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Abstract: This paper is devoted to a consumer-preferred community-level energy management
system (CEMS), in which a system manager allows consumers their selfish decisions of power-
saving while regulating the overall demand-supply imbalance. The key structure of the system is
to weakly control consumers: the controller sends the allowable range of the power-saving amount
to each consumer, which is modeled by a set-valued control signal. Then, the consumers decide
the amount in the range based on their private preference. In this paper, we address the design
problem of the controller that generates the set-valued control signals. The controller structure
is based on internal model control, which plays the essential role of guaranteeing the consumer-
independent stability and the worst-case control performance of the overall CEMS. Finally, a
numerical experiment of the consumer-preferred CEMS is performed to demonstrate the design
procedure of the controller and to show its effectiveness.

Keywords: Human-in-the-loop system, Energy management system, Multi-objective control,
Internal model control, Robust control.

1. INTRODUCTION

The renewable energy has gained much importance in re-
cent years due to its benefits of reducing power generation
costs and carbon emission levels. To fully receive such
benefits, the drawbacks of the renewable energy must be
overcome. For example, solar power or wind power gen-
eration fluctuates uncertainly depending on the weather
condition. The fluctuation may cause the power demand-
supply imbalance and lead the blackout in the worst case.
Energy management technologies of balancing the demand
and supply must be further developed.

One of the highly potential technologies is demand side
management (DSM) (see e.g., the works by Strbac (2008),
Palensky and Dietrich (2011), Logenthiran et al. (2012),
Khalid et al. (2018)). DSM includes not only the direct
management of mechatronic devices, but also indirect
one using demand response (DR) of consumers. In DR,
dynamic pricing, incentives, and other control methods
promote consumers to change their power-usage based
on their preference. Such DR methods are under intense
investigation in various research fields in the works by
e.g., Albadi and El-Saadany (2008), Mohsenian-Rad et al.
(2010), Caron and Kesidis (2010), Siano (2014), Qureshi
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et al. (2014), Rahmani-andebili (2016), Dobakhshari and
Gupta (2018), He et al. (2018), Miyazaki et al. (2019).

It is desirable for DSM that consumers always respond to
power-saving requests, which are given in the form of prices
or incentives, to achieve any target power-saving amount.
However, consumers do not, and they may make selfish
decisions of the power-saving amount based on their own
private preference. Any DR method unavoidably causes
the error in the target power-saving amount and the actual
amount. A promising way to effectively reduce the error
is to take the feedback structure into DR as studied by
Qureshi et al. (2014), He et al. (2018), Miyazaki et al.
(2019). Feedback DR particularly taking care of irrational
or selfish behavior of consumers, is addressed in this paper.

This paper addresses the feedback structure in a
community-level energy management system (CEMS),
which is illustrated in Fig. 1. In the figure, a power utility
sends the reference of power-saving amount to the CEMS
manager, and the manager provides some request to con-
sumers. Then, the consumers take their power-saving ac-
tions to their plant systems individually. In the CEMS,
we particularly pursue the following two aims: one is the
reliable feedback control of accurately achieving any target
power-saving amount. The other is the consumer-preferred
structure of allowing consumers their selfish decisions of
power-saving amount.
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Fig. 1. Consumer-preferred CEMS

The key to realize the consumer-preferred structure is
weak control, the concept of which is originally proposed
by Inoue and Gupta (2019): the request sent from the
manager to the consumers is given by the allowable range
of power-saving amount, which is modeled by a set-
valued signal. Then, the consumers decide the power-
saving amount based on their own private preference. The
decision can be made without taking care of the stability or
control performance of the overall CEMS. In this paper, we
address the design problem of the controllers that generate
the set-valued signals. The controller structure is based on
internal model control (IMC, see e.g., the book by Morari
and Zafiriou (1989)). The consumer-independent stability
and the worst-case control performance of the overall
CEMS are studied. Finally, a numerical experiment of the
consumer-preferred CEMS is performed to demonstrate
the design procedure of the controller and to show its
effectiveness.

The remainder of this paper is organized as follows. Section
2 presents the problem setting of the CEMS design. Section
3 is devoted to the controller design and the analysis of the
overall CEMS. In Section 4, a demonstration of the CEMS
is given. Section 5 gives the conclusion of this paper.

