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ABSTRACT
Millimeter-wave communication has the potential to deliver or-
ders of magnitude increases in mobile data rates. A key design
challenge is to enable rapid beam alignment with phased arrays.
Traditional millimeter-wave systems require a high beam alignment
overhead, typically an exhaustive beam sweep, to �nd the beam
direction with the highest beamforming gain. Compressive sensing
is a promising framework to accelerate beam alignment. However,
model mismatch from practical array hardware impairments poses
a challenge to its implementation. In this work, we introduce a neu-
ral network assisted compressive beam alignment method that uses
noncoherent received signal strength measured by a small number
of pseudorandom sounding beams to infer the optimal beam steer-
ing direction. We experimentally showcase our proposed approach
with a 60GHz 36-element phased array in a suburban line-of-sight
environment. The results show that our approach achieves post
alignment beamforming gain within 1dB margin compared to an
exhaustive search with 90.2% overhead reduction. Compared to
purely model-based noncoherent compressive beam alignment, our
method has 75% overhead reduction.
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1 INTRODUCTION
Millimeter-wave (mmW) communication is a promising technol-
ogy for future wireless networks, including 5G New Radio and
60 GHz Wi-Fi. Due to abundant spectrum, mmW networks are
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expected to support ultra-fast data rates. As shown in both the-
ory and prototypes, mmW systems require beamforming (BF) with
large antenna arrays and narrow beams at both the transmitter (Tx)
and receiver (Rx) to combat severe propagation loss. Before data
communication, directional beams must probe the channel to select
a beam pair with adequate BF gain. This procedure is referred as
beam alignment1. Existing mmW systems use analog phased ar-
rays with beam sweeping, an exhaustive search approach, for beam
alignment. However, this method introduces high communication
overhead. Further, the required number of channel measurements
linearly scales with number of antenna elements, which is expected
to increase with the evolution of mmW networks. In this work, we
present mmRAPID, mmW Random Antenna weight vector based
Path Identi�cation without Dictionary. mmRAPID is a novel beam
alignment method based on compressive sensing (CS) theory that
reduces the number of channel probings to logarithmically scale
with antenna array size. We propose a machine learning approach
to address a non-trivial CS dictionary mismatch issue due to array
hardware impairments. Our implementation and experiments using
a 60GHz testbed demonstrated near perfect beam alignment with
90.2% overhead reduction as compared to exhaustive beam sweeps.
To the authors’ best knowledge, this is the �rst work to experimen-
tally demonstrate machine learning based beam alignment using a
60GHz phased array testbed and real measurement data.

The rest of the paper is organized as follows. Section 2 sur-
veys mmW fast beam alignment designs and proofs-of-concept.
We present the problem statement and the motivation for using
machine learning in Section 3; the proposed design in Section 4;
and the implementation details with our 60GHz testbed in Sec-
tion 5. The experimental results are presented in Section 6. Finally,
Section 7 concludes the paper.

Scalars, vectors, and matrices are denoted by non-bold, bold
lower-case, and bold upper-case letters, respectively. The (8, 9)-th
element of A is denoted by [A]8, 9 . Similarly, the 8-th element of a
set A is denoted by [A]8 . Transpose and Hermitian transpose are
denoted by (.)T and (.)H respectively. Inner product between a and
b is denoted as ha, bi. |a| returns vector with magnitude of each
element of a.

2 RELATEDWORKS
Beam alignment for mmW is an active research area. While some
approaches focus on hardware innovations, e.g., fully-digital array
and frequency domain simultaneous beam sweep facilitated by
leaky wave antenna [9] or true-time-delay array [5], others rely on
signal processing.

1It is also referred as beam training, path identi�cation, and path discovery.
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Model-based signal processing algorithms for beam alignment
mainly rely on the sparsity of mmW channels and a knowledge
of the phased array response. State of the art approaches from
this class of algorithms, namely hierarchical beam alignment and
compressive sensing based beam alignment, have overheads that
logarithmically scale with array size. The former uses sounding
beams that adapt with previous measurement, bisecting the beam
width to reduce the search space [7]. The latter is based on either CS,
i.e., with coherent complex sample measurements, or compressive
sensing phase retrieval (CPR), i.e., with noncoherent received signal
strength (RSS) measurements [12, 15, 21]. Alternatively, UbiG [10]
is a model-based algorithm that requires only a constant sounding
overhead regardless of array size. UbiG relies on perfect knowledge
of all beam patterns to solve for the angle of arrival (AoA)s with
a non-convex optimization problem. For all of these methods, the
model mismatch due to channel, antenna array and radio hard-
ware impairments introduces non-trivial challenges. Additionally,
adaptive codebooks required for hierarchical beam alignment and
the genetic optimization proposed for UbiG could add signi�cant
complexity or computational overhead to the beam management
integrated circuits.

