Multitenancy for Fast and Programmable Networks in the Cloud

Tao Wang'* Hang Zhu**

Dan R. K. Ports**

Fabian Ruffy"

Xin Jin* Anirudh Sivaraman’

Aurojit Panda’

TNew York University *Johns Hopkins University **Microsoft Research

Abstract

Fast and programmable network devices are now readily avail-
able, both in the form of programmable switches and smart
network-interface cards. Going forward, we envision that
these devices will be widely deployed in the networks of
cloud providers (e.g., AWS, Azure, and GCP) and exposed as
a programmable surface for cloud customers—similar to how
cloud customers can today rent CPUs, GPUs, FPGAs, and ML
accelerators. Making this vision a reality requires us to de-
velop a mechanism to share the resources of a programmable
network device across multiple cloud tenants. In other words,
we need to provide multitenancy on these devices. In this
position paper, we design compile and run-time approaches
to multitenancy. We present preliminary results showing that
our design provides both efficient resource utilization and
isolation of tenant programs from each other.

1 Introduction

New programmable network devices can run custom logic
at performance levels previously reserved for custom fixed-
function hardware. Leveraging a large body of research on
reconfigurable architectures [16, 18] and programming lan-
guages [43,55], both programmable switches [14] and net-
work interface cards (NICs) [4,47] are now widely available.
We envision a world where such programmable network de-
vices could be widely deployed at scale within the networks
of a cloud provider [11,12,23] and where their programmable
surfaces could be exposed to cloud customers—similar to to-
day’s cloud compute [11,21], storage [48], and networking [7].
To achieve this vision, we must answer a basic question: how
do we allow multiple programs from multiple tenants to coex-
ist on a programmable network device?

Today’s programmable network devices do not support
multitenancy. In effect, they exist in the 1950s world of pre-
timesharing mainframes: a single user can load a single pro-
gram at a time. Our aim is to provide the missing “operating

*Equal contribution.

system” that allows running multiple separate programs on a
network device. Like a traditional OS, its goal is to efficiently
share resources and to enforce isolation between programs.
However, the traditional time-sharing approach is infeasible
on high-speed network devices because they lack the hard-
ware support to run an OS. New techniques are required.
This paper presents a vision for multitenancy on pro-
grammable network devices. It targets devices with pro-
grammable ASIC-based pipelines, e.g., the Barefoot Tofino
switch architecture [14]. We argue that multitenancy is valu-
able for these devices (§2), and that a hybrid compile-time/run-
time architecture serves as the right OS for multitenancy (§4).
As evidence for our design’s feasibility, we present a prelim-
inary evaluation (§5). We show that multiple programs that
are isolated from each other can still coexist to efficiently use
resources on the Barefoot Tofino programmable switch.

2 Motivating Multitenancy

The advent of programmable networks has led to many pro-
posals to use in-network computation to improve networked
software and applications. Researchers have exploited pro-
grammable packet processing logic to develop and prototype
new algorithms for classical network problems including con-
gestion control [51, 52], packet scheduling [54], and load
balancing [41]. It has also enabled new application-specific
uses for in-network processing, including accelerators for con-
sensus [19, 35], storage [27,28], databases [33, 34, 59], and
machine learning [49].

The diversity of these systems highlights an important
point: different applications and different tenants have dif-
ferent needs. Unfortunately, the lack of multitenancy support
forces network operators to either run a single program on
a given device, or to integrate multiple in-network applica-
tions (along with the baseline switch functionality) into a
monolithic program, a painstaking and error-prone process.

Adding multitenancy support to programmable networks
offers cloud network operators and users several advantages:

Name Description
Exact match crossbar Extract packet bits for exact matching

Hash unit Hash bits for exact match keys

Ternary match crossbar | Extract packet bits for ternary matching
SRAMs Storage for exact match-action entry
TCAMs Storage for ternary match-action entry

Action units
Gateway tables
PHYV containers
Stateful Memory

Perform operations on headers
Perform conditional check
Store packet headers

Register, counter, meter, etc.

Table 1: Typical hardware resources in a pipeline

Enabling innovation. For datacenter network operators, net-
work reliability is by far the highest priority [25]. Accord-
ingly, they are loath to deploy new in-network applications
that might interfere with basic network functionality. Provid-
ing isolation between basic routing/forwarding functionality
and new programs—particularly if coupled with formal non-
interference guarantees—addresses this concern.

Improving resource utilization. Few applications require the
full computation and memory resources of a single device.
As our preliminary analysis (§5) shows, most applications
require a fraction of the different computational and mem-
ory resources on a programmable packet-processing pipeline.
Multiplexing them onto a single device makes more efficient
use of the pipeline’s resources.

Enabling new cloud offerings. Today, programmable net-
working functionality is used by cloud providers to sup-
port their own operations. However, new cloud products of-
fer access to accelerators like FPGAs [10], and customer-
programmable networks are a logical next step. Making this
vision a reality requires multitenancy with strong isolation.