Notation: The symbol 1n represents the all-one vector
defined in Rn. For any signal x(t), the symbol x(s) denotes
the Laplace transformation. For any L2-signal x(t), which
is denoted by x(t) ∈ L2, the symbol ∥x∥L2

represents the
L2 norm. For any L2-stable system G, the symbol ∥G∥L2

represents the L2 gain. For any rational, proper, and stable
transfer matrix G(s), which is denoted by G(s) ∈ RH∞,
the symbol ∥G(s)∥H∞ represents the H∞ norm. It holds
that ∥G(s)∥H∞ = ∥G∥L2

.

2. PROBLEM SETTING

In this section, we consider the CEMS that includes the
decision making and actions by consumers. Fig. 2 shows
the block diagram of the overall structure of the CEMS.
In the figure, G, H, and K represent the plant set,
consumer set, and controller, respectively. Note that G
and H contain various plant systems Gi, i ∈ {1, 2, . . . , n}
and various consumers Hi, i ∈ {1, 2, . . . , n}, respectively.
Each consumer Hi is responsible for controlling his/her
own plant Gi. In this paper, we address the design problem
of K for given G and H. The model of G, H, and K are
given as follows.

Fig. 2. Overall structure of CEMS

The plant set G is a dynamical system, and it determines
the actual power-saving amount, denoted by y(t) ∈ R,
based on the control action for power-saving, denoted by
u(t) ∈ Rn. In addition, let d(t) ∈ R denote the disturbance
to the power-saving amount such as the selfish actions of
power-saving. Then, the model of G is described by the
following transfer function representation:

G : y(s) = G(s)u(s) + d(s),

where G(s) is the transfer matrix given by

G(s) = [G1(s) G2(s) · · · Gn(s) ]

and each of Gi(s), i ∈ {1, 2, . . . , n} represents the
transfer function of Gi. For simplicity, y(t), u(t) =
[u1(t) · · ·un(t) ]

⊤, and d(t) are called the output, action,
and disturbance, respectively. We consider that each Gi

is composed of electrical equipments and that the action
ui(t) is to provide the set point of power-saving amount
to Gi. Furthermore, it is assumed that the output of
each Gi tracks the set point at the steady state. Then,
G(s) ∈ RH∞, and the following technical assumption on
the steady-state property is imposed on G.

Assumption 1. It holds that G(0) = 1⊤
n .

The consumer set H decides the action u(t) based on
the set of allowable control actions U(t) ⊂ Rn, which is
requested from the controller K and is modeled by a set-
valued signal. The allowable set U(t) is called the request
in the remainder of this paper. The concept of controlling
decision makers by providing the set-valued control signal
is called weak control (see the original work by Inoue and
Gupta (2019)). For any time t, the decision made by H is
modeled by the following optimization:

H :


min
u(t)

f(t, u(t)),

subject to u(t) ∈ U(t),
g1(t, u(t)) = 0,
g2(t, u(t)) ≤ 0.

(1)

Note here that the functions f(t, u(t)), g1(t, u(t)), and
g2(t, u(t)) can be time-varying and private, i.e., they are
not open to controller designers or system managers. The
key of the optimization problem is the constraint

u(t) ∈ U(t), (2)

which is the rule imposed on the consumers. As long as the
consumers follow the request such that (2) holds, they can
pursue their own benefits by minimizing the cost f(t, u(t)).
The minimization implies reducing their physical/mental
burden caused by power-saving. It is assumed that for any
U(t), the optimization problem (1) is feasible for some u(t).



Fig. 3. Block diagram of controller K

Let r(t) ∈ R and e(t) ∈ R denote the reference of the
power-saving amount and the tracking error defined by
e(t) := r(t) − y(t), respectively. Then, the model of K is
described by

K : U(t) = K(e(t), u(t)),

where K(e(t), u(t)) represents a dynamical system and its
details are given in Section 3. It is implicitly assumed that
the action u(t) made by H is available in the operation of
the controller K. This assumption plays a key role in the
stability assurance of the overall CEMS, which is stated in
Subsection 3.1.

This paper addresses the design problem of the controller
K pursuing the following two aims; 1) the accurate refer-
ence tracking for the power-saving amount under the pres-
ence of disturbance, 2) with (partially) allowing consumers
their selfish actions. Let Gyr and Gyd denote the input-
output dynamical systems from r(t) to y(t) and from d(t)
to y(t), respectively. Then, Aim 1 is reduced ultimately
to Gyr = 1 and Gyd = 0. Aim 2 is modeled in (1), where
the consumers aim at minimizing the cost function without
taking care of the stability or the control performance of
the overall CEMS.

