
A Rack-Aware Pipeline Repair Scheme for Erasure-Coded
Distributed Storage Systems

Tong Liu
tongliu@temple.edu
Temple University
Philadelphia, USA

Shakeel Alibhai
shakeel.alibhai@temple.edu

Temple University
Philadelphia, USA

Xubin He
xubin.he@temple.edu
Temple University
Philadelphia, USA

ABSTRACT
Nowadays, modern industry data centers have employed erasure
codes to provide reliability for large amounts of data at a low cost.
Although erasure codes provide optimal storage efficiency, they
suffer from high repair costs compared to traditional three-way
replication: when a data miss occurs in a data center, erasure codes
would require high disk usage and network bandwidth consumption
across nodes and racks to repair the failed data. In this paper, we
propose RPR, a rack-aware pipeline repair scheme for erasure-coded
distributed storage systems. RPR for the first time investigates the
insights of the racks, and explores the connection between the
node level and rack level to help improve the repair performance
when a single failure or multiple failures occur in a data center.
The evaluation results on several common RS code configurations
show that, for single-block failures, our RPR scheme reduces the
total repair time by up to 81.5% compared to the traditional RS code
repair method and 50.2% compared to the state-of-the-art CAR
algorithm. For multi-block failures, RPR reduces the total repair
time and cross-rack data transfer traffic by up to 64.5% and 50%,
respectively, over the traditional repair.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
Reliability; Distributed architectures.

KEYWORDS
data reliability, erasure coding, distributed storage system

ACM Reference Format:
Tong Liu, Shakeel Alibhai, and Xubin He. 2020. A Rack-Aware Pipeline
Repair Scheme for Erasure-Coded Distributed Storage Systems. In 49th
International Conference on Parallel Processing - ICPP (ICPP ’20), August
17–20, 2020, Edmonton, AB, Canada. ACM, New York, NY, USA, 11 pages.
https://doi.org/10.1145/3404397.3404444

1 INTRODUCTION
To handle the recent explosive data growth, data centers today
typically deploy thousands of commodity storage nodes or servers

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8816-0/20/08. . . $15.00
https://doi.org/10.1145/3404397.3404444

in multiple geographic locations to provide large-scale storage ser-
vices [7], [8]. Failures are universal to hardware devices, and when
the number of devices is very large—such as in a distributed stor-
age system—failures would occur much more frequently [22, 29].
To maintain data reliability and availability when a failure occurs,
redundancy techniques such as three-way replication [10, 33] are
commonly applied by traditional distributed storage systems. The
redundancy method is straightforward and efficient when the data
volume is small; however, in large-scale data centers, the 200% stor-
age overhead brought by replication is dramatic and unacceptable.
As a compromise, erasure coding, a storage-efficient fault-tolerant
technique, can provide the same or higher level of reliability while
requiring much less data redundancy [34]. As a result, erasure
coding has become increasingly popular and widely adopted by
enterprises including Microsoft [15], Facebook [26], and Google
[7].

Among multiple erasure code families, the Maximum Distance
Seperatable (MDS) codes are the most popular ones which can
provide the optimal storage efficiency. Among the MDS codes, the
Reed-Solomon (RS) code [27] is the most widely used code in prac-
tice. An RS code is usually configured with two parameters, n and
k . An RS (n,k) code has n original data chunks and k parity chunks,
which are the coded results from the original n data chunks. With
the n + k dependent chunks, which are referred to as a stripe, any
amount of failed chunks less than or equal to k can be recovered
by decoding any n of the remaining available chunks in the stripe.
When a chunk failure occurs, the traditional replication method
would only require one chunk transfer to recover (copying the data
from one of the remaining available replicas), while a (n,k) erasure
code needs to retrieve n available chunks of the same stripe.

Recent research [21, 25] has found that this scenario is even more
severe in large data centers. In modern data centers, storage nodes
are normally partitioned into different racks to provide rack-level
fault tolerance. Nodes within the same rack are connected via a
top-of-rack (TOR) switch, and multiple racks are connected by the
aggregation switch [5, 13, 19]. To recover a data node inside one
rack, multiple data nodes need to be transferred, either within the
same rack or across multiple racks. According to Facebook [26], a
median of over 180 terabytes (TB) of data are transferred through
top-of-rack switches every day for the purpose of recovery. In ad-
dition, the in-production cross-rack bandwidth is usually 1Gb/s,
while the inner-rack bandwidth is 10Gb/s [28]. This means that
cross-rack bandwidth is a scarcer resource, a fact also confirmed by
previous researchers [5, 6]. As a result, although RS code improves
storage efficiency, it causes a significant increase in the disk and
network traffic for data centers; specifically, it dramatically con-
sumes precious cross-rack bandwidth. Further, traditional RS code

https://doi.org/10.1145/3404397.3404444
https://doi.org/10.1145/3404397.3404444

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Tong Liu, Shakeel Alibhai, and Xubin He

repair would transfer a very large volume of data to the recovery
node and rack, which makes the data center load-imbalanced and
further hurts the cross-rack data transfer performance.

In this paper, we propose RPR, a rack-aware pipeline repair
scheme that can significantly reduce the cross-rack data transfer
and the total repair time when a single failure or multiple fail-
ures occur in an erasure-coded distributed storage system. RPR
is also beneficial for the data center from the load-balance aspect.
The RPR mechanism consists of three techniques: (i) data-parity
placement: when the parity chunks are generated, they are placed
on the racks by certain rules designed to increase the decoding
speed; (ii) inner-rack partial decoding: before the data chunks
are transferred to the recovery node/rack, partial decoding is first
conducted, which reduces the cross-rack data transfer and improves
the load balance; and (iii) cross-rack pipeline repair: after partial
decoding, a repair pipeline algorithm schedules the sequence of
inner-rack and cross-rack transfers to achieve the optimal total
repair time.

