
A comparison of several fault-tolerance methods
for the detection and correction of floating-point

errors in matrix-matrix multiplication

Valentin Le Fèvre1�, Thomas Herault2, Julien Langou3?, Yves Robert1,2,

1 Laboratoire LIP, École Normale Supérieure de Lyon, France
2 University of Tennessee, Knoxville, TN, USA

3 University of Colorado Denver, CO, USA
{valentin.le-fevre,yves.robert}@ens-lyon.fr, herault@icl.utk.edu,

julien.langou@ucdenver.edu

Abstract This paper compares several fault-tolerance methods for the
detection and correction of floating-point errors in matrix-matrix mul-
tiplication. These methods include replication, triplication, Algorithm-
Based Fault Tolerance (ABFT) and residual checking (RC). Error cor-
rection for ABFT can be achieved either by solving a small-size linear
system of equations, or by recomputing corrupted coefficients. We show
that both approaches can be used for RC. We provide a synthetic pre-
sentation of all methods before discussing their pros and cons. We have
implemented all these methods with calls to optimized BLAS routines,
and we provide performance data for a wide range of failure rates and
matrix sizes.

Keywords: Resilience, Matrix-matrix multiplication, Algorithm-Based
Fault Tolerance (ABFT), Residual checking (RC), Silent errors

1 Introduction

Reliable computing has become a key challenge when deploying applications
on large-scale platforms. These platforms are confronted to many errors striking
during execution. These errors are due to the extremely large number of floating-
point operations executed by the parallel applications that are deployed on such
platforms. Indeed, the probability of facing a corrupted floating-point operation
is proportional to the number of such operations that are executed [8]. Even
if each processor exhibits a low individual error rate, the probability of several
errors striking during the execution of the parallel application becomes very high
with millions of cores running in parallel for a few days, or even hours.

There are very few ways to ensure that a whole application has executed
without error. The only general-purpose method is to replicate the execution
and to compare the results of both executions. If they do not coincide, an error
has been detected, and the application must be executed a third time. To avoid
a-posteriori re-execution, triplication can be enforced, which allows for error cor-
rection in addition to error detection, using a simple majority vote. However,

? This work was supported in part by the U.S. National Science Foundation awards
1645514 and 1563744.



triplication is even more costly than replication, which already requires half the
resources to execute redundant operations. Fortunately, many scientific applica-
tions heavily rely on scientific kernels from numerical linear libraries, and much
of their floating-point operations are executed within these kernels. For most
linear algebra kernels, application-specific methods have been devised for error
detection and correction, with a much lower cost than replication. The most
prominent application-specific approaches are Algorithm-Based Fault Tolerance
(ABFT) and Residual Checking (RC), which we describe in full details in Sec-
tion 2. Both ABFT and RC are known to enable error detection, but ABFT has
received much more attention because it is also deployed for error correction.
In theory, ABFT can correct up to k errors with 2k + 1 checksums [17,16,13].
However, the numerical instability of floating-point ABFT currently limits its
usage to correct one or two errors within a kernel.

In this paper, we revisit the Residual Checking (RC) approach, and show
that it can be an efficient alternative to ABFT for error detection and correc-
tion. In particular, we focus on providing a transparent hardened version of some
operation: the API, as exposed to the user, does not change, but the result is
checked (and corrected if needed) before it is returned to the user. This creates
a problem for ABFT, as the efficiency of the technique lies in mixing the user
data and the redundant data used for failure detection and correction (see Sec-
tion 2.2). RC can be implemented without modifying the API of the original
computation kernel (see Section 2.3), which is a key advantage from a software
engineering perspective. Another drawback of ABFT compared to RC is the lack
of flexibility. By construction, ABFT uses a fixed number of checksums chosen
a priori, say 2k + 1, and will fail if more errors than k errors strike during the
kernel. On the contrary, RC adapts the number of verifications on the fly, as a
function of the number of errors found.