Note that pursuing Aim 1 is beneficial to the CEMS
manager, while Aim 2 is clearly beneficial to consumers.
In a point of view of the CEMS manager, the model of H,
including f(t, u(t)) and gj(t, u(t)), is unavailable for any of
the design, implementation, and operation of K. Then, the
design problem of K pursuing Aims 1 and 2 is formulated
in the following problem.

Problem 1. Given G, find K such that the following two
statements hold independently of H.

• The feedback system composed of G, H, and K is
stable.

• Given specific ρ, it holds that ∥y∥L2 ≤ ρ under the
presence of d(t).

This section states the problem of weakly controlling the
consumer set H by providing the request U(t). By the
weak control, we aim at both of the stability assurance and
control performance under the presence of selfish actions.

3. CONTROLLER DESIGN

3.1 Controller Structure for Stability Assurance

We propose the IMC-based structure in the controller K,
which is illustrated in Fig. 3, to solve Problem 1. In the
figure, the controller K is composed of the plant model
GM, filter Q, and expander E , which are described as
follows.

The plant model GM is described by

(a)

(b)

Fig. 4. Transformation of E and H

GM : yM(s) = GM(s)u(s),

where yM(t) ∈ R is the model output, GM(s) is the transfer
matrix given by

GM(s) = [GM1(s) GM2(s) · · · GMn(s) ],

and each GMi(s) represents the model of Gi.

The filter Q is called the Youla parameter after the
pioneering work by Youla et al. (1976). The input-output
dynamics of Q is described by

Q : v(s) = Q(s)e(s),

where v(t) ∈ R is called the filtered reference and Q(s) is
the transfer function satisfying Q(s) ∈ RH∞.

The expander E plays a central role of allowing H selfish
actions by generating the set-valued signal U(t) based on
v(t). The input-output behavior of E is described in the
time-domain as

E : U(t) = E(v(t)),
where E(v) is the set-valued function given by

E(v) =


 u1

...
un


∣∣∣∣∣∣∣

n∑
i=1

ui = v, ui −
1

n
v ∈ [−γl,i

n
v,

γu,i
n

v]


(3)

and γl,i and γu,i are positive constants. The center of the
set-valued signal U(t) = E(v(t)) is given by 1

nv(t)1n, and
its volume, i.e., the degree of freedom, is characterized
by the values of γl,i and γu,i. Note that the constraint∑

ui = v means the resource allocation: the resource v(t)
is allocated to the consumers for their ui(t). This plays an
important role in deriving Proposition 1. The total power-
saving amount of the consumers is equal to the filtered
reference v(t) generated by the filter Q.

The design problem of the controller K, which is formu-
lated in Section 2, is reduced to the design of Q and E . The
most fundamental theorem on the stability of the overall
system is given. The proof is omitted in this paper.

Theorem 1. (Stability): Suppose that Q(s) ∈ RH∞ and
GM(s) = G(s). Then, the feedback system composed of
G, H, and K is L2-stable independently of the model (1).

Remark 1. Theorem 1 claims that the stability of the
overall control system is guaranteed even if any action is
made by H. It should be emphasized that the stability
is also independent of the values of γl,i and γu,i, which
determine the volume of the decision space in H.



3.2 Design of Youla Parameter Q

We propose the design strategy of Q to solve Problem 1 in
addition to ensuring the stability of the overall feedback
system. We first briefly review the IMC-based parameter
design. Then, we show that the design is also applicable
to the weak control problem, stated in Problem 1.

To begin with, we suppose that γl,i = γu,i = 0 holds for
all i ∈ {1, 2, . . . , n} in (3). Then, U(t) is described by

U(t) = 1

n
1nv(t). (4)

This implies that v(t) is equally distributed to ui(t), i.e.,
ui(t) = 1

nv(t) holds for all i ∈ {1, 2, . . . , n}. Let Gyr(s)
and Gyd(s) denote the transfer functions from r(t) to y(t)
and from d(t) to y(t), respectively. Then, it follows that

Gyr(s) =
1

n
G(s)1nQ(s),

Gyd(s) = 1− 1

n
G(s)1nQ(s). (5)

On the basis of the classical IMC approach by Morari and
Zafiriou (1989), Q is designed by

Q(s) =
nF (s)

GM(s)1n
, (6)

where F (s) is any filter system satisfying F (0) = 1. It
follows that Gyr(s) = F (s) and Gyd(s) = 1 − F (s) hold.
This implies that the perfect tracking is achieved at the
steady-state, i.e., for the step reference r(t) ≡ r0, it holds
that y(t) → r0, t → ∞.

