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Abstract. In this paper we explore how Kinect body posture sensors can be used 

to detect group collaboration and learning, in the context of dyad pairs using aug-

mented reality system. We leverage data collected during a study (N=60 dyads) 

where participant pairs learned about electromagnetism. Using unsupervised ma-

chine learning methods on Kinect body posture sensor data, we contribute a set 

of dyad states associated with collaboration quality, attitudes toward physics and 

learning gains.  
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1 Introduction and Research Design 

Body postures and gestures are nonverbal communication channels, which have been 

shown to reveal valuable information about learners’ internal states, such as their atti-

tudes towards a learning activity [1], misconceptions [2], comfort with collaborators [3, 

4]. Additionally, when students collaborate with other students or teachers, the amount 

of synchronization between their gestures and postures has been linked to collaborative 

learning dimensions, such as affect [5], learning gains [1] and quality of collaboration 

[6, 7]. In studies involving teachers and students, body synchrony has been linked to 

increased learning gains [5, 10]. However, for some situations body synchrony is neg-

atively correlated with learning. Abney et. al. [11] observed dyad movement using com-

puter vision algorithms, and found that synchrony was negatively correlated with learn-

ing. Another study [12], which studied Kinect dyad movements, found that body syn-

chronization had no overall effect on any collaborative or learning measures, but found 

that learning gains were correlated with cycles of “cognition and action”, where dyads 

alternated between reflecting in the activity and interacting with the system. These con-

flicting results indicate that further research is needed to understand the links between 

posture and collaborative learning. To perform such research, the traditional method is 

qualitative coding of video data, which requires large time investment from manual 

coding. Over the last decade, researchers have been investigating how automated meth-

ods can be used to detect body postures and their links to student attitudes and learning 

[8]. In this paper we expand this research by contributing new methods for analyzing 

body posture data from Kinect sensors, and new understanding of the relationships be-

tween posture synchronization and collaborative learning.  

The goal of this paper is to determine if static postures of paired participants can be 

used as indicators of group learning, attitudes and collaboration. We perform this in-

vestigation in the context of an augmented reality (AR) experience. Decreasing costs 

and advanced body tracking technology make AR popular for educational use [15], and 
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it is valuable to understand user behaviors under this context. We use data from a pre-

vious study (<Anonymized>) where 60 dyads interacted with a homemade speaker sys-

tem, a common activity in learning physics. Dynamic visual representations of the elec-

tromagnetic concepts of the speaker are visualized through the AR headset (Figure 1).   

   

Fig. 1. Participants wearing the augmented reality headset (left) and interacting with a tangible 

system which is augmented with virtual information visible through the headset (right)  

We measured several dependent measures of collaboration, attitudes and learning 

gains. For this analysis, all variables were measured at the group level. Collaboration 

was measured using a validated rating scheme described by Meier, Spada & Rummel 

[20], measuring collaborative processes on subdimensions such as coordination (i.e. 

whether participants divided tasks and managed time), information processing (i.e. 

whether participants shared sharing information and reached consensus), etc. Attitudes 

towards the user experience were measured using the survey instrument in [21] meas-

uring perception of aesthetics, endurability, focus, novelty, involvement and usability. 

Learning was calculated as relative learning gains (RLG), which measure the amount 

of knowledge gained between pre and post tests of electromagnetism knowledge. Rel-

ative learning gains were calculated on the overall test score, as well as on specific 

subdimensions such as the ability to answer transfer questions.  

 These dependent measures were correlated with dyad participant postures, calcu-

lated based on data collected from a Microsoft Kinect sensor, and from the Microsoft 

Hololens headsets worn by participants. Through these sensors we collected joint co-

ordinates and gaze data from both participants, and calculated dyad posture metrics 

such as closeness between participants (which may signal how comfortable participants 

feel with each other), similarity between spine angles (which may indicate that partici-

pants mirror each other’s posture), orientation towards peers (which may indicate focus 

on discussion), forward lean (possibly indicating engagement with the task).  

2 Method and Results 

Participants were recruited from the study pool of a laboratory at a university in the 

northeastern United States. Participation required subjects to not know each other, have 

no significant prior physics knowledge, be born on/after 1976, speak English fluently, 

have at least a bachelor’s degree, and wear no bifocal glasses. All participants first 

individually completed a pre-test, then a 30-minute paired activity of answering work-

sheet questions while interacting with the apparatus, followed by individual post-test. 

