
Measuring children’s eating behavior
with a wearable device

Shengjie Bi∗, Yiyang Lu†, Nicole Tobias‡, Ella Ryan∗, Travis Masterson∗,
Sougata Sen§, Ryan Halter∗, Jacob Sorber‡, Diane Gilbert-Diamond∗, David Kotz∗

∗Dartmouth College, Hanover, NH 03755, USA
†University of Electronic Science and Technology of China, Chengdu, China

‡Clemson University, Clemson, SC 29634, USA
§Northwestern University, Evanston, IL 60208, USA

Email: shengjie.bi.gr@dartmouth.edu

Abstract—Poor eating habits in children and teenagers can lead
to obesity, eating disorders, or life-threatening health problems.
Although researchers have studied children’s eating behavior for
decades, the research community has had limited technology
to support the observation and measurement of fine-grained
details of a child’s eating behavior. In this paper, we present
the feasibility of adapting the Auracle, an existing research-grade
earpiece designed to automatically and unobtrusively recognize
eating behavior in adults, for measuring children’s eating behav-
ior. We identified and addressed several challenges pertaining
to monitoring eating behavior in children, paying particular
attention to device fit and comfort. We also improved the accuracy
and robustness of the eating-activity detection algorithms. We
used this improved prototype in a lab study with a sample of 10
children for 60 total sessions and collected 22.3 hours of data in
both meal and snack scenarios. Overall, we achieved an accuracy
exceeding 85.0% and an F1 score exceeding 84.2% for eating
detection with a 3-second resolution, and a 95.5% accuracy and
a 95.7% F1 score for eating detection with a 1-minute resolution.

I. INTRODUCTION

Obesity has become a serious threat to public health in
America. In most cases, obesity is caused in part by over-
consumption of food, so individualized feedback about eating
habits may help reduce obesity rates. This information is
most pertinent early in the lifespan, prior to excess weight
gain and the development of obesity. Childhood obesity rates
continue to be high (18.5 percent in 2016) in the United
States [1] and are associated with a myriad of co-morbidities
that negatively impact overall quality of life [2]. Furthermore,
weight-related issues in childhood are likely to carry into
adulthood [3]. It is therefore essential to improve our scientific
understanding of childhood eating behaviors to inform obesity
interventions. Indeed, individualized, just-in-time adaptive
interventions (JITAIs) focused on eating habits may be effective
in reducing over-consumption in children [4], but are not
feasible until there is technology that can automatically detect
and measure eating behavior.

With continued research into Automatic Dietary Monitoring
(ADM) systems, monitoring fine-grained details of the eating
activity is gradually becoming possible. These ADM systems
have the capability of triggering real-time interventions during
problematic eating activities. Existing ADM techniques still

face several inherent challenges: individuals can eat at varied
speeds, perform confounding actions during eating activities,
and vary the type and mode for consuming different types of
food. To monitor eating behavior in children, we face all those
challenges and more: children usually have more non-eating
related head and body movement during eating, children have
more complex eating behaviour (e.g., children may hold and
play with food in their mouths for a while before chewing
and swallowing), children’s head and body sizes vary more
than adults, and children are more sensitive to the discomfort
of wearable devices [5], [6]. Although several researchers
have evaluated ADM systems on adults, no automatic dietary
monitoring technique exists for children. Researchers and
behavioral scientists depend on traditional techniques such
as video coding and manual food journals to monitor dietary
activities among children [7]. To better support the needs
of clinicians and behavioral scientists in monitoring eating
habits among children, we modified an existing ADM system
that had previously been tested only among adults. In this
paper, we report the insights gained and results obtained from
experiments with a new child-oriented ADM system derived
from the Auracle wearable ADM system [8], [9].

To determine the performance of this ADM system, we
conducted a set of controlled experiments. During this study,
the participants (children) visited our laboratory on multiple
occasions and consumed a variety of meals while wearing the
modified Auracle system. Our initial findings indicate that it
is indeed possible to identify and monitor fine-grained eating
activities of children, once we addressed specific challenges.
With further refinement, we believe that such an ADM system
may also be used to monitor a child’s eating activity in
naturalistic settings.

Accurate high-resolution eating detection could help trigger
other kinds of sensing or inquiries [8]. Specifically, we believe
it is important to develop ADM techniques that can detect
eating (whether the user is eating or not), within a few seconds
of eating onset, to enable (1) detailed analysis of eating
patterns like mouthful rate, chewing rate, and consumption
rate, and (2) to enable just-in-time interventions in free-living
conditions. For instance, researchers have recently shown that
poor mastication is associated with obesity [10]. Additionally,



if we want to estimate the caloric intake of a meal, we may
need to classify different types of food consumed during the
meal, and thus require eating detection to identify the precise
moment of mastication for each food item. We set out to enable
such capabilities for monitoring children, and believe it to be
the first effort to do so.

