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Abstract—Using a reinforcement learning multi-
armed bandit (MAB) technique, we design a central-
ized and a semi-distributed online algorithms, for
performing load balancing user association in multi-
tier heterogeneous cellular networks. The proposed
algorithms guarantee user association solutions that
satisfy load balancing constraints among the base
stations (BSs) by employing a central load balancer
(CLB). At each time step, these algorithms provide
real-time associations which give the best-to-date net-
work spectral efficiency. In the centralized approach,
the CLB performs base station assignments which
determine the action for each user equipment (UE) to
update its reward. In the semi-distributed approach,
each UE proposes an association action based on its
local information and communicates with the BS for
an associated reward. Numerical results show that the
proposed MAB-based algorithms exhibit fast conver-
gence and reach closely a near-optimal benchmark
centralized solution.

I. Introduction
Future wireless networks are becoming denser with

coexistence of various types of base stations (BSs)
operating at different frequency bands. A challenging
problem in these dense networks is load balancing
user association: finding the best connections between
BSs and user equipment (UEs) to achieve an optimal
network performance while balancing the BSs’ loads
(number of UEs served by each BS). This problem is
more challenging in mmWave networks because of high
directionality and user associations significantly alter
the network interference structure [1].

In recent years, machine learning techniques have
found interesting applications for user association in
cellular networks [2]–[4]. A common feature of these
existing works, however, is that the algorithms require
a training process which usually takes a significant
amount of time, rendering these approaches inappli-
cable to highly-dynamic dense mmWave-enabled Het-
Nets. Furthermore, these learning algorithms do not
explicitly specify how they satisfy the load balancing
constraint formulated on each BS.

Multi-armed bandit (MAB) is a reinforcement learn-
ing technique in which agents explore and exploit
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different actions and receive rewards in order to find
their best possible actions [5]. In the context of user
association, a UE can be considered as an agent and
selecting a BS can be considered as taking an action.
Thus, user association problem can be caste as a multi-
agent MAB. MAB techniques have been employed for
user association, but without load balancing, where
each UE tends to connect to the BS providing the
highest reward, regardless of load constraints [6].
In this paper, we employ MAB techniques and

propose online centralized and semi-distributed al-
gorithms for load balancing user association. Load-
balancing conditions are enforced by the novel central
load balancer (CLB), which has the rewards informa-
tion of all users and uses it to assign BS connections
to satisfy load constraints and achieve a high total
reward. The centralized and semi-distributed versions
differ in where UE actions are proposed, but both
algorithms use local measurements at UEs and do
not require full channel state information. The pro-
posed algorithms achieve performance close to that of
a benchmark near-optimal centralized solution, and
allow online implementation with fast convergence,
making them suitable for highly-dynamic mmWave-
enabled cellular networks.

II. System Model
We study the problem of user association in a multi-

tier HetNet with MCBSs operating at a microwave
(sub-6 GHz) band and SCBSs working at a mmWave
band. In this section, we introduce the network, chan-
nel, and signal models.

A. Network and Channel Models
We consider the downlink of a two-tier cellular Het-

Net with B macro cell BSs (MCBSs), S small cell BSs
(SCBSs), and K UEs. Let B, S, and J = {1, ..., J} denote
the respective sets of MCBSs, SCBSs, and all BSs with
J = B + S, and K = {1, ...,K} represents the set of UEs.
Each BS j has a uniform planar array (UPA) antenna
with Mj elements, each UE k is equipped with a single
antenna at sub-6 GHz band and a uniform linear array
(ULA) antenna with Nk elements at mmWave band.
Each UE k requests nk data streams from its serving



BS such that 1 ≤ nk ≤ Nk , where the upper bound is
due to the number of each UE’s antennas.

In the sub-6 GHz band, the transmissions are omni-
directional and we use the well-known Gaussian MIMO
channel model. Denote hµW

k, j
∈ CMj as the channel

vector between MCBS j and UE k where the entries
are i.i.d. complex Gaussian random variables given by
hµW ∼ CN(0, 1). In the mmWave band, the transmis-
sions are highly directional and the simple Gaussian
MIMO channel may not hold. Instead, we employ the
clustered mmWave MIMO channel model used in [1].

