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Abstract

We present a study of generalization for data-dependent hypothesis sets. We give a
general learning guarantee for data-dependent hypothesis sets based on a notion of
transductive Rademacher complexity. Our main result is a generalization bound
for data-dependent hypothesis sets expressed in terms of a notion of hypothesis set
stability and a notion of Rademacher complexity for data-dependent hypothesis sets
that we introduce. This bound admits as special cases both standard Rademacher
complexity bounds and algorithm-dependent uniform stability bounds. We also
illustrate the use of these learning bounds in the analysis of several scenarios.

1 Introduction

Most generalization bounds in learning theory hold for a fixed hypothesis set, selected before
receiving a sample. This includes learning bounds based on covering numbers, VC-dimension,
pseudo-dimension, Rademacher complexity, local Rademacher complexity, and other complexity
measures [Pollard, 1984, Zhang, 2002, Vapnik, 1998, Koltchinskii and Panchenko, 2002, Bartlett
et al., 2002]. Some alternative guarantees have also been derived for specific algorithms. Among
them, the most general family is that of uniform stability bounds given by Bousquet and Elisseeff
[2002]. These bounds were recently significantly improved by Feldman and Vondrak [2019], who
proved guarantees that are informative, even when the stability parameter β is only in o(1), as
opposed to o(1/

√
m). The log2m factor in these bounds was later reduced to logm by Bousquet

et al. [2019]. Bounds for a restricted class of algorithms were also recently presented by Maurer
[2017], under a number of assumptions on the smoothness of the loss function. Appendix A gives
more background on stability.

In practice, machine learning engineers commonly resort to hypothesis sets depending on the same
sample as the one used for training. This includes instances where a regularization, a feature
transformation, or a data normalization is selected using the training sample, or other instances
where the family of predictors is restricted to a smaller class based on the sample received. In other
instances, as is common in deep learning, the data representation and the predictor are learned using
the same sample. In ensemble learning, the sample used to train models sometimes coincides with
the one used to determine their aggregation weights. However, standard generalization bounds are
not directly applicable for these scenarios since they assume a fixed hypothesis set.
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Figure 1: Decomposition of the learning algorithm’s hypothesis selection into two stages. In the first
stage, the algorithm determines a hypothesis HS associated to the training sample S which may be a
small subset of the set of all hypotheses that could be considered, say H = ⋃S∈Zm HS . The second
stage then consists of selecting a hypothesis hS out of HS .

1.1 Contributions of this paper.

1. Foundational definitions of data-dependent hypothesis sets. We present foundational defi-
nitions of learning algorithms that rely on data-dependent hypothesis sets. Here, the algorithm
decomposes into two stages: a first stage where the algorithm, on receiving the sample S, chooses
a hypothesis set HS dependent on S, and a second stage where a hypothesis hS is selected from
HS . Standard generalization bounds correspond to the case where HS is equal to some fixed H
independent of S. Algorithm-dependent analyses, such as uniform stability bounds, coincide with
the case where HS is chosen to be a singleton HS = {hS}. Thus, the scenario we study covers both
existing settings and other intermediate scenarios. Figure 1 illustrates our general scenario.

2. Learning bounds via transductive Rademacher complexity. We present general learning
bounds for data-dependent hypothesis sets using a notion of transductive Rademacher complexity
(Section 3). These bounds hold for arbitrary bounded losses and improve upon previous guarantees
given by Gat [2001] and Cannon et al. [2002] for the binary loss, which were expressed in terms of a
notion of shattering coefficient adapted to the data-dependent case, and are more explicit than the
guarantees presented by Philips [2005][corollary 4.6 or theorem 4.7]. Nevertheless, such bounds may
often not be sufficiently informative, since they ignore the relationship between hypothesis sets based
on similar samples.

3. Learning bounds via hypothesis set stability. We provide finer generalization bounds based
on the key notion of hypothesis set stability that we introduce in this paper. This notion admits
algorithmic stability as a special case, when the hypotheses sets are reduced to singletons. We also
introduce a new notion of Rademacher complexity for data-dependent hypothesis sets. Our main
results are generalization bounds (Section 4) for stable data-dependent hypothesis sets expressed in
terms of the hypothesis set stability parameter, our notion of Rademacher complexity, and a notion
of cross-validation stability that, in turn, can be upper-bounded by the diameter of the family of
hypothesis sets. Our learning bounds admit as special cases both standard Rademacher complexity
bounds and algorithm-dependent uniform stability bounds.