Data-driven signal processing can, from extensive training data,
learn to infer the best beam using various low-overhead, in-band
measurements and/or out-of-band information. In-band measure-
ments include channel impulse response estimated by omni- direc-
tionally received pilots [1] and a proportion of exhaustive beam
search results [6, 19]. Out-of-band information includes the termi-
nal’s location [13, 19]. To date, these works either use a statistic
channel model [6] or ray tracing simulations [13, 19] to generate
data.

With the increased availability of mmW testbeds, there are many
proofs-of-concept. Work in [3] reports a chip-level demonstration
of CS based beam alignment with a channel emulator. [15, 23] show-
case fast alignment by solving CPR problems, while [2, 11] design
and demonstrate fast beam alignment using multi-lobe sounding
beams and combinatorics inspired algorithms. Work in [8] reports
experimental work that e�ectively reduces overhead when more
than one spatial stream is used in a hybrid array. Finally, some pro-
totypes also rely on the side information, e.g., sub-6GHz [14, 18]
and visible light [10] measurements, for mmW beam alignment.

This work improves on the existing literature by proposing a
novel beam alignment algorithm that maintains low sounding over-
head even with model mismatch. Unlike prior algorithms, mm-
RAPID avoids performance degradation with realistic hardware.
To the authors’ best knowledge, although traditional compressive
beam alignment algorithms have been tested experimentally, this
work is also the �rst to test a machine learning based beam align-
ment algorithmwith experimental data collected frommmW radios.

3 NONCOHERENT COMPRESSIVE BEAM
ALIGNMENT

In this section, we start with the mathematical model and problem
of noncoherent compressive beam alignment. As a reference, we
also describe the state-of-the-art model-based solutions and their
limitations.

3.1 System model and problem statement
We consider mmW communication between an access point (AP)
Tx and a mobile station (MS) Rx. The AP and MS are each equipped
with an analog linear array with #T and #R elements. The chan-
nel follows an !-path geometric model H =

Õ!
;=1 6;aR (q; )a

H
T (\; ),

where aT (\ ) 2 C#T , aR (q) 2 C#R , and 6; 2 C are the array re-
sponses in AP and MS and gain of the ;-th path, respectively. Ar-
ray responses are de�ned by their =-th element, i.e., [aR (q)]= =
exp( 92c (=�1)3/_ sin(q)) and [aT (\ )]= = exp( 92c (=�1)3/_ sin(\ )),
where 3 , _, q and \ are the element spacing, carrier wavelength,
AoA and angle of departure, respectively. We focus on the MS Rx
side by assuming the the AP Tx antenna weight vector (AWV)
v = aT (\1)/

p
#R is pre-designed. Thus, the channel model in the

rest of the paper is

h =
!’
;=1

U;aR (q; ) ⇡ U1aR (q1) , UaR (q¢), (1)

where U; = U;aHT (\; )v is the post-Tx-beam channel gain. The ap-
proximation in (1) is from the selection of the Tx beam, which
results in |U1 | � |U; |, ; > 1. We de�ne q¢ as the true AoA of the
channel. When the Rx uses AWV w, the received symbol is

~ = wHhB + =, (2)

where B is the Tx symbol and = is the post-combining thermal noise
which is modeled as additive white Gaussian noise with variance f2n.
Without loss of generality, we let B = 1 and de�ne signal-to-noise
ratio (SNR) as SNR = |U |2/f2n.