B. Signal Model
For tier-1 working at sub-6 GHz band, the effective

interfering channel on UE k from MCBS j ∈ B serving
UE l is defined as

hk,l, j = hµW
k, j

fl, j (1)

where fl, j ∈ CMj×1 is the linear precoder (transmit
beamforming vector) at MCBS j intended for UE l. If
l = k, this defines the effective channel between MCBS
j and UE k as hk, j = hµW

k, j
fk, j .

Similarly, for tier-2 operating at mmWave band, the
effective interfering channel on UE k from SCBS j ∈ S
serving UE l is defined as

Hk,l, j =W∗kHmmW
k, j Fl, j (2)

where Fl, j ∈ C
Mj×nl is the linear precoder at SCBS

j intended for UE l, and Wk ∈ C
Nk×nk is the linear

combiner (receive beamforming matrix) of UE k. If
l = k, (2) becomes the effective channel between SCBS
j ∈ S and UE k which includes both beamforming vec-
tors/matrices at the BS and UE, and can be expressed
as Hk, j =W∗

k
HmmW

k, j
Fk, j .

Thus, the received signals at UE k connected to
MCBS j ∈ B can be written as

y
µW
k
=

∑
j∈B

hk, j sk, j + zk (3)

where sk, j ∈ C is the data symbol intended for UE k
with E[s∗

k, j
sk, j] = Pk, j , and zk ∈ C is the complex additive

white Gaussian noise at UE k with zk ∼ CN(0, N0), and
N0 is the noise power.
Similarly, the received signals at UE k connected to

SCBS j ∈ S is given by

ymmW
k =

∑
j∈S

Hk, jsk, j +W∗kzk (4)

where sk, j ∈ Cnk is the data stream vector for UE k
consisting of mutually uncorrelated zero-mean symbols
with E[s∗

k, j
sk, j] = Pk, j , and zk ∈ C

Nk is the complex
additive white Gaussian noise vector at UE k, with
zk ∼ CN(0, N0INk

).

C. User Association and Transmission Rate
In [1] we showed that the dependency between user

association and interference structure must be consid-
ered in mmWave cellular systems since mmWave chan-
nels are fast time-varying and have short coherence
time, and also the interference structure depends on
the highly directional links between BSs and UEs.
The connections between UEs and BSs can be de-

fined by an association vector as

β(t) , [β(t)1 , ..., β
(t)
K ]

T (5)

where β
(t)
k

represents the index of BS to whom user k
is associated with during time slot t. We define K (t)j as
the activation set of BS j which is a subset of K and
represents the set of active UEs in BS j at time slot
t. Thus, the relationship between the activation set of
BS j and the association vector can be expressed as

K
(t)
j = {k : β(t)

k
= j} (6)

The load balancing constraint for BS j is given by

|K
(t)
j | ≤ qj (7)

where qj is the maximum number of UEs that BS j
can serve simultaneously, and the quota vector of BSs
is q = [q1, ..., qJ ].

The instantaneous rate received by each UE is a
function of user associations. When UE k is connected
to MCBS j ∈ B operating at sub-6 GHz band, its
instantaneous rate (in bps/Hz) at time slot t is

RµW
k, j
(β(t)) = log2

(
1 +

Pk, jhk, jh∗k, j
vk, j

)
(8)

where vk, j is the interference plus noise value given as

vk, j =
∑

l∈K
(t )
j

l,k

Pl, jhk,l, jh∗k,l, j +
∑
i∈B
i,j

∑
l∈K

(t )
i

Pl,ihk,l,ih∗k,l,i + N0

The instantaneous rate of UE k connected to SCBS
j ∈ S operating at mmWave band is given by

RmmW
k, j (β(t)) = log2

���Ink +V−1
k, jPk, jHk, jH∗k, j

��� (9)

where |.| denotes the determinant operator and Vk, j is
the interference and noise covariance matrix given as

Vk, j =
∑

l∈K
(t )
j

l,k

Pl, jHk,l, jH∗k,l, j +
∑
i∈S
i,j

∑
l∈K

(t )
i

Pl,iHk,l,iH∗k,l,i + N0W∗kWk

Next, we can express the network sum-rate as

r(β(t)) =
∑
k∈K

R
k,β
(t )
k

(10)

to be used as a measure of network performance.



