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Abstract

We consider the black-box reduction from multi-dimensional revenue maximization to virtual wel-
fare maximization. Cai et al. [12, 13, 14, 15] show a polynomial-time approximation-preserving re-
duction, however, the mechanism produced by their reduction is only approximately Bayesian incen-
tive compatible (¢-BIC). We provide two new polynomial time transformations that convert any -BIC
mechanism to an exactly BIC mechanism with only a negligible revenue loss.

e Our first transformation applies to any mechanism design setting with downward-closed outcome
space and only requires sample access to the agents’ type distributions.

e Our second transformation applies to the fully general outcome space, removing the downward-
closed assumption, but requires full access to the agents’ type distributions.

Both transformations only require query access to the original e-BIC mechanism. Other e-BIC to BIC
transformations for revenue exist in the literature [23, 39, 18] but all require exponential time to run in
either of the settings we consider. As an application of our transformations, we improve the reduction
by Cai et al. [12, 13, 14, 15] to generate an exactly BIC mechanism.

*Supported by a Sloan Foundation Research Fellowship and the NSF Award CCF-1942583 (CAREER) .



1 Introduction

Mechanism design is the study of optimization algorithms with the additional constraint of incentive com-
patibility. A central theme of algorithmic mechanism design is thus to understand how much this extra
constraint hinders our ability to optimize a certain objective efficiently. In the best scenario, one may hope
to establish an equivalence between a mechanism design problem and an algorithm design problem, man-
ifested via a black-box reduction that converts any algorithm to an incentive compatible mechanism. In
this paper, we study the black-box reduction of a central problem in mechanism design: multi-dimensional
revenue maximization.

The problem description is simple: an auctioneer is selling a collection of items to one or more strategic
bidders. We follow the standard Bayesian assumption, that is, each bidder’s type is drawn independently
from a distribution known to all other bidders and the auctioneer. The auctioneer’s goal is to design a
Bayesian incentive compatible (BIC) mechanism that maximizes the expected revenue.

In the special case of single-item auction, Myerson provides an elegant characterization of the optimal
mechanism. Indeed, Myerson’s solution can be viewed as a black-box reduction from revenue maximization
to the algorithmic problem of (virtual) welfare maximization [35]. However, whether the black-box reduc-
tion can be extended to multi-dimensional settings remained open after Myerson’s result. Recently, a line of
work by Cai et al. [12, 13, 14, 15] showed that there is a polynomial-time approximation-preserving black-
box reduction from multi-dimensional revenue maximization to the algorithmic question of (virtual) welfare
optimization. However, this result still has the following two caveats: (i) the revenue of the mechanism is
only guaranteed to be within an additive € of the optimum; and (ii) the mechanism is only approximately
Bayesian incentive compatible. Thus, an immediate open problem following their result is whether these
two compromises are inevitable. In this paper, we show that approximately Bayesian incentive compatibility
is unnecessary through our first main result:

Result I: There is a polynomial-time approximation-preserving black-box reduction from multi-
dimensional revenue maximization to the algorithmic question of (virtual) welfare optimiza-
tion that generates an exactly Bayesian incentive compatible mechanism.

Result I is enabled by a new polynomial time £-BIC to BIC transformation for revenue, which is
our second main result:

Result II: There is a polynomial-time e-BIC to BIC transformation that converts any approximately
Bayesian incentive compatible mechanism to an exactly Bayesian incentive compatible
mechanism with a negligible revenue loss for any downward-closed environment with only
sample access to the agents’ type distributions.

The transformation is applicable to any downward-closed mechanism design setting.! We believe the
transformation is of independent interest and would have numerous applications in mechanism design. In-
deed, our black-box reduction follows straightforwardly from applying the transformation to the mechanism
of Cai et al. [12, 13, 14, 15]. Furthermore, if we are given full access to the type distributions of the buyers,
we can extend our transformation to the fully general outcome space, removing the downward-closedness
assumption. Here is our third main result:

Result III: There exists a polynomial-time ¢-BIC to BIC transformation with oracle access to any ap-
proximately Bayesian incentive compatible mechanism and full access to the agents’ distribu-
tions, outputs an exactly Bayesian incentive compatible mechanism for any general outcome
space with a negligible revenue loss.

'Roughly speaking, the setting is downward-closed if the agents have the choice to not participate in the mechanism. See
Section 2 for the formal definition.



Note that other e-BIC to BIC transformations for revenue have been proposed in the literature [23, 39,
18], however, all of the existing transformations require solving a # P-hard problem repeatedly [28] and
therefore cannot be made computationally efficient.

1.1 Our Results and Techniques

We first fix some notations to facilitate our discussion of the results. We consider a general mechanism
design environment where there is a set of feasible outcomes denoted by O. We will specify whether O is
downward-closed when we discuss each specific result. There are n agents, and each agent ¢ has a type t;
drawn from distribution D; independently. We use 7; to denote the support of D;, and for every t; € T,
v;(t;, -) is a valuation function that maps every outcome to a real number in [0,1]. A mechanism M consists
of an allocation rule z(-) : Xiem Ti = A(O) and a payment rule p(-) : Xiemm) Ti = R™. We slightly abuse
notation to define v;(t;, 7(b)) = E,wqp)[vi(ti, 0)]. If we have query access to M, then on any query bid
profile b = (b1, ..., b, ), we receive an outcome o ~ x(b) and payments p1(b), ..., pn(b).

Equiped with the notations, we are ready to discuss our e-BIC to BIC transformations.

Informal Theorem 1 (¢-BIC to BIC transformation on downward-closed outcome space). Given sample

access to a collection of distributions (D;) jona downward-closed outcome space, and query access to

i€[n
an e-BIC and individually rational (IR) mechanism M = (x, p) with respect to X icn] D;. We can construct
another mechanism M’ that is exactly BIC and IR with respect to Xie[n] D;, and its revenue is at most
O(n+/€) worse than the revenue of M. Moreover, for any bid profile b = (by,...,b,), M’ computes an

outcome o € O and payments p1(b), . .., pn(b) in expected running time poly (Zie[n] |Til, 1/5) and makes

in expectation at most poly (Zz’e[n} [T:, 1/5) queries to M.

Informal Theorem 2 (¢-BIC to BIC transformation on general outcome space). Given full access to the
collection of distributions (Di)ie[n} on a general outcome space such that |supp(D;)| < m for every i,
and query access to an e-BIC and individually rational (IR) mechanism M with respect to Xie[n] D;. We

can construct a mechanism M’ that is exactly BIC and IR with respect to X D,. Moreover its revenue

i€[n]
is within an additive O(nme) of the revenue of M. Furthermore, the running time of the constructed

mechanism is poly (n,m, 1/¢) and the mechanism makes at most poly (n,m, 1/¢) queries to M.

Previous transformations can produce an M’ with similar guarantees in the downward-closed setting
but require poly ([ [;¢(,) |7:]) time to run [23, 39, 18]. In the special case, where there exists symmetry in the
agents’ type distributions, the transformation can be improved to run in time poly (> icn] |7:]), as the interim
allocation probabilities and payments of the mechanism M can be computed efficiently via a polynomial-
size LP. Our result achieves the poly (>, €] |7;]) running time without the symmetry assumption.

1.1.1 Our Result for the Downward-Closed Outcome Space

We first discuss our result for the downward-closed outcome space. To illustrate our new ideas, we first
briefly review the constructions in the literature. In the heart of all the previous constructions lies the
problem called replica-surrogate matching.

2If the interim allocation probabilities and payments of M are given, the edge weights in the Replica-Surrogate matching can
be computed efficiently. See the next paragraph for more details.



Replica-Surrogate Matching For each agent 4, form a bipartite graph G;. The left hand side nodes are
called replicas, which are types sampled i.i.d. from D;. In particular, the true type ¢; of agent ¢ is one
of the replicas. On the right hand side, the nodes are called surrogates, which are also types sampled
from D;. The edge between a replica with type t) and a surrogate with type t%) g assigned weight
wik = Ey_mp_, [0i(t9D), 2(t®) ) — p;(t*), £ _;)] *, which is the interim utility of agent i when her true
type is () but reports t*) to M. Compute the maximum weight matching on G;. The true type ¢; selects a
surrogate using the matching to compete in M. Agent ¢ competes in M using the type of the surrogate she
is matched to in the maximum weight matching.

The intuition is that since M is not BIC, the true type t; may prefer the outcome and payment from
reporting some different type. The matching is set up to allow the true type ¢; to pick a more favorable
type to compete in M for it. But why wouldn’t the agent misreport in the matching? After all, the edge
weights depend on the agent’s report. As it turns out, to guarantee incentive compatibility, one needs to find
a matching with a maximal-in-range algorithm. Namely, the matched surrogate is selected to maximize the
agent’s induced utility less some cost that only depends on the outcome. It is not hard to verify that the
maximum weight matching is indeed maximal-in-range, and therefore the agent has no incentive to lie.

But why does the maximum weight matching take exponential time to find? The problem is that we
are not given the edge weights. For each edge, we can only sample from a distribution whose mean is the
weight of the edge. Simply sample ¢_; from D_; and compute v;(t9), z(t®) t_;)) — p;(t*) ¢t_;). Even
if we assume that we know the distributions (D;);c [y, it still takes poly([[;; [7}]) time to compute the
weight of a single edge exactly. But why can’t we first estimate the edge weights with samples and find the
maximum matching using the estimated weights? The issue is that no matter how many samples we take, the
empirical mean will be off by some estimation error. The maximal-in-range property is so fragile that even
a tiny bit of estimation error can cause the algorithm to violate the property, making the whole mechanism
not incentive compatible. See Example 2 in Appendix A for a more detailed explanation.

Black-box Reduction for Welfare Maximization To overcome the difficulty, we turn to another impor-
tant problem in mechanism design, black-box reduction for welfare maximization, for inspiration. A line of
beautiful results [30, 8, 28, 24] initiated by Hartline and Lucier shows that the mechanism design problem
of welfare maximization in the Bayesian setting can be black-box reduced to the algorithmic problem of
welfare maximization. The replica-surrogate matching is again the central piece in the reduction. Indeed,
the idea of replica-surrogate matching was first proposed by Hartline et al. [27, 28], and later introduced by
Daskalakis and Weinberg [23] to the study of £-BIC to BIC transformation for revenue. The main difference
of the two scenarios is the way the edge weights are defined. For welfare maximization, the edge weight
between a replica t/) and a surrogate t(*) is vjg = Ey_,op_,[vs (t(j) , x(t(k) ,t_;))], namely, the interim value
for agent ¢ when her true type is tU) but reports t(*) to M. We will refer to the one with interim utilities
as edge weights the U-replica-surrogate matching and the one with interim values as edge weights the V-
replica-surrogate matching. The main reason that we would like to distinguish the two settings is as follows:
in a V-replica-surrogate matching all edge weights are nonnegative, while in a U-replica-surrogate matching
the edge weights may be negative. The importance of the presence of negative edges will become clear
soon. Obviously, it also takes exponential time to compute the exact maximum weight V-replica-surrogate
matching due to the same reason discussed above.

A striking result by Dughmi et al. [24] shows how to circumvent this barrier for welfare maximization.
Their solution has the following two main components: (i) a polynomial time maximal-in-range algorithm
to solve the maximum entropy regularized perfect matching problem; (ii) the fast exponential Bernoulli

3The true weight wjr = E¢_,~p_, [vi (t(j), x (t(k), t_i)) —(1=n) pi (t(k), t_i)} is computed using a discounted price,

but we can ignore the difference for now.



race, a new Bernoulli factory #, that allows them to execute the algorithm in (i) exactly with only sample
access to distributions whose means are the edge weights. They use the algorithm to find a maximum entropy
regularized V-replica-surrogate matching, and argue that this matching has approximately maximum weight,
which allows them to conclude that their new mechanism loses at most a negligible fraction of the welfare.

Why is the mechanism by Dughmi et al. [24] unsuitable? The reason turns out to be subtle. As the U-
replica-surrogate matching contains negative edges and the algorithm by Dughmi et al. [24] always compute
the maximum perfect matching, some agent types may receive negative utilities from the matching. To
guarantee individually rationality, the mechanism must compensate these types. However, due the incentive
compatibility constraint, the mechanism must also compensate other agent types. One might think that the
overall compensation can be shown to be negligible. Unfortunately, in the following example, we show that
the overall compensation can in fact dramatically damage the revenue and may even drive the revenue to 0.

Example 1. Consider the following instance with a single agent and outcome space O = { L, 0}. The agent
has two possible types H and L with probability 1 — o and o respectively, where o € (0, 1) is sufficiently
small. The agent’s valuation is: v(H,0) = 1, v(H, 1) = v(L, L) = v(L,0) = 0. The given mechanism M
chooses outcome o and charges 1 if the agent reports H, and chooses outcome 1 and gives the agent ¢ if the
agent reports L. Clearly, M is e-BIC and IR. REV(M) = 1 — o — oe. Note that in the U-Replica-Surrogate
matching, the edge between replica with type L and surrogate with type H has negative weight —1.

Denote [ the number of surrogates sampled from the above distribution. Let M’ be the constructed
mechanism that always selects a perfect replica-surrogate matching. Denote p(-) the payment function of
M. Then p(L) < 0 since M' is IR. Consider the following two scenarios when the agent has true type
H. In the first scenario she reports truthfully her type H and in the second scenario she reports L. With
probability 8 = (1 — cr)z, none of the surrogates has type L. In both scenarios the buyer must be matched
to a surrogate with type H in the perfect replica-surrogate matching and has value 1 for the result outcome
o. Thus the difference of the agent’s expected value between the two scenarios is at most 1 — 3. Since M’ is
BIC, we must have p(H) < p(L) +1— 3 < 1 — . Therefore REV(M’) < (1 — o) - (1 — ). For any fixed
€ and {, when o — 0, the B — 1 and revenue loss goes to 1. Note that our mechanism guarantees revenue
loss at most c\/ for any type distribution, where c is an absolute constant.

Let us take a closer look at what happens in the example above. With high probability, the agent with low
type L is matched to a surrogate with high type H in the perfect matching and has negative utility. Thus to
satisfy individual rationality, the mechanism has to compensate her. To guarantee incentive compatibility, the
mechanism will also have to compensate the agent when her true type is H. However, the total compensation
is so large that it essentially drives the revenue of the constructed mechanism to 0. Our main challenge is to
enforce both individually rationality and incentive compatibility in the presence of negative edges without
sacrificing much of the revenue.

As Example 1 implies, to preserve revenue, it is crucial to avoid matching a replica with a negative
weight edge with high probability in the U-replica-surrogate matching. Again the exact weight can not
be computed efficiently. One may try to remove the negative edges using samples. However, removing
edges based on the empirical means from samples could easily violate the maximal-in-range property. See
Example 2 in Appendix A.

Our Solution for the Downward-Closed Outcome Space. Our transformation on downward-closed en-
vironments is directly inspired by [24] but differs in several major ways. Our plan is to design an algorithm,
for general graphs with arbitrary weights, that satisfies the following two properties:

* A Bernoulli factory is an algorithm that with sample access to a p-coin to simulate a f(p)-coin. In Appendix J we give a brief
introduction to Bernoulli factories. We also refer the readers to [31, 36] and the references therein for more details.
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1. The algorithm produces a distribution of matchings whose expected weight is close to the maximum
weight matching.

2. For any LHS node, the expected weight of the edge matched to it is not too negative.

Note that for graphs with positive weights, the algorithm by Dughmi et al. [24] satisfies both properties.
When the edges are negative, the first property is not satisfied by their algorithm in general. Even if we
only consider U-replica-surrogate matching, their algorithm still violates the second property. Interestingly,
we provide a reduction from the case of arbitrary edge weights to the case with only positive edge weights.
Indeed, our reduction can be succinctly summarized by the following formula, if an edge has weight w g,
set the new weight by applying the §-softplus function to w”: (s5(w;x) = J - log (exp (w;/8) + 1), where
d > 0 is a parameter of our algorithm. Note that for any value of wji, (5(w; i) is always nonnegative!
Moreover, the maximum entropy regularized matching on weights ({s(w;)); can be shown to be close to
the maximum weight matching on (wjy); %, and the second property also holds due to nice features of the
algorithm and the softplus function. So it seems that we only need to run the algorithm from [24] on the
new weights ({5(w;x)); k- An astute reader may have already realized that being able to run the algorithm
on (wjk);x does not imply that one can run the algorithm on ((s(wjx)); k. as we can only sample from
distributions whose means are (w;y); , but not (¢s(wjx)); k. One idea is to construct a Bernoulli factory
to simulate a (j (wjk)—coin using a wjg-coin. To the best of our knowledge, no such construction exists.
We take a different approach and make use of a crucial property of the algorithm from [24]. Namely, if
we run their algorithm with the same parameter J, the algorithm only needs to sample from the softmax
function over the weights. More specifically, with weights (w;y); ., it suffices to have the ability to sample

an edge (7, k) with probability exactly %.
J

distributions with means ((s(w;x)); x» we can indeed sample edge (j, k) with exactly the right probability, as

Despite the fact that we cannot directly sample from

exp (Gs(win)/6) —_ exp(wyr/d) +1
S exp (Cslwinr)/0)  Dop (exp(wjp /0) +1)

which can be sampled efficiently using the fast exponential Bernoulli race given only sample access to
distributions with means equal to the original edge weights (w;y,); k-

Our second contribution is to show that an approximately maximum U-replica-surrogate matching suf-
fices to guarantee only a small loss in revenue. Previous results [23, 39, 18] only prove the statement for the
exactly maximum matching. We provide a more delicate analysis that allows us to extend the statement to
approximately maximum matchings. Finally, as the agent may receive negative utility from certain surro-
gates, we sometimes need to subsidize the agent to ensure individual rationality. Due to the second property
of our algorithm, we can argue that the total subsidy is small compared to the revenue.

1.1.2  Our Result for the General Outcome Space

Our result for the general outcome space is based on the regularized replica-surrogate fractional assignment
mechanism by Hartline et al. [29]. They use this mechanism to provide a black-box reduction for welfare
maximization, but this mechanism only applies to discrete type space and requires full access to all agents’
type distributions. We refer the readers to Appendix I.1 for details of their mechanism.

The main barrier for applying their approach to transform an £-BIC mechanism to a BIC mechanism
is that their mechanism does not provide any guarantees on the revenue. More specifically, the prices of
their mechanism are determined by a set of optimal dual variables of their problem. Although any set of

>The function log (exp () + 1) is known as the soft plus function.
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optimal dual variables can guarantee the mechanism to be incentive compatible and individually rational,
thus sufficient for welfare maximization, some choices could result in substantial revenue loss making them
unsuitable to preserve revenue. Indeed, Example 4 illustrates that for some optimal dual variables, the
revenue loss due to negative prices can be very high. Our main contribution is to show an efficient algorithm
to find a set of optimal dual variables such that the induced prices only cause negligible loss in the revenue.