We adopt a somewhat narrow focus and only deal with protecting matrix-
matrix multiplication from floating-point errors. Matrix-matrix multiplication is
the archetypal linear kernel and is at the heart of several linear solvers, hence it
is one of the most important kernels to study. Assessing the efficiency of residual
checking for matrix-matrix multiplication will lay the foundations for the study
of a full dense linear algebra library. The major contributions of this paper are
the following:
• A synthetic comparison of several fault-tolerance methods for error detection
and correction in matrix-matrix multiplication, withnovel approaches for RC;
• A publicly-available prototype implementation of all the methods, with calls
to optimized BLAS kernels;
• A comparative assessment for a wide range of failure rates and matrix sizes.

2 Methods

2.1 Replication

The first approach to detect computational errors is also the only systemic ap-
proach that can apply to any algorithm: it consists in replicating computations,



and checking that both executions produce the same result. In the context of
mutable data, this also implies to work on a copy of the data to compute, in
order to enable the replicated computation [12]. There are multiple ways to im-
plement replication: the computations can be executed sequentially, one after
the other, at any level of granularity, or in parallel. Ultimately, the replication
process provides two copies of the output of the computation and these copies
are compared bit-to-bit, to detect errors.

Any error detected can then be resolved with a voting process: more replicas
are computed, and if (at least) two output results converge on a same result,
this result is considered valid. The probability that two computation errors pro-
duce the same result is considered negligible, since errors are supposed to be
independent and identically distributed random variables.

2.2 ABFT

ABFT is an approach introduced in [10], that leverages mathematical properties
of the algorithm to introduce redundancy in the data and thus allows to detect,
and sometimes locate and correct errors during a computation. Applied to the
matrix-matrix multiplication of the C ← AB as an example, where A is n-by-n
and B is n-by-n, the main idea of ABFT is to extend the matrix on which the
operation is applied with checksum vectors that are pre-computed before the
matrix-matrix multiplication. This gives

A extended as

(
A
Ac

)
with Ac = vTA, B extended as

(
B Br

)
with Br = Bw

where w and v are checksum generator vectors. Once A and B have been aug-

mented, we perform the matrix multiplication

(
C C(r)

C(c) C(α)

)
←

(
A
A(c)

)(
B B(r)

)
,

and we see that we must have the following relations

C(r) = Cw and C(c) = vTC and C(α) = vTCw. (1)

Therefore, a way to check that the entries of C have been correctly computed is
to check that the equalities in Equation (1) hold. With this scheme, we can, for
example, guarantee to detect any single error in C. (In other words, if no more
than one entry of C is corrupted, then this scheme will detect the error.) Note
that w and v does not have to be vectors, but they can also be block of vectors,

The whole realm of error correction codes (e.g. Reed Solomon error correction
code) is now at our doorstep since for each row Ci of C, we have computed Ci and
its checksum with respect to w, Ciw, and so not only can we detect errors, but
we can also locate and recover errors. Using Reed Solomon error correction code,
for example, we can detect, locate, and recover k errors with 2k + 1 checksums
(provided that we use an appropriate encoding block of vectors w). However, the
Reed Solomon algorithm is notoriously unstable in finite precision arithmetic [6]
and does not enable one to recover from many errors or to handle very long
vectors.



For detection, in practice, one row checksum of the form Ciw is often enough

to detect errors in any row of C, Ci. We simply check whether Ciw = C
(r)
i . This

check can fail if the error vector introduced in C is orthogonal to w. However,
this is unlikely. Tolerance of the order of machine precision has to be added to
the check. Indeed, we only intend to detect errors that are larger than the errors
made by the round-off errors of the numerical computation. So we check, for
example, that ‖C(r) − Cw‖2 ≤ 10u‖A‖fro‖B‖fro‖w‖fro, where u is the machine
roundoff and the number “10” is taken arbitrarily [9]. A standard way to locate

errors is to use “coordinate checkpointing”. So if the row checksum C
(r)
i is not

Ciw and the column checksum C
(c)
j is not vTCj then we conclude that the entry

cij is false. Once an error is located, we can either recover the cij through the
redundancy introduced by the checksum and therefore solving a system of linear
equations with unknown cij , this leads to the method ABFT-solve, or we can,
in the case of matrix-matrix multiplication, simply recompute the entry cij from
the ith row of A and the jth row of B, this leads to the method ABFT-recomp.