In this paper, we make two important contributions:
• We demonstrate that it is feasible to monitor the eating

activity of children automatically. This result provides
the foundation for behavioral researchers, clinicians, and
dietitians to understand fine-grained details about a child’s
eating habits. In both meal and snack scenarios involving
10 children over a total of 60 lab sessions, we achieved
an accuracy exceeding 85.0% and an F1 score exceeding
84.2% for eating detection with a 3-second resolution. The
same methods obtained a 95.5% accuracy and a 95.7%
F1 score for eating detection with a 1-minute resolution.

• We identify unique challenges pertaining to the use of
existing ADM systems (designed for an adult population)
on children. We detail the steps necessary to adapt an
adult device to allow data collection from children. With
these adaptations, we developed the first ADM system
focused on the study of eating behavior in children.

II. BACKGROUND

First, some background information about ADM systems.
a) Defining eating: In our prior work, we defined eating

as “an activity involving the chewing of food that is eventually
swallowed” [9]. This definition will exclude drinking actions
because drinking usually does not not involve chewing. The
definition will also exclude chewing gum as that usually does
not involve swallowing. Additionally, we defined an eating
episode as: “a period of time beginning and ending with eating
activity, with no internal long gaps, but separated from each
adjacent eating episode by a long gap, where a gap is a period
in which no eating activity occurs, and where long means a
duration greater than a parameter δ” [9]. We chose δ = 15
minutes, drawing on precedent in Leech et al. [11].

b) The Auracle ADM system: In this work, we used our
Auracle ADM system. Auracle is a head-mounted device with
a form factor similar to a behind-the-head pair of earphones
(Figure 1); we believe a professionally-engineered version of
this design would be small, safe, and comfortable for a child
to wear. This design places a skin-contact microphone behind
the wearer’s ear, to capture the sound of a person chewing; this
approach should be safer than placing a microphone or other
sensor in the ear canal, and less disruptive to normal hearing.
Since the Auracle is out of view of the child, we speculate
that it might be less distracting than anything worn on the top
or front of the head. Nonetheless, for this paper we developed
a new approach (details in Section IV) that we believe is an
even more natural choice.

In our previous work, we found this device could automat-
ically recognize when and for how long a person is eating:
we collected field data with 14 adult participants for 32 hours,

Fig. 1. Original mechanical housing of Auracle; figure from [9].

and achieved F1 score exceeding 77.5% for eating detection
in free-living conditions [9].

Furthermore, we estimated Auracle’s battery should last
up to 28 hours with a 110 mAh battery while continuously
monitoring eating and communicating its observations to a
smartphone over Bluetooth [9]. Although the battery life or
communication capabilities are not critical for the in-lab studies
we conducted for this paper, these system capabilities and
performance criteria are important for our envisioned usage of
the ADM system in naturalistic settings.

III. RELATED WORK

Researchers have long been interested in measuring various
parameters of eating behavior, such as time, duration, chew
rate, bite rate, and meal-specific data such as food quantity,
food-group classification, and calorie estimation. For all of
these parameters, accurate recognition of when people eat is
the foundation of effective automatic dietary monitoring (ADM)
systems.

Researchers have developed ADM systems that use various
cues for eating detection, including audio collected from
the ear canal [12]–[18], behind the ear [8], [9], [19] or on
the throat [14], [20]–[23], proximity of a necklace from the
chin [24], first-person images from chest-mounted cameras [25]–
[27], or wrist-based gesture recognition [28], [29]. Each
approach has been tested on adults and has its own limitations
and advantages. To select a suitable device for children, we
aimed to avoid devices that could be dangerous in free-
living conditions (tiny microphone in the ear canal), privacy
invasive (images capturing the child, or other children), socially
unacceptable (device on throat), or easily distracting during
regular use (such as a wristband on the dominant hand or on
both hands). Furthermore, any ADM system aimed at free-
living conditions must be accurate, compact, light, comfortable,
cheap, robust, usable, and energy efficient.



Our work bridges the gap between two types of research:
studies that focus on understanding children’s eating behavior,
and studies that use wearable sensors for automatic eating
detection.

A. Children’s eating studies in health science

Eating behavior of children has long been a important topic
in health-science research. Researchers have studied various
issues related to when and how long children eat. For instance,
Klesges et al. found that time spent eating in a meal correlates
to weight, but not to the total meal time (i.e., time spent at
the table) [30]. In studies pertaining to monitoring children’s
eating habits, researchers depend on traditional techniques
such as video coding and manual bookkeeping for recognizing
when and how long children eat. By developing a wearable
sensor that can accurately detect eating, we believe most of
these studies could be completed with finer granularity, higher
accuracy, and substantially less labor.

