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Abstract

We have constructed and successfully applied high
order local Farfield Expansions absorbing bound-
ary conditions (FEABC) for time-harmonic single
acoustic scattering in two— and three—dimensions
in previous works [1,2]. We have also extended
the formulation of FEABC to two and three dimen-
sional acoustic multiple scattering in previous pa-
pers. In this work, we present some numerical re-
sults for two-dimensional multiple scattering from
obstacles of arbitrary shape. We will also discuss
weak formulations of these multiple scattering prob-
lems as our first step to implement general curvilin-
ear finite element methods in the context of Isogeo-
metric Analysis (IGA) for multiple scattering.
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1 The Local FEABC for multiple scattering

For brevity, we specialize our discussion to the two
dimensional case but its extension to three dimen-
sions follows a similar procedure [1]. We consider
M disjoint obstacles each occupying a bounded do-
main with boundary I';,, form = 1,... M. The un-
bounded region in the exterior of I';, is denoted by
Q.. The obstacles are sufficiently separated from
each other as to enclose each one with disjoint circu-
lar artificial boundaries B,,. The computational re-
gion (2, is bounded internally by the obstacle bound-
ary I';,, and externally by the artificial boundary 13,,,.
The unbounded region in the exterior of B, is de-
noted by QF so that B,, is precisely the interface
between ,,, and ;). We also consider the follow-
ing definitions:
Q=pey s 2 =Uni—y Qs
o A, 2 and 1o 0T,

The scattering problem that we are considering
consists of the scattering of a plane incident wave,
Ujne, from multiple soft (Dirichlet) or hard (Neu-
mann) obstacles embedded in the unbounded two-
dimensional region 2. As stated in our previous
work, the construction of the FEABC is based on

a decomposition of the scattered field v into purely-
outgoing wave fields u™, such that u = 2%21 u™
in QT, where each 4™ is an outgoing wave radiating
from the artificial boundary B™. The fundamental
idea of this work is the use of a truncated expansion
introduced by Karp in 1961 to represent each v in
QF as

mm

u™ (™, ™) = Ho(kr™) Z krm

L—l
+Hy (kr™ ZZ krm . (1)

The angular functions F}"(6™) and G}*(6™) are
additional unknowns. They depend on the geom-
etry of the scatterers and the properties of the do-
mains €2,,. An improved version of the formulation
for the scattered field u is given by

Au+ k*u =0, in Q7, (2
U = —Ujpe, OF  Optt = —Opljne, in T, (3)
M
U = Z u™ on B, 4
m=1
M
ou ou™
— = — B, &
ovm = ovm on )
M
= Z %m[um] on B,,, (6)
m=1
form =1,... M in equations (4)-(6).

In (5), ™ denotes the normal derivative on B,,.
The symbol .7#° "™ is the Helmholtz operator in terms
of the local polar coordinate system in €2,,. The
Egs. (4)-(5) are the usual continuity of u and its
normal derivative at the interface B3,,. The condi-
tion (6) establishes the continuity of the Helmholtz
operator at the interface. The system is completed
by adding the recurrence formulas for the angular
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functions for/ = 1... L — 1, defined on B™,

20GT(0) = (L = 1)*F"(0) + dg F"1(0) (7)
20F"(0) = PGPy (0) — dj Gi24(8).  (®)
The weak formulation for this BVP is an extension
of the one found in [2] to several obstacles. For the

IGA application to the BVP (3)-(8) with Dirichlet
BC, we define the function spaces

S = {(u,Fol,Gé,..
= —Ujnc ON Fyu € HI(Q_)vF}m?Glm € Hl(Bm)}
"= 0" € H' () [0 =0, on Ty},

LGy R G e =

form = 1,... M. Then, the weak formulation con-
sists of finding (u, F},G§, ... FM,GM ) e &

such that the following equations are satisfied:

M
a(u,v™) = Y (Ouh,v"™)p,, =0, v™ € ST,
m=1
a(u,v™) = (Vu - Vo™ — k2uvm) Q..
Qm
M
(u,8™)p,, — Y _ (W™, 0™)p,, =0, for ™ € H' (B,
m=1
(A" [u],8™)g,, =0, fori™ € H'(B,,)

2" 0™, + (G, )5, — ((GI) (™))

The angular function G7"
to this last equation.

Some of our numerical results obtained by nu-
merically solving (2 )-(8 ) with a second order finite
difference approximation in generalized curvilinear
coordinates are illustrated by Figs. 1- 3. We will
present numerical results from the IGA technique at
the conference.
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Flgure 1: Total pressure field with & = 2, for eight
soft cylinders using L = 8 terms in the FEABC

Figure 2: Comparison of exact and numerical far-
field pattern for the eight cylinders of Fig. 1
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Figure 3: Scattering from a hard submarine and two
soft whales with k = 47 using L = 12 terms

2 Concluding remarks

In the experiments shown above, the numbers of
terms, L in the FEABC was increased to achieve the
best possible approximation. The overall order of
convergence of the combined method for the cylin-
drical scatterers was two due to the second order of
convergence of the numerical method used in the
interior. The local nature of the FEABC is of great
advantage when compared to alternative ABCs such
as Dirichlet to Neumann.
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