One advantage of Reed Solomon is that it enables locating and correcting via
checksum only on the rows or only the columns, while coordinate checkpointing
would need both row and column checksums. For matrix-matrix multiplication,
it is convenient to maintain both checksums, while for other linear algebra op-
erations, this is not always natural. Now, how to choose v and w? In the case
ABFT-solve, Chen and Dongarra [5,6] showed that taking random matrices
enable to recover the solution with high probability during the linear solve to
recover the corrupted entries. While less critical, it does seem a good idea to also
take random vectors v and w for ABFT-recomp.

As for the overhead, we see that to encode and compute with k checksums
with k � n is O(n3) flops, the cost to detect, locate and recover ` errors is
O(n2`) flops. Therefore the cost (in term of flops) of recovery is theoretically
negligible compared to the cost of computation.

2.3 Residual Checking (RC)

A closely related method is RC, which exploits the fact that checking the cor-
rectness of the result of a computation is usually easier than computing it. In
short, one more time using the C ← AB matrix-matrix multiplication as an
example, if one wants to check at low cost whether C is correctly computed, one
can compute, on the one hand, Cw and, on the other hand, A(Bw) and check
whether these two vectors are similar. And, not surprisingly, the two methods
ABFT and RC share similar characteristics: (1) Low cost, (2) if w is in the
nullspace of C −AB, the error matrix, then we will not detect the errors, how-
ever this is unlikely, etc. Hence RC is very similar to ABFT. Historically RC was
introduced with “error detection” in mind only. So you would perform the com-
putation, use RC to detect errors, and then redo the computation if any error
is detected [14,15]. RC has long be thought to only be able to detect errors, and
not able to locate and correct errors. For example, Prata and Silva [14] writes:
“We left out of our comparison one aspect where ABFT would do better than
RC, namely fault localization and error recovery, (RC has no such capability).”



Actually, in very much the same way as ABFT, RC is able to detect, locate and
correct errors. The two methods (ABFT and RC) are essentially similar and
have the same capabilities.

2.4 Differences between ABFT and RC

There is a fundamental principle difference between RC and ABFT. Given some
input, an algorithm computes some output such that a relation is true. For ex-
ample, given A, (1) LU factorization: compute P , L, and U such that PA = LU ,
(2) QR factorization: compute Q, R such that A = QR, (3) SVD decomposition:
compute U , Σ, and V T such that A = UΣV T . RC finds a quick way to check
whether this final relation holds. For example, given a vector x, (1) check that
P (Ax) = L(Ux), (2) check that Ax = Q(Rx), (3) check that Ax = U(Σ(V Tx)).
If the relation does not hold, then RC has succeeded in detecting an error. If the
relation holds, then RC has succeeded in assessing (with high probability) the
correctness of the result.

On the contrary, ABFT starts with checksums on the initial data, and main-
tains the consistency of the checksums along the algorithm. So the checksums
are being modified as the data is being modified so that current data is consis-
tent with current checksum. As a side comment, the difference above explains
why that it is easier to derive RC for many more algorithms than for ABFT.
(In a few lines, we gave RC for three algorithms, and for ABFT, we barely
explained how this concretely worked.) However, in the case of matrix-matrix
multiplication and linear algebra in general, once RC and ABFT algorithms are
implemented, the differences are not so clear any longer, and we find that the
algorithms are often very close. We describe the design space as having three
dimensions. These three dimensions are essentially orthogonal in the sense that
it is possible to make choices in any dimension independently of the others.

Dimension 1: appending checksums or leaving checksums separate.
The checksums (for example Ac) can either (case 1ab) be appended to the main
matrix (e.g. as extra rows to A) or (case 1rc) left as separate independent
blocks of vectors. On the one hand, for RC, the checksums are naturally separate
from the matrices. On the other hand, ABFT has been presented with both
possibilities. RC is always 1rc. ABFT can be 1ab (e.g., [2,10]) or 1rc (e.g., [18]).