1.2 Application to Multi-dimensional Revenue Maximization

We next apply the e-BIC to BIC transformation to obtain our black-box reduction for revenue maximization.
We first introduce the problem formally.

Multi-Dimensional Revenue Maximization (MRM): Given as input n type distributions Dy, ..., D,
and a set of feasible outcomes O, output a BIC and IR mechanism M who chooses outcomes from O
with probability 1 and whose expected revenue is optimal relative to any other, possibly randomized, BIC,
and IR mechanism with respect to D = X, €fn] D;.

To state our black-box reduction, we introduce the virtual welfare optimization problem.

Virtual Welfare Optimization (VWO) [15]: Given as input n functions C;(-) : 7; — R and a set of
feasible outcomes O, output an outcome 0 € argmax,co Y ; > _s.c7: Ci(ti) - vi(ti, ). Ci(-) is considered
as the weight function that depends on the agent’s real type. We refer to the sum ), - C;(t;) - vi(ti, @)
as agent ¢’s virtual value for outcome .

Informal Theorem 3. When the outcome space is downward-closed, given sample access to distribution
X?Zl D; and oracle access to an a-approximation Algorithm G for VWO, we can construct an exactly BIC
and IR mechanism M = (x,p) with respect to Xiein) Di» that has expected revenue o - OPT — O (ny/e),

where O PT is the optimal revenue over all BIC and IR mechanisms with respect to X D;. The running

1€[n]
time is poly <Zi€[n] 1 Til, 1,0, rte (poly (Zie[n] |73, 1, b))) where rtc(+) is the running time of G, and
b is an upper bound on the bit complexity of v;(t;, 0) for any agent i, any type t;, and any outcome o.

Note that a similar result holds for a general outcome space, given that we have full access to distribution
X, D;. The modified running time and revenue loss can be found in Section 7.

1.3 Further Related Work

Multi-dimensional revenue maximization has recently received lots of attention from computer scientists.
Significant progress has been on the computational front [19, 20, 1, 11,2, 12, 13, 17, 15, 3,9, 22, 32]. On the
structural front, a family of simple mechanisms, i.e., variants of sequential posted price and two-part tariff
mechanisms, have been shown to achieve constant factor approximations of the optimal revenue in quite
general settings [5, 40, 39, 16, 21, 18]. -BIC to BIC transformation for revenue has been an instrumental
tool in obtaining both the computational and structural results [23, 39, 18, 32].

There has also been significant interest in understanding the sample complexity for learning an almost
revenue-optimal auction in multi-item settings. Last year, Gonczarowski and Weinberg [26] show that
one can learn an almost revenue-optimal e-BIC mechanism using poly(n, m, 1/¢) samples under the item-
independence assumption, where n is the number of bidders and m is the number of items. Brustle et al. [10]
generalize the result to settings where the item values are drawn from correlated but structured distributions
that can be modeled by either Markov random fields or Bayesian Networks. The mechanism they produce
is still e-BIC. Our transformation can certainly convert these mechanisms from [26, 10] into exactly BIC

mechanisms, and the transformation requires poly (Zie[n] |Til, 1/ 5) many samples. Unfortunately, each
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|7;| is already exponential in m in their settings. The dependence on |7;| is unavoidable for us, as our goal
is to provide a transformation that is applicable to a general mechanism design setting. Nonetheless, the
techniques we develop in this paper may be combined with special structure of the distribution to provide
more sample-efficient e-BIC to BIC transformations.

Recently, Gergatsouli et al. [25] proved that for the case where we have a single buyer with an additive
valuation over m independent items and the set of outcomes is downward-closed, an exponential (in m)
query complexity is necessary for any black-box reduction for welfare maximization. It will certainly be
interesting to see whether a similar lower bound on the sample complexity exists.

1.4 Organization of the Paper

In Section 2, we provide the notations we use throughout the paper. In Section 3, we mention the tools
from the literature that are important for our constructions. In Section 4, we provide our new algorithm
that solves the entropy regularized matching problem for graphs with arbitrary edge weights assuming the
outcome space is downward-closed. In particular, we show the arbitrary edge weight case can be reduced
to the nonnegative edge weight case. In Section 5, we describe our e-BIC to BIC transformation when the
outcome space is downward-closed. In Section 6, we show how to use our e-BIC to BIC transformation
to improve the black-box reduction for multi-dimensional revenue maximization. In Section 7 we state
our result for the general outcome space. Note that in Sections 4 through 6 we focus on downward-closed
outcome spaces, whereas in Section 7 we shift our attention to general outcome spaces.

2 Preliminaries

We specify a general mechanism design setting by the tuple (n, V, D, v, O). There are n agents participating
in the mechanism. Denote O the set of all possible outcomes. We consider two types of outcome space.

1. Downward-Closed Outcome Space: each o € O can be written as a vector o = (01, ..., 0,,) Where o;
is the outcome for agent i. We also assume that a null outcome L is available to each agent 7. One can
think of | as the option of not participating in the mechanism. Throughout the paper, when we say
the outcome space O is downward-closed, then for every o = (01, ...,05,) € O, any 0’ = (0}, ..., 0},)
with 0] = o; or o} =_L for every i is also in 0. An example of the downward-closed outcome space
is the combinatorial auction, where the outcome set contains all possible ways to allocate items to
agents, and the null outcome represents allocating nothing to the agent. One setting that does not have

a downward-closed outcome space is building a public project.

2. General Outcome Space: O is an arbitrary set. This is the most general outcome space, and it can
capture settings such as building a public project.

Each agent ¢ has a type ¢; from type space V;, which is drawn independently from some distribution D;.
We use 7; C V; or supp(D;) to denote the support of D;. We use D to denote Xicml D;. In the paper we
consider discrete type spaces, we assume that every |7;| < T for some finite 7". Note that our results for the
downward-closed outcome space can easily be extended to the continuous case using similar techniques as
in [24], while our results for general outcome space requires the type space to be discrete. For every t; € V;,
v;(ti, -) is a valuation function that maps every outcome to a real number in [0, 1]. In a downward-closed
outcome space, for all agent i and type t;, v;(t;,0) = 0 if o; =L. Every agent is risk-neutral and has
quasi-linear utility.



For any mechanism M, denote REV(M, D) = E;p [Zie[n] pi(t)} the expected revenue of M. We

use REV(M) for short when the agents’ distributions and valuation functions are clear. We use the stan-
dard definitions of BIC, ¢-BIC, IR, and e-IR. We include their definitions in Appendix B for completeness.
Finally, we use log(-) to denote the natural logarithm and A’ to denote the set of all distributions over £ ele-
ments.

Definition 1 (Gibbs Distribution). For any integer ¢, define the Gibbs distribution z € A* over ( states with
exp(E;i/B)

temperature [3 as z; = e 0B 5 forall i € [{), where Ej; is the energy of element i.

Definition 2 (Maximal-in-Range Algorithms). An algorithm is maximal-in-range, if for every j € [d{], there
exists a cost function c(-), which may depend on w_j;, such that the allocation z; € argmax,icr ) . ik z;- 6
wik — c(Z) for any wj, where F is a set of all feasible allocations.

The fast exponential Bernoulli race [24] is a randomized algorithm that allows us to sample from the
Gibbs distribution. We use the following result in the rest of our paper.

Lemma 1. [Fast Exponential Bernoulli Race] For any integer m, any 6 > 0, and any (a)pefm) € [0, h]™,
given sample access to distributions Fi, ..., Fy, with expectations wi, ..., w, € [—1,1], a sample from
the following Gibbs distribution in A™:

exp((wx — ay)/9)
Zje[m} exp((w; — a;)/0)’

can be drawn with (%)4 m? log (W) samples from (F;)e[m) in expectation.

Zk =

The proof is postponed to Appendix J.

3 Tools from the Literature

Three crucial tools for our results are: the replica-surrogate matching mechanism, the regularized replica-
surrogate fractional assignment and the online entropy regularized matching. We gave a high-level descrip-
tion of the first two in the Introduction. For a formal treatment of the replica-surrogate matching, please
see Appendix D.1. The formal definition of the regularized replica-surrogate fractional assignment can be
found in Appendix I.1.

3.1 Online Entropy Regularized Matching

The tool that we have not described so far is the online entropy regularized matching algorithm, developed
by Dughmi et al. [24]. The original application is to find a matching close to the maximum weight V-replica-
surrogate matching, but the algorithm is general and can be applied to any d-to-1 bipartite matching with
positive edge weights.

d-to-1 Matching For every integer ¢, d, consider the complete bipartite graph between d¢ left hand side
nodes (called LHS-nodes) and / right hand side nodes (called RHS-nodes). Let wj; be the edge weight
between LHS-node j and RHS-node k for j € [df], k € [¢]. For ease of notation, let w; = (wj)refy, w =
(wj)jelaq> and w—j = (wjr) ;. A matching is called a d-to-1 matching if every LHS-node is matched to at
most one RHS-node, and every RHS-node is matched to at most d LHS-nodes. A d-to-1 matching is called
perfect if every LHS-node is matched to one RHS-node, and every RHS-node is matched to exactly d LHS-
nodes.



In this section, we focus on the case where all edge weights w are nonnegative, and we refer to this case
as the nonnegative weight d-to-1 matching. In Section 4, we generalize the results to arbitrary weights.

The optimal d-to-1 matching is simply a maximum weight bipartite matching problem. The challenge is
that the weights are not given. For every edge (j, k), we only have sample access to a distribution F;;, whose
expectation is wj. To the best of our knowledge, none of the algorithms for finding a maximum weight
bipartite matching can be implemented exactly with such sample access to the edge weights. Moreover, as
we require the replica-surrogate matching mechanism to be incentive compatible, the algorithm should be
maximal-in-range. Therefore, finding the maximum weight matching using the empirical means is also not
an option, as it violates the maximal-in-range property (see the discussion in Section 1.1).

Dughmi et al. [24] provide a polynomial time maximal-in-range algorithm (Algorithm 1) to compute an
approximately maximum weight perfect d-to-1 matching. The key idea is to find a “soft maximum weight
matching” instead of the maximum weight matching by adding an entropy function as a regularizer to the
total weight. We summarize the guarantees of Algorithm 1 in Theorem 1. We refer the readers to [24]
for intuition behind Algorithm 1. However, to understand this paper, readers can simply treat Theorem 1
as a black box that guarantees that Algorithm 1 is maximal-in-range, and finds approximately maximum
expected weight d-to-1 matching, with only sample access to the distributions.

Definition 3. Given parameter 6 > 0, the (offline) entropy regularized matching program (P) is:
max ;. Zjk - Wik = 05 1, Zjk 10g(Zjk)
subjectto Yz < d,  Vk €[]
Dpzk =1, Vje€l[dl]
zjr €10,1],  Vj € [dl],VE € [4].

Lagrangify the constraints ) ; zj; < d, Vk € [¢]. The Lagrangian dual of (P) is:

Lz, ) = 37, p zjpwik — 6 2 1 2k 108(2jk) — D g an(d — 325 zjk)-

Algorithm 1 Online Entropy Regularized Matching with Non-negative Edge Weights (with param-
eters 4,71/, 7)
Require: Sample access to the distribution F;;, whose expectation is wjy, for every j € [d/], k € [/].

1: for j € [d/] do

2:  Let d,(ej ~U be the number of LHS-nodes matched to RHS-node  in the current matching and K =
{(k:dV™Y < ay.

3. Set %) according to the Gibbs distribution with energy d,(Cj ~Y for RHS-node k € K and temperature
1/7, and a,(cj) =0forall k ¢ K.

4:  Match LHS-node j to a RHS-node £ € K according to the Gibbs distribution Z; over RHS-nodes in
K, where the temperature is § and the energy for matching to a RHS-node k € K is (w; — ’ya,(cj )). A
sample from Z; can be generated via the fast exponential Bernoulli race with poly(+, £,1/§) sample
from (]:Jk)k in expectation (See Lemma 1 for details).

5: end for

ey

Theorem 1. [24] When wjj, € [0, 1] ® for all j, k, Algorithm 1 satisfies the following properties:

1. For any choice of the parameters, it always returns a perfect d-to-1 matching.

%The theorem applies to any bounded edge weights w;. € [0,R]. For simplicity we normalize the edge weights to lie be-
tween [0, 1].
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2. For any choice of the parameters, the algorithm is maximal-in-range. The expected running time and
sample complexity of Algorithm 1 is poly(d, £,~,1/0).

3. Foreveryd,n >0, ifd > {logl/n? and~y € [OPE(P), 0(1)'%PT(P)}, where OPT (P) is the optimum
of program (P), the expected value (over the randomness of the Algorithm 1) onje[dZ],ke[é] ZipWik —
0> 1 Zjk log(2)x) is at least (1 — O(n)) - OPT(P).

Moreover, for every 1 € (0,1), if we set 6 = @(%), n' = O(v), and d and +y satisfy the conditions
above, then the expected total weight of the matching output by the algorithm is at most O(dt)) less
than the maximum weight matching.

The only part of Algorithm 1 does not specified is how to choose a +y that is a constant factor approxi-

mation to %(P). Dughmi et al. [24] show a polynomial time randomized algorithm that produces a y that
OPT(P) O(1)-OPT(P)
d d

falls into [ } with high probability, which suffices to find a close to optimum V-replica-

surrogate matching. Please see Appendix F for details. We also refer the readers to Appendix D.2 for some
missing details about the Online Regularized Matching.

4 d-to-1 Matching with Arbitrary Edge Weights

To obtain an approximately revenue-preserving e-BIC to BIC transformation, we need to find a near-optimal
U-surrogate-replica matching, where edge weights may be negative. Motivated by this application, we pro-
vide a generalization of Theorem 1 to general d-to-1 matchings with arbitrary edge weights. We design a
new algorithm (Algorithm 2) with guarantees summarized in Theorem 2. As discussed in the introduction,
Example 1 points out that directly applying the approach of Dughmi et al. [24] to the general d-to-1 match-
ing problem may incur a large revenue loss in the constructed mechanism. Please see Appendix E.1 for
discussion about other issues for directly applying Algorithm 1.

4.1 Reduction from Arbitrary Weights to Non-Negative Weights

In this section, we provide a reduction from the d-to-1 matching with arbitrary edge weight case to the
non-negative edge weight case.

Definition 4. For arbitrary edge weights (w;i,) ji. and parameter 6 > 0, define the §-softplus function:

Cs(wjr) = 0 - log(exp(wjr/6) + 1)

Consider the entropy regularized matching program (P") w.r.t. weights ((5(w;k)) jk-

max G(z) =3, 1 zjk - Colwik) — 6 2, 1 zjk log(2k)
subjectto >z < d,  Vk €[]
Zk Zjk = ]-7 vj € [dg]
zik € [0,1],  Vj € [d],VE € [(].

2

Note that (5(z) > 0 for any z, so the program (P’) is exactly a d-to-1 matching with positive edge
weights. We prove that the optimum of (P’) is close to the weight of the maximum weight d-to-1 matching
(See Lemma 7 and the proof of Theorem 2). Thus in the rest of this section we will consider approximating
the optimum of (P’). Let 2 be the solution produced by Algorithm 1 on (P’).
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Program (P”') is the same as (P) if we substitute the weight w;j, for each LHS-node (/) and RHS-node
s(F) with ¢5 (wjk). Recall that our main goal is to avoid being matched with negative edges too often. Now
for every RHS-node, we construct a dummy 0-RHS-node with weight O for all edges incident to it. Let the
meta-RHS-node consists of the real RHS-node and the corresponding 0-RHS-node. The weight between
the LHS-node j and the meta-RHS-node £ is defined as (5(w;x). We will explain later why the weights are
chosen in this way.

Think of the procedure that first executes Algorithm 1 to find a matching between LHS-nodes and meta-
RHS-nodes. As a second step, when a LHS-node j is matched to some meta-RHS-node &, we further decide
how to match it to the real RHS-node or the 0-RHS-node, according to the following “softmax” program
between weight w; and 0:’

max xjpwjr — 0 - T log(wjr) — 0 - yjx log(y;x)
subject to xjx + yjx = 1 3)

Tk, Yk € [0,1].

Let (:U;‘k, y;‘k) be the optimal solution. One can easily verify that the optimum of the softmax program
is equal to (5(wjg).

The two-step procedure finds a d-to-1 matching in the original graph (by removing all edges matched to
0-RHS-nodes). Moreover, when the LHS-node j is matched to the meta-RHS-node k, its expected weight
z,wiik is at most O(0) less than (5(w;x). Thus by Theorem 1, the two-step procedure that executes Algo-
rithm 1 w.rt. (P’) indeed finds an approximately-optimal d-to-1 matching w.r.t. weights (5(w;x) and no
LHS-node is matched to an edge with too negative weight.

The main issue with the above two-step procedure is that, to execute Algorithm 1 w.r.t. (P’), we will
have to sample from a distribution with mean (s(w;),) with only sample access to the distribution F;;, whose
mean is w;;. To the best of our knowledge, no algorithm exists to sample exactly from such a distribution.

NG (W)
) meta-RHS-node

; 0-RHS-node

. :\ . ]
o
o o
d-to-1 matching d-to-1 matching with meta-RHS-nodes

Figure 1: With e we denote the LHS-nodes, with B RHS-nodes, with [ we denote the 0-RHS-nodes and
with a big rectangle that encloses a l and a [J we denote the meta-RHS-nodes.

We present our algorithm (Algorithm 2) that solves this issue. The key conceptual idea is to merge the
two steps into one. It directly matches LHS-nodes to either real RHS-nodes or 0-RHS-nodes. The reason
that this is possible is because the distribution from the combined procedure is again a Gibbs distribution,
which allows us to use the fast exponential Bernoulli race to sample directly from it (Observation 2).

"Note that it’s also the entropy regularized matching program between a single LHS-node j and two RHS-nodes (real RHS-node
k and 0-RHS-node k).
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Algorithm 2 Online Entropy Regularized Matching with Arbitrary Edge Weights (with parameters
5,n',7)

Require: Sample access to F;; whose mean is wjy, for every j, k.
1: For each RHS-node k, add a 0-RHS-node to the bipartite graph with edge weight 0 to every LHS-node.

We refer to the k-th original RHS-node the k-th normal-RHS-node.