Our contributions are summarized as follows:
• We propose RPR, a novel repair scheme that can tolerate mul-
tiple failures and significantly reduce the amount of cross-
rack data transfers and the total repair time when failures
occur in an erasure-coded distributed storage system.
• We present a pipeline-based greedy algorithm which can
schedule an optimal repair pipeline for inner-rack decod-
ing/transfer and cross-rack decoding/transfer for a general
RS (n,k) code.
• We perform mathematical analysis, simulator evaluation,
and real-world evaluation of the RPR scheme. The results
indicate that, for single-block failures, our RPR scheme re-
duces the total repair time by up to 81.5% compared to the
traditional repair method and 50.2% compared to CAR [32].
For multi-block failures, RPR reduces the total repair time
by up to 64.5% and the cross-rack data transfer traffic by up
to 50% over the traditional RS code repair.

2 BACKGROUND
2.1 Erasure Coding
2.1.1 Basics. As mentioned in Section I, the RS (Reed-Solomon)
code is the most widely deployed code in today’s production. In
this paper, we focus on this code as well.

RS code is a matrix-based coding scheme [23], and Figure 1
presents the details of the matrix coding process of a (5, 3) code.
The encoding matrix has eight rows. The top five rows are an
identity matrix so that, after the encoding process, the original
data is kept the same. The bottom three rows, which are called
the coding matrix, consist of the encoding coefficients {e0,0, e0,1, ...,
e2,4} constructed from the Vandermonde matrix [4]. They are then
multiplied with the five original data chunks {D0, D1, D2, D3, D4}
to generate the parity chunks {P0, P1, P2}. For more detail, take P0,
generated by the following equation, as an example:

e0,0 ∗ D0 ⊕ e0,1 ∗ D1 ⊕ e0,2 ∗ D2 ⊕ e0,3 ∗ D3 ⊕ e0,4 ∗ D4 = P0 (1)

In the Vandermonde matrix, all the values in the first row of the
coding matrix are 1, so equation (1) can be simplified as:

D0 ⊕ D1 ⊕ D2 ⊕ D3 ⊕ D4 = P0 (2)

* =

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

e0,0 e0,1 e0,2 e0,3 e0,4

e1,0 e1,1 e1,2 e1,3 e1,4

e2,0 e2,1 e2,2 e2,3 e2,4

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

e0,0 e0,1 e0,2 e0,3 e0,4

e1,0 e1,1 e1,2 e1,3 e1,4

e2,0 e2,1 e2,2 e2,3 e2,4

P0

P1

P2

D1

D2

D3

D4

D0

P0

P1

P2

D1

D2

D3

D4

D0

D1

D2

D3

D4

D0

D1

D2

D3

D4

D0

Encoding Matrix

Original Data

Coded Stripe

Figure 1: Matrix-vector encoding process of an RS (5, 3) code.

...

Storage
node

TOR switch

...

rack

TOR switch

...

rack

TOR switch

...

rack

TOR switch

...

rack

TOR switch

...

rack

aggregation switch

Figure 2: Typical top-of-rack (TOR) network connectivity ar-
chitecture.

When l failures occur in the coded stripe (0 < l ≤ k), we pick n
rows in the encoding matrix that correspond to any n remaining
available chunks in the coded stripe; we denote the matrix formed
from these n rows asM ′. We then invert this matrix toM ′−1, which
serves as the decoding matrix. After multiplying the decoding ma-
trix with the remaining available chunks, the lost data is recovered.
This traditional RS recovery requires n chunks to be transferred
to the recovery node. (In this work, we consider data blocks, data
chunks and data nodes (which save data chunks) as the same con-
cept. We also consider parity blocks, parity nodes and parity chunks
as the same.) This can result in a data transfer bottleneck at the
recovery node when the data volume is huge, as well as cause load
imbalance.

2.1.2 Partial decoding. In the matrix coding/decoding process, all
the operations are calculated according to Galois Field (GF) arith-
metic [27], which is a finite field that has a limited number of
elements. In the Galois Field, the results of any operation still lie in
the field. One important property of GF arithmetic is that addition
is equivalent to XOR.

As an example, consider an RS (4, 2) code with four data chunks
{D0, D1, D2, D3} and two parity chunks {P0, P1}. When D2 fails,
assume that D0, D1, D3, and P0 are selected to recover the failed
chunk in the recovery node. Then the default recovery equation of
D2 would be:

D0 ⊕ D1 ⊕ D3 ⊕ P0 = D2 (3)

A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

With partial decoding deployed, the default recovery can be divided
into two parts: decode D0 and D1 to produce an intermediate re-
covery chunk I0, and decode D3 and P0 to produce an intermediate
recovery chunk I1. After that, D2 can be recovered by decoding I0
and I1. The recovery process would be:

D0 ⊕ D1 = I0,D3 ⊕ P0 = I1, I0 ⊕ I1 = D2 (4)

With partial decoding, the lost data can be decoded partially and in
parallel, thus mitigating the transfer bottleneck and load imbalance
issues.

2.2 Data Center Architecture and Chunk
Placement

Modern large-scale data centers hold data in thousands of com-
modity storage nodes (servers) organized across multiple racks. As
shown in Figure 2, each rack has a top-of-rack (TOR) switch that
connects the nodes within the same rack. Outside the rack, there is
an aggregation switch which connects all the TOR switches so that
the nodes across different racks can communicate [5, 12, 32].

In a large data center, not only may disks and servers fail, but
rack failures may also occur multiple times per year [21]. To en-
sure rack-level fault tolerance, previous data centers distribute each
coded stripe evenly across multiple racks [7, 14, 21]. However, the
one-node-per-rack placement brings significant cross-rack traffic
to the data center when a failure or update occurs. To address this
issue, recent research [13, 31, 32] proposes placing n nodes across
q racks (where q < n) so that the repair/update performance can
be improved. As a trade-off, when multiple nodes are placed in one
rack, the data center may not be able to provide multi-rack fault
tolerance. In this paper, we focus on the single-rack fault tolerance
scenario, which is considered a reasonable and common configura-
tion by previous work.