We consider a codebook based communication protocol which
consists of two phases: a beam alignment phase and a data commu-
nication phase. The channel is unknown to the AP Rx but can be
assumed invariant between these two phases. During beam align-
ment, the MS Rx uses a sounding codebook,WS (with |WS | = "
codewords), to probe the channel. The associated measurements
are processed to select the best beam from a �xed directional code-
bookWD (with |WD | =  codewords), which is then used in the
data communication. Each codeword of directional codebook is a
steering vector, i.e., [WD]: = aR (\: )/

p
#R, and these directions

{\: } :=1 cover an angular region of interest.
Three additional assumptions are relevant to our implemen-

tation. Firstly, the sounding codebook WS is loaded into hard-
ware in advance and each codeword is applied in a sequential
manner. Adaption that uses on-the-�y measurements to change
either the codebook or the codeword selection order, e.g., a hier-
archy search, is not desired. In fact, we focus on pseudo-random
sounding codebooks WS, a well adopted design from compressive
sensing literature when the Rx does not have prior knowledge of
the channel [12, 15, 16, 21]. Speci�cally, the magnitude of each
AWV in WS is 1/p#R and the phase is randomly picked from
the set {0, c/2, c, 3c/2}. These are referred to as pseudorandom
noise (PN) AWV or beams in the remainder of the paper. Secondly,
the received symbols in (2) are not directly observable. Instead, each
channel measurement is noncoherently taken from the preamble, a
sequence of pilot symbols, in the form of RSS. Lastly, the phased
array is non-ideal and has realistic hardware impairments. An opti-
mistic assumption is to model these impairments as gain and phase
o�set, i.e., an unknown multiplicative error e 2 C#R independent
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of the codewords [23]. With the above assumptions, the" channel
probings give RSS p = [?1, · · · , ?" ]T where the<-th probing is

?< = |w̃H
<h| + =< . (3)

In the equation, w̃< = diag(e) [WS]< is the receiver combiner with
hardware impairment, and =< is the error in RSS measurement. To
that end, the compressive noncoherent beam alignment problem is:

Problem: Design a signal processing algorithm that uses the
noncoherent measurements p from (3) to infer the best directional
beam for data communication, i.e., ŵ 2 WD.

The performance metrics are the required number of measure-
ments" and the post-alignment BF gain, i.e., normalized gain in
data communication phase ⌧ = |hHdiag(e)ŵ|2/khk2. Note that an
exhaustive search uses the same codebook for both alignment and
communication, i.e., WS = WD. It is straightforward to �nd the
optimal codeword w¢ = maxw2WD ⌧ with overhead cost " =  .
The goal is to reduce" while introducing marginal impact to post-
alignment BF gain as compared to an exhaustive search2, e.g., <2dB
loss. we further de�ned overhead reduction ratio as ( �")/ .

3.2 Model based solution and its limitation
The beam alignment with (3) can be formulated as a CPR problem
when the error e is assumed to be negligible, i.e.,

p = |WHh| + n = |WHARg| + n , | g| + n. (4)

In the above equation, [AR]: = aR (\: ), \: are the steering di-
rections in the discrete Fourier transform (DFT) codebook (the
AoA hypothesis), and g 2 C is a sparse vector with all-zero el-
ements except the :¢-th being U (i.e. associated with true AoA
:¢ = {: |\: = q¢}). The error vector is n = [=1, · · · ,=" ]T. The
sensing matrixW is from error-free sounding AWVs and de�ned as
[W]< , [WS]< . The solution to a general CPR model is guaran-
teed with an adequate number of measurements" , which linearly
scales with the sparsity level, i.e., non-zero elements in g, and loga-
rithmically scales with  [17]. Solutions to a general CPR can use
convex optimizations [15, 23] or approximate massage passing [17].
Solving CPR in this work, or �nding the sparsity level 1 vector g
from p, directly leads to a solution of beam alignment since the non-
zero element, say :̂-th, can simply be used to select the best beam
from the DFT codebook ŵ = [WD]:̂ . In this special case, the heuris-
tic approach of received signal strength matching pursuit (RSS-MP)
[16] also applies, where :̂ = argmax: hp, | [ ]: |i/k [ ]: k.

The key concern in existing CPR solutions is the required knowl-
edge of dictionary  (aka magnitude and phase response of AWVs
and beam patterns), in (4). With hardware impairments, the sens-
ing matrix W in (4) is composed of distorted sounding AWVs
[W]< = diag(e)w< . This can be problematic in a practical ra-
dio for three reasons. Firstly, in the production of radio hardware,
the error e are due to the combined e�ects of a systematic o�set
among all devices and a device dependent random o�set [20]. To
date, it is generally cost-e�ective to only calibrate and compensate
the common o�set. Over-the-air calibration of device-dependent
o�sets is prohibitively expensive and time consuming. Secondly,
the mainlobe of DFT pencil beam is not sensitive to array o�set
2With increased codebook size  , beam steering with AWV w¢ is asymptotically the
same as the steering towards ground truth AoA q¢. Thus, we do not directly compare
with the latter in this work.