2: for j € [d/] do

3:

Let d,(j -1 be the number of LHS-nodes matched to either the k-th normal-RHS-node or the k-th

0-RHS-node in the current matching and K = {k : dg < d}.
Set o) according to the Gibbs distribution over RHS-nodes in K, where the energy for any RHS-

node k € K is d,(cjfl) and the temperature is 1/7. Set a,gj) =0forallk ¢ K.
Match LHS-node j to a normal RHS-node (or a 0-RHS-node) k € K according to the Gibbs dis-

tribution over the 2| K| RHS-nodes in K, where the temperature is 0 and the energy for match-

ing to a normal-RHS-node £ is (w;, — Voz,gj )) and the energy for matching to a 0-RHS-node

k € K is (—’ya,(g )). More specifically, match to the normal-RHS-node k£ with probability
exp((wsk—yay)/9)

e (exp((wp—yay))/8)+exp((—yay)))/8))
exp((—ag”)/9)
Swrexc(@xp((wjp —7a)) /6)+exp((—yal?)) /6))
exponential Bernoulli race with poly(v, £, 1/§) sample from (Fjy), in expectation (See Lemma 1).

Tjp = and match to the 0-RHS-node & with probability

Yjk = . We can generate a sample from (Z;, §;) via the fast

6: end for

We prove a coupling between executing Algorithm 2 over weights (w;),, and executing Algorithm 1

over weights (Cs(wj)) jk, with the same parameters ¢, 77/, 7. Note that both executions are online procedures.
Thus the distribution of matching the current LHS-node depends on the previous matching. We carefully

()

prove that the dual variables o) and the remaining capacities (dy’ )i are the same for every round j. Please
see a concrete description of the coupling in the proof of Theorem 2 in Appendix E.2. We summarize our
result in the following theorem. The proof is postponed to Appendix E.2.

Theorem 2. When wjj;, € [—1,1] 8 for all j, k, Algorithm 2 satisfies the following properties:

1. For any choice of the parameters, dropping all the edges incident to any 0-RHS-nodes in the matching,

the algorithm produces a feasible d-to-1 matching (not necessarily perfect).

. For any choice of the parameters, the algorithm is maximal-in-range. The expected running time and

sample complexity is poly(d, ¢,1/9,).
OPT(P') O(1)-OPT(P')

. For every 6,7 > 0, ifd > {logl/n* and v € 7> ~ , where OPT(P') is the

optimum of program (P'), then the expected value (over the randomness of the Algorithm 2) of
> jeda ke Tipwik — 0325 Bk log(k) — 6 32, 1, Uik log(Pjx) is at least (1 — O(n')) - OPT(F).

Moreover, for every 1 € (0,1), if we set 6 = @(%), n' = O(v), and d and -y satisfy the conditions
above, then the expected value of Zje[dz],ke[e} Tjrwjk, the expected total weight of the matching
output by the algorithm (dropping all the edges incident to any 0-RHS-nodes in the matching), has

weight at most O(dl) less than the maximum weight matching.

8 Again the theorem applies to any bounded edge weights in [-R,R]. For simplicity we normalize the edge weights to lie in

[~1,1].
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4. For every LHS-node j, the expected weight of the edge that matches j is never too much smaller than
0. Formally, for every 6 and every j € [dl], 32y 1 &jrwjk = —0 - log(2¢).

Remark 1. Property (4) is relevant only when the edge weights may be negative. As discussed in the
introduction, this is a crucial property to preserve the revenue in the transformation. Directly applying
Algorithm 1 from [24] is insufficient to guarantee this property as shown in Example 1.

5 &-BIC to BIC Transformation

In this section, we present our e-BIC to BIC transformation. In Theorem 3, we prove a more general
statement where the given mechanism M is e-BIC with respect to D = X D;, while we construct
icln] D). If D = D', the
problem is the ¢-BIC to BIC transformation problem. We show that the revenue of M’ under D’ de-
creases gracefully with respect to the Wasserstein Distance of the two distributions. For every ¢, we de-
note d,(D;, D{) the /,.-Wasserstein Distance of distributions D;, Dg. We slightly abuse notation and let
dw(D,D') = > | dy(D;, D}). We provide the formal definition of the ¢,-Wasserstein Distance in Ap-
pendix B.

Our mechanism works in the following way. After some agent reports her type, we sample d¢ — 1 i.i.d.
replicas, ¢ i.i.d. “real” surrogates and add ¢ O-surrogates, for some appropriately chosen parameters d, {.
The true type is inserted into a random position in the replicas. We define the weight between a replica (/)
and a “real” surrogate s( to be (almost) the expected utility of type () if she reported s to the original
mechanism M. The weights between replicas and 0-surrogates are 0. Then, we run Algorithm 2 in order
to get a d-to-1 matching between the replicas and the surrogates. To ensure that this matching is truthful,
we impose appropriately selected payments to the agent. This is the first phase of M’. Now, suppose that
the true agent is matched to surrogate s(*). In the second phase of the mechanism, we let s(*) participate in
M along with the matched surrogates of the other agents. If s(*) is a O-surrogate, then the agent gets the
outcome | and pays nothing. Otherwise, she gets the outcome that the surrogate gets and pays the same
price discounted by a factor of (1 — 7). See Mechanism 3 in Appendix C for a formal description.

i€[n]
an exactly BIC mechanism M’ with respect to a different distribution D’ = X

Theorem 3. Let O be a downward-closed outcome space. Given sample access to distributions D =
Xie[n} D; and D' = Xie[n] Dg, and query access to an e-BIC and IR mechanism M w.r.t. distribution D.
We can construct an exactly BIC and IR mechanism M’ w.r.t. distribution D', such that

REV(M',D') > REV(M, D) — O(ny/e) — O (\/n : dw(D,D’)> . )

On any input bid b = (by,...,by,), M’ computes the outcome and payments in expected running time
poly(n,T",1/e) and makes in expectation at most poly (n,T",1/¢) queries to M, where T is the support
of Dj and T' = max;cp, |T/].

Furthermore, for any coupling c;(-) between D; and D’ such that v; is non-increasing w.r.t. ¢;(+) ° (see
Appendix B for the formal definition), the error bound can be improved as follows:

REV(M',D') > REV(M, D)—ny/z—0 <m7 + f) _ Liep Brnr [Besgen [ (8 2'(1)) = vi (cilta), EDI]

n
o)

where x'(+) is the allocation rule of M’ and 1) can be chosen to be an arbitrary constant in (0, 1).

“Roughly speaking, v; is non-increasing w.r.t. a coupling c; if the coupling always couples a “higher” type to a “lower” type.
Namely, for all ¢;, outcome o € O, if the coupling produces type ¢; and ¢;(¢;), then v;(¢;,0) > vi(ci(t:), 0).
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Inequality (4) is our main result, and provides a strong guarantee in very general settings. Even though
the difference between Inequality (5) and (4) seems small, we like to point out that the difference can be
substantial sometimes and there were indeed cases where one needed a sharper version similar to Inequal-
ity (5). In particular, one common application of bounds similar to Inequality (5) is when the coupling
simply rounds values down. For example, the main results in [18, 32] heavily rely on inequalities similar to
Inequality (5), and these results may not be possible if only an Inequality (4) type bounds are used.

The proof of Theorem 3 is postponed to Appendix G. When D = D/, d,,(D,D’) = 0, the following
corollary states the e-BIC to BIC transformation.

Corollary 1. If D = D', REV(M', D) > REV(M, D) — O (n/e).

Another useful corollary is when we choose M to be the optimal BIC, IR mechanism for D, we conclude
that the optimal revenue under D’ is not far away from the optimal revenue under D.

Corollary 2. Ifd,,(D;, D;) < kforalli € [n], let OPT(D) and OPT(D’) be the optimal revenue achievable
by any BIC and IR mechanism w.r.t. D and D' respectively. Then |OPT(D) — OPT(D')| < O(n - \/k).

We refer the reader to Appendix G for some more details about this section.

6 Black-box Reduction for Multi-Dimensional Revenue Maximization

In this section, we apply Theorem 3 to the multi-dimensional revenue maximization problem.

Theorem 4. Let O be a downward-closed outcome space. Given sample access to bidders’ type distribu-
tions D = X, D;. Let b be an upper bound on the bit complexity of vi(t;, 0) and Px(t;) for any agent i, any
type t;, and any outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanism. We
further assume that types are normalized, that is, for each agent i, type t; and outcome o, vi(t;,0) € [0, 1].
Given oracle access to an a-approximation algorithm G for VWO with running time rtg(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly (n, T, %, b,rtg (poly (n, T, é, b) ) )
time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) > a- OPT — O (ne),

where T' = max;¢[y] |Ti|. On any input bid, M computes the outcome and payments in expected running
time poly (n, T,L b, rte (poly (n, T, %, b)))

) e

More details about this section including complete proof of Theorem 4 can be found in Appendix H.

7 General Outcome Space: Regularized Replica-Surrogate Fractional As-
signment

In this section we show how to remove the assumption that the set of feasible outcomes O is downward-
closed, if the distribution Dy, of each agent k is known to the mechanism. We demonstrate in Example 3
that it is necessary to strengthen our assumptions if we want deal with general outcome spaces. Our result
is inspired by Hartline et al. [29]. We provide their results and our modifications in Appendix 1. Our main
result is the following theorem.
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Theorem 5. Let O be a general outcome space. Given full access to the agents’ type distributions D =
X; cln] D;, such that for each agent i it holds that supp(D;) < m and query access to an e-BIC and IR mech-
anism M w.r.t. distribution D. We can construct an exactly BIC and IR mechanism M’ w.r.t. distribution
D, such that

REV(M') > REV(M) — O(nme).

M/’ computes the outcome and payments in poly(n,m, b, 1/¢) time and makes at most poly (n,m,1/¢)
queries to M. Here b is an upper bound on the bit complexity of the description of the valuations of the
agents for outcomes o € O and the description of the type distributions D = X icn] D;.

We can apply Theorem 5 to the multi-dimensional revenue maximization problem and derive the fol-
lowing:

Theorem 6. Let O be a general outcome space. Given full access to agents’ type distributions D = X, D;.
Let b be an upper bound on the bit complexity of vi(t;,0) and Pr(t;) for any agent i, any type t;, and any
outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanism. We further assume
that types are normalized, that is, for each agent i, type t; and outcome o, vi(t;,0) € [0, 1].

Given oracle access to an a-approximation algorithm G for VWO with running time rtg(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly (n, m, %, b,rtg (poly (n, m, %, b) ))
time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) > a- OPT — O (nme)

where m = max;ey,) |supp(D;)|. On any input bid, M computes the outcome and payments in expected
running time poly (n, m, L b, rta (poly (n, m, %, b)))

) e

The proofs of the theorems can be found in Appendix I.
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A Examples

Example 2. Let N be the number of samples that the algorithm uses to calculate the empirical expectation.

Choose o > 0 such that % < % Consider the following example with I node on each side. There are

o
1—20

with probability 1 — 2. The edge weight w(Y) = o. For the second instance, F?) is o w.p. I and w? = o.

For the above example, both instances have the same edge weight and any maximal-in-range allocation
will always output the same matching. However in the first instance, with probability (1 — 20)N < 1
the empirical expectation is negative and the two nodes are not matched. While in the second instance
the algorithm will always match the two nodes. Thus the output matching is not maximal-in-range. It is
well-known that if the allocation is maximal-in-range, there must exist a payment rule such that the agent
is incentive-compatible. Thus the algorithm will violate the incentive-compatibility when applied to the
replica-surrogate matching.

two instances. For the first instance, the random variable FV) attached to this edge is 1 w.p. 20, and —

Example 3. Consider the following e-BIC to BIC reduction instance for a single buyer. Let

T= {tHa t(l,1)7 s 7t(l,m)7t(s,l)7 ce 7t(s7m)} €N,

be the set of the buyer’s types, D = {Dy; j) }i je[m], Where D; ;) is the distribution with support {t i, t 1 3y, (s j) }
and point-mass probability:

1-20 ift=tg

Pr [t'=t]= ift=t,.
t/NDI(‘Z‘J> [ ] o l:f‘ (Z,Z)
d it ="ts.)

The output space is O = {0, 0(1,1), - -+ s O(1,m)s O(s,1)> - - - s O(s,m) } Such that:

v(tw, o) :{(1) o =on

oW.

€ if 0 = o(s ), for any j' € [m]
v(t(),0) = {O o (&)

€ if o = o( ), for any i’ € [m]
v(t(s,j)a )_{O oW 49

For each distribution D; jy € D we consider the mechanism M; j): if the buyer reports t, the mecha-
nism outputs opy and charges the buyer 1, if the buyer reports i ;), the mechanism outputs o(; ;) and charges
the buyer 0, if the buyer reports t(, ;), the mechanism outputs o4 jy and charges the buyer 0. If the buyer
reports anything else, the mechanism outputs oy and charges the buyer 1. Mechanism M ;y is e-BIC and
IR for distribution D ; j). The revenue of M is 1 — 2o0.

The mechanism designer has oracle access to set 7 and faces the following problem: There is an arbi-
trary distribution over D, which is unknown to the designer. The buyer’s valuation distribution is realized
to be some D(; jy € D, the designer is given sample access to Dy, ;), oracle access to M ;) 19 and she
needs to output a truly BIC and IR mechanism M’ w.r.t. the buyer’s realized distribution that approximately
preserves the revenue. Note that | 7| = 2m + 1. Therefore the size of each ¢ € T is at most O(log(m)).

'%In other words the mechanism designer does not know the outcome space O. It can only put a input type into the mechanism
and outputs the returned outcome.
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Lemma 2. For any 6 > 0 choose 0 < % and m > % For any i, j, let M’ be any BIC, IR mechanism
w.r.t. D(; j), which only uses N = poly(log(m)) samples from D; jy and queries from M; ;) (notice that
log(m) is the size of the input). Then REV(M') < 20 4 36 - €. As & goes to 0, REV(M') goes to 0 while
REVIM)=1—-20>1-— % goes to 1.

Proof. Denote M’ (t) the output of mechanism M’ if the agent reports type ¢ and p(t) the expected payment
if the agent reports ¢. Notice that the outcome of M; ;) can only be ogr,0( 4, Or (5 j). Thus the output
of mechanism M’ is also one of these three outcomes. Let M’(t) for inputs t(1,), t(s,j) be the following
distributions
oy with probability 1 — p — ¢
M'(ti)) =1 0qsy  with probability p

with probability ¢

on with probability 1 — p’ — ¢/
M (ts.5) = § o

04  With probability ¢’

with probability p’

Then by BIC constraint we have that:
q-€—p(tay) = pe— p(t(s;)) By BIC constraint if agent’s true type is ; ;) but reports ¢( ;).
q -e—p(ts) >p-€—p(tes) By BIC constraint if agent’s true type is ¢ (s ;) but reports t(; ;.

By the previous inequalities we can infer that:

P(taqy) — pts )
€

qg—p > >p—q

Notice that either p < ¢’ or p’ < ¢. The claim holds because if p(t; ;) — p(fs ;)) is non-negative, then
q > p' andif p(t( ;) — p(t(s ;) is negative we have that p < ¢’. Without loss of generality assume p’ < q.

Now we are going to bound g. Note that since the mechanism designer does not have access to the
outcome space, the only way to find outcome o, j) is to use Z(, ;) as input to the mechanism M. To do that,
the designer must sample ¢, ;) either directly from the type space T or the realized distribution D j) I,

With at most NV samples from the buyer’s distribution Dy; ;), with probability at least (1-0)N > 1-No,
none of the sampled types is ¢(, ;). By assumption, o < % which implies that with probability at least 1 — g
we are not be able to sample type ¢(, ;), therefore we cannot find output o(, ;) by this method.

Moreover, notice that the output of M is og for all types {t, j },- j'e[m]- Thus by querying mechanism
M with at most N types ¢, ;; chosen uniformly at random from {t(s,j)}je[m}, with probability at least
1—-1/m)N >1- % , none of the returned outcomes is o(, ;). By assumption m > % implies that with
probability at least 1 — % none of the returned outcomes is o, ;).

Hence, for any § > 0, by taking Union Bound over the two events described above, we cannot identify
output o(, ;) with probability at least 1 — . This implies p’ < . Similarly we can prove that ¢’ < 0.

By IR constraints for type ¢(s ;), we have ¢’ - € — p(t(s jy) > 0. Thus —p(t(s ;) > —¢' - €. By u(ty) we
denote the utility of type ¢z in mechanism M’ when she reports ¢z. Consider the BIC constraint for type
¢z when she reports type ¢(, ;). We have

u(tg) > (1—p' —q) —pltey) 21— —d —¢ - e>1-20-07-¢

"Note that if the designer does not sample uniformly at random from the set {t(s,jy}je[m), since the distribution over D is
unknown, the adversary can make it more difficult for her to sample the right type by picking a different distribution
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Thus p(ty) < 26 + 6 - e. Notice that both p(t(, ;)) and p(t(;;)) are at most € since the agent’s value
under these two types are at most €. Thus REV(M’) < 2§ + 30 - e. O

B Additional Preliminaries

Bayesian Incentive Compatibility and Individually Rationality

e Bayesian Incentive Compatible (BIC):

. _lED i (G @ (ti, =) — pi (tiyt—3)] = , 'INED vi (i@ (8,t-0)) —pi (t,t-0)], Vi€ [n],ti,t; € T

e Individual Rational (IR):

E [vi (thx (tlvt—l)) — Di (tz’t—l)] > 07 Vi € [n]atl € 7;

t_i~D_;
e =-BIC:

E v (ti,a(tit=) —pi (b t—)] > B [ (tix (t,t)) —pi (t,t=) ] —e, Vi€ [n],t;,t; € T

t_i~D_; t; i

o c-IR:
E  [vi(ti, @ (ti, t—)) —pi (ti,t—5)] > —e, Vi€ [n],t; €T,

t_i~D_;

Coupling between Type Distributions: In order to measure the difference between the two distributions,
we will introduce the following definition. Fix every agent i. A coupling ¢;(-,-) of distribution D, and D;
is a joint distribution on the probability space 7, x 7; such that the marginal of ¢; coincide with D] and D;.
In the paper we slightly abuse the notation, denoting ¢;(b) a random variable that is distributed according
to the conditional distribution of type ¢; over 7; when t; = b. According to the definition of the coupling,
when t; ~ DI, ¢;(t,) ~ D;.

We say v; is non-increasing w.r.t. the coupling ¢; if for all ¢; € T/, outcome o € O, and every realized
type ¢;(t;), vi(t;, 0) > vi(c;i(t;), 0). Intuitively, the coupling always maps a “higher” type to a “lower” type.
Such coupling is common, for example in a combinatorial auction, rounding agent ¢’s value for each bundle
of items down to the closest multiples of § can be viewed as such a coupling.