2.3 Traditional Repair Process
Given an RS (n,k) code, to ensure single-rack fault tolerance, each
rack can contain at most k nodes from the same stripe. To simplify
the discussion, assume each rack contains the same number of k
nodes, and the n + k nodes in the same stripe are distributed across
q racks. Figure 3 shows an example of a traditional RS (4, 2) code
repair process. The four original data blocks {d0, d1, d2, d3} and two
parity blocks {p0, p1} are evenly distributed across the three racks
{r0, r1, r2}. Assume that node d1 fails and nodes {d0, d2, d3, p0} are
selected to recover it. In the traditional decoding process [16, 31],
the four selected available nodes are transferred to the recovery
node/rack. Assuming that one cross-rack transfer takes tc time, the
time for the recovery node to receive all the necessary information
and start the decoding process is 4 ∗ tc . In Figure 3, timesteps ① to
④ indicate the steps for the total data transfer of this single-node
failure recovery.

Assume that the cross-rack bandwidth is ω, the data in each
node to be transferred is B, and the decoding speed is δ . Then the
total repair time for the traditional repair process, ttotal , is the sum
of the data transfer time and the decoding time:

ttotal = 4 ∗
B

ω
+ 1 ∗

B

δ
(5)

timesteps

①

②

③

④

cross-rack transfser

d0 d1

r0

d0 d1

r0

d2 d3

r1

d2 d3

r1

p0 p1

r2

p0 p1

r2 repair rack

repair
node ...

Figure 3: Example of traditional RS (4, 2) code repair process
when a single-block failure occurs.

In practice, the cross-rack bandwidth is approximately 1Gb/s
(128MB/s) [28], and the decoding speed for the RS code is approx-
imately 1000MB/s [23]. Clearly, the cross-rack bandwidth of the
repair node/rack is the bottleneck of the whole repair process. To
repair one failed node, four nodes need to be transferred across
racks to the repair node/rack; this consumes a large amount of the
precious cross-rack bandwidth and takes a long time due to the low
bandwidth. In addition, all the data uploads happen in the recovery
node/rack, which makes the system load-imbalanced.

3 DESIGN
3.1 Inner-rack Partial Decoding
As discussed, the high cross-rack network traffic and load imbalance
is caused by the fact that the recovery node can only start the
decoding process after it receives all the information from the
other nodes/racks. To mitigate the high traffic and balance the
load, it would be intuitively better if the data transfer and decoding
processes could be distributed to other nodes/racks. In addition,
according to previous research [28, 30], the cross-rack bandwidth in
production is 1Gb/s, while the inner-rack bandwidth is 10Gb/s. This
means that it would also be more beneficial if some of the cross-rack
transfers could be replaced by inner-rack transfers. Thus, inner-
rack partial decoding is a promising technique that can be applied
here.

Partial decoding, as described in Section II.A, utilizes a property
of the RS code through which the data is encoded and decoded via
linear combinations. Traditionally, to repair a data block, all related
data blocks need to be transferred to the recovery node/rack. With
partial decoding, nodes in the same rack can decode locally first
and then generate an intermediate coding block (with the same size
as an original data block). In this case, the cross-rack data transfer
for each rack would be at most one block, and since the inner-rack
bandwidth is around 10 times as the cross-rack bandwidth, the data
transfer time can also be reduced significantly.

Figure 4 shows the repair process of the example used in Figure
3, but with inner-rack partial decoding. Instead of transferring four
blocks to the repair node/rack, racks r1 and r2 first conduct inner
partial decoding in parallel. This time, timestep ① only takes one
inner-rack transfer timestep, ti . Compared to the traditional repair
process, which has a transfer time of 4 ∗ tc , the partial decoding
has a transfer time of only 2 ∗ tc + ti , where tc ≈ 10 ∗ ti .

Following is the recursive inner-rack partial decoding algorithm
for each rack involved in the repair process:

The algorithm Inner runs for each rack when the repair process
starts and takes the nodes involved in the repair as the input. Inner
divides the nodes into several pairs and performs partial decoding
recursively until the final intermediate block I is generated. In the

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Tong Liu, Shakeel Alibhai, and Xubin He

timesteps

①

②

③cross-rack transfser

d0 d1

r0

d0 d1

r0

d2 d3

r1

d2 d3

r1

p0 p1

r2

p0 p1

r2 repair rack

repair
node ...

inner-rack transfser

Figure 4: Example of an RS (4, 2) code repair process with
inner-rack partial decoding.

Algorithm 1: Inner (d0,d1, ...,dn−1)
input :Selected data blocks in the rack involved in the

repair process, {d0,d1, ...,dn−1}.
output :An intermediate block I that will be cross-rack

transferred for further decoding.

if n == 0 then
return I

if n%2 == 0 then
for a ← 0 to n−2

2 do
ia = d2a ⊕ d2a+1;

Inner (i0, i1, ..., i n−2
2
)

else
for a ← 0 to n−3

2 do
ia = d2a ⊕ d2a+1;

Inner (i0, i1, ..., i n−3
2
⊕ dn−1)

example shown in Figure 4, after each intermediate block is gen-
erated, the cross-rack transfer schedule would be straightforward.
However, when multiple failures occur, or when there are more
nodes involved in the repair process, the inner-rack and cross-rack
transfer schedules would be much more complicated. The reason
for this is that when multiple failures occur in multiple nodes/racks,
the finish times of the inner-rack partial decodings may vary for
different nodes/racks. To start cross-rack partial decoding, some
intermediate data blocks must first be generated by certain inner-
rack partial decodings. In order to maintain the data consistency,
as well as make full use of the parallelism of the inner-rack and
cross-rack transfers, a scheduling algorithm is essential.
3.2 Cross-rack Pipeline Scheduling
To address this issue, we propose a pipeline-based greedy algorithm
which aims to maintain the data consistency during the entire re-
pair process as well as achieve the optimal total repair time. (The
proof is in Section IV.B.)