One advantage of leaving the checksums separate from the matrices is to not
change the data structures of the original (non fault-tolerant) code. This is much
easier to accomplish from a software engineering point of view. One advantage
of appending the checksum is to call kernels only once (on the extended data
structure). The computation on the checksums is then processed at the same
time as the computation on the main matrix. This can be much faster.

Dimension 2: computing checksums on input data before computa-
tion or after. If we compute the initial checksums before the matrix-matrix
multiplication, we call this 2ab. If we compute the initial checksums after the
matrix-matrix multiplication, we call this 2rc. The main distinction between 2ab

and 2rc is not really when we compute checksums, but more whether we “can”



recompute initial checksums after the main operation. Recomputing the initial
checksums after the computation means that we are storing the input data, and
we are not overwriting in the initial data with computation. In Numerical Linear
Algebra, this is a significant constraints since we often have one operand that is
in/out. If we perform 2rc, we must use backup (copy) of all in-out operands.

It seems that, in the literature, ABFT always compute the initial checksums
before the computation. If one wants to append the checksums to the matrix,
then one will in general compute the checksums before the computation. There-
fore, often, 1ab ⇒ 2ab. (And its contrapositive: 2rc ⇒ 1rc: if we compute the
checksums after, then the checksums will be separate.) One advantage to com-
pute the checksums after is to compute as many initial checksums as needed by
the number of errors, which is useful to lower the overhead, and to avoid making
any assumption on the maximum number of errors that will be encountered.

Dimension 3: detect+recompute or detect+locate+lazy-recompute or
detect+locate+solve. Case 3rc: detect errors, and recompute the whole com-
putation if some errors are detected 3rc. Case 3lo: detect errors, locate errors
and recompute only the corrupted entries (also called lazy recomputation in [18].)
Case 3ab: detect errors, locate errors and recover the corrupted entries from the
redundant information in the checksum, we call this 3ab. A long-held misconcep-
tion is that computing initial checksum after does not enable to recover corrupted
entries from the checksum. In other words the misconception is 2rc ⇒ 3rc. As
already explained this is false.

For 3lo and 3ab, in this paper, the localization is done through “coordi-
nate checkpointing”. 3lo assumes that entries can be recomputed somewhat
easily from only the input data, and maybe some non-corrupted entries. It is not
obvious that there are many kernels for which this is possible. Matrix-matrix
multiplications is one such kernel. For 3ab, assuming that we can locate the er-
rors, (through coordinate checkpointing, for example,) Chen and Dongarra [5,6]
showed that taking random matrices enable to recover the solution with high
probability during the linear solve to recover the corrupted entries.

Reed-Solomon encoding enables 3ab with either a row checksum or a column
checksum, it does not require both row and column checksum. This is very
useful for some operations. (Not matrix-matrix mutiplication though.) However
the checksum block of vectors v and w are extremely ill-conditioned and leads
to numerically unstable codes. We note that 2ab +3ab is the only way (in this
design space) to overwrite in/out operands during the computation and recover
from errors. All other methods needs to copy and store in/out operands to extra
memory space to be able to recompute from the input in case an error occurs.

Which dimension distinguishes ABFT vs RC. Dimension 1: we can dis-
tinguish ABFT and RC by defining ABFT as appending checksums to matrices,
and RC as having checksum separate from matrices. Dimension 2: we can dis-
tinguish ABFT and RC by defining ABFT as computing the initial checksums
before computation, and RC as computing the initial checksums after computa-
tion. Dimension 3: we can distinguish ABFT and RC by defining RC as detect-
ing and maybe locating errors, and following a detection by recomputation, and



defining ABFT as recovering the corrupted entries, after detection and location,
from the redundant information contained in the checksum.