Another common way to assess children’s eating behavior is
through the evaluation of the eating micro structure, including
aspects such as bite size, eating rate (bites/minute) and meal
length. For instance, Llewwllyn et al. have shown that children
with higher eating rate tend to have higher body weight [31].
Accurate recognition of when children eat is the foundation
of ADM systems that help collect micro-structure eating
information for health-science researchers. A wearable system
usable in free-living settings could capture metrics about eating
outside mealtimes, which can influence a child’s health but
would be difficult to measure with traditional methods.

B. Eating detection with wearable sensors

A comprehensive survey of this topic is not feasible here;
we focus only on some of the most recent work, and direct
the interested reader to survey papers that cover aspects
of eating detection and ADM systems [32]–[36]. Sen et al.
built and tested an approach based on wrist motion and
achieved false-positive and false-negative rates of 6.5% and
3.3% respectively [28], [37]. Mirtchouk et al. experimented
with different combinations of motion (head, wrist) and
audio (air microphone) data collected in laboratory and free-
living conditions [38]. They found a combination of sensing
modalities (audio, motion) was needed, but sensor placement
(head vs. wrist) was not critical. Zhang et al. proposed and
evaluated smart eyeglasses using electromyographic (EMG)
sensors and achieved precision and recall more than 77% for
chewing detection in free-living scenarios [39]. Bedri et al.
evaluated optical, inertial and acoustic sensors, and selected
a behind-the-ear inertial sensor; they achieved an F1 score of
80.1% for detecting eating episodes in the field study [40].
Using a proximity sensor, Chun et al. developed a necklace
that captures head and jawbone movement, and achieved 78.2%
precision and 72.5% recall for detecting eating episodes in
a free-living study [24]. Zhang et al. developed a low-power
necklace and achieved a F1 score of 77.1% for detecting eating
episodes in an all-day free-living setting [41]. Additionally, to

help with behavior change, some researchers paid particular
attention to just-in-time eating intervention [42], [43].

All of the above systems were evaluated only with an adult
population. In contrast, we developed the first ADM system
that can monitor children’s eating habits, and evaluated our
system in both meal and snack scenarios.

IV. SYSTEM DESIGN

The Auracle system includes a contact microphone, a
battery, a custom-designed printed circuit board (PCB) for
data acquisition and a wearable mechanical housing (Figure 1).
Since the device was primarily designed for data collection
with adults, we had to modify the housing of the device to
ensure that it performed reliably in detecting children’s eating
activities while ensuring that it did not distract or discomfort
the child.

For this study, we updated both the hardware and software
of Auracle. The updated PCB had several new or improved
features relative to the version that we described in the original
paper [9]. These updates included replacement of the original
Texas Instruments (TI) CC2640R2F microcontroller with the
MSP430FR5994 microcontroller, addition of a new BLE
chipset (Nordic nRF51822), and addition of an accelerometer
(ADXL362). We did not use the accelerometer or BLE
communication in our current study. We used the Auracle
to collect 10-bit samples of the microphone signal at 500 Hz
and write the data to the SD card. In this study, the most
beneficial aspect of the updated Auracle hardware was that the
total size of the board was reduced by over 50% (Figure 2):
now smaller than 37× 22mm; it was easier to use this board
to design a device suitable for the smaller heads of children.

Based on our preliminary tests, we observed that children’s
heads vary tremendously in size and shape, making it necessary
to design a form factor that could easily adapt to a range of
children. Although the Auracle’s contact microphone’s position
and the pressure that it applied to the skin were adjustable
in the original design, preliminary testing showed that it did
not provide adequate contact for several children, rendering
the collected data inadequate for analysis. This observation
prompted us to house the Auracle in an elastic headband
(Figure 3) rather than in the original 3d-printed plastic frame
(Figure 1). The elastic headband ensured that the device was
comfortable and robust to movement, and the microphone
maintained proper contact with the child’s skin. It also adapted
to a wide range in head sizes without requiring any mechanical
design modification. Furthermore, it was less distracting for
the child during the in-lab studies.

V. DATA COLLECTION

We trained several research assistants to use our modified
Auracle in this study, following a protocol approved by our
Institutional Review Board (IRB).