3 Hardware Background

We are focused specifically on multitenancy for switches and
NICs with a hardware architecture based on programmable
packet-processing pipeline ASICs [4, 14, 16,47]. We focus
on this category of devices vs. other architectures such as
multi-core processors [37,40,56] or FPGAs [22] for two rea-
sons. First, some of these other architectures already provide
some support for multitenancy in the form of OSes [38] or
FPGA-based partial reconfiguration [9, 30]. Second, an ASIC
architecture can achieve the highest per-device throughput. In
particular, as cloud providers look ahead to a Terabit Ethernet
era [5], we expect ASIC-based pipelines—both for switches
and NICs—to be more effective than other programmable
architectures in terms of both cost and power consumption.
Although different programmable packet-processing
pipelines have different capabilities, they share the same
conceptual blocks [53]: a configurable parser, one or more
programmable pipelines (generally an ingress and egress
pipeline), and queues for packet scheduling. The behavior of
the parser and processing pipelines is specified in a language

like P4 [43] and compiled into an ASIC configuration.

Parser. The parser identifies packet headers using a format
specified by the P4 program. For example, a typical parser
format will have an Ethernet header followed by an IP header
and a TCP header. The parser stores a packet’s extracted
header data in a structure called a packet header vector (PHV).
PHVs are streamed from one pipeline stage to the next for
programmable packet processing.

Processing pipeline. The parsed PHVs together with per-
packet metadata are passed through pipelines consisting of
multiple match-action stages. Metadata can be program-
defined (e.g., for temporary variables) or hardware-specific
(e.g., queue size seen by the packet [2]). Each stage is as-
sociated with tables of rules. Part of the PHV is matched
against these tables—using either an exact or ternary (wild-
card) match—to identify a corresponding action. A simple
example would be to match on a MAC address and select an
output port. More complex actions use a collection of parallel
action units in each stage to perform computations on the
PHV. Action units can also access and modify persistent state
of different types, e.g., registers, counters, or meters.

Resources. Pipelines have a fixed length. Programs either run
at full line rate, or do not fit [53]. The compiler allocates vari-
ous types of hardware resources, shown in Table 1: different
programs demand different types. For example, a program
with large exact or ternary match tables may be limited by the
SRAM or TCAM required to store the tables.

4 Mechanisms for Multitenancy

Multitenancy imposes two basic requirements:

1. Resource efficiency: The resources of a programmable
device should be efficiently shared across multiple dif-
ferent tenants. This involves consolidating functionality
common to all tenants (e.g., packet forwarding) and en-
suring there is modest overhead from running multiple
tenant programs simultaneously on the same device.

2. Isolation: A tenant should be able to access only the
resources allocated to it. It should not be able to interfere
with the packet processing of a different tenant.

How should these requirements be enforced? Classically,
this would be done by a time-sharing OS, monitor, or hyper-
visor. However, this approach is infeasible for the network
devices we consider, which lack hardware support for isola-
tion or context switching. Although hardware will evolve, we
believe this limitation is fundamental given the strict timing
constraints involved in packet-processing ASICs. We take
a space-sharing approach instead, where resources are parti-
tioned among programs.

Our design for multitenancy uses both compile-time and
run-time components. The compile-time component is a
linker that takes as inputs multiple tenant programs and
merges them together, along with a system-level program

Control Plane

sot Memory
1| Table Entry |lgeaiocator]

i
vy |©)[Realocaton]
Calculator preenl
solver |l

1

i

Handler Packet Flow [[Memory Reallocator | Control Plane) R O_nte BAQ
2 r egister Array
' Fr—— ° o ' Parser Control Pipeline .
————————————— i ranslation Layer T (tag=T " " -
' i ' g apply S's parserto) [“:gry N VY Store system) if (tag==T,'s VID) Conven o = Match Action +T Tenant1
i ; | /Bata Plane L] L W extract common ar;'epry 1 states to appIyT 'sctrl Config -
i Stage 1 Stage2 Staged - Stagom |: headers metadata ms'adsls Params VID==1 .
amout=!
f z
! /Header { \ /Meladala { =
A metadata.offset=512
. Ememe‘ hdr ~ NTo S meta, ! HW metadata { I\ VID==2 Tenant 2
o |fl S X 1 egress_port _ amount=10
| TCP or UDP hdr B S meta, | - One Big Arra “ r
i Shd LS e L)
[one Big Array| | e N _
= _ Tondr i | T meta_t pkt.physical_address = metadata.offset +

(pkt.virtual_address % metadata.amount)

Figure 1: Multitenancy design. S: system, T: tenant.

that provides common packet processing functionality, into a
single program that can be fed to the compiler of the network
device. While doing so, the linker ensures that each tenant
stays within its assigned resource allocation and that tenants
do not interfere with each other.