4. New generalization bounds for specific learning applications. In section 5 (see also Ap-
pendix G), we illustrate the generality and the benefits of our hypothesis set stability learning
bounds by using them to derive new generalization bounds for several learning applications. To our
knowledge, there is no straightforward analysis based on previously existing tools that yield these
generalization bounds. These applications include: (a) bagging algorithms that may employ non-
uniform, data-dependent, averaging of the base predictors, (b) stochastic strongly-convex optimization
algorithms based on an average of other stochastic optimization algorithms, (c) stable representation
learning algorithms, which first learn a data representation using the sample and then learn a predictor
on top of the learned representation, and (d) distillation algorithms, which first compute a complex
predictor using the sample and then use it to learn a simpler predictor that is close to it.

1.2 Related work on data-dependent hypothesis sets.

Shawe-Taylor et al. [1998] presented an analysis of structural risk minimization over data-dependent
hierarchies based on a concept of luckiness, which generalizes the notion of margin of linear classifiers.
Their analysis can be viewed as an alternative and general study of data-dependent hypothesis sets,
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using luckiness functions and ω-smallness (or ω-smoothness) conditions. A luckiness function helps
decompose a hypothesis set into lucky sets, that is sets of functions luckier than a given function.
The luckiness framework is attractive and the notion of luckiness, for example margin, can in fact be
combined with our results. However, finding pairs of truly data-dependent luckiness and ω-smallness
functions, other than those based on the margin and the empirical VC-dimension, is quite difficult, in
particular because of the very technical ω-smallness condition [see Philips, 2005, p. 70]. In contrast,
hypothesis set stability is simpler and often easier to bound. The notions of luckiness and ω-smallness
have also been used by Herbrich and Williamson [2002] to derive algorithm-specific guarantees. In
fact, the authors show a connection with algorithmic stability (not hypothesis set stability), at the
price of a guarantee requiring the strong condition that the stability parameter be in o(1/m), where
m is the sample size [see Herbrich and Williamson, 2002, pp. 189-190].

Data-dependent hypothesis classes are conceptually related to the notion of data-dependent priors
in PAC-Bayesian generalization bounds. Catoni [2007] developed localized PAC-Bayes analysis
by using a prior defined in terms of the data generating distribution. This work was extended by
Lever et al. [2013] who proved sharp risk bounds for stochastic exponential weights algorithms.
Parrado-Hernández et al. [2012] investigated the possibility of learning the prior from a separate data
set, as well as priors obtained via computing a data-dependent bound on the KL term. More closely
related to this paper is the work of Dziugaite and Roy [2018a,b], who develop PAC-Bayes bounds by
choosing the prior via a data-dependent differentially private mechanism, and also showed that weaker
notions than differential privacy also suffice to yield valid bounds. In Appendix H, we give a more
detailed discussion of PAC-Bayes bounds, in particular to show how finer PAC-Bayes bounds than
standard ones can be derived from Rademacher complexity bounds, here with an alternative analysis
and constants than [Kakade et al., 2008] and how data-dependent PAC-Bayes bounds can be derived
from our data-dependent Rademacher complexity bounds. More discussion on data-dependent priors
can be found in Appendix F.3.

2 Definitions and Properties

Let X be the input space and Y the output space, and define Z ∶= X × Y We denote by D the unknown
distribution over X × Y according to which samples are drawn.

The hypotheses h we consider map X to a set Y′ sometimes different from Y. For example, in binary
classification, we may have Y = {−1,+1} and Y′ = R. Thus, we denote by `∶Y′ × Y → [0,1] a loss
function defined on Y′ × Y and taking non-negative real values bounded by one. We denote the loss
of a hypothesis h∶X → Y′ at point z = (x, y) ∈ X × Y by L(h, z) = `(h(x), y). We denote by R(h)
the generalization error or expected loss of a hypothesis h ∈H and by R̂S(h) its empirical loss over
a sample S = (z1, . . . , zm):

R(h) = E
z∼D
[L(h, z)] R̂S(h) = E

z∼S
[L(h, z)] = 1

m

m

∑
i=1
L(h, zi).