A. Laboratory Data Collection

We collected data from 10 children (aged 4-17; 4 female,
6 male). Each participant visited the lab on 3 occasions and we



Fig. 2. The top and bottom view of the updated and improved Auracle’s
printed circuit board (PCB).

collected data from two sessions per visit: one meal and one
snack. Overall, our dataset consists of 30 meal and 30 snack
sessions. After a preliminary review of the data, we determined
that we could not use data from 16 sessions, collected from
4 different participants, for the following reasons. In four of
these sessions, the contact microphone signal was weak due to
poor contact or improper placement of the microphone, and the
signal barely changed during these sessions. In the other twelve
sessions, the data was not usable because research assistants
forgot or incorrectly performed some of the procedures in our
protocol (e.g., turn on the camera, start with three-tap event) or
because participants inadvertently interfered with the Auracle
(e.g., touching the headband frequently). For our final analysis,
we excluded the data collected during these 16 sessions. We
used the remaining 44 sessions of recorded data (16.86 hours
in total) from 8 participants for further analysis.

B. Data Collection Protocol

At the start of each session, a research assistant placed the
Auracle device around the participant’s head and adjusted the
contact microphone so that it was located on the mastoid tip,
behind the ear. The participants were instructed not to adjust
or remove the Auracle device during the study. We placed a
Go Pro camera in front of the participants to film their eating
behavior. We later annotated the videos to provide ‘ground
truth’ about the participants’ eating behavior.

Fig. 3. Auracle prototype after our revision, using elastic headband.

We first conducted the ‘meal’ session, in which we served
pre-determined portions of three food items to participants
(macaroni and cheese, carrots, and apple slices). Participants
sat in front of a dining table during the meal, and we encouraged
them to perform the eating activity as they normally would
in a naturalistic setting. Participants were provided additional
servings of any food type if they completed the initial serving
and indicated that they wanted more of that food type. After a
short break, the ‘snack’ session began: we provided another
three food types (gummy bears, grapes, and goldfish crackers)
to the participants. Participants sat on a sofa, in front of a TV,
watching a show (with commercials about food) for 30 minutes.
An example of one session of data collection is shown in
Figure 4. The red portions in the figure were human-annotated
to indicate eating periods. Figure 5 shows two screen shots of
the video recorded by the camera from two participants during
the meal and snack sessions, respectively. In general, we found
that participants were more relaxed and natural in the snack
session than the meal session. Overall, none of the participants
complained about any discomfort caused by the device and
did not remove it during their sessions.

At the beginning of each session, we asked the participant
to simultaneously tap on their cheek and on the headband
three times using their hand, while ensuring that the camera
could record this action. At the end of the session, we asked
the participant to again perform this ‘triple-tap’ action. We



Fig. 4. Temporal signature of one session of data collection (red portions
indicate periods of eating).

Fig. 5. Screen shots of the video recorded during meal and snack sessions.

later identified these triple-tap events in the video (from the
camera) and the audio (from the microphone) and used them
to synchronize the video and audio data streams.

During the data collection, at least one research assistant was
always present in the room with the child for safety reasons. The
research assistant visually checked the position of the headband
periodically to ensure the device stayed at the proper location
during the study. However, the research assistant pretended
to focus on paperwork, and avoided talking to or distracting
the participants. We also asked one parent of the child to wait
near the laboratory, to address any unexpected situations. We
compensated each participant with a $30, $35, or $40 gift card
for the first, second, and third visits, respectively.

C. Video Annotation

We used a commercial service to annotate the videos.1 The
annotation process consists of three steps: execution, audit, and
quality inspection. In the execution step, an annotator watched
the video and annotated each period of eating, at a 1-second
resolution. Thus, for every second in the video, the annotator
indicated whether the child was eating or not. Next, in the
audit step, an auditor watched the video and checked whether
the annotations were consistent with the content in the video.
The auditor noted any identified inconsistency for the next step:
quality inspection. Finally, in the third step, a quality inspector
reviewed the questionable labels and made the final decision
about each identified inconsistency. The quality inspector also
conducted a second-round inspection of 20% of the samples that
were considered consistent during the previous two inspection
rounds. This three-phase, three-person process ensured that the
quality of the video annotation was acceptable.

VI. DATA ANALYSIS

We next describe our evaluation metrics, and the stages of
our data-processing pipeline: preprocessing, feature extraction,
classification, and aggregation.

A. Evaluation Metrics

We set out to evaluate our method for fine-grained eating
detection (window-based classification) and for coarse-grained
eating detection (episode-based classification), as detailed in
the subsections below. Since we aim for generalized models, we
use a ‘Leave-One-Session-Out’ (LOSO) approach to evaluate
model efficacy. In a LOSO approach, data from one session
of a participant is tested on a model that has been trained
using a combination of data from all other sessions of the
same participant and every session of all other participants.
Formally, if the dataset has data from I participants, each of
whom has provided data for J sessions, then set Sij represents
participant i’s data from session j, for i ∈ {1, 2, · · · I} and
j ∈ {1, 2, · · · J}. Overall, set S = ∪∀i,jSij represents all
sessions in the dataset. Then the model is trained using sessions
in the set S − Sij and tested on session Sij . This process is
repeated so that every session of every participant is tested on
a model generated from all sessions in the dataset, except the
session being tested.