3 Related work

Reference 1ab 2ab 3ab 1rc 2rc 3rc 3lo

[10] X X X
[14] X X X
[7] X X X
[4]* X X X
[2]* X X X
[1] X X X
[18] X X X

*errors are “failures” and therefore
the detection and localization of the
error is known

Table 1: Taxonomy of related work

Multitudinous papers have been
published on replication, ABFT
and RC. A surveys on ABFT is
provided in [3]. Due to lack of
space, we refer to the extended
version [11] for a more compre-
hensive overview. We have se-
lected below a small set of closely
related works, which we classify in
Table 1 according to the criteria
given in Section 2.

4 Experiments

4.1 Implementations

We implemented variants of all the techniques discussed above. The implementa-
tion is in C, relying on the BLAS kernels for all linear algebra operations (namely
GEMM and GEMV), and each hardened routine provides the same API as the
GEMM routine defined by BLAS, but implements a different error detection and
correction strategy. Here is the list of the six routines that we implemented, and
that we compare in Section 4.3:
• NoFT is a reference point, and is a direct call to the GEMM routine provided
by the BLAS library, without any error checking nor correction strategy.
• Replication uses the most simple (and systematic approach): replication, as
described in Section 2.1: the GEMM operation is computed twice, then resulting
elements are compared one by one, and if an error is detected, the entire opera-
tion is computed a third time. Elements are then selected by a simple majority
vote, and if no majority can be obtained for some element, the operation is ap-
plied again, until a pair of matching results can be found.
• ABFT-solve (=1ab +2ab +3ab) is the traditional ABFT method: the input
matrices are copied into larger matrices, that are extensions of the inputs with
a fixed number of column and row checksums. These checksums are computed
from the initial data, and the GEMM operation is applied on the extended ma-
trix. After it completes, we check the checksums to detect errors. If errors are
detected, a linear system of equations is solved [2,4,17,16,13] to compute the
corrected values, and the resulting matrix is copied in the output parameter.
• ABFT-recomp (=1ab +2ab +3lo) follows the same strategy as ABFT-
solve to detect errors, but the matrix is extended with a single column and row
as checksums. By crossing the columns in which the row-checksum is incorrect
and the rows in which the column-checksum is incorrect, we extract a number of
suspected wrong results, and we recompute only these elements from the input



data. The result is checked (iterating another step of re-computation if needed),
and copied back into the output parameter.
• RC-solve (=1rc +2rc +3ab) uses the RC to compute the checksums (see
Section 2.3): the GEMM operation is computed, and once it is computed, a single
column checksum is generated randomly, and the routine compares how apply-
ing the output of GEMM on it differs from applying the two input matrices. If
the result differs in any element, there is at least an error on the corresponding
row(s). Additional checksums are then generated, until a system of linearly in-
dependent equations can be formed. That system is solved to correct the errors.
• RC-recomp (=1rc +2rc +3lo) uses the same approach as RC-solve, until
the correction phase is reached. When this is the case (there is at least one row
with errors), a row-checksum is computed (as the column checksum was), and
by crossing the row-checksum errors and the column-checksum errors, we can
approximately locate suspected error locations. These elements of the output
matrix are recomputed from the initial data to patch the result matrix which is
returned by the routine.

4.2 Setup

For introducing errors in the operations, we use a parameter r which is the error
rate of one floating-point operation. We compute the probability for an element
to be erroneous, knowing it is the result of m operations: P = 1− (1− r)m and
we modify each element that has been drawn to be corrupted by multiplying the
element by a factor randomly chosen between 0.5 and 1.5, after doing the com-
putation. We first apply this modification on all the elements of the matrix after
the GEMM operation, with m = 2n−1, because there are n multiplications and
n − 1 additions per element when multiplying square matrices of size n. Then,
for the recomputed elements of RC-recomp and ABFT-recomp implemen-
tations, we set m = 2n − 1 for each element that is recomputed from scratch
and we check again the result. For RC-solve and ABFT-solve, m = c2 where
c is the number of corrupted columns in the matrix. Finally for Replication,
m = 2n−1 for each element of every new matrix computed. In each experiment,
the maximum duration of the hardened operation is bounded by 4 iterations
of the applied check / correct procedure, and if the matrix is still corrupted at
this point, the operation is considered failed. ABFT-solve needs one additional
parameter which is the number of checksums to add to the matrix: we set it to
2 × 2N3r as 2N3r is the expected number of failures during the computation
and we want a margin to tolerate more errors in bad scenarios. If ABFT-solve
cannot solve the system of equations, the operation is considered as failed.