In the general framework we consider, a hypothesis set depends on the sample received. We will
denote by HS the hypothesis set depending on the labeled sample S ∈ Zm of size m ≥ 1. We assume
that HS is invariant to the ordering of the points in S.

Definition 1 (Hypothesis set uniform stability). Fix m ≥ 1. We will say that a family of data-
dependent hypothesis setsH = (HS)S∈Zm is β-uniformly stable (or simply β-stable) for some β ≥ 0,
if for any two samples S and S′ of size m differing only by one point, the following holds:

∀h ∈HS ,∃h′ ∈HS′ ∶ ∀z ∈ Z, ∣L(h, z) −L(h′, z)∣ ≤ β. (1)

Thus, two hypothesis sets derived from samples differing by one element are close in the sense that
any hypothesis in one admits a counterpart in the other set with β-similar losses. A closely related
notion is the sensitivity of a function f ∶Zm → R. Such a function f is called β-sensitive if for any
two samples S and S′ of size m differing only by one point, we have ∣f(S) − f(S′)∣ ≤ β.

We also introduce a new notion of Rademacher complexity for data-dependent hypothesis sets. To
introduce its definition, for any two samples S,T ∈ Zm and a vector of Rademacher variables σ,
denote by ST,σ the sample derived from S by replacing its ith element with the ith element of T , for
all i ∈ [m] = {1,2, . . . ,m} with σi = −1. We will use Hσ

S,T to denote the hypothesis set HST,σ .
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Definition 2 (Rademacher complexity of data-dependent hypothesis sets). Fix m ≥ 1. The empirical
Rademacher complexity R̂◇S,T (H) and the Rademacher complexity R◇m(H) of a family of data-
dependent hypothesis setsH = (HS)S∈Zm for two samples S = (zS1 , . . . , zSm) and T = (zT1 , . . . , zTm)
in Zm are defined by

R̂◇S,T (H) =
1

m
E
σ

⎡⎢⎢⎢⎢⎣
sup

h∈Hσ
S,T

m

∑
i=1
σih(zTi )

⎤⎥⎥⎥⎥⎦
R◇m(H) =

1

m
E

S,T∼Dm

σ

⎡⎢⎢⎢⎢⎣
sup

h∈Hσ
S,T

m

∑
i=1
σih(zTi )

⎤⎥⎥⎥⎥⎦
. (2)

When the family of data-dependent hypothesis sets H is β-stable with β = O(1/m), the empirical
Rademacher complexity R̂◇S,T (G) is sharply concentrated around its expectation R◇m(G), as with the
standard empirical Rademacher complexity (see Lemma 4).

Let HS,T denote the union of all hypothesis sets based on U = {U ∶U ⊆ (S ∪ T ), U ∈ Zm}, the
subsamples of S ∪ T of size m: HS,T = ⋃U∈UHU . Since for any σ, we have Hσ

S,T ⊆ HS,T , the
following simpler upper bound in terms of the standard empirical Rademacher complexity of HS,T

can be used for our notion of empirical Rademacher complexity:

R◇m(H) ≤
1

m
E

S,T∼Dm

σ

[ sup
h∈HS,T

m

∑
i=1
σih(zTi )] = E

S,T∼Dm
[R̂T (HS,T )],

where R̂T (HS,T ) is the standard empirical Rademacher1 complexity of HS,T for the sample T .
Some properties of our notion of Rademacher complexity are given in Appendix B.

Let GS denote the family of loss functions associated to HS :

GS = {z ↦ L(h, z)∶h ∈HS}, (3)

and let G = (GS)S∈Zm denote the family of hypothesis sets GS . Our main results will be expressed in
terms of R◇m(G). When the loss function ` is µ-Lipschitz, by Talagrand’s contraction lemma [Ledoux
and Talagrand, 1991], in all our results, R◇m(G) can be replaced by µES,T∼Dm[R̂T (HS,T )].
Rademacher complexity is one way to measure the capacity of the family of data-dependent hypothesis
sets. We also derive learning bounds in situations where a notion of diameter of the hypothesis
sets is small. We now define a notion of cross-validation stability and diameter for data-dependent
hypothesis sets. In the following, for a sample S, Sz↔z