In preliminary tests, we observed that the data we collected
from a participant in different sessions could often vary in
signal amplitude. One reason for this difference is because the
same participant might wear the Auracle device differently (e.g.,
the angle of wearing the headband) during different sessions,
which caused the contact microphone to be located at different
locations or in contact with the skin with different pressure.
Moreover, actions during the session (such as touching the
device during the session or scratching the head) may also have
affected the microphone contact. Thus, we first applied the
normalization approach mentioned in Section VI-B, and then
chose a LOSO cross-validation approach to test the performance

1BasicFinder: https://www.basicfinder.com/en/

https://www.basicfinder.com/en/


of the classifier in detecting the eating activity for data in a
session that it has never seen before.

1) LOSO Window-based Evaluation: In window-based eval-
uation, we explored two window sizes: 3 seconds and 1 minute.
Three-second windows are important for applications that
rely on the output of ADM systems to drive fine-grained
interventions (e.g., an in-the-moment intervention based on the
mastication habit). One-minute windows enable us to compare
our results with results presented in our prior study [9]. For
each window size, we compare our classifier’s output against
the ground-truth label for the corresponding time window,
computing four evaluation metrics (accuracy, precision, recall,
and F1 score) for each session, then averaging those metrics
across sessions to compute the four summary metrics for that
window size. We used the same metrics as the evaluation in
our previous work [9].

2) LOSO Episode-based Evaluation: In episode-based
evaluation, using an approach similar to previous work by
Papapanagioto et al. [44], we matched each detected eating
episode with either 0 or 1 ground-truth eating episode. We used
the Jaccard Similarity coefficient to determine whether this
match led to a Correct Detection, False Detection, or Missed
Detection. Our definition of the Jaccard Similarity coefficient
is the same as in our previous work [9], as follows.

Let the detected episode be represented as Ed =
[ts, te], where ts is the start of the detected eating
episode and te is the end of the detected eating
episode. Similarly, the actual eating episode (obtained
from ground truth) is represented by Ea = [t′s, t

′
e],

where t′s is the start of the actual eating episode and
t′e is the end of the actual eating episode.
We then compute the Jaccard similarity coefficient:

J =
Ea ∩ Ed

Ea ∪ Ed

Each detected eating episode is an independent test
case that results in one of three outcomes:

Outcome =

 J ≥ 0.55, Correct Detection
0 < J < 0.55, False Detection

J = 0, Missed Detection

We then count the number of Correct Detections, False
Detections, and Missed Detections.

B. Data Processing Pipeline

Figure 6 presents our overall data-processing pipeline, which
comprises preprocessing, feature extraction, classification, and
aggregation steps.

1) Preprocessing: The preprocessing stage includes three
steps: RMSE, normalization, and segmentation. As noted above,
the audio-signal amplitude can be affected by the location of the
contact microphone and the pressure applied to it. We observed
that the signal amplitude varied from session to session due to
differences in position, pressure, and head size/shape. To ensure
uniformity, we used the root mean square energy (RMSE)

Fig. 6. Data processing pipeline.

value to normalize the signals within each session. However,
we found motion artifacts in some portions of the signal; these
artifacts were usually caused by movement of the contact
microphone across the skin, and can have an outsized effect
on the RMSE value. After some preliminary tests, we decided
to exclude samples that were not within the 95% confidence
interval when we calculated the RMSE value of each session’s
signal. Then, in the normalization step, we divided all the
data values by the RMSE value of the same signal. Then,
we segmented the acoustic signals into non-overlapping 3-
second windows of samples, and passed these windows to
the feature-extraction stage. Note: our current normalization
method computes RMSE across the entire session and is thus
only suitable for offline processing; one can envision similar
normalization approaches suitable for online processing, e.g.,
normalizing each sample by dividing by the RMSE computed
over a period of recent data.