One might think that this compile-time linker is sufficient
by itself. However, it is a static approach. Changing the
resource allocation requires re-merging, re-compiling, and
reloading the resulting binary. While this is sufficient for
adding and removing tenants, memory allocation requires a
more dynamic approach because a tenant’s memory usage
can change depending on the workload. We address this with
a virtual memory approach that uses run-time mechanisms to
allocate and reclaim stateful memory from tenants.

The static and dynamic approaches used here complement
each other well: the linker provides safe and efficient sharing
for most resources, and the memory allocator provides dy-
namic resource allocation for one specialized resource (state-
ful memory). Ideally, a future system might be able to take
a more dynamic approach to allocating all switch resources.
Such a mechanism could be aided by hardware support for
partial reconfiguration [9,30]: the ability to partially update
the switch/NIC binary without having to update it entirely.

4.1 System-Level Program

We assume tenants operate in a shared environment using vir-
tual IP addresses (e.g., virtual private clouds [1, 7, 8]). These
virtual IP addresses are local to each tenant and are mean-
ingful only within the context of a tenant’s own VMs and
switch/NIC programs. To differentiate each tenant’s traffic,
we use a lightweight packet tagging method. Specifically, we
use the VLAN ID (VID) within the 802.1Q header as a tenant
identifier. Each tenant writes a packet-processing program that
specifies a tenant’s own functionality (e.g., NetCache [28]).
The system-level data-plane program provides functional-
ity that is common to all tenants to avoid duplication across
multiple tenant programs, which improves resource efficiency
of the underlying network device. This program provides
a parser for standard packet formats, currently Ethernet fol-
lowed by IPv4 and TCP or UDP; tenant programs then pro-
vide tenant-specific parsers for the rest of the packet. This
program also provides functionality for translating virtual IP
addresses to physical IP addresses and MAC-address and IP-
address-based forwarding. It maintains forwarding tables for

Figure 2: Program linker module.

Figure 3: Page table in first stage.

the physical network on top of which the tenants are running.
In addition, it measures global statistics (e.g., link utilization)
that can be read, but not written, by tenant programs.

A system-level controller in the control plane controls the
system-level data-plane program. This controller includes
the run-time memory reallocator (§4.3). It also maintains the
system-level program’s tables (e.g., the physical network’s
routing tables), and modifies entries of the tenants’ tables after
ensuring that a tenant is only modifying its own tables.

4.2 Compile-Time Linker

Our compile-time linker consists of 3 modules (Figure 1): the
resource sharing policy, the resource usage checker, and the
program linker. The resource sharing policy specifies how to
allocate resources among tenants (e.g., dominant resource fair-
ness (DRF) [24], per-tenant quotas, or pay-as-you-go resource
pricing). The resource usage checker checks that each tenant’s
resource usage is below the tenant’s allocation. The program
linker merges tenant-specific parsers and packet-processing
programs with the system-level parser and program.

For the ingress and egress pipeline logic, the program linker
uses a “sandwich” architecture when merging tenant pro-
grams with the system program as shown in Figure 2. Be-
cause the pipeline has a feed-forward architecture, packets can
only flow from one stage to the next but not backward. Thus
any communication between the tenant program and system
program must be consistent with the pipeline’s feed-forward
nature. Hence, we allow the tenant program to read from the
system program in the first stage (e.g., to read system-level
statistics such as link utilization into metadata) and write to
the system program in the last stage (e.g., to specify a vir-
tual address for the system program to turn into a physical
address). Hence, tenant programs are effectively sandwiched
between the read and write halves of the system program.

For isolation between tenants, we mangle/rename all ten-
ant programs’ fields (e.g., tenant-defined headers and table
names) to unique names to limit programs to their own names-
paces. This allows two tenants to modify a packet header with
the same name without interfering with each other. A single
tenant can deploy their program on multiple programmable
devices [27,35] spanning the network path between a tenant’s
VMs. To ensure a tenant’s program only processes packets
belonging to that tenant in every device, we ensure that tenant
programs can not modify the packet tag (i.e., VID). Permitting

tag modifications could cause a different tenant’s program to
process packets with a modified tag at downstream devices.

Isolation can be harmed by malicious tenants. For example,
if one tenant has an 80-byte tenant-defined header, but only
sends a packet with a 50-byte header, the remaining 30 bytes
of the tenant header could be filled in with the corresponding
bytes of a previously parsed packet from a different tenant. To
prevent such side channels resulting from cached data from a
previous packet, the merged program zeroes out all PHV con-
tainers before executing tenant logic. While programmable
pipelines can ensure line-rate processing, malicious programs
can recirculate packets into the pipeline or loop back pack-
ets through multiple devices, reducing pipeline resources for
other tenants. To exclude this, we forbid recirculation in tenant
programs and enforce loop-free routes in the control plane.