[20]. Although sidelobes are more vulnerable to distortion, they
are not directly used in mmW systems during beam sweeping or
beam steering. Thus, leaving a device-dependent array o�set can
be acceptable. Lastly, the beam patterns of PN AWVs are sensitive
to array o�set, as will be shown in Section 6. Thus, CPR based
algorithms are likely to experience model mismatch and degraded
performance.

4 MMRAPID DESIGN
To address the model mismatch in solving CPR, we propose a data
driven approach for beam alignment.

4.1 Main idea of mmRAPID
The key insight of our approach is that, although analytically solv-
ing the noncoherent beam alignment problem using model (4) is
di�cult, its solution can be easily found by an exhaustive beam
sweep. Therefore, we can resort to a data driven approach to learn
how to solve the CPR problem (4) with unknown deterministic
o�set. The proposed system contains two stages, each covering a
much longer time scale than the beam alignment or communication
phases.

We refer the �rst stage as the learning stage, where the radio
uses a concatenated codebook W = WD [WS for multiple beam
alignment phases. Speci�cally, the sounding results from exhaustive
search WD provide the solution to the beam alignment problem;
the so called labels in machine learning terminology. The sounding
results fromWS are treated as the features, whose statistical rela-
tionship with the labels can be extracted by machine learning tools,
e.g., neural network (NN) or support vector machine. Admittedly,
the beam alignment overhead in this stage is  +" , even higher
than the overhead  from an exhaustive search. The beam align-
ment features and labels must be collected in various environments
to reliably generalize their relationship. In a practical system, this
would arise from randomness in physical position and orientation
of the MS, e.g., a phone held by a human with di�erent posture
in di�erent places. In fact, the learning stage can be completely
ambient and does not require dedicated interaction from the user
[1].

We refer the second stage as the operation stage, where MS only
uses codebook WS for beam alignment, compressing the overhead.
The algorithm then only uses the feature to predict the label, i.e.,
the best beam w¢ in data communication phase.

4.2 Neural network design
In this work, we designed a dense NN to predict the optimal DFT
beam for a given unknown channel h, i.e., label, based on PN
beam RSS measurements, i.e., feature. The network used 3 fully
connected (FC) layers, each using recti�ed linear unit (ReLU) ac-
tivation functions. For all tested values of " , we used the same
network architecture, with 64, 128, and  units in the �rst through
third FC layers respectively. This relatively shallow NN architec-
ture was designed through testing with extra simulation data. We
experimented with deeper networks, but found that only 3 layers
were required to achieve maximum performance and thus capture
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Figure 1: Overview of the testbed, experiment environment,
and data capture procedure.

the nonlinear statistics. Additionally, the shallow NN design re-
duces the computational complexity of the algorithm and the beam
management integrated circuits.

Input RSS data was expressed in linear scale and normalized
by the maximum value. These feature transformations limit the
data to the range [0, 1], prevent activation function saturation, and
improve the learning performance. Batch normalization layers were
also used just before the ReLU activations in �rst and second FC
layers as feature regularization to improve training e�ciency.

Our design used a sparse categorical cross entropy loss func-
tion to produce our classi�cation results over the  possible DFT
beam physical angle labels. For training, we used the RMSprop
optimizer. The network architecture was implemented and trained
in Keras/Tensor�ow. The total number of trainable parameters in
this network depends on the input feature dimension (") and the
label dimension ( ): 64" + 129 + 8768.

5 IMPLEMENTATION IN MMW TESTBED
This section starts with a description of the testbed, followed by
the NN based beam alignment implementation.

Our testbed is the Facebook Terragraph (TG) channel sounder, a
pair of TG nodes customized for measurements of 60GHz channels
[4]. Each TG node has a 36 by 8 planar phased array. When using
pencil beams, the narrowest one-sided 3 dB beamwidth is 1.4° in
the azimuth plane. Readers are referred to [4] for more details of
the testbed.