2) Feature Extraction: For each time window, we extracted
the 30 features shown in Table I, including 20 frequency-
domain features and 10 time-domain features selected from
about 1,400 possible features (see Section VI-C2 for details).
We extracted some of these features directly from the windows
received from the preprocessing stage, using the tsfresh2

package. We extracted the other features using methods similar
to those used by Bogdanov et al. [45], using the librosa3

package. In this latter case, we segmented each 3-second
window into 0.1-second ‘frames’ (with 75% overlap between
adjacent frames) and extracted features from each frame. For
each feature and each window, we obtained an array of values
corresponding to the 0.1-second frames. We then computed
eight statistics (mean, median, variance, maximum, minimum,
kurtosis, skewness, entropy) for each array. Using these eight
statistics of each feature array, we extracted features for each
time window.

3) Classification and aggregation: The classification stage
has two steps: classification and aggregation. First, the Gradient

2v0.11.2: http://tsfresh.readthedocs.io/en/latest/
3v0.7.2: https://librosa.github.io/librosa

http://tsfresh.readthedocs.io/en/latest/
https://librosa.github.io/librosa


TABLE I
30 FEATURES USED BY OUR CLASSIFIER (* INDICATES THE

FREQUENCY-DOMAIN FEATURES)

Feature category Description Number
of
features

Feature
set

MFCCs* Mel-frequency cepstral coeffi-
cients

14 2

MFCCs delta* First derivatives of MFCCs 3 2

MFCCs delta 2* Second derivatives of MFCCs 2 2

Spectral contrast* Difference between the spectral
peak and valley in each fre-
quency subband

1 2

Change quantiles Mean of the absolute change of
the series inside a corridor

6 1

Agg autocorrela-
tion

Value of an aggregation func-
tion over the autocorrelation for
different lags

1 1

Agg linear trend Attributes of a linear regression
for values that were aggregated
over chunks

1 1

Ratio beyond r
sigma

Ratio of values that are more
than r*std(values) away from
the mean

1 1

Quantile Value of the data point greater
than q% of the ordered values

1 1

Boosting (GB) classifier used each window’s features to classify
that window into one of two classes: eating or not eating.
(See Section VI-C1 for details about our selection of the
GB classifier). Specifically, we used the GB implementation
from XGBoost.4 Using the same aggregation methods as
in this paper [9], the aggregation step combines groups of
twenty 3-second windows’ classification outputs into 1-minute
outputs, and then further combines these 1-minute outputs
into an episode-level output. We also apply the same two-step
aggregation process to the ground-truth labels (which has a
base resolution of 1 second).

C. Classifier and feature selection

At this point we digress to justify our choice of the GB
classifier and our selection of the 30 specific features listed
in Table I. To make these decisions, we conducted several
benchmark studies to determine the best-performing classifier
(in terms of F1 score) and the most discriminative features.

1) Choice of classifier: We initially assumed we would use
the Logistic Regression (LR) classifier because we identified
LR as having provided the highest F1 score in determining
eating segments in our previous work [9]. We decided to re-
visit this selection, however, because we wanted to explore a
broader range of features, and because our previous study was
conducted with adult participants, consuming different food
types, and in free-living conditions. It seemed plausible that a
different classifier, and different feature set, would be better
suited for eating detection in children, or in lab settings.

4v0.9.0: https://xgboost.readthedocs.io/en/latest/python

TABLE II
CLASSIFIER PERFORMANCE WHEN USING TOP-30 FEATURES FROM ONLY

FEATURE SET 1

Classifier Accuracy Precision Recall F1 score

Gradient boosting 0.819 0.810 0.839 0.815
Random forest 0.816 0.815 0.820 0.809
K-nearest neighbors (K=5) 0.802 0.793 0.814 0.796
Logistic regression 0.793 0.818 0.776 0.786
Support Vector Machine 0.813 0.813 0.818 0.807
Gaussian Naive Bayes 0.802 0.760 0.884 0.809

TABLE III
CLASSIFIER PERFORMANCE WHEN USING TOP-30 FEATURES FROM BOTH

FEATURE SETS 1 AND 2

Classifier Accuracy Precision Recall F1 score

Gradient boosting 0.850 0.834 0.869 0.842
Random forest 0.845 0.841 0.842 0.833
K-nearest neighbors (K=5) 0.823 0.805 0.847 0.818
Logistic regression 0.829 0.839 0.828 0.822
Support Vector Machine 0.840 0.832 0.851 0.832
Gaussian Naive Bayes 0.825 0.820 0.829 0.815

We began with a large set of 750 features extracted with
tsfresh; let that be called feature set 1. After inspecting these
features, we found many of them are constant numbers and
not useful for classification. We also anticipated it was not
necessary to use all the features based on the analysis in our
previous work [8], [9]. Due to these two reasons, we decided
to select the best classifier when using a smaller number of
features. (More discussion about feature selection can be found
in Section VI-C2.) We then ran our entire dataset through our
data pipeline, using only the top-30 features selected from
feature set 1, using each of six common classifiers, resulting in
the metrics shown in Table II. (We found adding more features
yielded little-to-no improvement to F1 scores, across these six
classifiers.) In Figure 8 and Figure 9, we use the GB classifier
as an example to show the performance of our model when
top k features were used (1 ≤ k ≤ 60).