Algorithm 1: UCB Load Balancing Assignment
Input: Time step t, matrix of number of BS selection T(t−1),

reward matrix Γ, BSs’ quota vector q
1 Apply UCB formula: Γ← Γ +

√
2 ln t
T(t−1) ;

2 while Γ has nonzero entries do
3 [k, j] = arg maxl∈K, i∈J Γl, i ;
4 if qj > 0 then
5 Associate UE k with BS j: β(t )

k
= j;

6 Update BS’s quota: qj ← qj − 1;
7 Zero out row k in reward matrix Γ;
8 else
9 Zero out column j in reward matrix Γ;

10 end
11 end

Output: Association vector β

III. Centralized Online MAB User Association
Using the MAB technique, we introduce an online

centralized load balancing algorithm for fast user as-
sociation in 5G cellular networks. The goal is to adapt
and learn an association vector β? which specifies
the best connections between BSs and UEs. In the
proposed algorithm, each UE k takes an action (selects
BS j) and receives an instantaneous reward Rk, j . This
reward can be simply obtained based on a local mea-
surement at UE, the mechanism for which is readily
available for other purposes like handover [7]. Then,
it updates the corresponding reward based on the
following updating rule [5]

Γk, j ← Γk, j + α(Rk, j − Γk, j) (11)

where Γk, j is the reward of UE k received from connec-
tion with BS j, and α is the learning rate. The reward
matrix Γ is defined as a K× J matrix including rewards
of all UE-BS pairs.

A. Load Balancing Assignment
In a multi-agent MAB user association, each UE

takes an action, receive an instantaneous reward, and
updates its reward. At time step t, each UE can pick the
best BS based on its updated reward vector containing
rewards from the connection with each BS. However,
due to the load balancing constrains in (7), the decision
of each UE depends on the decisions of other UEs. A
collision can happen if the number of UEs simulta-
neously picking the same BS is more than its quota
allows. In order to avoid collision, a CLB is required
to collect the reward vectors of all UEs and determine
user associations based on load balancing constraints
of all BSs.

A load balancing assignment algorithm produces a
load balanced association vector based on the most
recent reward matrix (collected from all UEs) and the
quota of BSs. Because of this gathering of information
from all UEs and BSs, it needs to be executed by a
central entity, the CLB. In this paper, we propose a

load balancing assignment scheme based on the Upper-
Confidence-Bound (UCB) action selection method [5].
This assignment scheme guarantees a balance between
exploiting the current best action and exploring other
possible actions for all UEs.

B. UCB Load Balancing Assignment by the CLB
In the UCB action selection approach, each UE k

wants to be associated with the BS which provides the
highest possible reward by selecting a BS as follows [5]

j = arg max
i∈J

©­«Γk,i +
√√

2 ln t

T (t−1)
k,i

ª®¬ (12)

where t is the time step, and T (t−1)
k,i

represents the
number of times UE k has been associated with BS
i up to and including time step t − 1. This mecha-
nism guarantees a certain and diminishing amount
of exploration during the learning process. If there
were no quotas on the BSs, then each user k can
directly implement the resulting choice of (12) as the
association decision for the next learning step. With
load balancing constraints, however, we need to modify
these decisions in order to satisfy the BSs’ quotas.

We propose the following BS load balancing assign-
ment scheme to be performed at the CLB which has
the knowledge of the entire reward matrix Γ and also
matrix T (made up of elements Tk,i). The assignment
algorithm repeatedly performs the following two steps:

1) Select the following UE-BS pair

[k, j] = arg max
l∈K,i∈J

©­«Γl,i +
√√

2 ln t

T (t−1)
l,i

ª®¬ (13)

2) Zero out row k of Γ, and zero out column j if the
quota of BS j is full, to form a new Γ.

until it has identified associations for all users. In
other words, an association occurs according to (13)
by selecting the UE-BS connection with the highest
reward overall. After an association happens, the as-
sociation vector β is updated, the corresponding row
from Γ is zeroed out, and the quota of serving BS is
updated. If a BS runs out of quota, we zero out the
corresponding column from Γ. These steps are repeated
until Γ = 0. At this point, the balanced association
vector β is complete and specifies the associations of all
UEs. A summary of UCB load balancing assignment is
given in Alg. 1.