After carrying out the checks above, the linker merges the
tenant programs into a single monolithic jumbo program. As
an optimization, overlapping components (e.g., the parser) can
be identified and consolidated among tenants programs dur-
ing merging to conserve hardware resources [58]. We leave
such consolidation to future work. The tenant and system
programs are all written in P4 and hence the jumbo program
is also in P4. This jumbo program is then fed to the device
compiler and installed on the device. Each tenant has a con-
troller in the control plane that can interact with the tenant’s
tables in the data plane by passing appropriate commands to
the system-level controller, which executes commands via a
translation layer on the tenants’ behalf. The translation layer
is responsible for converting virtual IPs to physical IPs.

4.3 Run-Time Memory Allocator

On-chip stateful memory is limited (tens of MB) and critical
to many in-network applications [27,28,31,33-36,39,49,59].
However, traffic from these applications is variable [15].
Hence, it is advantageous to dynamically reallocate stateful
memory to different tenants running such memory-intensive
applications as their traffic demands change. Hence, we pro-
pose a virtual memory abstraction to dynamically allocate
stateful memory to tenants at runtime. Such dynamic resource
allocation on programmable packet-processing pipelines is
nontrivial because resource usage is typically decided and
compiled into the binary at compile time.

Typically, to use stateful memory, a programmer has to
declare different P4 register arrays and hardcode their sizes
(i.e., array width and height) at compile time. These sizing de-
cisions might be incorrect for the traffic the tenant’s program
actually sees at run time. They are also inflexible, preventing
us from taking away memory from one tenant and allocating
it to another depending on each tenant’s traffic patterns. To
address this issue, we provide a novel virtual stateful memory
abstraction which consists of three components, as shown
in the data-plane of Figure 1: (i) one big register array in
each pipeline stage that contains all the stateful memory of

the stage; (ii) an initial configuration stage where the mem-
ory boundary of each tenant’s current memory allocation is
stored—effectively a page table for the one big register arrays;
and (iii) the memory reallocator located in the control plane.

For each incoming packet from a tenant, the tenant’s allo-
cated memory parameters (e.g., offset and amount of allocated
memory) are loaded into metadata in the first stage. These
parameters are used by the tenant’s packet to index the one
big register arrays in subsequent stages. Thus the first stage
serves as a page table for virtual memory in subsequent stages
(Figure 3). To reallocate stateful memory dynamically, the
memory reallocator changes each tenant’s memory offsets
and amounts based on an allocation policy and updates these
quantities in the first stage. Additionally, the memory realloca-
tor zeroes out newly reallocated memory regions to disallow
tenants from accessing stale data from other tenants.

Resource efficiency. Tenants typically adjust memory usage
dynamically for network measurement (e.g., [29,42]). Our
approach orchestrates such measurements by reallocating the
stateful memory based on the utility of the memory to the
different tenants. Figure 1 shows the main workflow of the
dynamic resource allocation. The memory reallocator run-
ning in the control plane pulls the statistics (e.g., the request
counter and the cache miss counter for NetCache [28]) from
the data-plane periodically @. Then the utility estimator esti-
mates the current utility for every tenant . The reallocation
problem solver takes the current utilities of tenants as input
and generates a new resource allocation ©.

Isolation. 1t is desirable to guarantee that every memory
reallocation at run-time satisfies a formal high-level non-
interference specification (e.g., any slot in the one big array is
owned by at most one tenant). To this end, we design a set of
verifiable API functions for memory reallocation. We assume
that primitive control-to-data-plane operations [14,45] are cor-
rect. Then, we prove that the memory reallocation implemen-
tation in terms of these primitives satisfies non-interference
properties. We do so by translating both the properties and
our API implementations into first-order logic formulas and
verifying these properties using Z3 [20].

5 Evaluation

Implementation. We prototype our ideas using the Barefoot
Tofino switch [14], which can be programmed in P4-16. Ten-
ants write their programs in P4-16 assuming full control over
the switch resources allocated to them. Our linker reuses the
P4-16 open-source compiler [44] to parse P4-16 source code
for the tenant programs, check their resource usage, ensure
the tenant ID is not modified, rename variables, and finally
sandwich tenant programs between the system-level program
(§4.2). Tenants modify their table entries by submitting re-
quests to the control plane via a gRPC channel. The control
plane uses Tofino [14] auto-generated Thrift APIs to carry out

Program Resource Usage (% of total) Exact Match Xbar SRAM Hash Bits Unit Action Units #Stages Gateway tables PHV
System-level program (SYS) 0.26 0.31 0.6 0.26 8.33 0 14.58