In the example in Figure 4, the repair schedule for RS (4, 2)
code looks straightforward. However, when the code is more com-
plex, various repair schedules can be selected with respect to the
inner-rack and cross-rack data transfers. Consider another simple
example, RS (6, 2) code, as shown in Figure 5. Figures 5a and 5b
display two possible inner-rack and cross-rack transfer schedules.
To minimize the cross-rack transfer volume, we select the nodes in
racks r1, r2, and r3 to conduct the inner-rack partial decodings and
cross-rack transfers. In schedule 1, after timestep ①, all three racks
finish the partial decoding and prepare to send the intermediate
data to the repair node/rack. Without loss of generality, r1 starts

its cross-rack transfer first. Then, since the repair rack is busy re-
ceiving the data from r1, racks r2 and r3 will have to wait until the
transfer is finished. Likewise, after r1 finishes its cross-rack transfer,
r3 will also need to wait until r2 finishes. For schedule 2, similarly,
after timestep ①, all three racks finish the partial decoding and pre-
pare to send the intermediate data. The difference is that this time,
only r3 will first be scheduled to send the intermediate data I3 to
the repair rack. In the meantime, r1 will send its intermediate data
I1 to r2. There, I1 and I2 will be further partially decoded, creating
the intermediate data block I1+2. These two cross-rack transfers
will be conducted simultaneously in timestep ②. After timestep ②,
the intermediate block I1+2 will be cross-rack transferred to the
repair rack, conduct the final partial decoding with I3, and obtain
the reconstructed data block d1.

These two schedules both have three cross-rack transfers and
use three timesteps; however, their total repair times have a big
difference. This is due to the high bandwidth difference between
inner-rack and cross-rack transfers. As previously assumed, the
time for one cross-rack transfer is tc ≈ 10 ∗ ti , where ti is the time
for one inner-rack transfer. Then for schedule 1, the total repair
time would be approximately 3 ∗ tc + ti , or 31 ∗ ti . (The decoding
time is neglected here because it is small compared to the data
transfer time in this approximate calculation.) For schedule 2, after
the inner-rack transfer, r1 and r2 do not wait for r3 to finish the
cross-rack transfer; instead, r1 immediately sends the intermediate
block to r2, and r3 immediately sends the intermediate block to the
recovery rack. In this case, the two cross-rack transfers in timestep
② can be conducted in parallel, thereby avoiding the time wasted
by waiting. Therefore, the total repair time can be estimated to be
around 1 ∗ ti + 2 ∗ tc , or 21 ∗ ti .

Algorithm 2: Cross (nodes and racks)
input :Failed block and its corresponding rack ID;

nodes in each rack that are in the same stripe
and their corresponding rack IDs.

output :The reconstructed data block dr .

if recovery node gets all intermediate data then
do last partial decoding;
return dr ;

for each rack do
if inner decoding is possible then

Inner (nodes in current rack);
else

start cross-rack transfer with any other rack
which has no inner-rack transfer;

if cross-rack transfer with any other rack which has no
cross-rack transfer is possible then

start cross-rack transfer with selected rack;
else

wait until the rack which finishes the cross-rack
first, then start transfer;

Cross (racks that conduct inner-rack partial decodings in
the next timestep)

A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

timesteps

①

②

③cross-rack transfser

d0 d1

r0

d0 d1

r0

d2 d3

r1

d2 d3

r1

p0 p1p0 p1

rr3 repair rack

repair
node ...

inner-rack transfser

d2 d3d2 d3

rr2

④

(a) Schedule 1.

timesteps

①

②

③cross-rack transfser

d0 d1

r0

d0 d1

r0

d2 d3

r1

d2 d3

r1

p0 p1p0 p1

rr3 repair rack

repair
node ...

inner-rack transfser

d2 d3d2 d3

rr2

(b) Schedule 2.

Figure 5: Example of anRS (6, 2) code repair processwith two
different schedules.

From this example, the cross-rack pipeline scheduling algorithm
for a general RS code (n,k) with j failures can be described in
Algorithm 2, the Cross algorithm:
• For each rack, if an inner-rack decoding can be conducted,
start the inner-rack transfer and partial decoding. Since
inner-rack transfers are faster than cross-rack transfers and
can reduce the cross-rack transfer data volume, they should
always have priority over cross-rack transfers.
• If an inner-rack transfer cannot be scheduled, then start
a cross-rack transfer with any other rack which currently
has no inner-rack transfer. (Either its inner-rack transfer
would have finished or it does not need to conduct one).
The recovery rack can also be selected, but only when every
non-recovery rack is busy.
• When the inner-rack transfer finishes, start a cross-transfer
with any other rack that does not currently have a cross-rack
transfer.
• If every other rack has a cross-rack transfer, then wait until
the one that finishes first, and then start the transfer.
• Repeat recursively until all the racks finish their cross-rack
transfers or the recovery node receives all the intermediate
data.

The Cross algorithm works together with the Inner algorithm:
whenever Inner finishes the inner-rack data transfer and produces
the intermediate data, Cross will give the optimal cross-rack trans-
fer schedule based on the current node and rack transfer status.

3.3 Data Pre-placement Optimization for
Single-block Failure

Previous work has found that single-block failures are the most
common and dominant failures in distributed storage systems [9,
18, 24, 29]. To optimize for this case, we propose the pre-placement
scheme, which utilizes the previously mentioned properties of the
RS code.

As described in Section II.A, a typical decoding process requires
building the decoding matrixM ′−1. The multiplication ofM ′−1 and
the remaining available chunks will recover all the failed chunks.

According to our observation, generating the decoding matrix may
take up to 75% of the total decoding time. However, in the case of a
single-block failure, this time-consuming process can sometimes
be neglected if the data and parity blocks are placed in a certain
pattern.