We run the experiments with 16 cores out of a 20-core Intel Xeon CPU
E5-2650 v3 at 2.30GHz, with 64GB of memory hosted at the University of Ten-
nessee. The code is compiled with GCC 9.2.0, and the BLAS kernels where
provided by Intel MKL version 2019.3.199. We evaluate both the sequential and
multi-threaded versions of the algorithms. We run 100 iterations of each com-
bination of implementations and parameters (the matrix size N and the error
rate r) and we average the execution times of the different parts of the algo-
rithm. DGEMM is the time spent doing the main operation (and subsequent



DGEMMs for Replication); Check is the time spent computing the checksums
and finding the location of the errors; Correct is the time spent recomputing
or solving the systems depending on the chosen implementation. We report the
execution times when each of the 100 iterations succeeds; otherwise, we report
the number of failed iterations. As a reference, we show the time to execute a
GEMM on a N×N matrix without fault tolerance nor failure injection under the
name NoFT. The source code of the implementations used for the experiments
is available at https://github.com/vlefevre/abft-rescheck.

500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Matrix size N

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

500 750 1000 1250 1500 1750 2000 2250 2500 2750 3000
Matrix size N

0.0

0.1

0.2

0.3

0.4

T
im

e
(s

)

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

DGEMM

Check

Correct

Figure 1: Sequential (left) and multi-threaded (right) algorithms, error rate of 10−9.

4.3 Results

Figure 1 describes the detailed execution of our 6 implementations for an error
rate r = 10−9 and a varying matrix size N . The first thing to notice is that
replication is always the less efficient technique. Indeed, even without failures,
two full DGEMM operations need to be executed to detect failures. Moreover,
every time there is at least one error during the computation, we need to compute
the resulting matrix a third times to correct it. It is enough to correct in most
cases but the cost of a DGEMM operation, especially in sequential, is much
bigger than the cost of a detection and the ensuing correction at this error rate.

The overheads of detecting and correcting errors for all methods but Repli-
cation remain small, even when the matrix size (thus the number of errors)
increases: there is only a small proportion of the output matrix that is cor-
rupted, and thus the amount of recomputation or the size of the linear problem
to solve to correct are small. Recomputation-based approaches, however, out-
perform significantly system-solving approaches.

The multi-threaded case shows the same characteristics overall, except the
check time of Replication is significantly increased, relative to the duration of
the GEMMs. As checking for Replication is a memory-bound problem, when
all the cores access the memory simultaneously, the memory bus becomes the
bottleneck and limit parallel efficiency.

When N increases, both RC-solve and ABFT-solve are likely not to cor-
rect everything within 4 re-executions as the correction is done by solving linear
systems of size c, hence with O(c3) flops, where c is the number of corrupted
columns. For a given error rate, increasing N will increase both the number of
columns and the probability that it is corrupted at the beginning. Thus the num-
ber of operations involved in the solve phase (c2 compared to 2n−1) can quickly



grow and we need more iterations to finish. ABFT-solve also does not always
correct for small error rates or small matrix sizes (see Table 2). As the margin on
the number of checksums to add is smaller, it becomes easy to have more errors
than what we estimated even if we already added a factor 2 to the expected num-
ber of failed operations. This risk is managed by the RC-solve implementation
as the checksums are computed after failures hit the initial DGEMM operation,
and thus the exact minimal number of checksums is used.

Implementation ABFT-solve RC-solve

Error rate r 10−10 10−9 8× 10−9 10−8 8× 10−9 10−8

Matrix size N 3000 500 750 1000 1250 3000 3000 3000 3000

Sequential 4 2 23 0 7 1 3 11 78

Multi-threaded 3 2 24 4 3 0 4 15 81

Table 2: Number of failed iterations (over 100) for parameters used in Fig. 1–2.