— Firewall 1.82 1.25 1.92 1.3 33.33 3.125 7.44
2 Source Routing 0.325 0.313 0.6 0.78 16.67 0.52 10.42
S SUM (SYS+Firewall+Source Routing) 2.4 1.875 3.125 2.343 58.33 3.645 32.44
& Merged program 1.95 1.25 1.923 1.823 33.33 4.687 20.83
« Load Balancing (LB) 0.52 0.31 1.24 1.04 25 1.04 7.44
) Link Monitor (LM) 0.65 0.52 0.78 0.26 16.7 1.56 18.15
B Multi-hop Route Inspection (MRI) 0.46 0.31 0.6 0.26 16.7 1.04 13.39
2 SUM (SYS+LB+LM+MRI) 1.88 1.46 3.225 1.822 66.67 3.64 53.57
& Merged program 1.17 0.52 1.42 2.083 25 5.73 33.33
o NetCache 15.23 7.71 11.22 7.55 91.67 28.125 19.94
% NetChain 3.51 2.29 6.47 2.864 50 5.21 13.4
S SUM (SYS+NetCache+NetChain) 19.01 10.3125 18.29 10.677 150 33.33 47.91
& Merged program 18.36 9.69 17.09 9.896 100 34.375 57.74

Table 2: Resource usages of individual and merged programs on a Barefoot Tofino switch. The table size in each program is set to 1024 entries.

—8— Dynamic
—B— Static

-

0.0 &,
16

32768 65536
Number of available slots

&
384 131072

Figure 4: Satisfaction ratio of 64 heavy hitter detection tasks on Tofino.

tenant and system requests. The verification of our API (§4.3)
takes 229s on an Intel Core 15-8300H @2.3GHz CPU. At run
time, the resource allocator in the control plane periodically
fetches utility statistics and validity status from the data plane
via our verified APIs, which internally call the Thrift APIs.

Correctness of linker. To demonstrate that our linker provides
isolation, we pick 5 tutorial P4 programs [46] together with
NetCache [28] and NetChain [27] and create 3 groups of
these programs. The system program provides basic forward-
ing and routing. We use Tofino’s Packet Test Framework to
inject packets and test the correctness of our data plane im-
plementations. Our results (Table 2) show that all 3 groups
of programs can be multiplexed on the same switch. Further,
a single program only occupies a fraction of most hardware
resources, showing how multitenancy can improve utilization.
We also tested each of the programs within each group to
check that it behaved as it would in a non-multiplexed setup.

For resource efficiency, the resource usage of the merged
program should not be much more than the sum of resource
usages of the system and tenant programs. Table 2 shows that
this is largely the case, with the exception of gateway tables
and PHVs. This is because (1) we add gateway tables to check
which program is to be executed based on a packet’s VID
when merging programs and (2) Tofino’s compiler needs to
allocate additional tag-along PHV containers (i.e., containers
that are passed unchanged from stage to stage) to support
tenant programs that execute in downstream stages. Both are
overhead: they aren’t needed if each tenant program ran alone.

Run-time efficiency. To measure run-time efficiency, we use
a metric called satisfaction ratio. Satisfaction ratio is a met-
ric that measures the time fraction of a network task when
its utility is above what it requires [42]. For our experiment,
we assume that there are 64 tenants in total and every ten-

ant launches their own heavy hitter detection task against a
source IP address within its /6 subnet. These tasks arrive in
a 10-minute period based on a Poisson process. Every task
runs for 1 minute. For packet arrivals, we replay a 10-minute
CAIDA trace [17] on a Barefoot Tofino switch. Figure 4
shows the satisfaction ratio of 64 heavy hitter detection tasks
under different number of available slots in the one big array.
The upper end of every vertical line is the mean while the
lower end is the 5™ percentile. The static allocation scheme
will assign 1/64 of the total stateful memory to every task
throughout the 10 minutes, while our approach takes realtime
utility into consideration, leading to better satisfaction ratio.

6 Related Work

Hyper4 [26] and HyperV [57] virtualize software switches
by declaring primitive tables and actions to emulate tenant
programs. Compared with their methods, which incur high
hardware resource overhead, the overhead of our approach is
negligible (Table 2). P4 Visor [58] enables lightweight virtual-
ization through program analysis. However, its goal of sharing
program logic between different modules does not readily ap-
ply in our context where each tenant runs its own program
and is distrustful of other tenants. Further, Hyper4, HyperV,
and P4 Visor target software and FPGA-based switches, while
our work targets pipeline-based ASICs. daPipe [13] shares
our ideas of a common system program and compile-time
merging, but targets incremental P4 programming rather than
multitenancy. Further, it does not consider run-time dynamics
like our run-time memory reallocation does.

7 Conclusion

Motivated by the emergence of high-speed programmable
network devices, we propose mechanisms for multitenancy on
these devices. These multitenancy mechanisms would allow
such devices to be shared among different tenants of a cloud
provider—in a manner similar to cloud compute and storage
today. Our mechanisms use both compile-time and run-time
approaches. Our preliminary results suggest that they provide
both efficient resource utilization and inter-tenant isolation.

8 Discussion

Our goal with this paper is to start a discussion not just
on mechanisms for multitenancy but on the vision of pro-
grammable network devices as a cloud service. What applica-
tions will benefit from network programmability in the public
cloud? What will it take for cloud providers to provide this?