For further confirmation, we added a set of 650 features
extracted with librosa (as described above); let that be called
feature set 2. We again ran our entire dataset through our data
pipeline, using the top-30 features selected from both feature
set 1 and 2, using the same six classifiers, resulting in the
metrics shown in Table III. All six classifiers achieved a better
F1 score relative to Table II (average improvement 2.3%, with
a p-value of 0.0007), indicating that features in feature set 2
were indeed useful in the classification process.

Finally, for deeper insight into the differences among the
classifiers, we plotted the Receiver Operating Characteristic
(ROC) and Area Under the Curve (AUC) in Figure 7 for all
classifiers; it displays the relationship between the true-positive
rate and the false-positive rate of our models.

Based on results in Table II, Table III and Figure 7, GB,
Random Forest, and Support Vector Machine outperformed the
other three classifiers. Although the best three classifiers had
similar performance, GB was slightly better so we selected

https://xgboost.readthedocs.io/en/latest/python


Fig. 7. ROC curve for various classifiers.

GB for our analysis.
2) Feature selection: To determine how many features to

use, and which features to use, we began by computing about
1,400 features (feature sets 1 and 2).

For feature set 1, we extracted 62 categories of common
features directly from windows produced by the preprocessing
stage; 4 frequency-domain categories and 58 time-domain
categories. In each feature ‘category’, we extracted features with
all possible parameters. Some feature ‘categories’ can result
in hundreds of features by varying the category’s parameters.
In our case, feature set 1 consisted of about 750 features.

For feature set 2, we extracted 14 categories of frequency-
domain features. Again, some feature categories can result in
hundreds of features by varying the category’s parameters. In
our case, feature set 2 consisted of about 650 features.

Clearly, it would be too complex to compute all 1,400
features from these two feature sets, on small wearable
platforms, so we used the Recursive Feature Elimination (RFE)
algorithm to identify the subset of features that were most
‘discriminative’. That is, we ran our entire pipeline (with each
classifier) over the complete dataset, letting RFE empirically
identify the subset of k features that were most useful in
distinguishing eating from non-eating moments (for each
classifier). As an example, Figure 8 shows the performance of
the GB classifier in eating detection, when the top k features
were used (1 ≤ k ≤ 60), with a 3-second resolution. From
the figure we can see that the performance improved until
k = 30 and then it saturated. When experimenting with other
classifiers, we found the trend of curves are similar.

To further understand the effect of k, using the aggregation
method mentioned in Section VI-B3, we computed the perfor-
mance of the system at a 1-minute resolution. Figure 9 shows
the performance of the GB classifier in eating detection, when
the top k features were used (1 ≤ k ≤ 60), with a 1-minute
resolution. Interestingly, saturation at the 1-minute resolution
occurs even earlier, indicating that the system can perform

Fig. 8. Performance of the GB classifier with 3-second resolution.

adequately with a small feature set. As previously indicated in
Section I, one of our long-term goals is to provide interventions
based on fine-grained eating-related actions, so we decided
to use k = 30 and list the top-30 features in Table I. As it
happens, 20 features out of 30 are frequency-domain features.
Most of the frequency-domain features are MFCC features, and
the first and second derivatives of MFCCs that were obtained
from feature set 2, thus showing the usefulness of the features
from the librosa package.

VII. PERFORMANCE EVALUATION

Overall, we evaluate how well our method worked
• for fine-grained eating detection (3-second windows),
• for medium-grained eating detection (1-minute windows),

and
• for detecting eating episodes.
As noted above, we evaluated our method using LOSO cross

validation; Table IV summarizes the resulting performance
metrics for fine-grained eating detection (3-second windows)
and for medium-grained eating detection (1-minute windows).
In these experiments we used the GB classifier and the top-30
features (Table I), achieving an F1 score of 0.842 for fine-
grained eating detection and 0.957 for medium-grained eating
detection.

To better compare with our previous work [9], we also
performed an episode-based evaluation. According to our
definition of eating episode, there were 45 actual eating
episodes in our laboratory data. The episodes ranged in
duration from 1 minute to 38 minutes, with mean value 20.01
minutes and standard deviation 12.09 minutes. When using the



Fig. 9. Performance of the GB classifier with 1-minute resolution.