C. Centralized MAB User Association Algorithm
Using the load balancing scheme above, we propose

a centralized online user association algorithm based
on MAB technique. The proposed algorithm can be
implemented online and can track network dynamics
including small-scale (instantaneous) and large-scale



Algorithm 2: Centralized MAB User Association
Input: UEs’ learning rates αk , randomly generated reward

matrix Γ, BSs’ quota vector q, initial association
vector β(0), initial matrix of number of BS selection
T(0) = 0

1 for t = 1 : T do
2 Each UE k:
3 - Connects to BS j = β

(t−1)
k

;
4 - Receives reward Rk, j from BS j and reports it to CLB;
5 Central load balancer (CLB):
6 - Γk, j ← Γk, j + α(Rk, j − Γk, j ), ∀k;
7 - T (t )

k, j
= T

(t−1)
k, j

+ 1, ∀k;
8 - Executes Alg. 1 to obtain association vector β(t ) and

informs the UEs for learning purpose;
9 CLB calculates sum-rate r(β(t ));

10 if r(β(t )) > r(β(t−1)) then
11 β? = β(t );
12 Informs UEs about new best associations β?;
13 Each UE k connects with BS β?

k
for transmission;

14 end
15 end

Output: Best association vector β? up to time step T

apply based on local reward
receive response
report updated rewards
receive best beta
perform association
perform data transmission

Apply to BS 
𝑗 according 
to Eq. (12)

Receive 
reward 𝑅!,#

Report 
Γ!,# & 𝑇!,#

Receive 
best 𝛽!⋆

Associate
with BS 
𝑗⋆ = 𝛽!⋆

Data Transmission

Learning phases Transmission phases
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Fig. 1. Learning and transmission phases at UE k in the centralized
MAB algorithm during a single time slot t.

channel variations and users’ mobility, and provides
the best-to-date association vector at any time step.
Assuming the network setting, including wireless

channels and user locations, static for a duration of T
learning steps (as in a block fading channel), the algo-
rithm works as follows. In each time step, every user
follows a five-phase operation: (i) performing associa-
tion for learning purposes, (ii) measuring and report-
ing the associated reward, (iii) receiving β

(t)
k

and the
best-to-date association β?

k
, (iv) performing association

for transmission, (v) carrying out data transmission
(see Fig. 1). The first three phases are dedicated for
learning which use current association result (instead
of the best-to-date) to allow sufficient learning explo-
ration, whereas the last two phases are for actual data
transmission which use the best-to-date association in
order to achieve the highest data rate.

In each time step t ≤ T , during the first two phases,
each UE k connects to its assigned-for-learning-
purposes BS j = β

(t−1)
k

, measures an instantaneous
reward Rk, j and reports it to the CLB. Then, in the
third phase, the UE receives β

(t)
k

to be used in the
next learning time step, and the best-to-date associ-
ation j? = β?

k
. The UE implements this best-to-date

association in phase four and maintains it for data
transmission in the fifth phase. After receiving the Rk, j

in phase two, the CLB updates the reward matrix Γ
and the time matrix T. Then, it executes the UCB load
balancing assignment (Alg. 1) to obtain association

Algorithm 3: Semi-dist. MAB User Association
Input: UEs’ learning rate α, BSs’ quota vector q, randomly

generated reward matrix Γ, initial matrix of number
of BS selection T(0) = 0

1 for t = 1 : T do
2 qtemp = q;
3 Each UE k:
4 - Applies to best BS in its reward vector as in (12);
5 if q

temp
j > 0 then

6 UE k receives new reward Rk, j from BS j;
7 BS j updates its quota: qtemp

j ← q
temp
j − 1;

8 else
9 BS j rejects UE k;

10 UE k receives new reward Rk, j = 0
11 end
12 - Γk, j ← Γk, j + α(Rk, j − Γk, j );
13 - T (t )

k, j
= T

(t−1)
k, j

+ 1;
14 - Reports its updated reward Γk, j to CLB;
15 Central load balancer (CLB)
16 - Executes “while” loop in Alg. 1 to obtain β(t );
17 - Updates best-to-date β? (Lines 10-14 in Alg. 2);
18 end

Output: Best association vector β? up to time step T

apply based on local reward
receive response
report updated rewards
receive best beta
perform association
perform data transmission

Apply to BS 
𝑗 according 
to Eq. (12)

Receive 
reward 𝑅!,#

Report 
Γ!,# & 𝑇!,#

Receive 
best 𝛽!⋆

Associate
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Data Transmission

Learning phases Transmission phases

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6
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Fig. 2. Learning and transmission phases at UE k in the semi-
distributed MAB algorithm during a single time slot t.

vector β(t) and informs all UEs of their next learning
step connections. The CLB also compares the new sum-
rate resulting from β(t) with the current best-to-date
value. If the new sum-rate is higher, CLB updates the
best-to-date association vector as β? = β(t), and informs
all UEs of this new β?.

