((1− η)ut + ǫt). When we

use a lossy compression, it corresponds to adding an ad-

ditional noise term that is a function of ut and ǫt. So

with the compression scheme, the new learning process

becomes ut+1 = ut − ((1− η)ut + ǫt + f(ut, ǫt)). Ob-

serving that as long as IE[f(ut, ǫt) | ut, ǫt] = 0, and

Var(f(ut, ǫt) | ut, ǫt) is dominated (smaller than) by

Var(ǫt), then the convergence quality remains unchanged,

by standard results from stochastic approximation (Lai,

2009; Kushner & Yin, 2003).

There are many constructs that satisfy the expectation and

variance constraints. Let us consider an example of keeping

the most significant bit of ((1− η)ut + ǫt) by using stan-

dard randomized rounding (Alistarh et al., 2017). Because

of the nature of the rounding algorithm, the expectation

is 0. In addition, because the most significant bit is kept,

the information loss in rounding will not be greater than

‖ ((1− η)ut + ǫt) ‖2 = O(std(ǫt)) under a mild assump-

tion that ǫt’s standard deviation also scales proportionally to

‖ut‖ over time. Therefore, this rounding scheme does not
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affect the performance of the training algorithm. In general,

the 1-bit encoding is a special case of quantization. A wide

family of quantization schemes will satisfy the expectation

and variance constraint. Our algorithm will explore this

trade-off.

Note also when we minimize ℓ2 reconstruction error, this

corresponds to keeping top-k heaviest entries in ut+1 − ut.

P2. Maximize redundancies in residual information. Our

compression scheme also needs to ensure the information

we keep exhibits large redundancy, as measured by entropy.

This will enable us to use traditional coding schemes such

as Huffman code to compress the data at the information

theoretic limit.

The interplay between P1 and P2 highlights the unique struc-

ture of our compression problem. This can be best illustrated

by a compression scheme called TOPN. This compression

scheme keeps the largest elements in δt. We observe (i)

while this scheme minimizes ℓ2 reconstruction error, it does

not have superior recovery time. Many other compression

schemes that possess the aforementioned properties recover

equally fast, as suggested by our stylized model. (ii) It is dif-

ficult to perform compression for the TOPN scheme. TOPN

scheme usually needs to track 10% of all the entries in δt
to be effective. The overhead of tracking the locations of

these elements is surprisingly high. This is because in part

that the vector is not sufficiently sparse so sparse matrix

representation does not help.

Our solution, on the other hand, carefully complies P1 and

circumvents the need to track the locations of the entries

we keep and thus achieves significantly higher compression

rate.

P3. Do not use random projections and/or sketches. No-

tably, we discover that sketch-based randomized projection

techniques (e.g., Woodruff et al. (2014)) harm the compres-

sion. Roughly speaking, sketches compress information

by projecting multiple numbers into one cell. While this

could speed up query time, it only irritates the gradient de-

scent algorithm in our setting. Consider a toy example in

which ut ∈ R
2 and the optimal point u∗ = (0, 10). Let

ut = (5, 5) be the current state so the gradient is along the

direction (−1, 1). When we apply sketches (say CountMin

sketches), it collapses the direction (−1, 1) into a single

point 0. When we make a query, the gradients for both

coordinates are incorrect. Sketches are more useful when

the entries in the gradient vector are heterogeneous and

queries need to be answered at “line rate” (e.g., do not slow

down the training Ivkin et al. (2019)). Here, when a model

needs to be recovered from a checkpoint, the job is less

time-sensitive. Therefore, even we face heterogeneous pa-

rameters, it is more effective to carefully disentangle crucial

information from inconsequential ones than using arbitrary

Algorithm 1 LC-CHECKPOINT-BASED SGD

Input: u∗, u0, η

1: Initialize ũ0 = u0.