Interface questions. We have so far considered a model
where cloud tenants submit entire programs to run on pro-
grammable devices. Is this the right interface? Should appli-
cations be written towards a higher-level API? This might
enable simpler, less device-specific programming. It may also
enable more lightweight isolation, e.g., paravirtualization.
Another traditional function of an operating system, beyond
isolation and resource management, is to provide common
services for applications (e.g., a file system). What is the
equivalent for in-network applications? As one example, re-
cent work proposes transparent swap-like access to remote
memory as a way to build applications that exceed the on-
chip memory capacity of a programmable switch [32]. Given
the distributed nature of cloud systems, should the device OS
provide abstractions for scalable and fault-tolerant storage?

Policy questions. What is an effective policy for partition-
ing multiple network resources between tenants? It should
be both efficient and fair, and the diversity of resource types
makes achieving this challenging. Naive bin-packing is not
strategy-proof: tenants may lie about their requirements to get
higher allocations. Dominant-Resource Fairness (DRF) [24]
offers one answer, but assumes Leontief utilities [3], which
do not capture the typical diminishing returns in network
applications [42]. Another potential policy could be a VCG
auction [6]. But VCG needs precise mappings between re-
sources and prices for each tenant, which are hard to obtain.

Hardware questions. Looking further into the future, how
can changes to the hardware architecture of programmable
network devices facilitate multitenancy? Our current design
aims to work with today’s programmable NICs and switches,
which provide no such support, but future devices could al-
low more efficient and dynamic multitenancy. For example,
adding a new tenant requires remerging and recompiling all
programs. Support for partial reconfiguration, as provided
in today’s FPGAs [50], could allow us to restrict a new ten-
ant’s program to specific parts of the switch and reload only
certain parts of the switch without impacting other tenants.
As another example, dedicated hardware for address transla-
tion could reduce the overhead of our virtual stateful memory.
What should device hardware designers take into account, and
what are the costs of this additional hardware support?

Acknowledgments. We thank our shepherd Ymir Vigfusson
and the reviewers for their feedback. This work is supported
in part by NSF grants CRII-1755646, CNS-1813487, and
CCF-1918757, and a Google Faculty Research Award.

References

[11 Amazon Virtual Private Cloud (VPC). https://aws.
amazon.com/vpc/.

[2] In-band Network Telemetry.
assets/INT-current-spec.pdf.

https://pd.org/

[3] Leontief utilities - Wikipedia. https:
//en.wikipedia.org/wiki/Leontief_utilities.

[4] Naples DSC-100 Distributed Services Card.
https://pensando.io/assets/documents/
Naples_100_ProductBrief-10-2019.pdf.

[5] Terabit Ethernet - Wikipedia. https://en.wikipedia.
org/wiki/Terabit_Ethernet.

[6] Vickrey—Clarke—-Groves auction - Wikipedia.
https://en.wikipedia.org/wiki/Vickrey$%
E2%80%93Clarke%E2%80%93Groves_auction.

[7] Virtual Network - Virtual Private Cloud | Microsoft
Azure. https://azure.microsoft.com/en-us/
services/virtual-network/.

[8] Virtual Private Cloud | Google Cloud. https://cloud.
google.com/vpc.

[9] Vivado Design Suite User Guide | Partial Recon-
figuration. https://www.xilinx.com/support/
documentation/sw_manuals/xilinx2018_1/
ug909-vivado-partial-reconfiguration.pdf.

[10] Amazon EC2 F1 instances. https://aws.amazon.
com/ec2/instance-types/fl/.

[11] Amazon Web Services. https://aws.amazon.com/.

[12] Microsoft Azure: Cloud Computing Services. https:
//azure.microsoft.com.

[13] BALDI, M. daPIPE a Data Plane Incremental Program-
ming Environment. In Proc. of the ACM/IEEE ANCS,
2019.

[14] Barefoot Tofino. https://www.barefootnetworks.
com/technology/.

[15] BENSON, T., AKELLA, A., AND MALTZ, D. A. Net-
work Traffic Characteristics of Data Centers in the Wild.
In Proc. of the ACM IMC, 2010.

[16] BOSSHART, P., GIBB, G., KiM, H.-S., VARGHESE,
G., MCKEOWN, N., IZZARD, M., MUJICA, F., AND
HorowITZ, M. Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for
SDN. In Proc. of the ACM SIGCOMM, 2013.

[17] CAIDA datasets passive-2019. https://data.caida.

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

org/datasets/passive-2019/.

CHOLE, S., FINGERHUT, A., MA, S., SIVARAMAN,
A., VARGAFTIK, S., BERGER, A., MENDELSON, G.,
ALIZADEH, M., CHUANG, S.-T., KESLASSY, 1., AND
ET AL. dRMT: Disaggregated Programmable Switching.
In Proc. of the ACM SIGCOMM, 2017.