TABLE IV
METRICS FOR GB CLASSIFIER WITH TOP-30 FEATURES (MEAN VALUE ±

STANDARD DEVIATION)

Training data Session(s) Accuracy Precision Recall F1 score

meal 0.880 0.897 0.923 0.907
±0.079 ± 0.094 ±0.050 ±0.063

3-second snack 0.820 0.771 0.815 0.776
time window ±0.085 ± 0.200 ±0.139 ±0.165

both 0.850 0.834 0.869 0.842
±0.088 ± 0.167 ±0.120 ±0.140

meal 0.991 0.990 1.000 0.995
±0.032 ± 0.037 ±0.000 ±0.020

1-minute snack 0.918 0.896 0.971 0.919
time window ±0.124 ± 0.208 ±0.064 ±0.167

both 0.955 0.943 0.986 0.957
±0.097 ± 0.155 ±0.047 ±0.124

Jaccard similarity coefficient as our evaluation metric, and the
aggregation methods mentioned in Section VI-B3, we correctly
detected 43 eating episodes, missed just 2 eating episodes,
and falsely detected 0 eating episodes. We next examined the
difference in duration between detected eating episodes and
actual eating episodes; the mean difference was only 0.76 ±
3.56 minutes. To further challenge our model, we increased
the Jaccard similarity coefficient starting from 0.55 and found
we were still able to achieve the same performance when the
we increased the coefficient up to 0.76.

Although our method seems highly effective at detecting
eating episodes, we must note that our in-lab sessions were
relatively short (the longest sessions is 40.35 minutes) and
participants were eating more than half of the time in typical
sessions (the time-length ratio of data labeled as non-eating and
eating is 0.91:1). The situation would not be challenging for

any episode detector, so we cannot draw any firm conclusions
about our method’s ability in this regard.

VIII. DISCUSSION AND FUTURE WORK

Here we discuss our findings from the current study and
ideas we may explore in the future.

a) Field studies: Our work is the first to evaluate an
ADM system on children in a laboratory setting. In this paper,
we show that it is indeed possible to identify children’s fine-
grained eating habits. It will be necessary to conduct multi-day
field studies to evaluate our system’s performance in free-living
scenarios. Such a field study could also determine the feasibility
of triggering interventions when a system identifies problematic
eating habits. For a completely free-living study, our device
would need the capability to determine whether the device
is properly worn. Specifically, the system should notify the
wearer if it detects that there is improper contact between the
microphone and the skin, so the wearer can adjust the device as
necessary. Such a capability will also allow the user to properly
don the device after removing the device for a break. We could
explore using the acoustic signal from the user’s heart beat,
or sounds of speech, as an indicator for proper contact after a
user fits the device.

b) Placement for the contact microphone: Even in a lab
setting, our research assistants sometimes found it challenging
to identify the mastoid tip and the proper placement of the
contact microphone. As a result, there were a few cases where
the signal captured by the contact microphone was too weak
for further data analysis. A revised device should perform a
quantitative evaluation of the audio signal when the microphone
is placed at different locations behind the ear, guiding the
health-science researcher toward the best placement.

We also found that it is harder for the microphone to
maintain its position for participants with long hair, especially
when participants did not tie their hair back. (Four of our ten
participants had long hair.) Future designs should consider
means to ensure microphone contact for wearers with long
hair, eyewear, or headwear.

c) Meal vs. snack: When using the top 30 features and
GB classifier for eating detection with a 3-second resolution,
we achieved a F1 score of 0.907 ± 0.063 in meal sessions
and 0.776 ± 0.165 in snack sessions, respectively. To better
understand why snack sessions were so much less accurate,
we viewed the ground-truth videos to study behavior of
participants in both settings. We observed that participants
generally had more vigorous body movement in snack sessions
(e.g., switching between sitting and lying down on sofa, putting
legs onto and off of the coffee table), which in turn increased
the classification error in snack sessions. The body movement
was more limited when the participant sat on a chair and ate
a meal that was placed on the table. In the future, it may be
useful to first classify the scenarios of eating, and then use a
classification model specific to that scenario.

IX. CONCLUSION

In this paper, we adapted Auracle, an existing ADM system
designed for adults, and applied it in a study with children.



Indeed, we believe this paper represents the first work to
develop and evaluate a wearable Automated Dietary Monitoring
(ADM) system for children. Using our adapted Auracle device,
we collected data with 10 participants for 60 sessions (22.3
hours) in meal and snack scenarios. We designed a data-
processing pipeline and evaluated its performance using LOSO
cross validation. Overall, we achieved an accuracy 85.0%
and an F1 score 84.2% for eating detection with a 3-second
resolution, and a 95.5% accuracy and a 95.7% F1 score for
eating detection with a 1-minute resolution. Please follow us
at auracle-project.org.
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