Wasserstein Distance: For any t;,t, € V;, let dist;(¢;,t;) = maxeeco |vi(ti,0) — vi(t;,0)|. The f-
Wasserstein Distance between distribution D; and Dg w.r.t. dist; is defined as the smallest expected distance

among all couplings. Formally,

dw('Di,Dg) = min /disti(ti,t;)dci(ti,tb

Ci(‘y‘)

C Figures and Mechanisms
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Figure 2: With e we denote the replicas and with B the surrogates

D Missing Details from Section 3

D.1 Replica-Surrogate Matching Mechanism

We provide a detailed description of the the replica-surrogate matching mechanism used in [23, 39, 18]. For
each agent ¢, the mechanism generates a number of replicas and surrogates from D;, and maps the agent’s
type t; to one of the surrogates via a maximum weight replica-surrogate matching, and charges the agent the
corresponding VCG payment. Then let the matched surrogate participate in the mechanism for the agent.
Formally, suppose we are given query access to a mechanism M = (z, p), we construct a new mechanism
M’ using the following two-phase procedure:

Phase 1: Surrogate Selection For each agent 1,

1. Given her reported type t; € D;, create £ — 1 replicas sampled i.i.d. from D; and ¢ surrogates sampled
ii.d. from D;. The value of ¢ is specified in Corollary 4.

2. Construct a weighted bipartite graph between replicas (and agent 7’s true type ¢;) and surrogates. The
weight between the j-th replica () and the k-th surrogate s(*) is the interim value of agent i when
her true type is () but reported s) to M less the interim payment for reporting s(k) multiplied by

(1—n):

Wi, s®) = E |ue@a® )] --n E [pe®]. ©

3. Treat VVZ-(r(j ), s(k)) as the value of replica /) for being matched to surrogate s*). Run the VCG
mechanism among the replicas, that is, compute the maximum weight matching w.r.t. edge weight
Wi(-, ) and the corresponding VCG payments. If a replica (or type ¢;) is unmatched in the maximum
matching, match it to a random unmatched surrogate.

Phase 2: Surrogate Competition Let s; be the surrogate matched with the agent ¢’s true type ¢;. Run
mechanism M under input s = (s1,...,5,). Leto = (o1, ..., 0,) be a the outcome generated by x(s). If
agent ¢ is matched in the maximum matching, her outcome is o; and her expected payment is (1 — 1) - p;(s)
plus the VCG payment for winning surrogate s; in the first phase; Otherwise the agent gets the null outcome
1 and pays 0.
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Mechanism 3 ¢-BIC to BIC Transformation (Mechanism M)
Require: Query access to an IR mechanism M = (z,p) w.rt. D = XiE[n] D;; sample access to the type

distribution D; and D;, for every i € [n]; Parameters n, 7', d, ¢, and d > 32%.

Phase 1: Surrogate Selection

1: fori € [n] do

2:  Sample ¢ surrogates i.i.d. from D;. We use s to denote all surrogates.

3:  Estimate v with parameters 7" and § using the algorithm in Lemma 12.

4:  Agent i reports her type ¢;. Create d¢ — 1 replicas sampled i.i.d. from D] and insert ¢; into the replicas
at a uniformly random position. We use r to denote all the d¢ replicas.

5:  For each normal surrogate k, also create a O-surrogate with a special type ¢ . Create a bipartite graph
G; between the d¢ replicas and 2/ surrogates. Define the weight between the j-th replica r(9) (¢; is
also a replica) and the k-th normal surrogate s(*) using

W’L(T(])u S(k)) = t,'fIvE'D,' [UZ(T(J)am(S(k)7t—Z)) - (1 - 77) : t,-rI\Ej:'D,- [pl(s(k)7t—2):| .

A 0-surrogate has edge weight 0 to every replica, that is Wi(r(j ), ©) = 0 for all j.

6:  Run Algorithm 2 on G; with parameters 4, 77/, and . For any edge between a replica #() and a
surrogate s(*), we can sample the edge weight by first sampling ¢_; from D_;, then query M on
input (s, ¢_;), and compute v;(r), z(s*) t_;)) — (1 =) - pi(s¥),t_;).

7. Suppose the reported type t; of agent ¢ is matched to the k-th normal surrogate or the k-th O-surrogate.
Let s; be the type of the k-th normal surrogate.

8:  Sample X from U[0, 1] and charge the agent ¢;(¢;, A), which is her payment for Phase 1. g;(t;, A) is
computed via a modified implicit payment (Defintion 6).

9: end for
Phase 2: Surrogate Competition
10: Run mechanism M on input s = (s1, ..., s,). Leto = (01, .., 0,) be a random outcome sampled from

x(s). If agent 7 is matched to a normal surrogate in Phase 1, her outcome is o; and her payment for
Phase 2 is (1 — 7)) - p;(s); otherwise the agent gets the outcome L and pays 0 for Phase 2.

Lemma 3. [27, 8, 23, 39, 18] M’ is BIC and IR.

Proof of Lemma 3:

We prove this in two parts, similarly to [18]. First we argue that the distribution of the surrogate s; that
represents the agent, when the agent reports truthfully, is D;. Since we have a perfect matching, an equivalent
way of thinking about the process is to draw ¢ replicas, produce the perfect matching (the VCG matching plus
the uniform matching between the unmatched replicas and surrogates) and then pick one replica uniformly at
random to be the agent. These two processes produce the same joint distribution between replicas, surrogates
and the agents 7. So we can just argue about the second process of sampling. Since the agent is chosen
uniformly at random between the replicas in the second process, the surrogate s; that represents the agent,
will also be chosen uniformly at random between all the surrogates. Thus, the distribution of s; is D;.

We need to argue that for every agent 7 reporting truthfully is a best response, if every other agent is
truthful. In the VCG mechanism, agent ¢ faces a competition with the replicas to win a surrogate. If agent ¢
has type t;, then her value for winning a surrogate with type s; in the VCG mechanism is exactly the edge
weight

Wiltisi) = E - [viti,z(sit=))] = (L =n)- B [pi(si )]

t_i~D_; t_i~D_;
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Clearly, if agent 7 reports truthfully, the weights on all incident edges between her and all the surrogates will
be exactly her value for winning those surrogates. Since agent ¢ is in a VCG mechanism to compete for a
surrogate, reporting the true edge weights is a dominant strategy for her, therefore reporting truthfully is also
a best response for her assuming the other agents are truthful. It is critical that the other agents are reporting
truthfully, otherwise agent ¢’s value for winning a surrogate with type s; may be different from the weight
on the corresponding edge.

O

Moreover, when £ is sufficiently large, the revenue of M’ is close to the revenue of M.

Lemma 4. [23, 39, 18] If M is an e-BIC and IR mechanism w.r.t. D, then for any n € (0,1) and any
¢> L, REV(M', D) > (1 — n)REV(M, D) — O(ne)/n.

Lemma 4 also follows from a special case of Lemma 16 when A = 0 and d = 1. The main take-
away of this Lemma is that the above mechanism M’ indeed satisfies the requirement of an e-BIC to BIC
transformation. However, as we discussed in Section 1.1, the mechanism runs in exponential time.

D.2 Online Entropy Regularized Matching

The following lemma follows from the first-order condition: for any dual variables «, the optimal solution
for the Lagrangian is given by a collection of Gibbs distribution z* = (z]*) jelde-

Lemma 5. [24] For every dual variables o € |0, h}e, the optimal solution z* maximizing the Lagrangian
exp (7%

W —o

Zk’e[l] eXp( i 5
If for every edge (j, k), we are given sample access to a distribution Fjj, whose mean is wji, € [0,1], we
can use the fast exponential Bernoulli race [24] to sample from the Gibbs distribution z]’-‘ forall j € [d/].
In particular, each sample from distribution z; = (27, ..., 23,) only requires in expectation poly(h,,1/5)
many samples from (Fjy )i, (Lemma 1).

L(z, a) subject to constraints 3_. =7 = 1,Vj € [dl] is: 2}, = ACRAS [dl], k € [£].

If the optimal dual variables o* are known, by complementary slackness, the corresponding z* in Lemma 5
is the optimal solution of (P). The gap between the expected weight of z* and the maximum weight is at
most the value of the maximum entropy ¢ - d¢ log ¢, so we can simply use the matching sampled according to
the distribution z*. However, as the optimal dual is unknown, the wrong dual variables o may cause a loss
of ) p ap(d—>" ; 2jk), which may be too large when z is not computed based on the optimal dual variables.
To resolve this difficulty, Dughmi et al. [24] introduce the second key idea — Online Entropy Regularized
Matching algorithm (Algorithm 1). The online algorithm gradually learns a set of dual variables close to the
optimum «*. When the algorithm terminates, it is guaranteed to find a close to optimal solution to program
(P).
From Lemma 6, the algorithm is also maximal-in-range for any choice of the parameters ¢, 7/, ~.

Lemma 6. [24] For every 7, a¥) and parameter y, the Gibbs distribution Z; (specified in step 4) is maximal-
in-range, as

5 / ' ! @ . 12
Zj € argmax . p|x| Z ZipWik — 0 Z zix log(2jy,) — Z oy - 2
keK keK keK

"”Notice that o) only depends on the weights incident to the LHS-nodes 1 to j — 1.
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E Missing Details from Section 4

E.1 Issues of Directly Applying Algorithm 1 to the general d-to-1 Matching Problem

In Example 1 we point out the issue of directly applying Algorithm 1 to the general d-to-1 matching problem.
A tempting way to fix the issue may be to first remove all edges with negative weights then run Algorithm 1.
With only sample access to ., one way to achieve this is to remove edges with negative empirical means.
In fact, with a sufficiently large number of samples, with high probability, all edges with strictly positive
weights will remain and all edges with strictly negative weights will be removed. However, with non-
zero probability, some edges will either be kept or removed incorrectly causing the algorithm to violate the
maximal-in-range property. See Example 2 for a concrete construction.

An alternative way is to relax the constraint >, z;, = 1to >, zj; < 1, so the algorithm no longer
needs to find a perfect matching. However, Lemma 5 fails to hold as the optimal solution is no longer a
Gibbs distribution and it is unclear how to sample efficiently from it with only sample access to Fjy, BA
similar attempt is to add a slack variable y to (P), modifying the constraint ), zj, = 1to >, zjr +y = 1.
It is equivalent to adding one dummy RHS-node, with weight 0 on every incident edge. Now for every dual
variable, the optimal solution for the Lagrangian follows from a Gibbs distribution. However, the program
differs from (P), in particular the new dummy RHS-node has no capacity constraint, and as a result there
is no dual variable that corresponds to this dummy node. It is not clear how to modify Algorithm 1 to
accommodate the new dummy node and to produce a close to maximum matching.

E.2 Proofs of Section 4

Definition 5. For any parameter 6 > 0, we define the following auxiliary convex program (P"):

max F(z,y)= Zj,k TjpWik — 0 - Zj,k(xjk log (k) + ;i log(yjk))
st 3wk ) < d, Yk €[]
Sk +yk) =1, Vi€ [d]
Tk, Yik € [0,1], Vi, k

Let (&, Ujk)ji be the solution produced by Algorithm 2.

Observation 1. For every j, oY) and parameter ~, match j according to the Gibbs distribution (Z,75) to
the available 2| K| RHS-nodes in K,

exp ((wn —7a)/9) B exp ((—raf)/9)

Tjk = Yjk

Srere (exp((win —70)/8) +exp(—1al /) Spex (exp((win — val)/6) + exp(—af) /6))

maximizes

S wjpewje =8> wjploglan) =0 Yy log(yi) — Y val - (@ + e,

keK keK keK keK

subject to the constraint ) (xj, + yji) = 1.

The issue is that > % Zj% may be strictly less than 1 and has a complex expression. It is not clear whether we can sample
efficiently from 2] with only sample access to (Fj);x. Moreover, even if we can sample from the distribution, the guarantees in
Theorem 1 may no longer hold.
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Observation 2. For every dual variables o € [0, h]¢ the optimal solution x*, y* maximizing the Lagrangian
L((x,y), ) of program (P") subject to the constraints Y, (x;i + yji) = 1,Vj € [dl] is

Wik =0
7 = D) el kel
S (exp(HE5) + exp(54) )
O
i = >p(5%) el vk e[l

i (exp(P25) + exp(<54) )

Hence

T3, B .
* —eXp(ij/(S), V]7k

jk

We prove in Lemma 7 that the optimum of (P”) is exactly the same as the optimum of (P’).

Lemma 7. Forall j € [d{] and k € [{], lf% = exp(w;i/9), Tjk + Yjk = Zjk, then

Zjk - Co(wik) = 8 - zjk 108 (2jk) = Tjk - Wik — 0 - wji log(zjk) — 0 - yjk log(y;)- @)
This implies that the optimal objective values of (P') and (P") are equal.

Proof of Lemma 7:
For every j, k, recall (5(w;r) = 0 - log(exp(w;x/d) + 1). Observe that zj;, = (1 4 exp(w;i/6))y;i. We

have

exp(w;r/0) + 1

o ) = —(exp(wjr/d) + 1)y,x - 0 log(y;ix)

LHS = Zjk " Q;(wjk) —0- Zik log(zjk) = Zjk- - log(

RHS = —0 - y;x log(y;) + @k - (wik, — 6 log(z;i))
= —0 - yjr log(yjr) + exp(wjr/0) Yk - (wjr — 0 log(exp(w;x/d)) — dlog y;x)
= —0 - yjk log(y;x) - (1 + exp(w;r/0))

Hence, Equation (7) holds. Since the optimal values x;fk, y]*k satisfy the requirements by Observation 2,
we have that the optimum of (P’) is at least as large as the optimum of (P”). On the other hand, let z* be

the optimal solution of (P'), we can choose x7; and y7; so that 27, + yj; = 27, and ZT: = exp(wji/0).
Clearly, (7, Y7 )k is a feasible solution to (P"), therefore the optimum of (F’) is at most as large as the

optimum of (P'7 ). Combining. the two claims, we prove that (P’) and (P") have the same optimal objective
values. O

Lemma 8. With parameter 6 > 0, let (z*,y*) be the optimal solution of (P"). The optimum of (P"),
>k Tipwin — 6 32 (@ log(23,) + yiy log(yjy)), is no smaller than the weight of the maximum weight
matching.

Proof. Let 2’ be the maximum weight matching. It is not hard to see that we can construct a 0 — 1 vector 3/
so that (2/,y’) is a feasible solution of (P”). As both x’ and 3’ only take values in O or 1, the entropy term
=Dk Vi log () = 37, 1 ¥ir log(y),,) = 0. Hence, the optimum of (P”) is at least as large as the weight
of the maximum weight matching » jk a:; Wik O
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Proof of Theorem 2: As the algorithm always produces a matching that respects the constraints of (P"),
the first property clearly holds. As the set of available RHS-nodes K and the dual variables o) only
depend on the first ; — 1 LHS-nodes but not the LHS-node j, the maximal-in-range property follows from
Observation 1. The algorithm runs in d¢ rounds, step 3 and 4 both take O(¢) time. Step 5 takes expected
time poly(, ¢, 1/6) and poly(y, £, 1/6)-many samples from distributions (Fj)s to complete. Hence, the
running time and sample complexity as stated in the second property.

If we execute Algorithm 1 on a d-to-1 matching with weights ({s(wjx));x and Algorithm 2 over weights
(wjk);x with the same parameters d, 7/, 7y, we can couple the two executions so that the dual variables ald)

and the remaining capacities (d,(j )) & are the same for every j. We introduce the new notation K (@) which

is exactly the set of available RHS-nodes K in step 2 of both algorithm in round j. Note that K @) is
deterministically determined by (d,(j . If o) and K1) are the same in both algorithms for every j, then
Tk + Ujr = Zjx forevery j € [dl] and k € K (4). To verify this, simply observe that

() ) () (9)
Gwjk) — v Wik —a Wik — Y —a ..
Co30) 2000 — (o2 1) (1) = exp(E T e ) =

How does the coupling work? We construct it by induction. In the base case where j = 1, clearly

everything is the same in both algorithms. Suppose the dual variables oW ... al) and the remaining

capacities (dg)) ke oo (d](j )) i are all the same for the first j rounds, we argue that we can couple the two

executions in round j + 1 so that «/*1) and (d,(gj H))  remain the same in both algorithms. First, the set
KU+Y js the same, which implies that the dual variables o/*1) are also the same. Next, Algorithm 1
samples a RHS-node £ according to distribution 2,1 and Algorithm 2 samples a RHS-node according to
distribution (%41, 7j41). Note that Z(j11)x + Y(j+1)k = Z(j+1)k» S0 Wherever Algorithm 1 matches the

LHS-node j + 1 to a RHS-node k& we match the LHS-node j + 1 to the normal RHS-node & with probability

Zjk = exp(

":&%;: and to the 0-RHS-node with probability Z?iii;: Clearly, this coupling makes sure the new remaining
J J

capacities (dg +1))k also remain the same. Combining the coupling with Lemma 7, we conclude that
G(2) = 2jn-Golwsn)=0-Y Znlog(Zn) = > djpewin—6-Y (Ex log(&jk)+95x log(sx)) = F(%, ).
Jk Ik Jk Jk
By Theorem 1, the expected value of G(2) is a (1 —O(n’)) multiplicative approximation to OPT(P”), if
we choose the parameters according to the third property of the statement. Therefore, the expected value of
F(z,9)isa (1 — O(n')) multiplicative approximation to OPT(P’). Since the optimum of (P"), OPT(P"),
is the same as OPT(P’) (Lemma 7), the expected value of F(Z,7) is also a (1 — O(n’)) multiplicative
approximation to OPT(P”). Now, invoke Lemma 8, we know that the expected value of F(z,7) is at
least a (1 — O(n)) multiplicative approximation to the weight of the maximum weight matching, which we
denote as OPT. Note that the entropy term —4 - (E ik Tk log(Zk) + D2,k Uik log(gjk)) is non-negative
and at most dd/ log(2/), hence the expected weight of the matching produced by Algorithm 2, the expected
value of 3, jkwjp, is at least (1 — O(1')) - OPT — ddllog(2¢).
If we choose § = O(+%), ¥ = O(1), then ddllog(2¢) = O(dly) and O(1) - OPT = O(dl1)) as

log?
OPT < df. Thus, the expected weight of the matching produced by Algorithm 2 is within an additive

error of ©(dly) from the weight of the maximum weight matching. This completes our proof for the third

property.
Now we are going to prove the final bullet of the theorem. We denote the entropy of (z,y) as:

H(z,y) = — (Z wrlog(xx) + Y Uk log(yk)>
p p
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By Observation 1,

(25,9;) = argmax, Zx]k wik + 0 - H(xj,y;) Z'yak (xjk + Yjk)
k

Therefore the objective of solution (0, Z; + ¢;) is a lower bound on the objective of solution (&}, ;):

ijk W]k+5 H( $],y] ZW/ak x]k+y]k‘)
k

> 6. H(0,%; + 9;) Zvak (&% + Gjk)

Since H (0,2, + g;) > 0, we can conclude that:

D @ wik > =0 H(#j,§;) > —0log(2¢)
k

F Estimating v: Approximating the Offline Optimum of the Regularized
Matching

In this section, we show how to estimate the parameter -y so that it is a constant factor approximation to
optimum of program (P”) (see Definition 5) on the replica-surrogate matching in Mechanism 3 with high
probability. Importantly, the estimate is completely independent from the agent’s reported type. Here is
the basic idea. We sample the edge weights between r’ and s, and use the empirical mean to compute the
optimal solution of program (P”). We show that with polynomially many samples, the optimum of (P")
computed based on the empirical means is a constant approximation to the optimum of (P”) on the true
edge weights with probability almost 1.