DANG, H. T., BRESSANA, P., WANG, H., LEE, K. S.,
WEATHERSPOON, H., CANINI, M., PEDONE, F., AND
SOULE, R. Network Hardware-Accelerated Consen-
sus. Tech. Rep. USI-INF-TR-2016-03, Universita della
Svizzera italiana, May 2016.

DE MOURA, L., AND BIGRNER, N. Z3: An Efficient
SMT Solver. In International conference on Tools and
Algorithms for the Construction and Analysis of Systems
(2008), Springer.

Amazon EC2. https://aws.amazon.com/ec2.

FIRESTONE, D., PUTNAM, A., MUNDKUR, S., CHIOU,
D., DABAGH, A., ANDREWARTHA, M., ANGEPAT,
H., BHANU, V., CAULFIELD, A., CHUNG, E., CHAN-
DRAPPA, H. K., CHATURMOHTA, S., HUMPHREY,
M., LAVIER, J., LAM, N., LIU, F., OVTCHAROV, K.,
PADHYE, J., POPURI, G., RAINDEL, S., SAPRE, T.,
SHAW, M., SILVA, G., SIVAKUMAR, M., SRIVASTAVA,
N., VERMA, A., ZUHAIR, Q., BANSAL, D., BURGER,
D., VAID, K., MALTZ, D. A., AND GREENBERG, A.
Azure Accelerated Networking: SmartNICs in the Pub-
lic Cloud. In Proc. of the USENIX NSDI, 2018.

Google Cloud Platform.
com/.

https://cloud.google.

GHODSI, A., ZAHARIA, M., HINDMAN, B., KONWIN-
SKI, A., SHENKER, S., AND STOICA, I. Dominant Re-
source Fairness: Fair Allocation of Multiple Resource
Types. In Proc. of the USENIX NSDI, 2011.

GREENBERG, A. The Art of Building a Reliable
Cloud Network. Microsoft Research Faculty Summit,
Aug. 2018. https://www.microsoft.com/en-
us/research/video/the-art-of-building-a-
reliable-cloud-network/.

HANCOCK, D., AND VAN DER MERWE, J. HyPer4:
Using P4 to Virtualize the Programmable Data Plane.
In Proc. of the ACM CoNEXT, 2016.

JIN, X., LI, X., ZHANG, H., FOSTER, N., LEE, J.,
SOULE, R., KIM, C., AND STOICA, I. NetChain: Scale-
Free Sub-RTT Coordination. In Proc. of the USENIX
NSDI, 2018.

(28]

[29]

(30]

(31]

(32]

[33]

[34]

[35]

(36]

[37]

(38]

(39]

JIN, X., L1, X., ZHANG, H., SOULE, R, LEE, J., FOS-
TER, N., KiM, C., AND STOICA, I. NetCache: Balanc-
ing Key-Value Stores with Fast In-Network Caching. In
Proc. of the ACM SOSP, 2017.

JOSE, L., YU, M., AND REXFORD, J. Online Mea-
surement of Large Traffic Aggregates on Commodity
Switches. In Proc. of the USENIX Hot-ICE, 2011.

KHAWAJA, A., LANDGRAF, J., PRAKASH, R., WEI,
M., SCHKUFZA, E., AND ROSSBACH, C. J. Sharing,
Protection, and Compatibility for Reconfigurable Fabric
with Amorphos. In Proc. of the USENIX OSDI, 2018.

KiM, D., MEMARIPOUR, A., BADAM, A., ZHU, Y.,
Liu, H. H., PADHYE, J., RAINDEL, S., SWANSON, S.,
SEKAR, V., AND SESHAN, S. Hyperloop: Group-based
NIC-offloading to Accelerate Replicated Transactions
in Multi-tenant Storage Systems. In Proc. of the ACM
SIGCOMM, 2018.

Kim, D., ZHU, Y., KIM, C., LEE, J., AND SESHAN, S.
Generic External Memory for Switch Data Planes. In
Proc. of ACM HotNets, 2018.

LERNER, A., HUSSEIN, R., AND CUDRE-MAUROUX,
P. The Case for Network Accelerated Query Processing.
In Proc. of the ACM CIDR, 2019.

L1, J., MICHAEL, E., AND PORTS, D. R. K. Eris:
Coordination-Free Consistent Transactions Using In-
Network Concurrency Control. In Proc. of the ACM
SOSF, 2017.

L1, J., MICHAEL, E., SHARMA, N. K., SZEKERES, A.,
AND PORTS, D. R. K. Just Say NO to Paxos Over-
head: Replacing Consensus with Network Ordering. In
Proc. of the USENIX OSDI, 2016.

L1, X., SETHI, R., KAMINSKY, M., ANDERSEN, D. G.,
AND FREEDMAN, M. J. Be Fast, Cheap and in Control
with SwitchKV. In Proc. of the USENIX NSDI, 2016.

LiquidIO Smart NICs. https://www.marvell.
com/products/ethernet-adapters-and-
controllers/liquidio-smart-nics.html.