′
denotes the sample obtained from S by

replacing z ∈ S by z′ ∈ Z.
Definition 3 (Hypothesis set Cross-Validation (CV) stability, diameter). Fix m ≥ 1. For some
χ̄, χ, ∆̄,∆,∆max ≥ 0, we say that a family of data-dependent hypothesis sets H = (HS)S∈Zm has
average CV-stability χ̄, CV-stability χ, average diameter ∆̄, diameter ∆ and max-diameter ∆max if
the following hold:

E
S∼Dm

E
z′∼D,z∼S

[ sup
h∈HS ,h′∈HSz↔z′

L(h′, z) −L(h, z)] ≤ χ̄ (4)

sup
S∈Zm

E
z′∼D,z∼S

[ sup
h∈HS ,h′∈HSz↔z′

L(h′, z) −L(h, z)] ≤ χ (5)

E
S∼Dm

E
z∼S
[ sup
h,h′∈HS

L(h′, z) −L(h, z)] ≤ ∆̄ (6)

sup
S∈Zm

E
z∼S
[ sup
h,h′∈HS

L(h′, z) −L(h, z)] ≤∆ (7)

sup
S∈Zm

max
z∈S
[ sup
h,h′∈HS

L(h′, z) −L(h, z)] ≤∆max. (8)

CV-stability of hypothesis sets can be bounded in terms of their stability and diameter (see straight-
forward proof in Appendix C).

1Note that the standard definition of Rademacher complexity assumes that hypothesis sets are not data-
dependent, however the definition remains valid for data-dependent hypothesis sets.
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Lemma 1. Suppose a family of data-dependent hypothesis setsH is β-uniformly stable. Then if it has
diameter ∆, then it is (∆+β)-CV-stable, and if it has average diameter ∆̄ then it is (∆̄+β)-average
CV-stable.

3 General learning bound for data-dependent hypothesis sets

In this section, we present general learning bounds for data-dependent hypothesis sets that do not
make use of the notion of hypothesis set stability. One straightforward idea to derive such guarantees
for data-dependent hypothesis sets is to replace the hypothesis set HS depending on the observed
sample S by the union of all such hypothesis sets over all samples of size m, Hm = ⋃S∈Zm HS .
However, in general, Hm can be very rich, which can lead to uninformative learning bounds. A
somewhat better alternative consists of considering the union of all such hypothesis sets for samples
of size m included in some supersample U of size m + n, with n ≥ 1, HU,m = ⋃S∈Zm

S⊆U
HS . We will

derive learning guarantees based on the maximum transductive Rademacher complexity of HU,m.
There is a trade-off in the choice of n: smaller values lead to less complex sets HU,m, but they also
lead to weaker dependencies on sample sizes. Our bounds are more refined guarantees than the
shattering-coefficient bounds originally given for this problem by Gat [2001] in the case n =m, and
later by Cannon et al. [2002] for any n ≥ 1. They also apply to arbitrary bounded loss functions
and not just the binary loss. They are expressed in terms of the following notion of transductive
Rademacher complexity for data-dependent hypothesis sets:

R̂◇U,m(G) = E
σ

⎡⎢⎢⎢⎢⎣
sup

h∈HU,m

1

m + n

m+n
∑
i=1

σiL(h, zUi )
⎤⎥⎥⎥⎥⎦
,

where U = (zU1 , . . . , zUm+n) ∈ Zm+n and where σ is a vector of (m + n) independent random
variables taking value m+n

n
with probability n

m+n , and −m+n
m

with probability m
m+n . Our notion of

transductive Rademacher complexity is simpler than that of El-Yaniv and Pechyony [2007] (in the
data-independent case) and leads to simpler proofs and guarantees. A by-product of our analysis
is learning guarantees for standard transductive learning in terms of this notion of transductive
Rademacher complexity, which can be of independent interest.

Theorem 1. LetH = (HS)S∈Zm be a family of data-dependent hypothesis sets. Let G be defined as
in (3). Then, for any δ > 0, with probability at least 1 − δ over the choice of the draw of the sample
S ∼ Zm, the following inequality holds for all h ∈HS:

R(h) ≤ R̂S(h) + max
U∈Zm+n

2R̂◇U,m(G) + 3
√
( 1
m
+ 1
n
) log( 2

δ
) + 2

√
( 1
m
+ 1
n
)3mn.