Proof of Lemma 12: We prove our statement in two steps. In the first step, we show that if we take poly-
nomially many samples, we can obtain a sufficiently accurate estimate of w(r’);, for each edge (j, k). We
prove that the optimum of (P") on the estimated weights is close to OPT(w(r’)). We use Fjj, to denote the
distribution of the random variable v; (1)), 2:(s®) t_;)) — (1 — ) - p;(s™¥),t_;), where t_; is distributed
according to D_;.

Lemma 9 (adapted from [24]). For each edge (j,k) between the j-th replica r’' @) and the k-th normal
2log(4¢2dn'~1)
52 log?(0)

mean of these N samples, then with probability at least 1 — L,

surrogate s®), if we take N > samples from Fji,, and use &ji(r') to denote the empirical

OPT(QW(T/)) < OPT(&(r')) < 20PT(w(r’)).

Proof. By the Chernoff bound, we know that Pr ||w;x (1) — @i (r)| > 6log(Z)

< WQ for each edge (7, k).

Since there are d¢> many edges, by the union bound, we have that with probability at least 1 — 7 for each
edge (j,k):
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§log(f)

2

Let (z*,y*) be the optimal solution of the (P”) with edge weights (w;x(r")),x and (z**,y™*) be the
optimal solution of the (P”) with edge weights (w;(r’));x. Then

|wik(r) — Wik (r)| <

OPT(w(r')) = Z (zfpwin(r’) — 0 - (x5, log(xfy) + vy log(vik)))
ik

> Z (zfrwsn(r’) = 6 - (a3 log(x3%) + yir log(y3k)))
ik

dldlog (¢
> OPT(&(r')) — ;g()
S OPT(&(r"))
- 2
The last inequality holds since a valid assignment is to set y;;, = 1/¢ and x;, = 0 for each j, k, which
has objective value dd¢ log(¢).
The other direction can be proved similarly. O

Let A be the total weight of the maximum weight matching with edge weights (w;z(r')),5. It is
clear that A lies in [OPT(w(r')) — ddllog(2¢), OPT(w(xr’))]. Note that if we set y;, = 1/¢ and xj;, =
0 for each j, k, the objective of (P”) has value dd¢log(¢). Hence, max{A,ddl¢log(¢)} is guaranteed
to lie in [%‘;’(r/)), OPT(@(I‘I))}. If we choose 7 to be 12'max{Al’fdm°g(£)}, 7 is guaranteed to lie in

[4'0”51@“'”7 12~0P1;l<w<r'>>]_ Due to Lemma 9, ~ lies in [z‘oméwm)’ 240PT(w(r)

least 1 — n//2. As A can be computed in time poly(d,¢,1/n’,1/d), v can also be computed in time
poly(d,¢,1/n',1/9).

In the second step of the proof, we show that OPT(w(r)) and OPT(w(r’)) are close with high probabil-
ity. We first need the following Lemma to prove OPT(w(r)) has bounded difference of 2.

} with probability at

Lemma 10. For any j € [dl], any type ') and replica profile r,
‘OPT (w(r)) — OPT (w (r'(j),r(_j)>>‘ <2,

where wjj, (r’(j), 'r(_j)) = Wi(r'0), s and wiry, (r’(j), r(_j)) = wji(r) for any j' # j.

Proof. Let (x*,y*), (z**, y**) be the optimal solutions under replica profile r and (r’(j),'r(_j)) for (P")
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respectively. Then

OPT(w(r)) = Z (x;"kwj’k(T) —0- (fﬂj/k IOg(x;’k) + y;’k 10g(y;’k)))
j'€[de),ke[l)
> Z (x ewie(r) — 8- (35 log(ahh,) + vk log(yi))
'elde] ket
> Z winwin(r) — 0 - (a3 log(z3h) + yih log(yin.)))
J'#ikell]

+ 30 (w51 (wpnt @, = 2) =5 (57 om(a3h) + w3 los(y3i))

The last inequality is because both wj (r) and w(r'?), »(=7)) lie in [~1, 1]. The other direction follows
similarly. 0

Next, we apply McDiarmid’s inequality to the function OPT (w(r)).

Lemma 11. When d > 32;5(# if both r and ¥’ are collections of d i.i.d. samples from D}, then with
probability at least 1 — —l,
1 , 3
§OPT(w(r)) < OPT(w(r")) < §OPT(w(r)).
The probability is over the randomness of both r and r’.

Proof. Due to Lemma 11, we can apply McDiarmid’s inequality on the function OPT(w(7)), and we have

Pr |:‘OPT(0J(T)) ~ E[OPT(w(r)]| > ‘leg(@] <

Similarly, we have

3

Pr Uom@(ﬁ)) ~ E[OPT(w(r)]| > Wlog(ﬂ <

4

Hence, with probability at least 1 — %,

ddllog(?)

2

Since ddllog(¢) is a lower bound on both OPT (w(r')) and OPT( (r)) (by setting y;;, = 1/¢ and
x;j, = 0 for each j, k) we have that with probability at least 1 — %,

|OPT(w(r)) — OPT(w(r'))| <

LOPT(u(r)) < OPT(w(r')) < SOPT(w(r).

Our statement follows from Lemma 9 and 11 O
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G Missing Details from Section 5

Our transformation is described in Mechanism 3. To make our description complete, we present Lemma 12
that specifies an algorithm to estimate -y and Definition 6 that defines the payment of Phase 1. The proof of
Lemma 12 can be found in Appendix F. The approach is similar to Dughmi et al. [24].

log(8n
62¢1og

first draw dl fresh samples from D), which we denote using r'. We use OPT( ) to denote the optimum
of (P") when the edge weight between the j-th replica/LHS-node and the k-th normal surrogate/normal
RHS-node is wjj,. There exists a randomized algorithm based only on r' and s that computes a vy that lies

n [2 OPT( (r) 24 OPT( r /))} with probability at least 1 — 1 /2, where wji,(r') = W;(r'V), s()) as defined

in Mechamsm 3. Moreover, 7y is at most O (max{/¢, 6¢log(¢)}) and the algorithm has poly(d,¢,1/n',1/0)

running time and makes poly(d, ¢, 1/n',1/8) queries to mechanism M.
Furthermore, if r are dl i.i.d. samples from D,, then OPT(w(r')) lies in {

Lemma 12. For any agent i, given parameters ¢, 6, 1/, and d > 32 ﬁx s to be the ¢ surrogates,

OPT(w(r)) 3OPT( )

5 , with

probability at least 1 — 1 /2 over the randomness of r and r', where w;,(r) = Wi(r9), s*)). In thls case, y
OPT(w(r)) 36~OPT(w(r))]
d ’ d

also lies in with probability at least 1 — 7/

How do we compute the payment of Phase 1? Note that if any agent i’ € [n] reports truthfully, then the
surrogate s;; who participates for agent i’ in Phase 2 '# is exactly drawn from distribution D;. Therefore, if
all the other agents report truthfully, agent ’s value for winning a normal surrogate s is exactly W;(¢;, s) and
0 otherwise. In other words, Mechanism 3 is equivalent to a competition among replicas to win surrogates,
and the edge weight between a replicas and a surrogate is exactly the replica’s value for the surrogate. To
show that Mechanism 3 is BIC, it suffices to prove that the payment of Phase 1 incentivizes the replicas to
submit their true edge weights. As Algorithm 2 is maximal-in-range, such payment rule indeed exists.

If the true type is the j-th replica, and the reported type ¢; induces edge weights (w;x) e[, charge the
agent

o Z Tk log( x]k +90 Z Yik log( y]k + Z ’Ya %kz + y]k) (8)
keK keK keK

exp((wjk 'ya,(vj))/zS) o exp(( 'Ya(j))/5>
S (xp((n—al) /o) rep(—al /) 7 T 8, (exp(wi—ra?) /o) +exp(—al) /6))
al9) is the set of dual variables in the j-th iteration of Algorithm 2. Observation 1 implies that the payment
rule is BIC. However, direct implementation of the payment requires knowing the edge weights which we

only have sample access to. We use a procedure called the implicit payment computation [4, 30, 6, 7, 24] to
circumvent this difficulty.

and

where xj, =

Definition 6 (Implicit Payment Computation). For any fixed parameters 6,1, 1’ and , let (wji) ;. be the
edge weights on a [dl] x [2{] size bipartite graph, we use A;(w) to denote (L1, ..., T, Yj1,

.., Uje), the allocation of the j-th LHS-node/replica to the surrogates computed by Algorithm 2 on the
bipartite graph. Now, fix r and s, we use u;(t;, (z,y)) to denote Zke[é} z - Wi(ti, ). Suppose agent
i’s reported type t; is in position w, that is, (™ = ¢ To compute price q;(t;, \), let surrogate s' be the
surrogate sampled from Ar(W') by Algorithm 2 in step 6, where W is the collection of edge weights in
graph G; as defined in step 5 of Mechanism 3, and we sample a surrogate s" from A, (A\Wr, W_.), where
W contains all weights of the edges incident to the w-th replica, and \Wy, is simply multiplying each weight

14 Agent i’ may be matched to a 0-surrogate, then s, is the type of the corresponding normal surrogate.
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in Wy by \. Then we sample t_; from D_;, the price q;(t;, \) is
weight;(ti, s',t_;)) — weight;(t;, 8", t_;) — V6(log(2() + 1),

where weight;(t;, s,t_;) = v;i(ti, x(s,t—;)) — (1—n)-pi(s,t_;) if s # ©, otherwise weight;(t;,s,t_;) = 0.
In expectation over s', s" and t_;,

E [gi(ti, )] = i (ti, Ar(W)) = u; (ti, Ax AW, W_r)) — V(log(20) + 1),

if we also take expectation over )\,

1

AN[IJE%O,I][Qi(ti7 N = (ti, Az (W) — /0 ;i (tiy Ax AW, W_r)) dX — \/g(log(%) +1). 9

With Definition 6, our mechanism is fully specified. We proceed to prove that the mechanism is BIC and
IR. Our transformation is quite robust. Even if the original mechanism M is not -BIC or the « estimated
in step 3 is not a constant factor approximation of w, the mechanism is still BIC and IR. The proof
for truthfulness is similar to the one in Dughmi et al. [24]. However, as our edge weights may be negative,
it is more challenging to establish the individually rationality compared to Dughmi et al. [24]. To make
sure the mechanism is IR, we sometimes need to use negative payments to subsidize the agents, and at the
same time guarantee that the total subsidy is negligible compared to the overall revenue. Note that this
is also different from the previous -BIC to BIC transformations [23, 39, 18], as they essentially use the
VCG mechanism to match surrogates to replicas, their mechanisms are clearly individually rational and use
non-negative payments.

Lemma 13. For any choice of the parameters ¢, d, n, 1, § and any IR mechanism M, M’ is a BIC and IR
mechanism w.r.t. D'. In particular, we do not require M to be e-BIC. Moreover, each agent i’s expected
Phase 1 payment E [q;(t;, \)] is at least —/5(log(2¢) + 1). Finally, on any input bid b = (b, ..., by,),
M’ computes the outcome in expected running time poly(d, ¢, 1/n',1/8) and makes in expectation at most
poly(d, ¢,1/n',1/8) queries to M.

Proof of Lemma 13:

M’ is BIC: We prove the Bayesian Incentive Compatibility in two parts. The first part is similar to the
proof of Lemma 3. We argue that the distribution of the normal surrogate s; that represents agent ¢ in Phase
2, when the agent ¢ reports truthfully, is D;. Note that for any matching Algorithm 2 produces, the k-th
normal surrogate and the k-th O-surrogate together are matched to exactly d replicas for every k € [¢]. As
the d¢ — 1 replicas and the agent’s type are all drawn from the same distribution D/, we can simply treat all
of them as replicas and uniformly choose one to be the agent reported type after Algorithm 2 terminates.
Therefore, the surrogate s; that represents the agent, will also be chosen uniformly at random between all
the normal surrogates. Thus, the distribution of s; is D;.

If all the other agents report truthfully, agent i’s value for winning a surrogate s is exactly W;(¢;, s) if
her true type is t;. In other words, under the assumption that all other agents report truthfully, Mechanism 3
for agent 7 is equivalent to a competition among replicas to win surrogates, and the edge weight between a
replica and a surrogate is exactly the replica’s value for winning the surrogate. To show that Mechanism 3
is BIC, it suffices to prove that at any position 7,

wilti, A (W (t))) — Elgs(t3, M)

5The difference between E ., Ulo,11]gi(t:, A)] and Equation (8) is indeed a fixed constant, hence our mechanism is BIC.
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is maximized when the reported type ¢, equals to the true type ¢;. Here W (t) is simply the collection of
the edge weights when (™) = t;, and the function w;(-) is defined in Definition 6. A result by Rochet [37]
implies that this is indeed the case. Interested readers can find a modern restatement of the result in Theorem
2.1 of [6] .

M’ isIR: The expected utility for agent ¢ with type ¢; at position 7 is

ui(ti, Ax (W) — Elgi(ti, V)] = /1 i (ti, A AW, W_r)) dX + V6(log 20 + 1), )
0

where W is the collection of weights in G; when agent ¢ reports truthfully. We will first prove that for any
A€ 0,1), u; (ti, Ar (AW, W_y)) is at least — Mog(%) . Denote H(z,y) = — >, (zx log(z) +yi log(yk))
as the entropy for distribution (z, y).

Let (27, y2) be Ay (AW, W_,). By Observation 1,

(l‘;{., y;—) - argmax (Tr,Yr) Z$7rk: >\W7rk +9- H xﬂ’ yﬂ' nyak $7rk + yﬂk)
k

By considering an alternative solution (0, z/ + y/), we have

S @l AW 6 - H(alh, yl) Zvak (@7 + Y

>0-10- Z ﬁk + Yopo) log (a7, + yap,) — ZVOZJ(:) (g, + Yge)
! !

Since — >, (27, + yyp.) log (7, + vy) >0,

—dlog(20)

1)
itia Tl')\Wﬂ')W 7r >_*H a// >
wi (1, A ( = Xt W 2 =SHOTL0) 2 =5

Another lower bound for w; (t;, Ax (AW, W_r)) is —1, as the mechanism M is IR, by definition of the
edge weight W, > —1 for all & € [¢]. Now, we are ready to lower bound the utility

L _5log(2 ve
RHS of Equation (9) > / 50/\g(€)d)\ + / —1d\ + Vé(log 20 + 1)
Vo 0

—6log(1/V3) log(26) — V'8 + Vé(log(20) + 1)
—V/6log(2¢) + V5 log(20)
=0

v

Next, we prove that M’ does not lose too much revenue by subsidizing the agents in Phase 1.

16To apply Theorem 2.1 of [6] to our setting, one should think of each surrogate as an outcome, and the corresponding edge
weight as the value for the outcome. In other words, a replica’s type is the weights on the incident edges. As the matching is
computed by a maximal-in-range algorithm, we can allow the edge weights to be arbitrary numbers, and the induced allocation rule
will still be implementable in an incentive compatible way. As a result, we can apply Theorem 2.1 of [6] to our setting. Note that
the incentive compatible payment rule it gives is off by an absolute constant compared to our payment rule in Definition 6.

33



Ex[gi(t:, \)] is at least —/§(log(2¢) 4+ 1): It suffices to show that
U; (tia -Aﬂ' (W)) > U (ti, -Aﬂ' ()‘Wm W—ﬂ'))

forany A € [0,1). We still use (277, y) to denote A, (AW, W_,) and (Z, ) to denote A, (W).
By Observation 1, both allocations are maximal-in-range for the same dual variables a(™. Hence, the
following two inequalities are true.

Z@ﬂkwﬂk—’—éH(i‘W?g/Jﬁ)_Z ’ya](;r)( k+y7rk > Zxﬂ'kwﬂ'k—"_é H( 7r7y7r) Z'YO‘;:)(x;:k‘i‘ygk)
k k k

Zx iAWk +0-H (27, y7) Z’Y%‘ (@t vl) 2> Eak A Wak+0-H (&, ) Z’Y% (Zrk+Grk)
k K

Summing up the two inequalities together, we have

> (Emk — ) War(1 = A) > 0.
k

Since A € [0,1),

Uy (tia Ar (W)) — Uy; (tia Ar ()\Wﬂ'v Wfﬂ')) = Z(fi'wk - x;;k‘)Wﬂ'k} > 0.
k

Finally, we analyze the time and query complexity of the mechanism.

Time and Query Complexity: All steps except Step 3,6, and 8 clearly has poly(d, ¢) time and query
complexity. According to Lemma 12, Step 3 has poly(d, ¢,1/n’,1/§) time and query complexity. Since
v is guaranteed to be at most max{/¢, d¢log ¢}, Algorithm 2 in Step 6 has time and query complexity
poly(d, ¢,1/9) according to Theorem 2. From Definition 6, it is clear that Step 8 also has time and
query complexity at most poly(d,¢,1/5). Hence, the mechanism M’ has time and query complexity
poly(d,¢,1/n',1/96).

O

G.1 Bounding the Revenue Loss

Now we sketch the proof of Theorem 3. It suffices to lower bound the revenue of M’ from the second phase
due to Lemma 13. In the previous transformations [23, 39, 18], the mechanism computes an exact maximum
weight replica-surrogate matching, which allows them to bound the revenue from the second phase directly.
Our mechanism only computes an approximately maximum weight replica-surrogate matching. As a result,
we need to use a more delicate analysis to lower bound the revenue from Phase 2. To facilitate our discussion,
we define some new notations.

New Notations: For every agent 4, and the corresponding bipartite graph GG;, we define a new bipartite
graph éz whose left hand side nodes are the replicas/LHS-nodes of G;. For each normal surrogate/RHS-
node of G;, we duplicate it d times to form the set of right hand side nodes of CA}, For the k-th surrogate
in G;, the (al + k)-th surrogate in G, is one of its copies for all 0 < a < d — 1. We do not copy the
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0-surrogates to CAJ The edge weights in CA? are still defined using W;(+,-). Clearly, every d-to-1 matching
in G; corresponds to a 1-to-1 matching in G;. If replica 7 is matched to a surrogate s in (;, simply match
7 to the first available copy of s in G We use ¢’ to denote d¢, and G has 2¢' nodes. When we say the
matching in G produced by Algorithm 2, we mean the matching in G that corresponds to the matching
produced by Algorithm 2 in GG;. We follow the conventlon to use 77) to denote the type of the j-th replica
and 5() to denote the type of the k-th surrogate in GZ. We further simplify the notation and use p;(t;) to
denote E;_,p_,[pi(ti,t—;)] for any type t; € T;.