2: for t = 1 to T do

3: Update model state: ut = u
∗ + η(ut−1 − u

∗) + ǫ
4: Compute distance: δt = ut − ũt−1

5: Quantize δt: δ̃t = QUANTIZE(δt)
6: Compress δ̃t by Huffman coding and save to disk

7: Update checkpoint state: ũt = ũt−1 + δ̃t
8: end for

Output: uT , {δ̃t | t ∈ [T ]}

random projections.

3. LC-Checkpoint-based SGD

We now describe our solution LC-Checkpoint (LC refers to

Lossy Compression). See Figure 1 for a working example

and Algorithm 1 for a workflow. For simplicity, we assume

that our system maintains a checkpoint δ̃t for each iteration.

We slightly abuse δt to refer to both the compressed data

and the real vector it represents. It is straightforward to

downsample our operations to construct a checkpoint every

k-iterations. Our solution consists of two major compo-

nents.

C1. Approximate tracking by delta-coding. At each

step, our system maintains an approximation ũt of the

ground-truth state. We simply set ũt = u0 +
∑

i≤t δ̃i,
where u0 is the initial state of the model. Our system con-

tinuously maintains and updates ũt at the background (line

7 in Algorithm 1). Our major compression task is to prop-

erly track the “delta” between the approximate state and

ground-truth. Specifically, the compression task for the t-th
iteration is δt = ut − ũt−1. See 3© in Figure 1.

C2. Quantization and Huffman coding. This compo-

nent compresses δt through two steps, Step 1. Two-stage

quantization. We first perform an exponent-based quantiza-

tion, and then a priority promotion operation. This opera-

tion intelligently drops inconsequential information between

two consecutive states. Step 2. Lossless compression by

Huffman. Finally, the quantized distance vector is further

compressed using Huffman coding.

One can see that to reconstruct the model state at iteration

t from the checkpoints, we may simply compute ut =
u0 +

∑t

i=1 δ̃t.

In what follows, Section 3.1 discusses C2 and Section 3.2

discusses additional system-level optimizations.
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ũ
t

… …

… …

0.58 1.5 0.19 1.3 1.16 1.28 0.89 1.19 1.11 0.94

0.18

0.39

0.49 -0.48

0.14

0.2 0.09

1.37 1.02 0.19 1.3 1.16 1.72 0.89 1.63 1.9 0.94

u
t

ũ
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Figure 1. LC-Checkpoint overview.

3.1. Quantization and Huffman coding

3.1.1. TWO-STAGE QUANTIZATION

LC-Checkpoint employs a novel two-stage pipeline to quan-

tize δt, which consists of two main sub-steps: exponent-

based quantization and priority promotion.

Exponent-based Quantization. Recall that a floating

point v is represented by v = (−1)s ×m× 2e, where s is

the sign, m is the mantissa, and e is the exponent. Recall

that δt = ut − ũt−1 ∈ R
n is a high-dimensional vector we

aim to encode. Our exponent-based quantization works as

follows: first, it partitions entries in δ into multiple buckets

according to e and s, i.e., it assigns the elements with iden-

tical exponents and signs to the same bucket. Our crucial

observation from extensive experiments is that entries in

ut usually drift towards the same direction, so δt typically

have the same sign. Next, our algorithm represents each

bucket by the average of maximum and minimum values in

the bucket.

Figure 1 2© shows an example, in which, δt is quantized into

five buckets (marked with five different colors). All entries

in each bucket are then represented by a unique value.

Indexing k buckets requires log2 k bits. Because δt consists

of n floating points, each of which uses b (e.g., b ∈ {32, 64})

bits, the compression rate is r = nb
n log

2
k+kb

.

For example, in Figure 1, δ has 10 elements (i.e., n = 10),

each of which is represented by a single-precision floating

point (i.e., b = 32). Thus, the original δ has nb, i.e., 320 bits

in total. Exponent-based quantization uses 5 buckets (i.e.,

k = 5). Thus, after quantization, δ has (10×log 5+5×32 =
190) bits. Therefore, the compressing rate (r) is 1.68 (i.e.,

320/190).