Proof. (Sketch; full proof in Appendix D.) We use the following symmetrization result, which holds
for any ε > 0 with mε2 ≥ 2 for data-dependent hypothesis sets (Lemma 5, Appendix D):

P
S∼Dm

[ sup
h∈HS

R(h) − R̂S(h) > ε] ≤ 2 P
S∼Dm

T∼Dn

[ sup
h∈HS

R̂T (h) − R̂S(h) >
ε

2
].

To bound the right-hand side, we use an extension of McDiarmid’s inequality to sampling with-
out replacement [Cortes et al., 2008] applied to Φ(S) = suph∈HU,m

R̂T (h) − R̂S(h). Lemma 6
(Appendix D) is then used to bound E[Φ(S)] in terms of our notion of transductive Rademacher
complexity.

4 Learning bound for stable data-dependent hypothesis sets

In this section, we present our main generalization bounds for data-dependent hypothesis sets.

Theorem 2. Let H = (HS)S∈Zm be a β-stable family of data-dependent hypothesis sets, with χ̄
average CV-stability, χ CV-stability and ∆max max-diameter. Let G be defined as in (3). Then, for
any δ > 0, with probability at least 1 − δ over the draw of a sample S ∼ Zm, the following inequality
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holds for all h ∈HS:

∀h ∈HS ,R(h) ≤ R̂S(h) +min

⎧⎪⎪⎨⎪⎪⎩
min{2R◇m(G), χ̄} + (1 + 2βm)

√
1

2m
log( 1

δ
), (9)

√
eχ + 4

√
( 1
m
+ 2β) log( 6

δ
), (10)

48(3β +∆max) log(m) log( 5m3

δ
) +
√

4
m

log( 4
δ
)
⎫⎪⎪⎬⎪⎪⎭
. (11)

The proof of the theorem is given in Appendix E. The main idea is to control the sensitivity of the
function Ψ(S,S′) defined for any two samples S,S′, as follows:

Ψ(S,S′) = sup
h∈HS

R(h) − R̂S′(h).

To prove bound (9), we apply McDiarmid’s inequality to Ψ(S,S), using the ( 1
m
+ 2β)-sensitivity

of Ψ(S,S), and then upper bound the expectation ES∼Dm[Ψ(S,S)] in terms of our notion of
Rademacher complexity. The bound (10) is obtained via a differential-privacy-based technique,
as in Feldman and Vondrak [2018], and (11) is a direct consequence of the bound of Feldman
and Vondrak [2019] using the observation that an algorithm that chooses an arbitrary h ∈ HS is
O(β +∆max)-uniformly stable in the classical [Bousquet and Elisseeff, 2002] sense.

Bound (9) admits as a special case the standard Rademacher complexity bound for fixed hypothesis
sets [Koltchinskii and Panchenko, 2002, Bartlett and Mendelson, 2002]: in that case, we haveHS =H
for some H, thus R◇m(G) coincides with the standard Rademacher complexity Rm(G); furthermore,
the family of hypothesis sets is 0-stable, thus the bound holds with β = 0.

Bounds (10) and (11) specialize to the bounds of Feldman and Vondrak [2018] and Feldman and
Vondrak [2019] respectively for the special case of standard uniform stability of algorithms, since in
that case, HS is reduced to a singleton, HS = {hS}, and so ∆ = 0, which implies that χ ≤∆ + β = β.

The Rademacher complexity-based bound (9) typically gives the tightest control on generalization
error compared to the bounds (10) and (11), which rely on the cruder diameter notion. However the
diameter may be easier to bound for some applications than the Rademacher complexity. To compare
the diameter-based bounds, in applications where ∆max = O(∆), bound (11) may be tighter than
(10). But, in several applications, we have β = O( 1

m
), and then bound (10) is tighter.

5 Applications

We now discuss several applications of our learning guarantees, with some others in Appendix G.

5.1 Bagging

Bagging [Breiman, 1996] is a prominent ensemble method used to improve the stability of learning
algorithms. It consists of generating k new samples B1,B2, . . . ,Bk, each of size p, by sampling
uniformly with replacement from the original sample S of size m. An algorithm A is then trained
on each of these samples to generate k predictors A(Bi), i ∈ [k]. In regression, the predictors are
combined by taking a convex combination ∑ki=1wiA(Bi). Here, we analyze a common instance of
bagging to illustrate the application of our learning guarantees: we will assume a regression setting
and a uniform sampling from S without replacement.2 We will also assume that the loss function is
µ-Lipschitz in its first argument, that the predictions are in the range [0,1], and that all the mixing
weights wi are bounded by C

k
for some constant C ≥ 1, in order to ensure that no subsample Bi is

overly influential in the final regressor (in practice, a uniform mixture is typically used in bagging).