According to equations (2) and (3), when the Vandermonde
matrix—the standard matrix employed in the Jerasure [23] library—
is used, any failed block Df in the original data blocks {D0, D1, D2,
..., Dn−1} can be recovered by a single calculation with the help of
the first parity block P0:

Df = D0 ⊕ D1 ⊕ ... ⊕ Df −1 ⊕ Df +1 ⊕ ... ⊕ Dn−1 ⊕ P0 (6)

Intuitively, to reduce the cross-rack data transfer, it would be
better to transfer as much information as possible in each cross-rack
transfer. Thus, to reduce the amount of cross-rack transfers and
avoid building the decoding matrix, the best way is to put P0 with
data blocks instead of parity blocks in the same rack. For example,
in Figure 4, both p0 and p1 are involved in the repair process. In this
case, the decoding process will construct the decoding matrix and
generate the failed block based on the matrix calculation, which is
time-consuming. A simple way of avoiding this would be to switch
the placement of d0 and p1. Then according to equation (6), the
failed block d1 can be calculated by one XOR equation without
creating the decoding matrix.

For an RS (n,k) code, if the first parity block P0 is placed with
all data blocks in the same rack, then, assuming the block failure
rate is same for all blocks, there is a 1

n chance that there is no need
to build the decoding matrix when a single-block failure occurs. It
should be noted that this pre-placement has no negative effect on
other performance metrics, such as I/O or load balance. In addition,
while this does not benefit the multi-block failure scenario (as the
decoding matrix must be built in that case), the pre-placement
scheme does not negatively impact it either.

3.4 Extension to Multi-block Failures
When one failure occurs, the failed block can be reconstructed by
using equations (3) and (4). However, when multiple failures occur,
the procedure becomes much more complicated since multiple
decoding equations are required. In this subsection, we discuss the
extended multi-block repair scheme of RPR, which can reduce the
total repair time when multiple failures occur.

Assume that there is an (n,k) erasure coded system with original
data blocks {d0, d1, ..., dn−1} and parity blocks {p0, p1, ..., pk−1}. Then
the encoded functions for this system are:

e0,0 ∗ d0 ⊕ e0,1 ∗ d1 ⊕ ... ⊕ e0,n−1 ∗ dn−1 = p0

...

ek−1,0 ∗ d0 ⊕ ek−1,1 ∗ d1 ⊕ ... ⊕ ek−1,n−1 ∗ dn−1 = pk−1

(7)

where ei, j is the encoding coefficient.
Further, assume that there are k failed blocks, {df ,0, df ,1, ...,

df ,k−1} ∈ {d0, d1, ..., dn−1}. Then from equation (7), we have:

e ′0,0 ∗ d0 ⊕ e
′
0,1 ∗ d1 ⊕ ... ⊕ e

′
0,n−1 ∗ pk−1 = df ,0

...

e ′k−1,1 ∗ d0 ⊕ e
′
k,1 ∗ d1 ⊕ ... ⊕ e

′
k−1,n−1 ∗ pk−1 = df ,k−1

(8)

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Tong Liu, Shakeel Alibhai, and Xubin He

where e ′i, j is the coefficient after the conversion. Note that the
blocks on the left side of each sub-equation in equation (8) do not
include the failed block on the right side of each sub-equation.

To recover each failed block, the data on the left side of each
equation is needed. Once again, we can use partial decoding and
cross-rack scheduling to reduce the total repair time. Assume that
the stripe is distributed across q racks. Then, for each sub-equation
in (8), every rack can only transfer an intermediate data block Ii, j
to the recovery node/rack, which is the partial decoding result of
the available blocks in the current rack. Then equation (8) can be
further written as:

I0,0 ⊕ I0,1 ⊕ ... ⊕ I0,q−1 = df ,0
...

Ik−1,0 ⊕ Ik−1,1 ⊕ ... ⊕ Ik−1,q−1 = df ,k−1

(9)

In the multi-block failure scenario, the partial decoding in each
rack needs to be conducted multiple times to obtain all the required
intermediate data blocks. After the intermediate data blocks are
generated, each sub-equation in (9) can be considered as a single-
block failure scenario as previously analyzed. The difference is that
there will be multiple cross-rack transfers for each rack. Then the
Inner-multi and Cross-multi algorithms, corresponding to the
multi-block failure scenario, can be summarized as in Algorithms 3
and 4. (Due to the space limitation, the details of Algorithms 3 and
4 are shown in the external links.)

4 ANALYSIS
4.1 Total Repair Time with Partial Decoding
To provide data reliability, assume that each erasure-coded stripe
in a data center is distributed across n + k nodes and q racks with
an RS (n,k) code. For rack Ri , the number of nodes involved in the
repair process is ri . To ensure single-rack fault tolerance, ri should
be in the range [1,k]. As described in Section III, the cross-rack
bandwidth is usually 1

10 of the inner-rack bandwidth; therefore,
assume that tc = 10 ∗ ti , where tc is the time cost for one cross-rack
transfer for one data block and ti is the time cost for one inner-rack
transfer for one data block. In addition, assume that the decoding
time with the decoding matrix built is twd and the decoding time
without building the decoding matrix is tnd . According to our ob-
servation, we assume that twd = 4∗tnd ; the actual time is shown in
the evaluation section. Since the decoding time is small compared
to the data transfer time, it is neglected in the total repair time
analysis.

For traditional repair, when a data failure occurs, n remaining
available blocks will be chosen to be cross-transferred to the repair
node/rack. Then for traditional repair, the total repair time ttotalt
is:

ttotalt = n ∗ tc (10)
With the RPR scheme, the total repair process for a data transfer

can be divided into two parts, a cross-rack transfer and an inner-
rack transfer. Then the total inner-rack transfer time Tinner is:

Tinner = ((Max ⌊loд2ri ⌋) + 1) ∗ ti (11)

The total cross-rack transfer time Tcross in the worst case is:

Tcross = (⌊loд2q⌋ + 1) ∗ tc (12)

Figure 6: Theoretical total repair time for traditional repair
and RPR repair with different RS codes.