The testbed has an application programmable interface (API) that
allows a host computer to customize AWVs when transmitting or re-
ceiving IEEE802.11ad packets. The API also provides measurements
from the received preamble, e.g., received signal strength indica-
tor, short training �eld (STF) speci�ed SNR, and long-training �eld
speci�c channel impulse response estimation. Note that although
multiple automatic gain control (AGC) ampli�ers are involved in
preamble measurements, a look-up table is used to make the impact
of AGC transparent, which indicates the �delity of model (3). The
array o�set was calibrated and compensated using a golden design
instead of device-by-device calibration.

5.1 Data Capture Automation
As mentioned in Section 4, it is desired for the NN to learn from
beam alignment data collected in various of locations and phys-
ical orientations of radios. To automate this procedure, we used
a programmable motor on the receiver side. We designed a 3D
printed bracket to attach the receiver to a motorized turntable kit
controlled by a motor controller, as shown in Figure 1. We mechani-
cally rotated the receiver between �45° and 45° from the transmitter
boresight. The procedure achieved pseudo random realizations of
AoA of propagation channel h using pre-programmed motor posi-
tions. Figure 1 demonstrates how the receiver collected di�erent
physical AoAs using the automated turntable. Note that the motor
was not precisely controlled, nor did it provide the true AoA, un-
like a turntable required for chamber calibration of the array. The
motor’s only purpose was to emulate random physical positions
and hold the posture of the MS as described in Section 4.1. No
such motor is required when generalizing this approach to actual
scenarios.

6 EXPERIMENT AND RESULTS
This section describes the experiment details, followed by experi-
mental results and comparison with state-of-the-art.

6.1 Experiment details
We conducted the experiment in a line-of-sight (LoS), suburban
outdoor environment, shown in Figure 1a. The radios weremounted
on tripods separated by approximately 14m (91 dB pathloss). The
azimuth AoA of the channel is randomly changed by the motor
before each capture. Tx directional beam was pointed towards the
Rx at all time.

During each collection period, we collected 2,000 points. Each
point consisted of 100 RSS measurements using the sounding code-
bookW, i.e., = 64DFT beams between �45° and 45° such that ad-
jacent pencil beams overlap by a half of one-sided 3 dB beamwidth
and "0 = 36 PN beams. Each data point spends 9 s, including 7 s
when the Rx was static3 and 2 s for the motor movement to create
a new LoS propagation direction. Although we collected data for
"0 = 36 PN beams, only the �rst" beams were used for training
and testing with compressive beam alignment algorithms. A total of
3 collection periods from three di�erent days were included in this
paper’s results, each with a di�erent SNR4. We changed the SNR
by modifying the transmit e�ective isotropic radiated power (EIRP)
which leads to median PN beam SNRs of 10, 10, and 12 dB. After
data collection, labels with insu�cient training data (at least 20
points per SNR) were eliminated, leaving  = 51 remaining labels,
whose associated AoA are between �26.4° to 43.6°. Of the data asso-
ciated with the  = 51 DFT beam labels, a total of 3,060 data points
were used for training and 1898 points were used for evaluation.
All data and code is available at [22]. During evaluation, the DFT
sounding results were used as the ground truth to measure beam
prediction performance from compressive PN probing.

3The latency of testbed API is not optimized. Hence, our goal is to achieve alignment
with a compressed number of probings" instead of high speed.
4Such SNR is measured by STF which has consistent de�nition with the SNR for (2).
Although SNR in (3) cannot be directly measured, it should be larger than the STF-SNR
since RSS measurements average a sequence of samples.
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Figure 2: Measured and model predicted beam pattern of a
DFT beam w 2 WD and a PN beam w 2 WS.

For fair comparison, the training data was also available to the
solution that analytically solves CPR. Note that when using [ ]:
in (4) as collected labels of training data, the system can estimate
|w̃H

<aR (\: ) |, i.e., the magnitude of dictionary  : . Although such
estimates cannot be directly used in CPR as phase information of  
are missing, they help the RSS-MP algorithm [16]. Hence, we refer
to the vanilla RSS-MP as one that uses only the model predicted
dictionary, and dictionary re�ned RSS-MP as the one enhanced by
training data. Also, our best e�orts in applying the convex opti-
mization based CPR solution led to unsatisfactory performance,
likely due to the imperfect knowledge of the dictionary  when
using the PN sounding beam, similar to the �nding from [23].