To analyze bagging, we cast it in our framework. First, to deal with the randomness in choosing
the subsamples, we can equivalently imagine the process as choosing indices in [m] to form the
subsamples rather than samples in S, and then once S is drawn, the subsamples are generated by

2Sampling without replacement is only adopted to make the analysis more concise; its extension to sampling
with replacement is straightforward.
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filling in the samples at the corresponding indexes. For any index i ∈ [m], the chance that it is
picked in any subsample is p

m
. Thus, by Chernoff’s bound, with probability at least 1 − δ, no index in

[m] appears in more than t ∶= kp
m
+
√

2kp log(mδ )
m

subsamples. In the following, we condition on the
random seed of the bagging algorithm so that this is indeed the case, and later use a union bound
to control the chance that the chosen random seed does not satisfy this property, as elucidated in
section F.2.

Define the data-dependent family of hypothesis setsH as HS ∶= {∑ki=1wiA(Bi)∶ w ∈∆
C/k
k }, where

∆
C/k
k denotes the simplex of distributions over k items with all weights wi ≤ C

k
. Next, we give upper

bounds on the hypothesis set stability and the Rademacher complexity ofH. Assume that algorithm
A admits uniform stability βA [Bousquet and Elisseeff, 2002], i.e. for any two samples B and B′ of
size p that differ in exactly one data point and for all x ∈ X , we have ∣A(B)(x) −A(B′)(x)∣ ≤ βA.
Now, let S and S′ be two samples of size m differing by one point at the same index, z ∈ S and
z′ ∈ S′. Then, consider the subsets B′i of S′ which are obtained from the Bis by copying over all the
elements except z, and replacing all instances of z by z′. For any Bi, if z ∉ Bi, then A(Bi) = A(B′i)
and, if z ∈ Bi, then ∣A(Bi)(x) −A(B′i)(x)∣ ≤ βA for any x ∈ X . We can now bound the hypothesis
set uniform stability as follows: since L is µ-Lipschitz in the prediction, for any z′′ ∈ Z , and any
w ∈∆

C/k
k , we have

∣L(∑ki=1wiA(Bi), z′′) −L(∑
k
i=1wiA(B′i), z′′)∣ ≤ [

p
m
+
√

2p log( 1
δ )

km
] ⋅CµβA.

It is easy to check the CV-stability and diameter of the hypothesis sets is Ω(1) in the worst case. Thus,
the CV-stability-based bound (10) and standard uniform-stability bound (11) are not informative
here, and we use the Rademacher complexity based bound (9) instead. Bounding the Rademacher
complexity R̂S(HS,T ) for S,T ∈ Zm is non-trivial. Instead, we can derive a reasonable upper
bound by analyzing the Rademacher complexity of a larger function class. Specifically, for any
z ∈ Z , define the d ∶= (2m

p
)-dimensional vector uz = ⟨A(B)(z)⟩B⊆S∪T,∣B∣=p. Then, the class of

functions is FS,T ∶= {z ↦ w⊺uz ∶ w ∈ Rd, ∥w∥1 = 1}. Clearly HS,T ⊆ FS,T . Since ∥uz∥∞ ≤ 1,
a standard Rademacher complexity bound (see Theorem 11.15 in [Mohri et al., 2018]) implies

R̂S(FS,T ) ≤
√

2 log(2(2mp ))
m

≤
√

2p log(4m)
m

. Thus, by Talagrand’s inequality, we conclude that

R̂S(GS,T ) ≤ µ
√

2p log(4m)
m

. In view of that, by Theorem 2, for any δ > 0, with probability at least
1−2δ over the draws of a sample S ∼Dm and the randomness in the bagging algorithm, the following
inequality holds for any h ∈HS :

R(h) ≤ R̂S(h) + 2µ

√
2p log(4m)

m
+
⎡⎢⎢⎢⎢⎣
1 + 2

⎡⎢⎢⎢⎢⎣
p +

√
2pm log( 1

δ
)

k

⎤⎥⎥⎥⎥⎦
⋅CµβA

⎤⎥⎥⎥⎥⎦

√
log 2

δ

2m
.