From now on, the weak control problem is addressed.
In other words, γl,i ̸= γu,i holds for some i in (3).
Although the control performance may be deteriorated
at the transient state due to the selfish actions made
by H, the stability of the overall system is guaranteed
independently of the actions as discussed in Subsection
3.1. In addition, it should be emphasized that the control
performance at the steady state is NOT deteriorated
compared with the case of the equal distribution (4). This
fact is summarized in the following proposition.

Proposition 1. (Steady State Performance): Suppose that
Q(s) ∈ RH∞ is designed by (6), GM(s) = G(s), and
d(t) → d0, t → ∞ for some d0. Then, under Assumption
1, for any step reference r(t) ≡ r0 it holds that y(t) → r0,
t → ∞ independently of the model (1).

Remark 2. Proposition 1 claims that the perfect tracking
to the step reference is guaranteed independently of the
actions made by H. In other words, this steady state
performance is independent of the values of γl,i and γu,i,
while the transient performance depends. In the next
subsection, we address their design such that the transient
error from the nominal behavior is bounded.

3.3 Design of Expander E

In this subsection, the design problem of the expander E
is addressed. For simplicity of discussion, consider that
r(t) ≡ 0, i.e., only the disturbance suppression in y(t) is
addressed. In addition, we let

γi := γu,i = γl,i, i ∈ {1, 2 . . . , n}
in (3). Then, the design problem of E is reduced to that of
γi, i ∈ {1, 2 . . . , n}. From the view of the CEMS manager,

the aim of the design is to bound the worst case behavior
in y(t) caused by the actions of H and the disturbance
d(t).

As a preliminary, we estimate the nominal behavior, where
U(t) is given by (4) and any selfish action is not allowed for
H. Recall the transfer function Gyd(s) of (5). Supposing
that Q is designed by (6), we have Gyd(s) = 1−F (s). This
results in y(s) = d(s) − F (s)d(s). We let df(t) represent
the filtered disturbance and be described in the Laplace
domain by

df(s) := F (s)d(s).

Then, the zero initial state response of y(t) satisfies

∥y∥L2 = ∥d− df∥L2 , (7)

which is the nominal performance for the disturbance
suppression.

On the basis of the estimation (7), we give the estimate
of the general behavior generated in the weak control
problem, where U(t) is given by (3) and the selfish action
is partially allowed for H.

Proposition 2. (Disturbance Suppression): Suppose that
Q(s) ∈ RH∞ is designed by (6), GM(s) = G(s), r(t) ≡ 0,
and d(t) ∈ L2. Then, letting γi, i ∈ {1, 2, . . . , n} satisfy

n∑
i=1

γi∥Gi(s)∥H∞ ≤ εn

∥Q(s)∥H∞∥d∥L2

(8)

for some positive constant ε, it holds that

∥y∥L2 ≤ ∥d− df∥L2 + ε.

Remark 3. In Proposition 2, the performance bound of
y(t) is studied with respect to the designable parameters
γi, i ∈ {1, 2, . . . , n}. The proposition states that the
performance deterioration caused by any selfish actions
of H is bounded by ε. On the basis of the criterion (8),
the CEMS manager can design E , i.e., equivalently γi,
i ∈ {1, 2, . . . , n}.

4. NUMERICAL DEMONSTRATION

In this section, we demonstrate the design of the controller
K to construct the consumer-preferred CEMS. First, we
give the experimental conditions including the description
of the plant set G and consumer set H. Next, for given G
and H, the controller K is designed, and its effectiveness
is shown.

4.1 Experimental Condition

Each plant Gi, i ∈ {1, . . . , 5} represents an air conditioning
system installed in a house. A part of the system is
described by the thermal model in Simulink Demo (2019),
MATLAB R⃝ and a local controller, which is common for
all plant systems, is equipped with the thermal model.
Each plant Gi receives the signal of the power-saving
action ui(t) and generates the power-saving amount yi(t).
The initial state of each house is different from each other,
and we let mi be the power consumption of each house at
the initial state.

The consumer set H decides the action u(t) based on the
request U(t). Let

ci(ui) := u2
i + 6iui



be the private cost function of each consumer Hi. Then,
letting m := [m1 · · ·m5 ]

⊤, the model of H is described as
follows.

H :


min
u

f(t, u(t)) :=

5∑
i=1

ci(ui(t)),

subject to u(t) ∈ U(t),

g2(t, u(t)) :=

[
u(t)− 0.2m

−u(t)

]
≤ 0.