Given the replica profile r and surrogate profile s, for any matching L(r,s) in @i, we slightly abuse
notation to use W;(L(r,s)) to denote 3, o (rs) Wi(r, s). When the replica profile r and surrogate profile
s are clear from context, we simply use W;(L) to denote the total weight of the matching L. Since the
analysis mainly concerns the set of surrogates that are matched in a matching, we use s € L(r,s) to denote
that the surrogate s is matched in L(r, s). Let O(r, s) be the (randomized) matching obtained by Algorithm 2
on G;, V (r,s) be the maximum weight matching in Gi.

We first provide a Lemma that relates the expected revenue of M’ to the size of the matchings.

Lemma 14. Let REV-SECOND; (M, D) be the expected revenue of M' from agent i in Phase 2, REV;(M, D)
be the expected revenue of M from agent 1,

REV-SECOND;(M', D) = (1= 1) - Bry [Sytocops pils®)/¢]

and

REV;(M, D) = E, [Z et Pi(s™) /g,]

Proof. For every agent i, only when the agent 7 is matched to a surrogate in O(r, s), she pays the surrogate
price. We can again first sample r and s, and run Algorithm 2 on the corresponding graph C:’@ to find the
matching O(r,s), then choose a replica uniformly at random to be agent i. Since each replica has exactly
probability 1/¢’ to be agent 4, each surrogate in O(r, s) is selected with probability 1/¢', the expected revenue

. . (s(F) . .
paid by agent i is exactly (1 — 1) - Ers | >0 eo(rs) - ’(Z,k )| The expected payment from agent i in M is

Et,~p, [pi(t:)]. Since each s(¥) is drawn from D, this is exactly the same as Eg > ket pi(s(k))/é’]. O

In Lemma 15, we bound the gap between REV-SECOND; (M’, D’) and REV,;(M, D). Indeed, we prove
a stronger result that holds for any matching K (r, s) that has close to maximum total weight.

Lemma 15. Recall that V (r,s) is the maximum weight matching in G;. Let

E[W; (K (r.s))] = E[W; (V (r,5))] - A.

rs rs

7 e A
+ — R
l n  dln

2
— =dy(D;, Dj).
n

C-E| Y w®)e| 2B Y ps®)e| —n

sMEK (r,s) kelt']

n+

To prove Theorem 3, one only needs to choose K (r, s) to be the matching O(r, s) produced Algorithm 2,
and combine the guarantees in Lemma 13 and 14.
Instead of proving Lemma 15, we prove the following strengthened version of the statement.
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Lemma 16. LetE,  [W; (K (r,s))] = E.s [W; (V (r,s))] — A. We have

B

_ N, oy | T e AN 2 o oy
(1 77)3% Z pi(s") /0] > ISE Z pi(s™) /¢ (77+ Y p + din ndw(DzaDz)'
s(MEK (r,s) kele']

Moreover, for any coupling c;(+) that v; is non-increasing w.r.t. ¢;(+), the last term can be improved to

1 . A
— L Z E [Ui(r(])>$(5(k)> t-i)) = vi(ei(r?), x(s(k),tfz'))] A
MO ) sk g O iD=

Proof of Lemma 16: To prove the statement, we consider an arbitrary coupling ¢;(-, -) of distribution D, and
D; (see Appendix B for our definition for coupling between type distributions). For every replica r € T/,
¢i(r) is a random type from 7;. For every realization of the types c;(r) = (cz-(r(j )))j el Ve consider the
maximal matching that matches a replica () with a surrogate s*) only if ci(r(j )) = s(¥). We denote the
matching as L(c;(r), s) and refer to it as the maximal coupled same-type matching. In the next Lemma, we

argue that in expectation of r, s and the realization of ¢;(r), the expected size of L(c¢;(r),s) is close to £'.

Lemma 17. For any r, s, and realization of c;(r) = (c;(rU )))j cley let L(ci(r),s) be a maximal coupled

E [|L(ci(r),s)|]] > ¢ — \/d|T| - 2.
LB (L)) 2 ¢~ \[dIT]

Proof. To prove the result, we first invoke the following Lemma.

same-type matching, then

Lemma 18 (Adapted from [27]). Let ¥’ be N replicas drawn i.id. from distribution D), and s’ be N
surrogates drawn i.i.d. from distribution D;. For any coupling c;(-) between D, and D;, the expected
cardinality of a maximal matching that only matches a replica v and a surrogate s when c;(r) = s is at least

N — \/|T!| - N. The expectation is over the randomness of ¥, s, and the coupling c;(r').

Although we have ¢ replicas and ¢’ surrogates, we cannot directly apply Lemma 18, as the surrogates
are not i.i.d. samples from D;. Instead, we partition G, into d subgraphs. The a-th subgraph contains
all replicas 1) and surrogates s*) with j and k lie in [af + 1, (o 4 1)£]. If we only consider the a-th
subgraph, due to our construction of éi, the replicas are all sampled i.i.d. from D/ and the surrogates are
also sampled i.i.d. from D;. Therefore, Lemma 18 implies that a maximal coupled same-type matching in
the a-th subgraph has expected size at least £ — /|7/|{. Since there are d subgraphs, so the expected size
of a maximal coupled same-type matching is at least ¢/ — \/d |T/| - ¢'. O

Now, it suffices to argue that the total payment from surrogates that are in L(c;(r), s) but notin K (r, s) is
small. Indeed, when K (r,s) is the maximum weight matching, one can directly prove the claim. However,
K(r,s) only has approximately maximum weight, and it appears to be difficult to directly compare K (r,s)
with L(¢;(r), s). Instead, we construct an auxiliary matching based on both K (r,s) and L(c;(r),s). For any
r, s and realization of types (ci(r(j )))j e We decompose the union of these two matchings into a set of
disjoint alternating paths and cycles. Every surrogate that appears in L(c¢;(r),s) but not in K (r,s) must be
an endpoint of some alternating path. These alternating paths have the following two forms:

17For the rest of the proof, when we use the notation E., ) [-], we are taking the expectation over the randomness of the coupling.

The ¢;(r) = (ci(r(j ))) ) inside the expectation is the realized type after coupling.
jele
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(a). It starts with a surrogate in L(c¢;(r),s)\ K (r,s) and ends with a surrogate in K (r,s)\L(c;(r),s) with
the form (s(1),7(1), $(2), 7(2)s =+ T(a)> S(a+1)) -
(b). It starts with a surrogate in L(c;(r),s)\ K (r,s) and ends with a replica with the form
(501): (1), 52): 72)> 5 S(0) T(@))-
We use P to denote the set of all alternating paths of form (a) and (b). We construct a new matching
K'(¢;(r),s) as follows: start with the matching K (r, s), for any alternating path P of form (a) and (b), swap

the edges in K (r,s) with the ones in L(c;(r),s), that is, replace all edges in P N K(r,s) with edges in
P N L(ci(r),s). Since all the alternating paths are disjoint, K”(¢;(r),s) is indeed a matching.

Corollary 3.

E S pis™)e >E > pi(s™) /e —\/75‘.

r,S,Ci(r) s(k)EK/(Ci(r) S) kE[f’

Proof. Fixr,s and types {c;(r9))} je[e)- For any alternating path P of form either (a) or (b), PN L(c;(r),s)
is the same as P N K'(¢;(r),s). For other alternating paths, the matched surrogate in P N L(¢;(r),s) is a
subset of PN K (r,s). Thus the number of the matched surrogates in K'(c;(r), s) is at least | L(¢;(r), s)|. By
Lemma 17, By, [|{k : s & K'(ci(r) < \d|T!|- 0. As M is IR, p;(s) < 1 for any surrogate
s € T;. Therefore,

/ ! 7;/
E LY we@y| e | Y ne®)ye| T

P | s ekrem)s) kel

Equipped with Corollary 3, we only need to compare K (r,s) with K'(¢;(r),s).

Lemma 19.

1, A2
El > w")/) =z E > wisM)e —5(8+@)—5dw(9m92)

s eK (r,s) rseilr) s(WeK (¢;(r),s)

Moreover, for any coupling c; such that v; is non-increasing w.r.t. ¢;, the last term can be improved to
—y B [vi(ti, 2 () — vilci(ta), 2 (1))

Proof. Fix any r,s and realization of ¢;(r). Observe that if we decompose the union of K(r,s) and
K'(c;(r),s) into alternating path and cycles, we will end up with many length 2 cycles and all the alter-
nating paths in P. Hence, we only need to consider the paths in P.

Consider any k € [a] if the path has form (a) (or & € [a — 1] if the path has form (b)), note that
ci(T(k)) = S(k)» as this is also an edge in the matching L(c;(r), s). Since M is e-BIC, we have

B Toileilr)s a(sgy t=)l = pilsy) 2, B [vilei(re), 2(sger), t-0))] = pilsern)) — &
which is equivalent to

Wirays say) — Wilr (k) S(e+1))

> —e =0 (Pi(Ss1)) — Pi(S(k))) + Dies Pk Sk)) — D (k) St 1))
37
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where A; ¢, (r,5) =By ,op_[vi(r,z(s,t—;)) —vi(ci(r), z(s, t—;))].

By summing up Inequality (10) for each k, we are able to relate the difference of the total weight between
K(r,s) and K'(¢;(r),s) with the total payment from surrogates in K (r,s) and K'(¢;(r),s).

e For any form (a) path,

a

> (Wilrrys sesn) = Wilreys sxy))

k=1
<a-e+n- (Pi(s@r) —Pi(s@) = D (Dic: (s 8() — Die (T(k) S(k41)))
k=1
e For any form (b) path
a—1
(Wilraey: sges1y) = Wilraey 55)) = Wilrays 8(a))
k=1
a—1 a—1
<(a=1)-e+n- Y (Pilsgen) = ilsw)) = Wilray 8@) = Y (Diei (r(ay» S) = Dier Py (k1))
k=1 o
a a—1
<(a=1)-e=n-pilsa) = Y Dies Py 5m) + D Aies (P(k) s S(r41)
k=1 k=1

The last inequality is because 1 - pi(s(q)) — Wi(r(a) S(a)) < —Dic;(T(a)s S(a))» Which is implied by
the fact that M is IR.

To sum up, for any alternating path P € P,

Z Wi(r0), sy — Z Wi (), s))
(r(@,s(k))e PNK(r,s) (r(@),s(E)Ye PNK’ (c;(r),s)
(11)
<|PNK(rs)|-e+1n- > pis™) - > pi(s®™)) | + DIFF(P),
sk e PNK (r,s) s(F)e PNK’ (¢;(r),s)

where DIFF(P) = Z(r(j),s(k))GPﬂK(r,s) Ai’ci(r(j)7 sk)) — Z(r(j>,s(k))ePﬂK/(ci(r),s) Aie; (r), 5™).
Since V (r,s) is the maximum weight matching, we have

Z Z Wi(r0), sy — Z Wi(r0), s%))
PeP | (r@) s(k))ePNK(r,s) (r@),s(k))e PNK’ (c;(r),s) (12)
=Wi(K(r,s)) — Wi(K'(ci(r),s))
>Wi(K(r,s)) = Wi(V(r;s))
Note that if we are using the matching L(¢;(r),s) instead of K'(¢;(r),s), we can no longer prove In-
equality (12). The reason is quite subtle. It is possible that L(c;(r),s) has much higher weight than K (r,s)
on paths in P, but much smaller weight on the rest alternating path and cycles. In that case, the first

equal sign will be replaced by a less equal sign, which makes the inequality meaningless. By comparing to
K'(ci(r),s), we can avoid this issue.
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Combining Inequality (11) and (12) , we have

Wi(K(r,s)) — W;(V(r,s))

< 3 Wi(r0), s — 3 Wi(r), s(k))]

PeP | (r@),s(k))ePNK(r,s) (r( s e PNK'(c;(r),s)

<>, PﬂK(nS)-Hn[ SNooops®y - N m(s“f))]ww(m
L )

s(k) e PNK (1) s(k)e PNK'(c;(r),s

<l'-e+n-

Yoops®h— > pi(s(k))]] + ) DIFe(P)

s(F)eK(r,s) s eK/(ci(r),s) peP

Finally, we take expectation over r, s, and ¢;(r).

e { > Pi(s(k))] T o) [ > pi(s(k))]
r,s) o

s(MeK(r, s(K e K’ (c;(r),s)

1
>— |~ e+ E[W; (K (r,5)] - E[W;(V(rs)]— E |Y DIFr(P)
n rsci() | S
1
> (0. 5+A—— DIFF(P
77( n rscl 1326;3

For every type r, s, and realized type ¢; (1), A ¢, (7, 5) = E;_,~p_,[vi(

rox(s,t—;))—vi(ci(r), x(s,t—;))] €
[—dist;(r, ¢;(r)), dist;(r, ¢;(r))] (recall that dist;(r, ¢;(r))

= max,eo |vi(r,0) — vi(ci(r),0)|). Thus

El
> DIrr(P) < 2 dist;(r), ¢;(r1)),
pPeP j=1
and
2[5 omip)] <200
r,s,c;(r
bad g 2 Pep
Therefore,

A 2

II‘?S |: Z pi(s(k))/y] > l',s,IE(r) |: Z pils (k) )/6/] 1(

s()eK(r,s) s(K) e K’ (c;(x),s)

If v; is non-increasing w.r.t. ¢;, then A; ., (-, -) is a non-negative function. Then

> DIER(P) < Y > A e, (rD 50y < > Aje, (rD sy,

Pcp PeP (r(4) s(F))e PNK (r,s)

(r@,sENeK (r,s)
and
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< IE ) Z ci(r), tI_EiND_i [vi(r(j)’x(S(k)’t_i)) N Ui(ci(r(j))’ x(S(k)’ t_i))
(r( s K (r,s)

O]

Finally, we are ready to prove Lemma 16. Note that for every s, pi(s(k)) < 1 since M is -IR. We
have

(1=mn)- Yo ows™M)e=E L YT (s .

rs s
s(F)eK (r,s) s(FeK (r,s)

The lemma follows from Lemma 19 and Corollary 3. O

Proof of Theorem 3: First, by Lemma 14, we can lower bound the revenue of M’ under D’ from agent 7 in
Phase 2 REV-SECOND; (M, D’) by (1 — 1) Ey ¢ {Zs(k)eo(r’s) pi(s(k))/ﬁ’}, where O(r,s) is the matching
produced by Algorithm 2 on él Lemma 14 also provides an equivalent expression for the revenue of M
under D from agent i: REV,;(M, D) = E, [Zke[m pi(s(’f))/f’} .

We choose the parameters according to Theorem 2, that is, for any ¢ € (0, 1), we set 6 = @(%),
n' =0O(¢y)and d > 517055. Theorem 2 implies that E, s [W; (O (r,s))] = Ep s [W; (V (r,s))] — O(d¢3)), that

is in expectation O (r, s) has close to maximum weight. We will specify the choice of the other parameters
£, n, and v later. By Lemma 16, we know that

Tl « O<w>>_2dw<z>i,7>;> 1%
tomo U

REV-SECOND;(M', D’) > REV;(M, D) — (77 + + -+
Combining Inequality (13) with Lemma 13, we can obatain the following lower bound on REV(M', D’).

REV(M',D') > REV(M,D)— > (n + ﬁ+ % i 05;/})) B 2dW(?D/) —nV3(log(20)+1) (14)
i€[n]

Now we set { = and we can choose 7 to be O ( €+ d(DD)) so that

e logZ’

REV(M',D') > REV(M, D) — O (n <\/§+ £+ dw(Z:L’D/)>> — O(ne)
> REV(M, D) — O(ny/g) — O ( - dw(D,D’)>

Plugging in our choice of the parameters to Lemma 13, we can conclude that both the computational
and query complexity of M is poly(n,T",1/¢).

2d.w(D;, DY)

If ¢;(+) that v; is non-increasing w.r.t. ¢;(-), we can replace the last term — 2 in Inequality (13)

by
E 3y E [vi(r(j),x(s(k),t,i)) — vi(e;(rD), 2 (s®, t,i))}

1
77€ ) ci(r), t—i~D—;
(r,s(M))eO(r,s)
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Note that this quantity is the same as

1
g [
M t~D

E [v; (ti, 2 (t)) — vi (ci(ts), 2/ (¢))]

ci (tl)

Hence, for any n € (0, 1), we can improve the result to

REV(M’',D') > REV(M, D)—n/e—0 <’m7 + 7:7€> - Ziae e Bt (t;x/(t» ~ualt) @] :

d

H Missing Details of Section 6

Cai et al. [15] provide a reduction from MRM to VWO. More formally:

Theorem 7 (Rephrased from Theorem 2 of Cai et al. [15]). Let O be a general outcome space. Given the
bidders’ type distributions D = X, D;. Let b be an upper bound on the bit complexity of v;(t;, o) and Pr(t;)
for any agent i, any type t;, and any outcome o, and OPT be the optimal revenue achievable by any BIC and
IR mechanisms. We further assume that types are normalized, that is, for each agent i, type t; and outcome
o, vi(t;,0) € [0,1].

Given oracle access to an a-approximation algorithm G for VWO with running time rtg(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly (n, T, %, b,rtg (poly (n, T, é, b) ))
time, and outputs a mechanism with expected revenue aOPT — ¢ that is €-BIC with probability at least
1 — exp(—n/e). Recall that T' = max;c[,) |T:|. On any input bid, the mechanism computes the outcome

and payments in expected running time poly (n, T,L b rtg (poly (n, T,L )))

) e ) g
We can apply Theorem 3 to the final mechanism produced by Theorem 7 and obtain an exactly BIC
mechanism with almost the same revenue.

Theorem 8. Let O be a downward-closed outcome space. Given the bidders’ type distributions D = X, D;.
Let b be an upper bound on the bit complexity of vi(t;,0) and Pr(t;) for any agent i, any type t;, and any
outcome o, and OPT be the optimal revenue achievable by any BIC and IR mechanisms. We further assume
that types are normalized, that is, for each agent i, type t; and outcome o, v;(t;,0) € [0,1].