To simplify the analysis, assume that each rack has the same ri ,
which is k . Then in the worst case, where no pipeline is used at all,
the total repair time for the RPR scheme ttotalr is:

ttotalr = Tinner +Tcross =

(⌊loд2k⌋ + 1) ∗ ti + (⌊loд2q⌋ + 1) ∗ tc
(13)

Figure 6 shows the repair time trend for different RS codes with
traditional repair and RPR repair (worst case). In the figure, ti and tc
are assumed to be 1ms and 10ms, respectively. The figure indicates
that, with n increasing in the RS code, the traditional repair time
increases linearly, while the RPR repair time increases steadily and
with a much smaller scale.

4.2 Greedy Pipeline Cross-rack Schedule
The pipeline cross-rack schedule proposed in Section III.B aims
to achieve the minimum total repair time during the whole repair
process. The rest of this sub-section proves that this schedule is an
optimal greedy algorithm.

Suppose S is the schedule produced by RPR andO is the optimal
solution, which has the minimum repair time. The Algorithm 2 can
be simplified as follows:

(1) If an inner-rack transfer can be conducted, then conduct it.
(2) If an inner-rack transfer cannot be conducted, then start a

cross-rack transfer with any rack which does not currently
have an inner-rack transfer.

(3) When the inner-rack transfer finishes, start a cross-rack
transfer with any rack which does not have a cross-rack
transfer.

(4) If every other rack has a cross-rack transfer, then wait until
the first one finishes and then start the transfer.

(5) If the recovery rack does not receive all the intermediate
data, go back to step 1.

Let Ts be the total repair time produced by schedule S from
Algorithm 2 and To be the optimal (minimal) repair time from O,
and assume that S is not optimal. Then Ts > To . A repair process
consists of multiple inner-rack and cross-rack transfers, some of
which can be conducted in parallel in a single inner-rack or cross-
rack timestep. These cost one ti and one tc , respectively. tc and
ti are the same for Ts and To , so Ts must have more timesteps
thanTo . The extra timesteps either include inner-rack or cross-rack
transfer timesteps. If we assume that the extra timesteps include
any inner-rack timesteps, then we would contradict steps 1 and

https://www.dropbox.com/s/td2wpawss8614x4/Algorithm3.png?dl=0
https://www.dropbox.com/s/os1g5jz1af0khu2/Algorithm4.png?dl=0

A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

2 in the algorithm, because any inner-rack transfer is prioritized
to be conducted in parallel for each rack at the beginning of the
repair process unless an inner-rack transfer cannot be conducted.
However, if we assume that the extra timesteps include any cross-
rack transfers, then we would contradict steps 3 and 4, because
according to the algorithm, no rack will be idle unless there is a data
consistency issue (step 4). This means that ifTo has fewer cross-rack
transfer timesteps than Ts , then To will not able to maintain data
consistency and thus cannot produce the correct repair result. This
contradicts the assumption that O is the optimal solution.

This concludes the proof that the RPR schedule is the optimal
solution which can achieve the minimum repair time while also
maintaining data consistency throughout the entire data transfer
and data decoding processes.

4.3 Multi-block Failure Recovery Limitations
In this section, we discuss the performance limitations of RPR in
the worst case and we also describe how these limitations only
apply to RS (n,k) codes in certain scenarios.

4.3.1 Code configuration. Based on the design of the multi-failure
recovery in Section III.D, we know that when multiple failures
occur, we have a series of steps to recover the failed data. First, each
rack needs to finish the multiple inner-rack data transfer and partial
decoding operations, which, in the worst case, would take k ∗ti time
(with partial decoding time neglected). Next, the racks will begin
the cross-rack data transfer to get the intermediate data blocks and
then conduct further partial decoding. For an RS (n,k) code, the
best case for the failures is that all k failures occur in the same
rack, because there are not any extra cross-rack transfers for inner
partial decoding. In this case, each rack only needs to transfer k
intermediate blocks from the inner-partial decoding to the recovery
node/rack. It is worth noting that, in themulti-block failure scenario,
the partial decoding rules are different from the single-block failure
scenario. In the single-block failure scenario, there will only be one
sub-equation in equation (9), which means the available data/parity
blocks can be decoded with any combination. However, in the
multi-block failure scenario, the available data/parity blocks need
to be decoded multiple times with the corresponding decoding
coefficients from the decoding matrix in each sub-equation. Assume
an RS (n,k) code with n+k

k ≤ 3 (or n
k ≤ 2). In the best case, which is

when only one rack has failures, there will be at most two remaining
racks and one recovery rack; therefore, there are at most three racks
in total for the cross-rack transfer. Note that here n+k

k equals q, the
number of racks that are used to place the n + k data/parity blocks.
Then for each sub-equation in equation (9), the time needed for the
cross-rack transfer is ⌈loд23⌉ ∗ tc . Since there are k sub-equations,
the total repair time needed is ⌈loд23⌉ ∗ k = n

k ∗ k = n cross-rack
timesteps, which is the same as the traditional RS code repair time.
On the other hand, for codes with n+k

k > 3, for each sub-equation,
the repair time with partial decoding would be ⌈loд2q⌉ ∗ tc and the
total repair timewould be ⌈loд2q⌉∗tc∗k . Compared to the traditional
repair time n ∗ tc , the improvement would be 1 − (⌈loд2q ⌉∗kn).

An RS (n,k) code with n+k
k ≤ 3means that the storage overhead

is equal to or greater than 50%. However, the major motivation for
using erasure coding to replace the traditional three-way replication
is its high storage efficiency. Therefore, erasure codes with n+k

k > 3

tend to be used in the industry. For example, Facebook’s HDFS-
RAID uses a default code configuration of (10, 4), [25, 35], and
Windows Azure System uses (12, 2, 2) [14].