It is critical to control the number of buckets k to achieve an

optimal compression ratio. Fortunately, the exponent-based

bucketing can control k ≤ 29 for single-precision floating

point elements, and control k ≤ 212 for double-precision.
1 Our evaluation results (Section 4.3) confirm that usually

k < 25 suffices. Figure 2(a) plots the distribution of all

elements’ exponent parts in the last convolutional layer of

AlexNet.

Priority Promotion. We further improve the compres-

sion ratio by limiting the number of buckets with a priority

promotion approach. Our crucial observation is that when

δt,i is excessively close to 0 (i.e., ũi,t−1 is close ui,t), it is

more effective to batch the updates (i.e., do not update the

i-th entry of δt until it becomes substantial). Note also this

is conceptually different from minimizing construction er-

rors. Minimizing construction errors corresponds to exactly

keeping track of the heaviest entries in δt, whereas we both

remove excessively small entries and quantize large entries

1Single-precision floating point numbers use 8 bits to store
e, and together with a sign bit—that is why k ≤ 2

9. Similarly,
double-precision numbers use 11 bits to store e.
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Figure 2. The distribution of all elements’ exponent parts in the last convolutional layer of AlexNet. When e equals −127, the

element value is 0. The x-axis denotes the exponent part value, and the y-axis indicates the count of elements with this value.

(as done in the previous step). Specifically, we propose x-bit

priority promotion. It keeps 2x − 1 buckets with larger e
only and merges the rest buckets into one with a unique

value of 0. In other words, priority promotion updates w̃i

with a larger distance to wi with a higher priority. It limits

the index of buckets within x bits.

Figure 1 (Priority Promotion) uses 2-bit priority promotion

to control the number of buckets under 4. It merges the

green and purple buckets into a red one that is represented

by a value 0. Indexing these buckets only needs 2 bits.

Figure 2(b) gives a real example of 3-bit priority promotion

for the last convolutional layer in AlexNet.

3.1.2. HUFFMAN CODING

Finally, observing the number of elements in each bucket

is highly non-uniform in most learning processes, we use

Huffman coding (Van Leeuwen, 1976) to further compress

the bucket. For example, Figure 2(a) plots the distribution of

all elements’ exponent parts in the last convolutional layer

of AlexNet. This distribution shows a skewed behavior,

thus more suitable for Huffman coding. Our crucial ob-

servation is that priority promotion further aggravates the

skewness of this distribution (Figure 2(b)), thus marrying

quantization with Huffman coding produces more than “sum

of parts” benefits. Our later evaluation validates it (Sec-

tion 4.3).

3.2. System Optimizations

LC-Checkpoint also comprises several novel system-level

optimizations as follows:

• Asynchronous Execution: Because only the first step

of LC-Checkpoint depends on the model state, the rest

steps can run simultaneously with the next iteration of

SGD computation. This asynchronous (non-blocking)

execution significantly reduces the checkpoint overhead,

and mitigates the blocking of model execution.

• Checkpoint Merging: To further reduce the recovery

time, LC-Checkpoint employs a helper process to merge

multiple checkpoints into super-step ones, periodically.

In case of any system crash, LC-Checkpoint uses these

super-step checkpoints for recovery.

• Huffman Code Table Caching:

The number of buckets may stay the same from one it-

eration to another, specifically after priority promotion.

Thus, it is possible to reuse the Huffman code table (with

only a simple sort of buckets according to the number of

entries in each bucket) among different iterations without

any rebuilding. LC-Checkpoint comprises a lightweight

cache to store the Huffman code table for each buckets

count.

4. Experiments

This section evaluates LC-Checkpoint on four typical ML

applications with three benchmark datasets, and compares

it with previous efforts (SCAR Qiao et al. (2018b) and a

TOPN mechanism as mentioned in Section 2) on recovery

(rework) cost, compression ratio, and execution overhead,

demonstrating the superiority of LC-Checkpoint.