Given oracle access to an a-approximation algorithm G for VWO with running time rtc(x), where x is
the bit complexity of the input, there is an algorithm that terminates in poly (n, T, %, b,rta (poly (n, T, é, b) ))
time, and outputs an exactly BIC and IR mechanism with expected revenue

REV(M,D) > a-OPT — O (nv/e) ,

where T' = max;cy |Ti|. On any input bid, M computes the outcome and payments in expected running
time poly (n, T, L b rtg (poly (n, T, %, b)))

) e

Proof of Theorem 8: When the mechanism computed by Theorem 7 is e-BIC, our transformation converts
it into a BIC mechanism with at most O(n+/) less revenue. The important property of our transformation
as stated in Lemma 13 is that even if the initial mechanism is not e-BIC, our transformation still produces
an exactly BIC mechanism. In this case, we can still treat the given mechanism as 1-BIC and IR, and use
the corresponding revenue guarantees provided by Theorem 3. Since the probability that the mechanism
computed by Theorem 7 is not e-BIC is exponentially small, we can absorb the loss from this exponentially
small event in the error term O(n+/). The time complexity follows from Theorem 3 and 7. O
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Since our Theorem 3 allows us to construct a close to optimal mechanism M’ w.r.t. the type distribution
D}, if D' is not too far away from the distribution D that M is designed , we can approximate the optimal
revenue even when we only have sample access to the bidders’ type distributions. A byproduct of this result
is that the running time of our algorithm no longer depends on the bit complexity of the probability that a
particular type shows up.

We are now ready to prove Theorem 4.

Proof of Theorem 4: We can create an empirical distribution 52- for each bidder 4, such that d7y (D, 5,) <
¢’, Vi, with probability at least 1 — 6 using O(>_" E%f In %) samples.

We first consider the case where dpy (D;, 51) < &, Vi. Then, dy(D;, 151) < dpy (D, 151) < ¢/, as the
highest value for any outcome is at most 1. Apply Theorem 7 on D= X, D; and let M be the produced
mechanism, OPT be the optimal revenue achievable by any BIC and IR mechanism w.r.t. D. Clearly,
Theorem 7 guarantees that REV(MV , 75) > o OPT — . According to Corollary 2,

|OPT — OPT| < O (m@) .

Weset = cand &’ = g, we apply Theorem 3 to M, that is, the replicas are sampled from D and the
surrogates are sampled from D. Let M be the constructed mechanism, and Theorem 3 guarantees that

REV(M, D) > REV(M, D) — O (ny/2) > a-OPT — O (nyz) > a- OPT — O (ny5),

if M is a e-BIC and IR mechanism. Otherwise, we know that M is a 1-BIC and IR mechanism, and this
happens with exponentially small probability according to Theorem 7, so we can absorb the loss from this
case in O (ny/2). To sum up, if dpy (Dy, D;) < €', Vi, then REV(M, D) > « - OPT — O (ny/2).

With probability € we may get unlucky and dpv (D;, 131) may be larger than € for some <. In that case
we still construct M in the same way, and we can apply Theorem 3 by upper bounding d,, (D, 15) by n and
treating M as a 1-BIC and IR mechanism, which shows REV(M, D) > —O(n).

Therefore, in expectation of the randomness of the samples used to estimate D,

REV(M,D) > (1 —¢) - (a- OPT — O (nve)) — O(ne) = - OPT — O(nv/e),

as OPT < n. Note that even though mechanism M depends on D and M, it is always BIC and IR w.r.t. D.
The time complexity follows from Theorem 3 and 7. O

I Missing Details of Section 7

Throughout this section, we denote the support of the distribution of the k-th agent as {tg)},-e[mk} and the
probability that the k-th agent has type t,(f) as Fik. When there is no confusion about the agent that we are
referring to, we may drop the superscript k in Fz-k.

We first present the result in the ideal model, where the edge weights are known exactly. Then we show
that if we only estimate the edge weights approximately, we can use an approach similar to [29] to still

guarantee the mechanism is BIC and IR.

I.1 Regularized Replica-Surrogate Fractional Assignment

We now present the Regularized Replica—Surrogate Fractional Assignment (RRSF) introduced by [29].
There are two main differences between RRSF and the replica-surrogate matching in Appendix D.1: (i) the
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replicas and surrogates in RRSF are no longer samples from the agent’s type distribution; for each type of
the agent, there is exactly one replica and one surrogate of that type in RRSF; (ii) RRSF finds the optimal
fractional assignment rather than a maximum weight matching.

Definition 7 (Definition 4.6 of [29]). Let ¢(x) = &||x||3. For agent k € [n] and i,j € [my], let Wz’;

be any value in [—1,1]. We may drop the superscript when agent k is fixed and clear from context. Con-
sider the following convex program (P?*) with coefficients {W; ;}; je[my]> Where the decision variables are

{%j}z’,je[mk]-
max »_; ieim,] i (Wijdi; — (i)
subjectto Y qi; =1, Vi€ [my]
> Figij = Fj,  Vj € [my]
¢ij >0, Vi, j € [my]

5)

Let q;; = {4} ;}ijeim,) be an optimal solution to the primal problem and Nj, = {A\} ;}i jefmy)> M =
{1 Yicimy) ™% = {77 }jem,) be any Lagrange multipliers satisfying the KKT condition

o¢(a; * * * .
2.0, <0, Vi, j

3. Xl =0, Vi

1.2 Ideal Model

RRSF Mechanism with parameters (¢* = {qj; }rejn), #* = {15 toepn] ™ = {7 }rem)):  every agent
k reports her type t;, = t,(j). Let s; be a random surrogate type such that Pr[s; = t,(Cj )} = g; ; for every
J € [ma].

The RRSF mechanism M’ runs mechanism M under the random input s = (s1, ..., s,). The outcome
for M’ is the random outcome o generated from xz(s) and agent k’s expected payment is py(s) plus some
extra payment p, where py(tx) = 3, 77q; ; + ¢(q;) — ¢(0) +ming %‘Z We call M’ the RRSF mechanism
with respect to W = {Wi]?j}ke[n},i,je[mk] if for every k, the parameters (qj;, puf, 7j) are obtained by the
convex program (P?) with coefficients {Wf] Yijeiml-

We now present the main result of this section:

Similar to [29], in our proof each W, will be chosen to be the expected utility of agent k for the

Z?]
outcome of the mechanism M = (z, p) when her type is t,(;) and she is matched to the surrogate of type
t,(cj ), Formally,
k _ () () } _ [ () }
Wi t,kINED,k [Uk(tk oty i) t,kLED,k pr(ty k)

They proved that the RRSF mechanism with respect to the W defined above is BIC and IR.

Theorem 9 ([29]). Given any mechanism M. For every agent k and i,j € [my], let

wh= B [at o )] - B [ e
D_k

t_p~D_g t_p~D_

Then RRSF mechanism M’ defined in Definition 7 is BIC and IR.
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As Hartline et al. [29] only care about the welfare of M’, Theorem 9 suffices. We care about the
revenue of M’, so we need to argue that running M’ does not cause the designer to lose a large fraction of
the revenue. REV(M’) contains two parts: (i) the expected revenue from payments {py(-) } xe[n)» Which is
exactly the same as REV(M); (ii) the expected payments from {py () } e[ To prove that REV(M’) is not
too much smaller than REV (M), we need to prove that the expected payments from {px(-) }1e[,] are not too
negative. We prove this claim with the following sequence of lemmas.

We will prove a more general result for any RRSF mechanism with respect to W that satisfies: Wj“Z >
max{Wi’fj — ¢, —"},Vk € [n],i,j € [my], for some &’,¢” > 0. Note that when W is chosen as in
Theorem 9 and M is e-BIC and IR, we will have ¢’ = ¢ and ¢ = 0. The more general result is useful in
the proof of the non-ideal model in Section I.3.

We first prove a structural result about the optimal solution of the convex program (P3).

Lemma 20. Fix any agent k. Suppose for all i,j € [mg)], sz > max{Wi’fj — &', —¢"} holds for some
e',e" > 0. Let {q; ; }i je[m,) be an optimal solution of the convex program (P3). Then, it holds that

G ;>0 = Wi; > Wi, —me —V2my,  Vi,j € [my].

Proof. For any type t,(j) € supp(Dy) such that qu = 1 the statement holds.

Now assume there are some types t,(;*) % t,(cj ") such that gi- j+ > 0. A sequence of types S = {t,(:i)}?zl
of length b, where tg“) € supp(Dy), is called a flow sequence if for each 1 < ¢ < b — 1 it holds that
Qa;,ais, > 0. Let V)« be the set of types (including t,(fj *)) such that there exists some flow sequence that
starts with type t,(j ") that reaches them. We are going to prove that tg*) € V.

Note that for each t,(:) € Vj«,if g o > 0 then tgf) € Vj«. Thus the set Uj» = {t,(f) : Elt,(;) € Vix Ngry >
0} C Vj«. Since q* is feasible, we have

> F= > > Fagu= >, Y. Fagu= >, Y. Fau

eV {7 eV L€[mi] eV Lire>0 et 1 eV
On the other hand,
S Y Aus Y Y s XY ha- YA
(0) (r) (£) (r) (&) : (0)
et 1 eV eV e, {9 v r€lma] eV,

Therefore, we must have Uj« = Vj+ and for every tgf) € Vj*,tg) & Vj«, q;q = 0. Since g;+ j« > 0, we

have t,(:*) € Vj. Let Si= j» = {t3},...,t;*} such that a; = j* and a; = 7* be the shortest flow sequence
from t,(cj ) to t,(;*). Then each type appears in S;« ;j« at most once. Let f. = mingcp Fo > 0 (here

ap+1 = a1). We consider the following new solution q:

*
kQG,k,ak+1

4 — f«/ Fi, when there exists ¢ s.t. ay =4 and ap+1 = j
Gij = q;+ f«/Fi when ¢ = j and there exists £ s.t. ay =@
q j 0.W.

We will verify that § is a feasible solution to RRSF. For the first set of constraints: for every ay, notice
that (i) Gay,a, = 44,4, + f+/Fa, and (ii) there exists a unique jo such that gq, j, — f«/Fa,. Thus

— *
= ay,jo
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>.jGij = >_;¢;; = 1. For the second set of constraints: for every j = a1 for some £ € [b], notice that

there exists a unique 9 = ag such that g;, ; = g7 ; — f«/Fi,, we have

f* f* *
2 Py =3 Bty = Fo o+ By = 2 By = By
%

For the third set of constraints: for every pair (7, j), either g; ; > q; ; = 0 (the second and third case), or
Gij = a4 ; — L > 0as fi < Fig; ;.

Therefore q is a feasible solution to RRSF. Moreover since g* is the optimal feasible solution, its objec-
tive should be at least the objective value of §. Observe that for every i € [my] and every edge (i, j) with
J # i the value ¢g; ; is not equal to q; ; only when there is some £ with a; = ¢, ag+1 = j. The value of this
edge drops by f./F;, whereas the value of ¢;; increases by f./F;. Denote V(g*),V(§) the value of the
objectives for these two feasible solutions respectively. In the flow sequence S = S; ;«, for every i = ay
for some ¢ € [b], denote i’ = ay11. We have

0<V(g") - V(4
=D R Wilai; = dig) + (6(d) - o(a))

= Y Wk oWk @) - o)) = anin ¢ s

F;
it €S
F A *
Wz,z/ - Z’L + = (¢(ql) - ¢(qz ))
<> F
ity €S
<. (W= Wi+ 900 G- a)) (@0 iscomex
Zt(Z)ES* *
<f* (WHI— Wi+ iHV(]ﬁ(di)Hquf—(ji]b) (Cauchy-Schwarz Inequality)
ES* §* *
[«
(Wee ~ Wi VAIa@lE) (i aili=2- ()
’Lt()ES* j* !
(W — Wi+ vV2y]|dill2 ) (the definition of ¢(-))
Zt(Z)ES* *
(W - ”—i-\[v) (g; is a distribution).
’Lt( >ES i, 5%

Since f. > 0 we have

Z (Wi,i’ - Wi+ \/§7> >0

’L’Zt;;) ESi*,j*
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Thus

Wis jo >Wie o — V27 — Z (WW - Wi + \/§’y>

Ve {67}

>Wirje — V27 — Z (E’ + \/i’y) (Wi > W, — £ by assumption)
ES * *—{t(z*)}

>Wix j« —me’ — \[m’y

O]

Equipped with Lemma 20, we proceed to show that the convex program (P3) has a set of optimal
Lagrange multipliers that will make the total expected payments from {py, };¢[,) not too negative. First, we
construct a new convex program (P*) that “removes” all the very negative edge weights from (P3), that
is, change every edge (7, j)’s weight to max{W; ;, —m(e’ + 2) — "} (see Definition 8). Then, we argue
that convex program (P3) and (P?) are essentially equivalent. Namely, any optimal solution of (P*) is also
an optimal solution for (P?), and there is a straightforward mapping that transforms any optimal Lagrange
multipliers of (P*) to a set of optimal Lagrange multipliers for (P3) (see Lemma 21). Finally, we show that
if we compute Py (-) using any set of the optimal Lagrange multipliers derived from convex program (P%),
then py () is not too negative (see Lemma 22) The main reason is that using the KKT condition, we can
relate pi(-) to the edge weights, and the edge weights in (P?) are not too small.

Definition 8. Fix an agent k and & > " > 0. For every i, j, define

W, = ) Wi i Wi, > —m(e +27) — ¢
’ (€ +27) =" ifWi; <—m(' +2y) — ¢

We solve the following convex program (P4) where the decision variables are {Qi,j}i
max -, . F; (Wz’,j%‘,j - ¢(Qi)>
subject to Zj g; =1, Vi

> Figij=Fj, Vi
qi,5 > 07 \V/l,]

JE[my]

(16)

Let @* be an optimal solution of (P*) and 5\*, fo*, 7 be any Lagrange multipliers satisfying the KKT
conditions:

I F, (Wi,j - 8;15%_)) = N+ + Fii, Vi
2. )\* <0, Vi,j

3. X =0, Vi
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Lemma 21. Fix any agent k. Suppose for all i,j € [my], Wfl > maX{Wi’fj — &', ="} holds for some
e > ¢&" > 0. Let §* = {4} }i jem,) be any optimal solution of the convex program (P*). Then ¢* is
also an optimal solution of the convex program (P3). Moreover let A%, [*, 7% be any Lagrange multipliers
satisfying the KKT conditions w.r.t. the convex program (P*). Then there exists A\* = {/\Zj}i,jE[mk] such
that (X\*,u* = u*, w* = 7*) satisfies the KKT conditions w.rt. the convex program (P3).

Proof. We first prove that ¢* is also an optimal solution of the convex program (P3). Clearly q is a
feasible solution of the convex program (P?). To argue q is an optimal solution, we first prove that WZ i 2
WJ ', Vi, j € [my]. For every i, Since W;; > — ,W =W > —" . IfW;; > —m(e' +27y) — €'
then VV, j = W, ; and we have W” > Wl g ¢’ since W“ > I/V, g ¢’. On the other hand, suppose
Wi ; < —m(e’ 4+ 2v) — €’ Then W” =-m(e'+27) — €' <0. WH —W” > Wi > "> —

We apply Lemma 20 to convex program (P?). For any 4, j such that g; >0, Wi g = W, g (6’ +
V27) > —m(e' +v/2y) —€". Thus it must hold that TW; ; = W ; and the solution ¢* has the same objective
value in (P?) and (P*). Moreover since Wm > W, ; for every i, j, the optimal objective value of (P?) is
no larger than the optimal objective value of (P*). Thus §* is an optimal solution of the convex program
(P3).

For the second part of the statement, consider the following dual variables {)\;‘ j Yijeimal:

Pty if Wi ;> —m(e +2y) — €’
’J 5\:3 + E(Wij+m(e+2y)+€')  ow

~

We now verify that (A\*, u* = g*, #* = #*) satisfies the KKT conditions w.r.t. the convex program
(P3). When Wi > —m(e’ + 27) — €’ we have that Ar; = A, and Wi ; = Wi;. This implies that:

T 0d(g; 3 * ~ % ~ % 2] * ~ % ~ %
1. E (Wi,j - g)(g*ql)) = )\i’j‘f'lli +Fi7rj <:>Fi (Wi’j g(*)> = )\ +/Li +Eﬁj

i.j
2. )\* <0

Afjd:] 0
Now cons1der i,j such that Wi ; < —m(e’ + 27) — €”. In this case Wij = —m(e' +27) — €. By
Lemma 20, if ¢ ; > 0, then W; > Wi —m(e' +v/27) > —m(e' + v/2) — ¢”. This contradicts with the
fact that W ; < m(e +27) — €, 50 G;; = 0. We have

1.
. 9o (d
F; (Wi,j ¢§fl)> =\t +FE7
qu
H(G*
&F; (—m(5'+2 )—€ — ¢§fl)> AL (Wij+m(e" +2y) +€') + af + Fit
irj
8 at 3
SF (Wi ‘f’Efz) = A}, + i + Fif
8qi7j
2.0 <0
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3. Ay =0

Thus (A*, u* = @*, m* = #*) satisfies the KKT conditions w.r.t. the convex program (P3). O

As illustrated in the following example an arbitrary set of optimal dual variables that satisfy the KKT
conditions can cause a big revenue loss.

Example 4. We consider the following instance. There is one agent with two possible types t; and ty
such that the agent has type tp with probability Fy,, = 1 — p and t;, with probability F;, = p for some
sufficiently small p > 0. The outcome space O = {or,,on}. v(tr,or) = v(tg,on) = 1l and v(ty,og) =
v(tg,or) = 0. The mechanism M is defined as follows: it returns outcome oy with input ty and returns
outcome oy, with input t;. The payment of the mechanism is always % It’s a BIC mechanism and it holds
that WtLiL = WtH,tH = 1/2 and WtL,tH = WtH,tL = —1/2.

We are going to prove through KKT conditions that for this instance, the following q* is the optimal
solution for Convex Program (P3): Gyt = Gty = Land @i,y = i, 1, = 0. Consider the following
set of dual variables: pf, = p(—1+7), pi, = 0, 7f, = 3/2 =2y, nf, = 1/2 — vy and \*(tg, 1) =
(1 —=p)(=2+ 27v), \*(tg, tH)A*: M (tr, tAL*) = \*(tr, t}[*) = 0. N

Note [l’la[")/ < 1, and 8¢(th) o 8¢(¢ItH) . 3¢(¢1tL) o 8¢(th)

= g = = 0. One can verify that the dual
8qt*L tr 8q;H tH 8qsz tH 6(1:1{ tr fy

variables (p*, 7, \*) satisfy the KKT conditions with respect to q*, which implies that ¢* is an optimal
solution for (P?).

Note that min{yy, /Fy, , pii,, [ Fiy, } = —1 + 7. According to the payment rule, the payment charged to
the first agent if she has type tr, is 3/2 — 2y +~v — 04 (=1 4 ~) = 1/2 and the payment charged if she has
tpetgisl/2—~y+y—04+(—=14+7v)=—-1/2+.