4.3.2 Cross-rack traffic. Equation (9) shows that, in each sub-equation,
the number of intermediate blocks I generated is n

k . In the worst
case (where k failures occur), there are k sub-equations in equa-
tion (9); therefore, the total number of intermediate data blocks
that must be generated is n

k ∗ k = n. This implies that RPR does
not reduce the cross-rack data transfer traffic when the worst case
occurs. However, RPR does not increase the traffic either.

4.3.3 Multi-block failure with 2 ∼ (k − 1) failures (non-worst case).
Assume that for an RS (n,k) code where n+k

k ≤ 3 there are l-block
failures, where 2 ≤ l ≤ (k − 1). Then the total repair time would be
⌈loд23⌉ ∗l = 2∗l cross-rack timesteps. Since n ≤ 2k , the total repair
time is highly likely to be lower than the traditional repair time, n
cross-rack timesteps. Similarly, the cross-rack traffic in this case
would be n

k ∗ l blocks, which is less than the traditional repair’s
cross-rack data transfer with n block transfers. Therefore, when
the worst case does not occur, which means that the number of
failures is 2 ∼ (k − 1), RPR is able to deliver better improvement
to both the total repair time and the cross-rack data transfer traffic
for any code configuration.

5 EVALUATION
We evaluate the RPR scheme from two aspects: i) simulations on the
Simics [2] simulator, in which multiple nodes and racks are created
and run the RPR repair scheme, and ii) experiments on Amazon
EC2, in which real-world machines in geo-distributed areas are
selected to imitate the rack-level scenario.

5.1 Simics Simulation
Simics [20] is a platform for full-system simulation that is suffi-
ciently generic to model embedded systems, desktops, clusters, and
more. In our experiments, Simics generates a cluster of multiple
nodes each time, as the experiment requires. Each node/server has
a single-core Intel(R) Core(TM)-i7 CPU @ 2.00 GHz with 4GB RAM
running on Ubuntu 16.04.4 LTS. Each node has an upload/download
network bandwidth as 1Gb/s. The erasure-coded RPR prototype is
built based on the Jerasure Library v2.0 [17].

Simics itself cannot simulate the rack granularity in a cluster.
To achieve the different inner-rack transfer and cross-rack transfer
bandwidth, wondershaper [3] is applied to our simulated cluster.
Wondershaper is a script that allows the user to limit the band-
width of one or more network adapters. Since the upload/download
bandwidth in the Simics cluster is 1Gb/s, we assume that to be the
inner-rack transfer bandwidth. For each two nodes in the same rack,
the bandwidth between them is the default 1Gb/s. On the other
hand, for nodes that do not reside in the same rack, the bandwidth
is set to 0.1Gb/s, which is 1

10 of the default bandwidth.

5.1.1 Single-block failure. We first focus on the single-block failure
scenario, in which a random data block in the encoded stripe is
assumed to have failed. In our experiments, each data/parity block
is configured to be 256MB. In this part, we compare the repair
performance in two aspects, the cross-rack traffic and the total
repair time. The comparisons are conducted among RPR, traditional

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Tong Liu, Shakeel Alibhai, and Xubin He

0

2

4

6

8

10

12

14

RS(4,2) RS(6,2) RS(6,3) RS(8,2) RS(8,4) RS(12,4)

bl
oc

k
nu

m
be

rs

Tra CAR RPR

Figure 7: Cross-rack traffic for traditional repair (Tra), CAR,
and RPR repair of single-block failures with different RS
codes on the Simics simulator.

0

100

200

300

400

500

600

700

800

RS(4,2) RS(6,2) RS(6,3) RS(8,2) RS(8,4) RS(12,4)

re
pa

ir
tim

e
(s

)

Tra CAR RPR

Figure 8: Total repair time for traditional repair (Tra), CAR,
and RPR repair of single-block failures with different RS
codes on the Simics simulator.

repair, and CAR [32], which, to our knowledge, is the state-of-the-
art cross-rack single-failure repair scheme. Again, we use the code
configuration in Section IV.A.

Figure 7 shows that both RPR and CAR can reduce the cross-rack
traffic compared to the traditional repair scheme. In the case of a
single-block failure, the cross-rack traffic is the same for CAR and
RPR because they both apply the partial decoding technique to
reduce the cross-rack traffic.

Figure 8 shows the total repair time difference among the three
repair schemes. Because of the greedy pipeline repair scheme, RPR
can choose the fastest repair schedule in all code configurations.
However, for CAR, since its main focus is on load balance and there
is no repair schedule, in certain code configurations, after the inner
partial decoding, the intermediate data will wait for the other cross-
rack transfers to finish, thereby resulting in extra cross-rack transfer
timesteps. In the Simics simulation, based on the six common RS
code configurations, RPR can reduce the total repair time by an
average of 67% and up to 81.5% compared to the traditional repair.
Compared to CAR, RPR can reduce the total repair time by an
average of 24% and up to 37%.

5.1.2 Multi-block failure.

• Non-worst case. As discussed in Section IV, RPR also sup-
ports the multi-block failure scenario for any RS (n,k) code
(when the worst case does not occur), while CAR only fo-
cuses on the single failure scenario. In this section, we com-
pare the total repair time and the cross-rack transfer traffic
between RPR and the traditional repair with different code
configurations. Different block locations in the stripe may

0

100

200

300

400

500

600

700

800

(6,3,2) (8,4,2) (8,4,3) (12,4,2) (12,4,3)

To
ta

l r
ep

ai
r t

im
e

(s
ec

on
ds

) Tra RPR

Figure 9: Total repair time for traditional repair (Tra) and
RPR repair of multiple failures (2 ∼ k − 1 failures) with dif-
ferent RS codes on the Simics simulator. The third argument
of each code represents the number of block failures.