4.1. Methodology

Evaluation Objective: This evaluation has four main ob-

jectives: (1) comparing LC-Checkpoint’ recovery (rework)

cost with previous work; (2) evaluating the compression

benefits brought by different approaches mentioned before;

(3) specifically, validating the effectiveness of priority pro-

motion; (4) confirming that LC-Checkpoint incurs low over-

head by an experiment case study. Our work is mainly

compared with two state-of-the-art efforts: SCAR (Qiao

et al., 2018b) and a TOPN mechanism. SCAR partitions
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Figure 3. Rework cost comparison among LC-Checkpoint, SCAR, and TOPN. The x-axis indicates the ratio of the compressed

checkpoint size over the full checkpoint size. The y-axis shows the rework iterations. The error bars indicate 95% confidence intervals,

calculated by repeating each trial 50 times.

the parameters and updates one partition in each iteration

to reduce the checkpoint size. The TOPN mechanism only

updates the parameters with the top-n largest distances to

the previous iteration. The TOPN checkpoint is stored in a

compressed sparse row (CSR) format.

ML Applications and Datasets: LC-Checkpoint is

evaluated on four typical ML applications: Multino-

mial Logistic Regression (MLR), LeNet-5 (Lenet) (Le-

Cun et al., 1998), AlexNet (Krizhevsky et al., 2012)

and Matrix Factorization (MF). The first three applica-

tions are trained on MNIST (LeCun et al., 1998) and

FashionMNIST (Xiao et al., 2017) datasets. The last

one, MF is trained on Jester (Goldberg et al., 2001) and

MovieLens10M (Harper & Konstan, 2015).

Platforms and Evaluation Configurations: Our experi-

ments are conducted on a multi-core server with an Intel

Xeon Gold 6138 Skylake CPU with 40 cores, each running

at 2.0 GHz, and 192 GB DDR4 memory. The training is per-

formed on a Tesla P100 GPU with 16GB High-bandwidth

Memory (HBM).

4.2. Recovery/Rework Cost Comparison

This section evaluates the recovery (or rework) cost of LC-

Checkpoint, particularly comparing it to SCAR (Qiao et al.,

2018b) and a TOPN mechanism2.

2Rework (or recovery) cost is defined as the number of itera-
tions from ũt to ut. All methods share the same SGD computation
cost for each iteration.

To evaluate their rework costs fairly, we use the same check-

point size (update size) for all three methods. Two check-

point sizes are tested: 5% and 10% of the full checkpoint

size3. These checkpoint sizes can be set directly for SCAR

and TOPN. However, LC-Checkpoint’s size is determined

by the data distribution and thus changed dynamically. To

address this issue, LC-Checkpoint employs 2-bit and 3-bit

priority promotion that control its checkpoint size at 5%

and 10%. Figure 4 reports more details of LC-Checkpoint’s

checkpoint size information.

Figure 3 compares the rework cost of three methods, SCAR,

TOPN, and LC-Checkpoint, showing that LC-Checkpoint

incurs the lowest rework cost for all ML applications and

datasets among them. For the 5% checkpoint test case,

LC-Checkpoint outperforms SCAR by 2.88×-5.77×, and

TOPN by 2.17×-4.06×, respectively. With 10% checkpoint

size, LC-Checkpoint outperforms SCAR by 1.9×-4.82×,

and outperforms TOPN by 1.52×-2.17×, respectively.

In addition, comparing two checkpoint sizes (5% v.s. 10%),

LC-Checkpoint results in more stable rework cost as the

checkpoint size decreasing. For example, decreasing the

checkpoint size from 10% to 5%, LC-Checkpoint has a

negligible rework cost increase on LeNet with MNIST

(Figure 3(b)) and AlexNet (Figure 3(c), 3(g)). It does not

have any rework cost change for other cases. In contrast,

SCAR and TOPN increase 1.6× rework cost on average as

the checkpoint size changing from 10% to 5%.