Only data from the paired activity was used for analysis. After data cleaning, the 
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resulting dataset contains 50 dyad sessions: 25 sessions with the AR visualizations and 

25 sessions without. Prior to calculating Kinect metrics, the Kinect data was prepro-

cessed to remove noise and disambiguate between the seated participants and re-

searcher.  

We explored K-means posture clustering using the “elbow method”, exploring com-

binations of clustering variables and number of clusters k=2,3,4,5. The optimal config-

uration involved k=4 clusters and variables of spine synchrony, mean distance between 

participants, and discussion orientation (Figure 4 left). Figure 4 (right lists the signifi-

cant correlations found between the time in each cluster and the measures, and Figure 

5 shows the video frames at the datapoints that most closely represents each cluster.  

 

Figure 4. Left: Showing averages of body feature variables by clusters. Right: Significant corre-

lations (p<0.05) between percentage of time in each cluster vs. dependent measures. 

 
Figure 5.  The video frame closest to each cluster center. 

 

Cluster 0, what we labeled as “Turn Takers”, are characterized by low spine simi-

larity and positively correlated with coordination and overall collaboration. Figure 

5 (top left) shows one participant is leaning forward interacting with the setup while the 

other is watching. This configuration indicates that low spine synchrony could be in-

dicative of a collaboration style where participants take turns interacting with the setup. 

This is supported by research in [12] where cycles of leaning forward and backward 

indicated cycles of reflection and action were found across successful dyads.  

Cluster 1 “Open to Collaboration”, is characterized by low distance between par-

ticipants and participants facing parallel to each other, and is correlated with overall 
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positive attitudes and learning. Figure 5 (top right) shows both participants are sitting 

close to each other and are engaged in the task in front of them, and left participant in 

a thinking pose. This configuration appears to show participants highly focused on the 

task and which would explain a positive correlation with overall attitude and learning.  

Cluster 2 “Closed to Collaboration”, is characterized by high distance between par-

ticipants and with participants facing each other, and is negatively correlated with 

overall positive attitudes toward the experience. This clustering configuration seems 

to be indicative of a more negative experience where participants spend some time fac-

ing each other yet remain more distant. The figure above shows a dominant interaction 

where one participant dominates the activity while the other is sitting back.   

Cluster 3 “Synchronized Lean”, is characterized by high average distance and high 

spine synchronization, and is negatively correlated with overall coordination. In 

contrast to Cluster 0, this may indicate the dyad does not spend much time taking turns 

and that both participants were leaning forward and backward at the same time.  

3 Discussion and Future Work 

In this paper we used unsupervised machine learning methods on body posture sensor 

data. We detected different posture clusters associated with collaboration and learning, 

finding these metrics were correlated to dyad posture variables such as spine similarity, 

distance between peers, and synchronized orientation of participants.  

We found that when participant spines were not synchronized, the dyad pair tended 

to show higher levels of coordination. This may indicate that dyads who are good at 

coordinating tend to take turns, as participants move individually before sharing what 

they gained from their individual explorations. This result aligns with results from [12], 

where iterating between active and passive states was significantly correlated with 

learning gains (interpreted as cycling through moments of reflection and action). Alter-

natively, this may indicate participants are individually active at the same time, leading 

to high levels of individual movement. Additionally, dyads who were physically closer 

to each other throughout the activity had better overall attitudes toward the collabora-

tive task. Also, participants who spent more time focused on the activity rather than 

each other had more positive attitudes. One interpretation is that when people are en-

gaged in the activity, they will be highly focused on the task and enjoying each others’ 

interactions; conversely, participants who are bored will turn to each other to talk more. 

Dyads also communicated better when leaning forward. People who were leaning for-

ward are likely to be more engaged in the activity, and people who are leaning backward 

are likely to be more disengaged; this is likely to be reflected in their communication. 

The methodology and findings presented in this paper have larger implications for 

the learning sciences community, as they can serve to indicate markers of successful 

and unsuccessful collaborations, possibly applicable to other contexts where dyad pairs 

are learning through interaction with physical objects, and useful to designing systems 

that monitor student learning through body posture observations. We acknowledge the 

potential statistical errors introduced by performing large numbers of correlations due 

to the exploratory nature of our research.  
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