Liu, M., Cul, T., SCHUH, H., KRISHNAMURTHY, A.,
PETER, S., AND GUPTA, K. Offloading Distributed
Applications onto SmartNICs Using IPipe. In Proc. of
the ACM SIGCOMM, 2019.

Liu, Z., BAlL, Z., L1u, Z., L1, X., KiM, C., BRAVER-
MAN, V., JIN, X., AND STOICA, I. DistCache: Provable
Load Balancing for Large-Scale Storage Systems with
Distributed Caching. In Proc. of the USENIX FAST,
2019.

[40] Mellanox High-performance Programmable SmartNICs.
https://www.mellanox.com/products/smartnic.

[41] M1ao0, R., ZENG, H., KiM, C., LEE, J., AND YU, M.
Silkroad: Making Stateful Layer-4 Load Balancing Fast
and Cheap Using Switching ASICs. In Proc. of the ACM
SIGCOMM, 2017.

[42] MOSHREF, M., YU, M., GOVINDAN, R., AND VAH-
DAT, A. DREAM: Dynamic Resource Allocation for
Software-defined Measurement. In Proc. of the ACM
SIGCOMM, 2014.

[43] P4 Language. https://p4.org/.

[44] P4-16 Reference Compiler. https://github.com/
pd4lang/péc.

[45] P4 Runtime. https://p4.org/pd-runtime/.

[46] P4 Tutorial.
tutorials.

https://github.com/pdlang/

[47] Pensando Announces P4-programmable Platform
and Joins P4 Community. https://p4.org/pd/
pensando-joins-p4.html.

[48] Amazon S3. https://aws.amazon.com/s3/.

[49] SapiO0, A., CANINI, M., HO, C.-Y., NELSON, J., KAL-
NIS, P., KiMm, C., KRISHNAMURTHY, A., MOSHREF,
M., PorTs, D. R. K., AND RICHTARIK, P. Scaling
Distributed Machine Learning with In-Network Aggre-
gation. Tech. rep., KAUST, Feb. 2019.

[50] SAQUETTI, M., BUENO, G., CORDEIRO, W., AND
AZAMBUIJA, J. R. Hard Virtualization of P4-Based
Switches with VirtP4. In Proc. of the ACM SIGCOMM
Conference Posters and Demos, 2019.

[51] SHARMA, N. K., KAUFMANN, A., ANDERSON, T.,
KiMm, C., KRISHNAMURTHY, A., NELSON, J., AND PE-
TER, S. Evaluating the Power of Flexible Packet Pro-
cessing for Network Resource Allocation. In Proc. of
the USENIX NSDI, 2017.

[52] SHARMA, N. K., L1U, M., ATREYA, K., AND KRISH-
NAMURTHY, A. Approximating Fair Queueing on Re-
configurable Switches. In Proc. of the USENIX NSDI,
2018.

[53] SIVARAMAN, A., CHEUNG, A., BubpIU, M., Kim, C.,
ALIZADEH, M., BALAKRISHNAN, H., VARGHESE, G.,
MCKEOWN, N., AND LICKING, S. Packet Transactions:
High-Level Programming for Line-Rate Switches. In
Proc. of the ACM SIGCOMM, 2016.

[54] SIVARAMAN, A., SUBRAMANIAN, S., ALIZADEH, M.,
CHOLE, S., CHUANG, S.-T., AGRAWAL, A., BALAKR-
ISHNAN, H., EDSALL, T., KATTI, S., AND MCKEOWN,
N. Programmable Packet Scheduling at Line Rate. In
Proc. of the ACM SIGCOMM, 2016.

[55] SONG, H. Protocol-Oblivious Forwarding: Unleash
the Power of SDN through a Future-Proof Forwarding
Plane. In Proc. of the ACM HotSDN, 2013.

[56] Stingray SmartNIC Adapters and IC. https:
//www.broadcom.com/products/ethernet—

connectivity/smartnic.

[57] ZHANG, C., B1, J., ZHOU, Y., DOGAR, A. B., AND
Wu, J. HyperV: A High Performance Hypervisor for
Virtualization of the Programmable Data Plane. In
Proc. of the IEEE ICCCN, 2017.

[58] ZHENG, P., BENSON, T., AND Hu, C. P4Visor:
Lightweight Virtualization and Composition Primitives
for Building and Testing Modular Programs. In Proc. of
the ACM CoNEXT, 2018.

[59] ZHu, H., BAlI, Z., L1, J., MICHAEL, E., PORTS, D.
R. K., STOICA, I., AND JIN, X. Harmonia: Near-linear
Scalability for Replicated Storage with In-network Con-
flict Detection. Proc. of VLDB Endowment, 2019.

	Introduction
	Motivating Multitenancy
	Hardware Background
	Mechanisms for Multitenancy
	System-Level Program
	Compile-Time Linker
	Run-Time Memory Allocator

	Evaluation
	Related Work
	Conclusion
	Discussion