6.2 Experiment results
The captured data allowed us to coarsely evaluate the beam pattern,
|w̃HaR (\ ) |2 or the magnitude response of AWV at angle \ 5, of the
testbed. A comparison between the measured pattern and the model
predicted pattern, |wHaR (\ ) |2, is presented in Figure 2, showing
an example DFT pencil beam and an example PN beam6. The re-
sults verify the arguments in Section 3.2. Although the hardware
impairment causes little distortion in the mainlobe of DFT beam,
DFT sidelobes and PN beam are susceptible to larger distortion.

Using the NN described in Section 4.2 with the experimental
data, we achieved good accuracy for with a compressed numbers
of measurements " . Figure 3 (a) shows the test accuracy7 of the
 = 51 DFT beams used for 4  "  20 and di�erent training
set sizes. With" � 6, the test accuracy saturates around 89% for
the full training set. Performance does improve with more training
data, but NN is already e�ective with little training data.

The post-alignment BF gain loss (as compared to a full exhaustive
search with  = 51 measurements) is presented in Figure 3 (b)
with a comparison of three algorithms using PN sounding results to
predict the best DFT beam for data communication. Vanilla RSS-MP
su�ered from the mismatched dictionary information and thus had
the poor performance. Even with" = 20 channel probings, vanilla
5We experimentally evaluated the coarse beam pattern by categorizing the collected
data by AoAs with peak RSS, i.e. the estimated AoA. The RSS measurements in the
8th data category then approximate |Uw̃HaR (\: ) |2 and thus the beam pattern at \: ,
assuming the complex path gainU had constant magnitude throughout the experiment.
6In the plot, we estimated the magnitude of the complex gain |U | to scale the beam
pattern for comparison.
7The fraction of DFT beam predictions consistent with the optimal beams from beam
sweeps. Incorrect classi�cation may still o�er some BF gain.

RSS-MP had more than 2 dB BF gain loss in the 90th percentile.
With dictionary estimation in RSS-MP, reasonably good alignment
is observed with " � 10. However, precise alignment (less than
2 dB BF gain in 90 percent of test cases) cannot be achieved until
" = 20 measurements. The proposed approach provided further
savings, requiring only " = 5 measurements (90.2% overhead
saving) for comparable post-alignment gain.

In Figure 3 (c), we compare the required number of measure-
ments8 as a function of array size for the RSS-MP and proposed
algorithms using experimental and simulation data. The simulation
used the same PN sounding AWV realization as in the experiment,
but did not include array hardware impairment. The SNR in (3), i.e.,
ratio between RSS measurements and error variance, is set as 20 dB.
We found the following three observations from the results. Firstly,
the required overhead of compressive beam alignment scaled loga-
rithmically with array size, an appealing property for future mmW
systems. Secondly, the proposed method e�ectively learned how
to solve CPR and provided more accurate beam alignment than
the heuristic RSS-MP, even in the simulations without model mis-
match. Lastly, the NN had no performance loss in the experimental
implementation because the data driven approach is immune to
model mismatch due to array imperfection.

7 CONCLUSION AND FUTUREWORKS
In this work, we presented mmRAPID, a compressive beam align-
ment scheme that utilizes machine learning to address implementa-
tion challenges due to hardware impairments. The results demon-
strate that compressive beam alignment can signi�cantly reduce
the required number of channel probings. Our implementation on
a 60GHz testbed demonstrates an order of magnitude overhead
savings with marginal post-alignment beamforming gain loss, as
compared to exhaustive beam sweeps. In the experiment, mmRAPID
also outperforms purely model-based compressive methods.

There are still open questions in this area. The approach and
results have yet to be generalized to more sophisticated mmW
channels, e.g., non-line-of-sight, and the real-time computational
cost the algorithm has yet to be thoroughly compared to existing
methods. Further, the use of compressed channel probing to predict
multiple steering directions in multipath environments have not yet
to been explored. Finally, a comparative study of di�erent sounding
codebooks, e.g., multi-lobe beams [2, 11], under array impairments
and joint design of the codebook and beam alignment algorithm
with other machine learning tools are of interest.
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Figure 3: (a) Test accuracy as a function of the number of PN beam measurements " for 3 training set sizes. (b) The post-
alignment BF gain loss as function of" . (c) The required" as function of receiver array size #R.
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