For p = o(
√
m) and k = ω(p), the generalization gap goes to 0 as m→∞, regardless of the stability

of A. This gives a new generalization guarantee for bagging, similar (but incomparable) to the one
derived by Elisseeff et al. [2005]. One major point of difference is that unlike their bound, our bound
allows for non-uniform averaging schemes.

5.2 Stochastic strongly-convex optimization

Here, we consider data-dependent hypothesis sets based on stochastic strongly-convex optimization
algorithms. As shown by Shalev-Shwartz et al. [2010], uniform convergence bounds do not hold for
the stochastic convex optimization problem in general.

Consider K stochastic strongly-convex optimization algorithms Aj , each returning vector ŵSj , after
receiving sample S ∈ Zm, j ∈ [K]. As shown by Shalev-Shwartz et al. [2010], such algorithms are
β = O( 1

m
) sensitive in their output vector, i.e. for all j ∈ [K], we have ∥ŵSj − ŵS

′
j ∥ ≤ β if S and S′

differ by one point.

Assume that the loss L(w, z) is µ-Lipschitz with respect to its first argument w. Let the data-
dependent hypothesis set be defined as follows: HS = {∑Kj=1 αjŵSj ∶ α ∈∆K ∩B1(α0, r)}, where
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α0 is in the simplex of distributions ∆K and B1(α0, r) is the L1 ball of radius r > 0 around α0. We
choose r = 1

2µD
√
m

. A natural choice for α0 would be the uniform mixture.

Since the loss function is µ-Lipschitz, the family of hypotheses HS is µβ-stable. In this setting,
bounding the Rademacher complexity is difficult, so we resort to the diameter based bound (10)
instead. Note that for any α,α′ ∈∆K ∩B1(α0, r) and any z ∈ Z, we have

L(
K

∑
j=1

αjŵ
S
j , z) −L(

K

∑
j=1

α′jŵ
S
j , z) ≤ µ∥

K

∑
j=1
(αi − α′j)ŵSj ∥

2

≤ µ∥[wS1 ⋯wSK]∥1,2 ∥α − α
′∥1 ≤ 2µrD,

where ∥[wS1 ⋯wSK]∥1,2 ∶=maxx≠0
∥∑kj=1 xjw

S
j ∥2

∥x∥1 =maxi∈[K] ∥wSi ∥2 ≤D. Thus, the average diameter

admits the following upper bound: ∆̂ ≤ 2µrD = 1√
m

. In view of that, by Theorem 2, for any δ > 0,
with probability at least 1 − δ, the following holds for all α ∈∆K ∩B1(α0, r):

E
z∼D
[L(

K

∑
j=1

αjŵ
S
j , z)] ≤

1

m

m

∑
i=1
L(

K

∑
j=1

αiŵ
S
j , z

S
i ) +

√
e

m
+
√
eµβ + 4

√
( 1

m
+ 2µβ) log (6

δ
).

The second stage of an algorithm in this context consists of choosing α, potentially using a non-stable
algorithm. This application both illustrates the use of our learning bounds using the diameter and its
application even in the absence of uniform convergence bounds.

As an aside, we note that the analysis of section 5.1 can be carried over to this setting, by setting A to
be a stochastic strongly-convex optimization algorithm which outputs a weight vector ŵ. This yields
generalization bounds for aggregating over a larger set of mixing weights, albeit with the restriction
that each algorithm uses only a small part of S.

5.3 ∆-sensitive feature mappings

Consider the scenario where the training sample S ∈ Zm is used to learn a non-linear feature mapping
ΦS ∶X→ RN that is ∆-sensitive for some ∆ = O( 1

m
). ΦS may be the feature mapping corresponding

to some positive definite symmetric kernel or a mapping defined by the top layer of an artificial neural
network trained on S, with a stability property.