When t > T , or the network setting changes, the CLB
resets its best-to-date values and re-starts the process.
This online centralized algorithm is shown in Alg. 2.

IV. Semi-distributed Online MAB User Association
A. Distributed User Association

Distributed user association approaches are of signif-
icant interest for future cellular networks which have
short channel coherence time and low-latency require-
ments. Distributed approaches provide low-complexity
solutions with minimal signaling overhead between
network entities. Distributed algorithms performance,
however, is usually worse than that of centralized algo-
rithms since association decisions are made based on
local and not global information.

For load balancing user association, the difficulty
in implementing a fully-distributed algorithm comes
from the fact that the association decision of each
individual UE based on their local information does
not guarantee load balancing. This drawback is due
to the lack of information about the association of
other UEs. Considering the proposed centralized MAB



Fig. 3. a) Average received rewards of UEs, and b) Reward of two
typical UEs versus time step for the centralized MAB algorithm.

algorithm in Sec. III, each UE can perform its learning
procedure in a distributed fashion, but we still need
a central entity to track the association of all UEs
and enforce the load balancing constraints. This idea
leads us to a semi-distributed MAB user association
algorithm introduced next.

B. Semi-distributed MAB User Association Algorithm

In a semi-distributed algorithm, instead of receiving
an action from the CLB, each UE proposes an action
based on its locally updated reward vectors. At each
time step, each UE follows a six-phase operation: (i)
applying to a BS, (ii) receiving a reward, (iii) reporting
updated reward, (iv) receiving best-to-date association
from CLB, (v) performing association for transmission,
and (vi) carrying out data transmission (see Fig. 2).

In particular, each UE k uses the UCB formula in
(12) to find best BS providing highest reward. Then,
each UE executes an apply-response mechanism, in
which it applies to its best BS and receives an instan-
taneous reward. The reward will be a positive value if
the BS has enough quota, but will be zero if the BS
is fully loaded. Based on this instantaneous reward,
the UE updates its local reward value according to
(11) and also the number of times it has applied to
that BS. Then, each UE reports these updates to the
CLB. In this algorithm, similar to Alg. 2, the CLB
is responsible for balancing the loads of BSs by per-
forming the while loop in Alg. 1 using the updated
rewards, keeping track of the best-to-date association
β�, and informing UEs about their best-to-date load-
balanced associations. The UEs then use this best-to-
date association for data transmission.

This algorithm is semi-distributed in the sense that
each UE updates its reward based on its own decision,
instead of the CLB updating rewards as in Alg. 2. This
online semi-distributed algorithm is given in Alg. 3.

Fig. 4. Effect of learning rate α on the average network spectral
efficiency of MAB centralized algorithm (T = 50).

V. Numerical Results

We evaluate the performance of the proposed MAB
algorithms in the downlink of a 5G HetNet with J = 4
BSs, K = 18 UEs, and BSs’ quota vector q = [9, 3, 3, 3].
The network includes 1 MCBS operating at 1.8 GHz
and 3 SCBSs operating at 28 GHz. The channels for
sub-6 GHz links and the mmWave links are generated
as described in Sec. II-B. We assume each mmWave
link is composed of 5 clusters with 10 rays per cluster.
In order to implement 3D beamforming, each BS is
equipped with a UPA of size 8 × 8 (Mj = 64), and each
UE is equipped with an antenna module designed for
sub-6 GHz band, and a 4×1 ULA of antennas designed
for mmWave band (Nk = 4). Each UE can receive one
data stream at sub-6 GHz and two data streams at
mmWave band (nk = 2). Also, we assume that the
transmit power of MCBS is 10dB higher than that for
SCBSs. Network nodes are deployed in a 300× 300 m2

square where the BSs are placed at specific locations
and the UEs are distributed randomly according to a
homogeneous Poisson point process (PPP).

Fig. 3 depicts the average received rewards of UEs
and reward of two typical UEs with respect to time
steps for the centralized MAB algorithm. Subfigure (a)
shows a clear trend of that the average reward in-
creasing as time step grows. The small number of time
steps required for reaching near maximum average is
encouraging, where the average reward reaches to 95%
of the maximum in only 28 time steps. This result
indicates that online implementation of the proposed
algorithm can reach close to its best performance even
in highly dynamic networks. Subfigure (b) shows the
reward for two typical UEs where deep valleys in the
curves indicate the result of sub-optimal actions.