1e-10 2e-10 4e-10 8e-10 1e-9 2e-9 4e-9 8e-9 1e-8
Error rate r

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

T
im

e
(s

)

1e-10 2e-10 4e-10 8e-10 1e-9 2e-9 4e-9 8e-9 1e-8
Error rate r

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

T
im

e
(s

)

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

DGEMM

Check

Correct

Figure 2: Sequential (left) and multi-threaded (right) algorithms, matrix size 3000.

Figure 2 shows the same measurements, but with a fixed problem size (N =
3000) and a varying error rate. The Solve-based approaches do not produce
results at 8 × 10−9 and 10−8 error rates in the sequential case, and ABFT-
solve only produce an output in a very long time in the multithreaded case
with an error rate of 8× 10−9. As the number of columns including errors gets
closer to N , the size of the system to solve becomes closer to the size of the
original matrix. Since errors can also impact these computations, with a higher
probability, the solve-based approaches fail, leading to repeated iterations of the
correction process.

For low error rates, RC-recomp and ABFT-recomp are the two best per-
forming algorithms and behave very similarly. The main difference between the
two algorithms is that RC-recomp is easier to (1) set up since the check is done
after the main computation and does not depend on the algorithm (for detec-
tion) and (2) to use as a blackbox for the user with no conversion of data needed.
This last point is important as a user-friendly library would take as input N×N
matrices and ABFT needs to add some extra steps to compute a bigger matrix
with the checksums in it. This can quickly increase the execution time (and the
memory footprint) of the algorithm if only a few DGEMM operations are done
in a row because of the memory allocations and copies.

However, as the error rate increases, the recomputation-based approaches
start to show slower corrections. This is particularly visible in the multi-threaded



case: Replication eventually outperforms RC-recomp and ABFT-recomp.
To explained this: first, Replication’s efficiency is independent from the error
rate, because errors hit independent elements in the 3 computed matrices; sec-
ond, as the number of errors in the matrix gets closer to N2, the recomputation
algorithm is less efficient than re-doing a fully optimized GEMM: it implements
a parallel loop over the failed elements of sequential dot products. In the multi-
threaded case, this is less efficient than recomputing the entire GEMM.

500 1000 1500 2000 2500 3000
Matrix size N

0

1

2

3

4

P
er

fo
rm

an
ce

×1010

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

500 1000 1500 2000 2500 3000
Matrix size N

0

1

2

3

4

P
er

fo
rm

an
ce

×1010

NoFT

ABFT-recomp

ABFT-solve

RC-recomp

RC-solve

Replication

Figure 3: Overall performance of the 6 algorithms for r = 10−9 (left) and r =
10−8 (right).

We sum up these results in Figure 3. We represent here the performance of the
operations, as the ratio between 2N3 (the number of floating point operations in
a GEMM) and the execution time of the sequential algorithms. It is clearly visible
that the error rate has no influence on Replication while ABFT-recomp and
RC-recomp are the two best performing algorithms and their performance is
equivalent. We also see that their performance stays close to that of NoFT as
long as both r and N do not become too big. See the extended version [11] for
a similar figure where the matrix size is fixed and the error rate is varied.

5 Conclusion
In this paper, we have reviewed and compared ABFT and Residual Checking
(RC) for detecting and correcting floating-point errors in matrix multiplication.
On the theoretical side, we have detailed both methods, their variants, their
common characteristics and their differences. On the practical side, we have im-
plemented two variants for error correction in each method, one based on solving
a small linear system, and one based on recomputing only corrupted elements,
using coordinate checksumming to locate them. An extensive experimental com-
parison reveals similar execution times for the core of each method, but ABFT
requires to embed the checksum in the user data in order to benefit from the
high performance kernel implementation, while RC does not. Also, the flexibil-
ity of RC becomes very important when error rates are high, because RC can
adapt a posteriori to the number of errors encountered within each particular
execution. On the contrary, ABFT protection is constructed in a rigid way, with
a fixed number of checksums which will rarely match the exact number of errors
striking in a given run. This represents an acceptable overhead when the number
of errors is smaller than expected, but it leads to the failing of the method when



the number of errors is higher than the maximum number of errors that can be
tolerated. To summarize, we point out that RC can be extended to correct silent
errors in addition to detecting them, in a flexible and adaptive way, and without
the burden of the extra memory allocation required by ABFT. Future work will
be devoted to extending the approaches to other linear algebra kernels, and to
protect from memory corruptions in addition to floating-point errors.