To define the second state, let L be a set of γ-Lipschitz functions f ∶RN → R. Then we define
HS = {x ↦ f(ΦS(x))∶ f ∈ L}. Assume that the loss function ` is µ-Lipschitz with respect to its
first argument. Then, for any hypothesis h∶x↦ f(ΦS(x)) ∈HS and any sample S′ differing from
S by one element, the hypothesis h′∶x ↦ f(ΦS′(x)) ∈HS′ admits losses that are β-close to those
of h, with β = µγ∆, since, for all (x, y) ∈ X × Y, by the Cauchy-Schwarz inequality, the following
inequality holds:

`(f(ΦS(x)), y) − `(f(ΦS′(x)), y) ≤ µ∣f((ΦS(x)) − f(ΦS′(x))∣ ≤ µγ∥ΦS(x) −ΦS′(x)∥ ≤ µγ∆.

Thus, the family of hypothesis setH = (HS)S∈Zm is uniformly β-stable with β = µγ∆ = O( 1
m
). In

view of that, by Theorem 2, for any δ > 0, with probability at least 1 − δ over the draw of a sample
S ∼Dm, the following inequality holds for any h ∈HS :

R(h) ≤ R̂S(h) + 2R◇m(G) + (1 + 2µγ∆m)
√

1
2m

log( 1
δ
). (12)

Notice that this bound applies even when the second stage of an algorithm, which consists of selecting
a hypothesis hS in HS , is not stable. A standard uniform stability guarantee cannot be used in that
case. The setting described here can be straightforwardly extended to the case of other norms for the
definition of sensitivity and that of the norm used in the definition of HS .

5.4 Distillation

Here, we consider distillation algorithms which, in the first stage, train a very complex model on the
labeled sample. Let f∗S ∶X→ R denote the resulting predictor for a training sample S of size m. We
will assume that the training algorithm is β-sensitive, that is ∥f∗S − f∗S′∥ ≤ β = O( 1

m
) for S and S′

differing by one point.
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f⇤
S

f⇤
S0

h0h

HS

HS0

Figure 2: Illustration of the distillation
hypothesis sets. Notice that the diame-
ter of a hypothesis set HS may be large
here.

In the second stage, the algorithm selects a hypothesis
that is γ-close to f∗S from a less complex family of pre-
dictors H. This defines the following sample-dependent
hypothesis set: HS = {h ∈H∶ ∥(h − f∗S)∥∞ ≤ γ}.
Assume that the loss ` is µ-Lipschitz with respect to its
first argument and that H is a subset of a vector space. Let
S and S′ be two samples differing by one point. Note, f∗S
may not be in H, but we will assume that f∗S′ − f∗S is in H.
Let h be in HS , then the hypothesis h′ = h + f∗S′ − f∗S is
in HS′ since ∥h′ − f∗S′∥∞ = ∥h− f∗S∥∞ ≤ γ. Figure 2 illus-
trates the hypothesis sets. By the µ-Lipschitzness of the
loss, for any z = (x, y) ∈ Z, ∣`(h′(x), y) − `(h(x), y)∣ ≤
µ∥h′(x) − h(x)∥∞ = µ∥f∗S′ − f∗S∥ ≤ µβ. Thus, the family
of hypothesis sets HS is µβ-stable.

In view of that, by Theorem 2, for any δ > 0, with probability at least 1 − δ over the draw of a sample
S ∼Dm, the following inequality holds for any h ∈HS :

R(h) ≤ R̂S(h) + 2R◇m(G) + (1 + 2µβm)
√

1
2m

log( 1
δ
).

Notice that a standard uniform-stability argument would not necessarily apply here since HS could
be relatively complex and the second stage not necessarily stable.

6 Conclusion

We presented a broad study of generalization with data-dependent hypothesis sets, including general
learning bounds using a notion of transductive Rademacher complexity and, more importantly,
learning bounds for stable data-dependent hypothesis sets. We illustrated the applications of these
guarantees to the analysis of several problems. Our framework is general and covers learning scenarios
commonly arising in applications for which standard generalization bounds are not applicable. Our
results can be further augmented and refined to include model selection bounds and local Rademacher
complexity bounds for stable data-dependent hypothesis sets (to be presented in a more extended
version of this manuscript), and further extensions described in Appendix F. Our analysis can also be
extended to the non-i.i.d. setting and other learning scenarios such as that of transduction. Several
by-products of our analysis, including our proof techniques, new guarantees for transductive learning,
and our PAC-Bayesian bounds for randomized algorithms, both in the sample-independent and
sample-dependent cases, can be of independent interest. While we highlighted several applications
of our learning bounds, a tighter analysis might be needed to derive guarantees for a wider range of
data-dependent hypothesis classes or scenarios.
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