The effect of learning rate α on the average spectral
efficiency of the centralized MAB algorithm is depicted
in Fig. 4. This figure shows three cases for learning rate



Fig. 5. Average network spectral efficiency of the proposed cen-
tralized and semi-distributed MAB algorithms with T = 50, in
comparison with the non-learning near-optimal centralized WCS
algorithm (Note that WCS has been shown in [1] to outperform
existing non-learning algorithms such as those in [8].)

α: 1) fixed α = α0, 2) linear decrement α
(t) = α0(1− t/T),

and 3) nonlinear decrement α(t) = α0/t. In the first
case, α is fixed throughout the learning algorithm,
however, in the last two cases α is decreasing from the
initial value α0 as the number of time steps increases
according to the given functions. The results indicate
that fixed learning rate α leads to slightly better perfor-
mance than the linear and nonlinear decrement cases.
For next simulations, we pick fixed value α = 0.3.
Fig. 5 compares the performance of the proposed

MAB user association algorithms with a benchmark
as the (non-learning) centralized WCS algorithm [1],
where the “avg” curves are average performance of
the learned solutions (instead of best-to-date) at each
time step. This figure shows that selecting the best-to-
date association vector achieves a performance close
to that of WCS algorithm. In particular, centralized
and semi-distributed MAB algorithms with best-to-
date association vector achieve 98% and 96% of the
solution provided by WCS algorithm, respectively .
Fig. 6 depicts the best-to-date average network spec-

tral efficiency versus time for the centralized MAB
algorithm for two network sizes. The centralized al-
gorithm only takes 25 time steps to reach 95% of the
maximum efficiency for the smaller network, however,
it needs around 55 time steps to achieve the same
efficiency for the larger network. In Fig. 7, we study the
effect of increasing network size on the number of time
steps required to achieve 95% of the maximum sum-
rate. The figure shows that the centralized algorithm
requires fewer number of time steps to achieve the
same performance as the semi-distributed algorithm.

VI. Conclusion

Using MAB techniques, we proposed a centralized
and a semi-distributed load balancing user association
algorithms. The algorithms explicitly satisfy the load
balancing constraints by employing a central load bal-
ancer to associate UEs with BSs based on their quotas.

Fig. 6. Effect of increasing coherence time on the average network
spectral efficiency of proposed MAB algorithms.

Fig. 7. Effect of increasing network size (with q = {9, 3, ..., 3}) on the
number of time steps required to achieve 95% of the best sum-rate.

Moreover, the proposed algorithms can be implemented
online and adapt user associations to the network
dynamics. Our simulations showed that the learning
process in these algorithms is fast and efficient. We also
observed that performance of these algorithms reaches
closely to that of the benchmark near-optimal WCS
algorithm. These features make our proposed algo-
rithms potentially suitable for online user association
in highly-dynamic HetNets.

References

[1] A. Alizadeh and M. Vu, “Load balancing user association in mil-
limeter wave mimo networks,” IEEE Trans. Wireless Commun.,
vol. 18, no. 6, pp. 2932–2945, 2019.

[2] A. Zappone et al., “User Association and Load Balancing for
Massive MIMO through Deep Learning,” in Proc. 52nd Asilomar
Conf. on Signals, Systems, and Computers, Oct. 2018.

[3] M. Sana et al., “Multi-Agent Deep Reinforcement Learning
Based User Association for Dense mmWave Networks,” in Proc.
IEEE GLOBECOM, Dec. 2019.

[4] D. Li et al., “User Association and Power Allocation Based on
Q-Learning in Ultra Dense Heterogeneous Networks,” in Proc.
IEEE GLOBECOM, Dec. 2019.

[5] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction. The MIT Press, 2015.

[6] S. Maghsudi et al., “Distributed user association in energy
harvesting dense small cell networks: A mean-field multi-armed
bandit approach,” IEEE Access, vol. 5, pp. 3513–3523, 2017.

[7] 3GPP, “5G NR; Requirements for support of radio resource
management,” TS 38.133, Oct. 2018, v. 15.3.0.

[8] D. Bethanabhotla et al., “Optimal user-cell association for mas-
sive MIMO wireless networks,” IEEE Trans. Wireless Commun.,
vol. 15, no. 3, pp. 1835–1850, 2016.