Therefore the expected revenue of the RRSF mechanism with parameter (p*, 7*, \*) isp-1/2+ (1 —p) -
(=1/24~) = —=1/24 v+ p(1 — ). When both p and y go to 0, the expected revenue of the mechanism is
close to —1/2, which is far from the revenue of M.

Lemma 22. Given any mechanism M. Suppose for every agent k and every i, j € [my], Wllfz > maX{Wi’fj .
e, "} holds for some €' > &" > 0. Let §* = {q; ;}i jem,) be any optimal solution of the convex program
(P*) and X*, pi*, 7* be any Lagrange multipliers satisfying the KKT conditions w.r.t. the convex program
(PY). Let (\*, u* = p*, m* = #*) be the Lagrange multipliers stated in Lemma 21, which satisfy the
KKT conditions w.r.t. the convex program (P3). Consider the RRSF mechanism M’ in Definition 7 with
optimal solution ¢* = §* and Lagrange multipliers (X\*, p* = p*, 7©* = «*). Then for each agent k and
i€ [my], ﬁk(tg)) =>;77q;; + #(q;) — #(0) + ming % > —m(e’ + 2v) — €' — . This implies that

REV(M') > REV(M) —n (m(e' 4 27) + € + )

Proof. Assume ¢* = argmin, % Note that ) | ;4;; = 1. If agent k reports type t,(j) then :
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*

ququ» $(0) + min !

Ak A%k ﬂ** A~k
_Zﬂ QZ]+¢ qz) ¢(0)+ Fi*qz,]
J
~3 i, (FZ n ﬁ;) + (@) - 9(0)
J
Ak /:L** ~
2D @i (Fi + 77;)
J

By the KKT condition w.r.t to the convex program (P*) we have that:

S (i > Moy o 06(@;)

sk 1277 Ak £* 7] qf*

qivj <Fg* + 7Tj> qw ( Fg + WZ*,j — 8@; '
. *’-7

¢ (g
Zq” m(e' +2v) — €' — qbff” ) (Definition 8)
94y
> — m(e +2y)— €' —« (the definition of ¢(-) and §; ; € [0,1] )

Finally, note that in M’, the expected revenue from payments {py(-)}re[n) is exactly the same as
REV(M). Thus we have

REV(M') > REV(M) —n (m(e' +27) + " +7) .
0

We summarize the result for the ideal model in the following theorem, by choosing W as in Theorem 9.

Theorem 10. Let M be an -BIC and IR mechanism. Fix any v > 0. Fix any agent k. For every i,j €
[my], define W', as in Theorem 9. Let qy, = {q; ; }i je[m,) be the optimal solution of the convex program
(PY) (descrlbed in Definition 8) and py, = {fi; Yicim,)» Tk = {7 }jeim,) be the corresponding optimal
Lagrange multipliers. Let mechanism M' be the RRSF mechanism with parameters q* = {qj; }rejn], B* =
{15 Yhem)s ™ = {7} }ken) as described in Definition 7. Then M’ is BIC, IR, and

REV(M') > REV(M) — n (m(e +27) + 7).

Proof. According to Lemma 21, g, is also an optimal solution for the convex program (P3) and py, and
are optimal Lagrange multipliers for (P3) as well. Hence, M’ is BIC and IR by Theorem 9.

Since M is e-BIC and IR, we have Wlkz > max{Wi’fj —¢,0}, forevery k € [n] and i, j € [my]. By ap-
plying Lemma 22 with ¢ = e and ¢’ = 0, we have that the revenue of M’ can be at most n (m(e + 27) + )
smaller than the revenue of M.

O
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At the end of Section 1.2, we prove a lemma about RRSF mechanism using the KKT condition of the
convex program (P3). It’s useful in the proof of Lemma 24.

Lemma 23. Let M be any RRSF mechanism with respect to W = {Wi]?j}ke[n],i,je[mk]' It has parameter

(g*, w*, 7*). Then for each agent k and i € [my], Zje[mk} quWi’fj — ﬁk(t,(;)) > 0.

Proof. Fix any agent k. Note that (g}, uf, w5) satisfies the KKT conditions of (P?). By the definition of
]ﬁk(tl(j)), for every i € [my], we have

*

ko @y N r ko *) — min A2
g{: ]Qi,jWi,j —Pe(ty’) = zj:qi,j(Wi,j =) +6(0) — é(q7) — min F
Je|mg

>3 W - =B+ 60) —o(a) (Y aiy=1)
j ! j

AE *
= Zq: (==L + (%)(ql)) + #(0) — ¢(q]) (KKT condition 1)
j TE 0q;

= Z 4 ; 85532‘) + ¢(0) — ¢(q]) (KKT condition 3)
j i

=Voé(q))" - qf +¢(0) — ¢(q;) =0 (¢(-) is convex)

1.3 Non-Ideal Model

In the previous section we showed that, in the ideal model, the RRSF mechanism M’ has only a small
revenue loss, if the original mechanism M is e-BIC and IR. However, with only sample access to the
distributions of the edge weights, these weights can not be computed exactly. In this section, we show that
a BIC and IR mechanism with small revenue loss can be constructed, using estimates for the edge weights.
The approach is similar to [29]. For any fixed agent k, let Wlk] be the utility of agent k on an execution of
the mechanism M = (x, p) when she reports t;j ) and her true type is t,(;). More formally,

Wi = vp(t 2t 1)) = pD 1) (17)

Note that W; ; is a random variable over t_;, ~ D_j, and the randomness of M, whose expectation is W ;
as defined in Definition 7.

Definition 9 (Definition 4.9 from [29]). The Regularized Estimated Replica—Surrogate Fractional Assign-
ment (RERSF) with parameter L, is defined as follows:

1. Fix any agent k. For every pair of types tl(;) , tl(j ) € supp(Dy,), we define WZ’“J as the empirical mean
with L samples of W; ;. A sample of W; ; is obtained by drawing a sample t_j, ~ D_y, running
mechanism M with input (t,(g ) ,t_1), and computing the utility in Equation (17) based on the output
outcome and payment. Let Oy, be the set of output outcomes from M among all samples and pairs

(i, 7). In total there are my, - L number of outcomes.
2. Run the RRSF mechanism M’ in Definition 7 with respect to W = {ij}ke[n]me[mk]-
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The following lemma shows that if all agents report truthfully, the RERSF mechanism has a small
revenue loss compared to M.

Lemma 24. For any n € (0,1), suppose L > 2 In (2"7’;1 ) Then the revenue of RERSE, when all agents

report truthfully, is at least REV(M) — nm(e —|— 6 + 5n). Moreover, the expected utility for each agent
when she reports truthfully is at least —3.

Proof. Note that W¥. € [—1, 1]. By the Hoeffding bound, when L > 2 In 2nm ,Pr Wk | >
1,7 y g ’L,j 77

#. By taking the union bound over all agents, replicas, and surrogates, we have that Wlth probability at
least 1 — 7, ]WfQ W < holds for all agent k and types tlg) t(] )

that the above inequahtles hold as a “good” event.

For the first statement, consider the case when a “good” event happens. Since M is e-BIC and IR, we

have W"’ > Wk —cand Wk > 0, for every k € [n] and 4, j € [mg]. Thus

€ supp(Dy). We refer to the event

Tk~ Tk Tk k Tk ik
Wi ZWi,j_5_|Wi,i_Wi,i|_|sz zg| >Wi;—e—2n

Moreover, Wfl > Wik ] | Wk — 7. By applying Lemma 22 with ¢’ = € + 27 and

" = 7, we have that the expected revenue "of RERSF is at most n (m(e+2v+2n)+v+ 17) smaller than

the revenue of M. When a “good” event does not happen, we can apply Lemma 22 with the trivial guarantee

¢/ = ¢” = 1. The revenue loss is at most n (m(1 + 2v) + 1 + v) < nm(2+3~). Thus the expected revenue
loss is at most

n(m(e+2y+2n)+v+n)+nm(2+3y)-n<nm(e+ 6y +5n)
We now prove the second statement. For every agent k, let t,(f) be her true type. For every j € [my],
let g; ; be the probability that she is represented by type t(] ) in the RRSF mechanism (step 2 of the RERSF
mechanism). Then her expected utility by reporting truthfully is Z qu ;— Dk (t( )) where Py is the extra

payment in the RRSF mechanism with respect to W. By Lemma 23, we have > W 4 — Dk (t,(f )) > 0.
We have

Z i iy~ Z b g —

If a “good” event happens, — > ; Qi.g* |ij — ij| > —n. If a “good” event does not happen, we can

k
i,

apply the trivial guarantee \/I/Ivffj — W] < 2 (since Wf; € [—1,1]) to get — > gi j- |Wzkj - Wl > -2
Hence the expected utility for agent & when she reports truthfully is at least (—7n) - 1 + (=2) - n = —3n.
O

Note that for every agent k with type t,(f), her expected utility when represented by a surrogate with type

t,(f) , 18 WZ; instead of Wf] Thus the RERSF mechanism is not BIC. However, with the number of samples
L sufficiently large, one can show that the mechanism is €’-BIC for some small ¢ > 0. To formally prove
this claim, we first introduce the distinguishability of two types.

Definition 10 (Definition 3.3 from [29]). Let vi(-,-) be the valuation function of agent k. We define
the swap-disutility for the types t(z) t(] ) € supp(Dy,) and outcomes 0,0’ € O to be d(t(l) t(] ) 0, o) =
v(t,(j), 0) — v(t,(;), o)+ v(tgj), o') —v(ty (J) 0o'). The distinguishability of types t;ﬂ ), Vis defined as

d(t,(;),tg)) = orgleg((?d( +® t,g),o o)
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The pair 0,0" € O that achieves the maximum is called the distinguishing outcome pair for t,; ), t( D, We call
t,(C 9 , té 2 distinguishable w.r.t. an outcome set O if they have non-zero distinguishability for some outcome
in that set. For every pair of types t( D t(])

c?(tg), G )) to be the distinguishability of types t(l) t( D \ith respect to the output outcome set Oy,

Lemma 25 (Lemma 4.7 from [29]). For any v > 0, { € (0,1/2), consider the RERSF mechanism with

parameter L > %C “2In(2m/¢). Then any agent k with type tl(;) € supp(Dy,) that participates in the
mechanism can gain at most 2<m E[d(t(z) t(J))] utility by reporting type t,(j) € supp(Dy,), where glv( -) is
)

€ supp(Dy,), define the sampled outcome distinguishability

the sampled outcome dzstmgmshablllty of tk ,t;"’. The expectation is taken over the randomness of Oy.

In order to make our mechanism BIC, we will combine the above RERSF mechanism with a strictly IC
mechanism defined below. In a strictly IC mechanism, for every agent, the utility by reporting her true type
is strictly larger the utility by reporting any other types, by some positive value.

Definition 11 ([29]). (Strict IC mechanism) Fix any agent k. The strictly IC mechanism for agent k, denoted
by SIC*, consists of the following steps:

1. Chooses uniformly at random a pair of distinguishable types t( ) t(] ) e supp(Dy). Let (0,0') be the
distinguishing outcome pair for (t k)’ t,(C )), where 0,0 € Oy.

2. Letv = Uk(t’(j),O) — vk(t,(j), o) and v' = vk(tl(j), 0) — vk(t(j) ') and define the price p = ”+”
Without loss of generality, assume p > 0, otherwise we can swap o and o'.

3. The mechanism lets agent k select between the following two options: 1) The mechanism outputs an
outcome o with payment p for agent k; 2) The mechanism outputs an outcome o' with payment 0 for
agent k.

Lemma 26 (Lemma 4.4 from [29]). The SIC* mechanism for agent k is strictly IC: The utility of agent

. £ ()
k by reporting her true type tl(;) is at least w larger than the utility by reporting another type
t]g] ). Here M is the number of distinguishable pairs of types in supp(Dy,), d(-, -) is the sampled outcome

distinguishability of ( t(] )) w.r.t. Ok, and the expectation is taken over the randomness of Oy.
Now we are ready to construct our mechanism for the non-ideal model.

Definition 12. For any 6 > 0, define mechanism M’ as follows. The mechanism has parameter ~y,n, L
(from the RERSF mechanism) and §,C > 0. With probability 1 — 0, it runs the RERSF mechanism (with
parameter ~,1, L); With probability 6, it picks an agent k uniformly at random and runs SIC* for agent k.
The payment for agent k is defined in Definition 11. Other agents pays 0. At last, the mechanism subsidizes
every agent C.

We wrap everything up in Theorem 11. We prove that with a proper choice of each parameter, mecha-
nism M’ in Definition 12 is BIC and IR. Also the revenue loss of M’ is small.

Theorem 11. There exist choices for the parameters v = €,0 = ¢, = ¢,C = 4¢ and L = poly(n,m, %)
such that the mechanism M’ in Definition 12 is BIC, IR and REV(M’) > REV(M) — O(nme). Mechanism
M’ has expected running time poly (n, m, 1/e, b) and makes in expectation at most poly (n, m, 1/¢) queries to M.

Here b is an upper bound on the bit complexity of vy, (tg), 0), FF o forevery k € [n],i € [my],0 € O.
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Proof. Let ( = = and [ = [max (522 In <2"m2) , 8"51"2 In (8m4">>-‘ . We first show that the mech-

4nms3 c o2

anism is BIC. Fix any agent k € [n] and her type t,(f) € supp(Dy). We are going to bound the difference
between the utility of reporting truthfully and the utility of reporting type t,(fj ) e supp(Dy,), for any j # i.
Note that L, > %C ~21n(2m/¢). By Lemma 25, when M’ executes the RERSF mechanism (with probability

1 — 6), the difference is at least —%Tm E[cj(t,(;) , t,(Cj ))] By Lemma 26, when M’ executes STC* (with prob-

T8 ()
ability 6 /n), the difference is at least W, since the number of distinguishable pairs of types w.r.t.

O}, is at most m?. When M’ executes SIC* for some ¢ # Fk, the difference is O as agent k’s reported type
won’t affect the output outcome and her payment. Thus the difference between the expected utility when
truthfully reporting and misreporting is at least

T7+@) ()
20m 50,0 ) E[d(t,”, t;”)] o
———FE[d(t,’,t (1=-0)+ ——FEFE = —
B 0] (1) ¢SmRS
The above value is non-negative when § = v =€ and { = %. Thus the mechanism is BIC.

2nm?

Furthermore, since L > n% In ( ), by Lemma 24, the expected utility of agent k, given the fact that

M’ executes the RERSF mechanism, is at least C' — 3. When M’ executes STC*, the utility for agent &
is at least —1 + C'. This is because by Definition 11, the payemnt of the strict IC mechanism is at least -1
and the agent’s value for the outcome is non-negative. When M’ executes STC* for some ¢ # k, agent k’s
utility is at least C, since her value for the outcome is non-negative. Thus agent k’s overall expected utility
by reporting her true type t,(;) is at least

d(n—1)

n

(0—35)-(1—5)+(—1+C)~%+C' >0

The above inequality holds when 6 = & and C' = 4e. Thus M’ is IR. To bound the revenue loss, note
that the payment in mechanism SIC* is always non-negative. By Lemma 24, we have

REV(M') > (1 =) - (REV(M) — nm(e + 6y + 51)) > REV(M) — n(12m + 1)e

The last inequality follows from the fact that REV(M) < n.

Finally we discuss the running time of M’ and number of queries to M. For a given input, in step 1
of the RERSF mechanism (see Definition 9), the mechanism makes L queries to M for every k € [n] and
i,7 € [myg]. In step 2 of RERSEF, it makes one query to obtain the output outcome for a given input. The
strictly IC mechanism does not make queries to M. Overall, M’ makes at most O(mL) = poly(n,m,1/¢)
queries to M.

For the running time of M’, first consider the RERSF mechanism. By [33], the convex program (P?3)
and its dual problem can be solved in poly(n,m, L,b) time. Thus all the parameters in the RRSF is de-
termind in poly(n,m, L,b) time. One can easily verify that other procedures of RERSF runs in time
poly(n, m, L,b). Thus RERSF runs in poly(n,m,1/¢,b) time.

Now consider the running time of the strictly IC mechanism SIC*. Note that finding all the distin-
guishable types with respect to Oy, takes time at most O(m*L?), by going over all pairs of types (tl(;), t;j ))
and pairs of outcomes (0,0’). Thus SIC* runs in time poly(n,m,1/c). Altogether, M’ runs in time
poly(n,m,1/e,b).

O

Note that Theorem 11 implies Theorem 5.
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Moreover the proof of Theorem 6 follows, in the same way as the proof of Theorem 8, by combining
Theorem 5 and Theorem 7.

J A Brief Introduction to Bernoulli Factories

Suppose we are given a coin with bias p, can we construct another coin with bias f(u) using the original
coin? If the answer is yes, then how many flips do we need from the original coin to simulate the new coin?
A framework that tackles this problem is called Bernoulli Factories. We refer the reader to [34] for a survey
on this topic.

Definition 13 (Keane and O’Brien [31]). Given some function f : (0,1) — (0,1) and black-box access
to independent samples of a Bernoulli random variable with bias p, the Bernoulli factory problem is to
generate a sample from a Bernoulli distribution with bias f(p).

A useful generalization of the previous model is the following'®: given sample access to distributions
D1, Do, ..., Dy, with expectations pi1, pia, . . ., ptm € (0, 1), and a function f : (0,1)™ — A(X), where X
is a set of feasible outcomes and A(X) is a set of probability distributions over these outcomes, how can we
want generate a sample from f(p1, ..., fim)?

Below we state an important result from [24], which we use in this paper. It proposes an algorithm
called Fast Exponential Bernoulli Race with X = [m]. For every A > 0, it produce a sample from the Gibbs
distribution with temperature % and energy p; for each outcome i, given only sample access to distributions
D1,Ds,...,Dn.

Theorem 12. [24] Given any parameter A > 0 and sample access to distributions F1, Foa, ..., Fm with
expectations [i1, 12, ...ptm € (0, 1), there exists an algorithm that can sample from a Gibbs distribution in
A™ where

exp(Au;)
2 jem) eXP(Ay)’

Z; =

using O(A*m?log(\m)) samples in expectation.

In both Algorithm 1 and 2, every LHS-node is matched to a random RHS-node according to some
Gibbs distribution. Lemma 1 states that such a sample can be generated using (in expectation) polynomially
many samples in £, % and -y, which is the maximum value of the dual variables, and comes from Theorem 12.

Proof of Lemma 1:
First, notice that (zj)pe[ can also be represented as the Gibbs distribution with temperature
energy

)

it and

wk—ak+h+2
QO = k .
F h+4  kelm]

Note that since —1 < wy, < 1 and o, < h, then:

wk—ak+h+2
h+4

0< < 1.

'8The model is called Expectations from Samples in [24].
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Thus, by Theorem 12 with A = %, we can generate a sample according to (z)xe[m) With

(#)4 m? log (W) samples in expectation.
]
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