3Full checkpoint stores all model parameters after a specific
iteration.
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(g) AlexNet on Fashion-MNIST.
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(h) MF on Jester.

Figure 4. The compression ratio with different compression methods. The x-axis denotes the bits count used in priority promotion,

and the y-axis is the ratio of the checkpoint size after compression over the one before compression. E, P, H denote “exponent-base

quantization”, “priority promotion”, and “Huffman coding”, respectively.

4.3. LC-Checkpoint Compression Effect Breakdown

This section evaluates and analyzes the compression ef-

fect of different approaches mentioned before, exponent-

base quantization (E), priority promotion (P), and Huffman

coding (H). Figure 4 reports the compression ratios with

2-bit and 3-bit priority promotion. With all compression

approaches, the ultimate checkpoint sizes (E+P+H) are all

below 5% with 2-bits, and below 10% with 3-bits over the

uncompressed full checkpoint, i.e., the compression rates

are above 20× and 10×, respectively.

Exponent-base quantization yields a compression ratio of

85% on average. It proves that the exponent parts of all pa-

rameters in δ span across a small range of all values that can

be represented by single precision floating-point. 15% also

indicates that the bucket number k < 25, because the aver-

age bucket number can be estimated as k = 2(32×15%=4.8),

where 32 is the width of single precision floating-point. Pri-

ority promotion brings 9.26% extra compression ratio on

average for 2-bit and 6.23% for 3-bit. For most cases, pri-

ority promotion with smaller bits yields more benefits for

Huffman coding except MF (Figure 4(d), 4(h)). This is

because MF’s parameters are sparse, thus Huffman coding

can reach a sufficient compression ratio without aggressive

priority promotion. Across all models (and datasets), Huff-

man coding brings 2% extra compression ratio with 2-bits

priority promotion, and 1.6% with 3-bits one on average.

4.4. The Effectiveness of Priority Promotion

This section further discusses the effectiveness of priority

promotion. It aims to prove that priority promotion is able

to save the majority of high priority parameters. We prove

it by showing the exponent buckets result in a larger impact

on the model state when their represented unique values are

further from 0 (i.e., e is larger).

Assume δ is calculated from one state uθ to another for m
iterations. Then, δim is created by setting the parameters in

the i-th exponent bucket to 0. The ground truth is calculated

as Vgt = L(uθ + δm) where L(x) denotes the loss function.

Then the relative error is calculated as:

Ei
m =

∥

∥Vgt − L(uθ + δim)
∥

∥

2

Vgt

(2)

Figure 5 reports the result of MLR with m = 10n, n ∈ [1, 6].
Both datasets (MNIST and FashionMNIST) on varied m
prove that the elements in the buckets with the top-n largest

distance impact more on the model (denotes as a higher

relative error when the bucket represented value is set to 0).

In addition, it is possible to preserve all important buckets

with only a small number of index bits. For example, using

2-bit priority promotion (4 buckets with the last bucket

storing 0) can easily preserve the most important buckets,

and using 3-bit (8 buckets) can preserve all effective buckets.

This result explains why priority promotion can compress

the checkpoint with negligible accuracy loss.



On Efficient Constructions of Checkpoints

(a) MLR on MNIST.

(b) MLR on FashionMNIST.

Figure 5. Evaluation on the priority of each exponent bucket.

The x-axis denotes the id of the exponent bucket that is deleted.

The y-axis shows the relative error to the ground-truth.

Figure 6. MF on MovieLens25M. The x-axis denotes the iteration

and the y-axis is the model’s RMSE (Root Mean Square Error).

4.5. A Case Study on LC-Checkpoint’s Overhead

This section evaluates LC-Checkpoint’s execution overhead

and overall impact on the model execution using a case

study, i.e., training MF on MovieLens25M (Harper & Kon-

stan, 2015) dataset. Each iteration costs 91 seconds on av-

erage. LC-Checkpoint employs 3-bit priority promotion,

resulting in a checkpoint size below 10% (of the uncom-

pressed full checkpoint size). Default approach creates a

full checkpoint every 10 iterations. A failure is triggered at

the 7-th iteration.