The increase of the value of ci(ui) expresses the high
burden imposed on each consumer. Hence, a smaller value
of f(t, u(t)) is preferred for the consumers. The constraint
g2(t, u(t)) ≤ 0 means that the action of the power-saving
by Hi, denoted by ui(t), is limited in 20 % of the initial
power consumption mi or less.

We consider that some consumers who do not participate
in CEMS affect the total power consumption. Their effects
to the total power-saving amount is modeled by the
disturbance d(t). In this demonstration, the disturbance
is given by the filtered normal random number with the
average of 0 and the variance of 10. The filter Fd(s) is
given by Fd(s) = 1/(10s+ 1).

In this demonstration, we consider two cases; A) the
decision making and selfish actions are NOT allowed for
H, and the power-saving request is equally distributed,
i.e., U(t) is given by (4), and B) the decision making and
selfish actions are partially allowed for H, and the request
from the controller K includes some degree of freedom,
i.e., U(t) is given by (3).

4.2 Design of Controller K

The controller K is designed based on the IMC structure
as illustrated in Fig. 3. Then, K is composed of GM, Q,
and E .
Initially, we obtained the plant model GM by a system
identification experiment where the step response experi-
ment was performed for eachGMi independently. We found
that every output followed the step input immediately.
Hence, we obtained the simplistic plant model GMi(s) =
1, i ∈ {1, . . . , 5} in this demonstration.

In addition, we designed the low-pass filter F (s) as

F (s) =
1

1.5s+ 1
.

By utilizing GMi
(s) = 1 and this F (s), the Youla param-

eter Q(s) was designed by (6).

The expander E was designed as (4) in Case A), while it
was designed as

E(v) = U(t) =


 u1

...
un


∣∣∣∣∣∣∣

n∑
i=1

ui = v

 ,

in Case B).

4.3 Result

The results of the power-saving experiments by applying
the two controllers A) and B) are illustrated in Fig. 5. The
black dotted, red chained, and blue broken lines represent

Fig. 5. Total power-saving amount achieved in Cases A)
and B)

Fig. 6. Power-saving amount of each consumer in Case A)

the reference and the resulting total power-saving amount
in Cases A) and B), respectively. As illustrated in the
figure, there is no significant difference in the performance
for the reference tracking and disturbance suppression. To
see this fact, the tracking error y(t)− r(t) is evaluated for
Cases A) and B). Letting k denote the discrete time, it
holds that √√√√ 60∑

k=1

(y(k)− r(k))2 = 36.723

for the both cases. This concludes that the selfish decision
by the consumers does not deteriorate the overall tracking
performance in the CEMS.

The actual power-saving amount of each plant Gi in Cases
A) and B) are illustrated in Figs. 6 and 7, respectively.
Each line shows the actual power-saving amount by the
consumers, denoted by y1(t), y1(t) + y2(t), . . .,

∑5
i yi(t).

In other words, the lowest, light blue chained line shows
the power-saving amount y1(t). The second lowest, green
line shows y1(t) + y2(t). The third lowest, black dotted
line shows y1(t) + y2(t) + y3(t), and so on. In Fig. 6, we
see that the power-saving amount is equally distributed to
the consumers. On the other hand, in Fig. 7, the amount is
different from each other. The consumer H1, who has the
lowest cost for the power-saving, most contributes to the
power-saving, while H5, who has the higher cost, almost
does not contribute.



Fig. 7. Power-saving amount of each consumer in Case B)

Fig. 8. Cost of CEMS achieved in Cases A) and B)

The time trajectory of the total cost
∑5

i=1 ci(yi(t)) is
illustrated in Fig. 8. The red chained and blue broken lines
represent the trajectory in Cases A) and B), respectively.
This figure shows the total cost is reduced in Case B)
compared with Case A). We see that the the proposed weak
controller, given in Section 3, is beneficial for consumers.

This experiment shows that the proposed controller con-
tributes to reducing the private cost of consumers, while
keeping the control performance within a specified allow-
able range.

5. CONCLUSION

We proposed the consumer-preferred CEMS, in which the
system manager partially allowed consumers their selfish
actions of power-saving while achieving desired power-
saving amount. The design problem of the CEMS con-
troller was formulated and addressed. Then, the stability,
the tracking performance at the steady state, and the
disturbance suppression performance at the transient state
were studied and stated in Theorem 1 and Propositions
1 and 2, respectively. Finally, a numerical demonstration
was performed. It was shown that the proposed controller
is beneficial to consumers in addition to achieving the
accurate system management.
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