References

1. Argyrides, C., Lisboa, C.A.L., Pradhan, D.K., Carro, L.: A fast error correction
technique for matrix multiplication algorithms. In: 15th Int. On-Line Testing Sym-
posium. pp. 133–137. IEEE (2009)

2. Bosilca, G., Delmas, R., Dongarra, J., Langou, J.: Algorithm-based fault tolerance
applied to high performance computing. J. Par. Dist. Comput. 69, 410–416 (2009)

3. Bouteiller, A., Herault, T., Bosilca, G., Du, P., Dongarra, J.J.: Algorithm-based
fault tolerance for dense matrix factorizations, multiple failures and accuracy. ACM
Trans. Parallel Comput. 1(2), 10:1–10:28 (2015)

4. Chen, Z., Dongarra, J.: Algorithm-based checkpoint-free fault tolerance for parallel
matrix multiplications on volatile resources. In: Proc. IPDPS. IEEE (2006)

5. Chen, Z., Dongarra, J.J.: Condition numbers of gaussian random matrices. SIAM
J. Matrix Analysis Appli. 27(3), 603–620 (2005)

6. Chen, Z., Dongarra, J.J.: Numerically stable real number codes based on random
matrices. In: ICCS 2005. LNCS vol 3514. Springer (2005)

7. Gunnels, J., Katz, D., Quintana-Ort́ı, E., Van de Geijn, R.: Fault-tolerant high-
performance matrix multiplication: Theory and practice. In: Proc. Dependable
Systems and Networks (DSN). pp. 47–56 (2001)

8. Herault, T., Robert, Y. (eds.): Fault-Tolerance Techniques for High-Performance
Computing. Computer Communications and Networks, Springer Verlag (2015)

9. Higham, N.J., Mary, T.: A new approach to probabilistic rounding error analysis.
SIAM J. Scientific Computing 41(5), A2815–A2835 (2019)

10. Huang, K., Abraham, J.: Algorithm-based fault tolerance for matrix operations.
IEEE Trans. Computers 33, 518–528 (1984)

11. Le Fèvre, V., Herault, T., Langou, J., Robert, Y.: A comparison of several fault-
tolerance methods for the detection and correction of floating-point errors in
matrix-matrix multiplication. Research report RR-9351, INRIA (June 2020)

12. Lyons, R.E., Vanderkulk, W.: The use of triple-modular redundancy to improve
computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

13. Plank, J.S.: A tutorial on Reed-Solomon coding for fault-tolerance in RAID-like
systems. Software – Practice & Experience 27(9), 995–1012 (1997)

14. Prata, P., Silva, J.G.: Algorithm based fault tolerance versus result-checking for
matrix computations. In: Digest of Papers. 29th Int. Symp. Fault-Tolerant Com-
puting. pp. 4–11 (1999)

15. Prata, P., Silva, J.G.: Fault-detection by result-checking for the eigenproblem. In:
Dependable Computing — EDCC-3. Springer (1999)

16. Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. oSociety for
Industrial and Applied Mathematics 8(2), 300–304 (1960)

17. Roy-Chowdhury, A., Banerjee, P.: Algorithm-based fault location and recovery
for matrix computations on multiprocessor systems. IEEE Trans. Comput. 45(11)
(1996)

18. Smith, T.M., van de Geijn, R.A., Smelyanskiy, M., Quintana-Ort́ı, E.S.: Towards
ABFT for BLIS GEMM. Tech. Rep. 76, FLAME Working Note (June 2015)