Figure 6 reports the result. LC-Checkpoint only incurs one

extra iteration than the normal execution without any failure

to convergence, and saves 6 iterations compared to the full

checkpoint method, i.e., saving 546 seconds execution time.

LC-Checkpoint introduces only less than 4 seconds (i.e.,

around 4%) overhead for each iteration, which is negligible.

5. Related Work

Fault-tolerance is a key fundamental support for ML sys-

tems. Li et al. (Li et al., 2014) propose a runtime parameter

replication approach for recovery. Tensorflow (Abadi et al.,

2016) employs periodic checkpoint to save the model state.

Other efforts like (Harlap et al., 2017; Qiao et al., 2018a)

aim to support strong consistency semantics. In contrast,

our work relaxes the consistency guarantee of checkpoint

based on the self-correcting behavior of ML applications.

With a set of lossy compression mechanisms, our work can

afford high frequent checkpoints, resulting in low rework

cost and fine-grained model state recovery. Similarly, Qiao

et al. (Qiao et al., 2018b) also propose a fault-tolerant solu-

tion (SCAR in our evaluation) based on weak consistency by

partially updating parameters. SCAR is potential to store re-

dundant information during checkpointing according to our

evaluation, and our work aims to eliminate such redundancy

by selectively saving the distance between two states.

Model compression has been proposed to reduce model

storage space and accelerate model execution time, simulta-

neously. Weight pruning and weight quantization are two

important categories of model compression.

Some popular weight pruning techniques closely related

to our work are summarized as follows. Guo et al. (Guo

et al., 2016) present a dynamic network surgery approach

with on-the-fly connection pruning to reducing the network

complexity. Dai et al. (Dai et al., 2019) combine the growth

and the pruning phases in training to generate compact DNN

architectures. Han et al. (Han et al., 2015b) design Deep

Compression, a model compression approach by combining

pruning, quantization, and Huffman coding. Mao et al. (Mao

et al., 2017) carefully explore the impact of varied pruning

granularity on model accuracy and propose a coarse-grained

weight pruning approach. All effort above aims to prune

model weights without compromising accuracy. Different

from them, our work eliminates the redundancy between two

checkpoints and reduces the rework cost during recovery by

designing a reliable coding scheme working throughout the

entire dynamic process of learning.

Weight quantization is also widely used for model compres-

sion. BinaryConnect (Courbariaux et al., 2015) introduces

the binary weight for replacing multiplication by addition

and subtraction. Binarized Neural Networks (Courbariaux

et al., 2016) also use binary weights and activations to ac-

celerate computation. Park et al. (Park et al., 2017) propose

a clustering method based on weighted entropy for weight

quantization. Leng et al. (Leng et al., 2018) formulate quan-

tization as an optimization problem and solve it by ADMM.

Our approach also employs quantization to reduce the bits of
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parameters by designing a novel exponent-based quantiza-

tion technique. Moreover, our approach emphasizes filtering

the parameters with a new priority promotion method.

6. Conclusion and Future Work

This paper presents LC-Checkpoint, the first checkpoint

scheme based on lossy compression to achieve the maximal

compression rate and efficient recovery simultaneously. It

employs a novel two-stage quantization method consisting

of exponent-based quantization and priority promotion to

identify and store the most critical information for SGD

to recover, and leverages Huffman coding to further ben-

efit from the non-uniform distribution of gradient scales.

Our evaluation demonstrates that LC-Checkpoint achieves

a compression rate up to 28× and recovery speedup up to

5.77× over the state-of-the-art algorithm (SCAR).

In the future, we plan to generalize LC-Checkpoint by re-

laxing the assumption of SGD and equipping it with the

capability of selecting checkpoint compression rates dynam-

ically according to model and data changes.
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