result in different optimal repair times, because the repair
schedule is determined by the remaining available blocks
after a failure occurs. Among the six code configurations we
use in the single-block scenario, three of them—(4, 2), (6, 2),
and (8, 2)—are not chosen in this experiment because the
only multi-block failure for them is the worst case. For codes
(6, 3), (8, 4), and (12, 4), there may exist different failure sce-
narios with respect to the number of failures. For example,
code (8, 4)may have a two-block failure or a three-block fail-
ure. To represent this, we use a third parameter z in the code
configuration: (n,k, z) means that a z-block failure occurs
for the (n,k) code, where 2 ≤ z < k . For Figures 9 and 10,
the value shown in RPR’s bar is the average number for all
possible block locations for each code configuration, and the
upper and lower caps show the highest and lowest values
within all scenarios. The results in Figure 9 show that RPR
reduces the total repair time by an average of 40.75% and
up to 64.5% compared to the traditional repair scheme; with
respect to the cross-rack transfer traffic, RPR uses an aver-
age of 29.35% and up to 50% fewer cross-rack data transfers
compared to the traditional repair scheme.
• Worst case. When the worst case (where k blocks fail) oc-
curs, RPR can provide better performance for an RS (n,k)
code with n+k

k > 3. Similarly, we choose the codes that
satisfy the code configuration among the six codes we use
in the single-block failure scenario: codes (6, 2), (8, 2), and
(12, 4). In Figure 11, the value represented by RPR’s bar is
the average total repair time for all possible block locations
for each code configuration, while the upper and lower caps
display the highest and lowest values among all scenarios.
The results in Figure 11 show that, in the multi-block failure
scenario’s worst case, RPR reduces the total repair time by an
average of 18.3% and up to 29.8% compared to the traditional
repair scheme.

5.2 Amazon EC2 Evaluation
To validate that RPR works in real-world systems, we further eval-
uate RPR in AWS EC2 [1]. To simulate the rack-level data transfer,
we launch instances (virtual machines) in five different continents:
Ohio in North America, Tokyo in Asia, Paris in Europe, São Paulo

A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

0

2

4

6

8

10

12

14

(6,3,2) (8,4,2) (8,4,3) (12,4,2) (12,4,3)

N
um

be
r o

f b
lo

ck
s

Tra RPR

Figure 10: Cross-rack data transfer traffic for traditional re-
pair (Tra) and RPR repair of multiple failures (2 ∼ k − 1 fail-
ures) with different RS codes on the Simics simulator. The
third argument of each code represents the number of block
failures.

0
100
200
300
400
500
600
700
800

RS(6,2) RS(8,2) RS(12,4)

to
ta

l r
ep

ai
r t

im
e

(s
)

Tra RPR

Figure 11: Total repair time for traditional repair (Tra) and
RPR repair of multiple failures with different RS codes on
the Simics simulator in the worst case (k failures).

Table 1: Inter- and intra-bandwidths (Mbps) across regions

Ohio Tokyo Paris São Paulo Sydney
Ohio 583.39 51.798 59.281 67.613 41.4

Tokyo 583.26 45.56 41.605 91.21
Paris 641.403 56.57 40.79

São Paulo 631.416 34.44
Sydney 565.39

in South America, and Sydney in Australia. We consider machines
within the same continent to be machines within same rack, and
machines across continents to be machines across racks. Table 1
shows the inter- and intra-bandwidth across or within each region.
The average cross-region bandwidth is 53.03Mbps, and the average
inner-region bandwidth is 600.97Mbps. The ratio of cross-region
and inner-region bandwidth is 11.32, which approximately matches
our previous assumption (10:1). In this part, each virtual machine is
created based on a t2.micro type Linux Kernel 4.14 Amazon Linux
2 AMI with 1 vCPU, 1 GB RAM, and 8 GB SSD.

5.2.1 Single-block failure. In this evaluation, we use the same code
configuration as in Section V.A to compare the total repair times of
the traditional repair, CAR, and RPR. The cross-rack traffic is the
same as the Simics simulation. Figure 12 shows the results, which
indicate that the repair time difference of CAR and RPR is more

0

100

200

300

400

500

600

700

800

RS(4,2) RS(6,2) RS(6,3) RS(8,2) RS(8,4) RS(12,4)

To
ta

l r
ep

ai
r t

im
e

(s
)

Tra CAR RPR

Figure 12: Total repair time for traditional repair (Tra), CAR,
and RPR repair of single-block failures with different RS
codes on AWS EC2 machines.

significant than the Simics simulation results. This is because in EC2
machines the decoding time with the traditional decoding function
of a 256MB file is around 20 seconds, while our optimized decoding
function only costs around 2.5 seconds. In the EC2 experiments,
RPR can reduce the total repair time by an average of 67.6% and
up to 80.8% compared to the traditional repair. Compared to CAR,
RPR can reduce the total repair time by an average of 37.2% and up
to 50.3%.

5.2.2 Multi-block failure. In this evaluation, we use the same code
configurations as in the Simics multi-failure simulation.
• Non-worst case. For the cross-rack data transfer traffic, the
result of the AWS EC2 evaluation is the same as the Simics
result since the scheduling is the same. In Figure 13, the
value shown in RPR’s bar is the average total repair time for
all possible block locations for each code configuration, and
the upper and lower caps represent the highest and lowest
values for all scenarios. Figure 13 shows the results: when
the worst case does not occur, RPR can reduce the total repair
time by an average of 39.93% and up to 61.96% compared to
the traditional repair method.
• Worst case. Figure 14 shows the results, which indicate that,
in the worst multi-block failure case, RPR can reduce the
total repair time by an average of 20.6% and up to 32.8%
compared to the traditional repair method.

6 RELATEDWORK
Recently, multiple works focusing on different aspects of the rack-
level storage system have been proposed. Their motivations can be
divided into the following categories:
• Reduce the data transfer for encoding the replicas to stripes
when hot data become warm/cold. Xie et al. find that the
conventional sequential striping causes risky blocks and
expensive network consumption when encoding the replicas.
Thus, a non-sequential striping according to the data layout
is proposed [36], which results in low transfer cost across
racks. EAR [19] observes that when data blocks are first
stored with replication in clustered file systems, the replica
placement plays a critical role in determining the system’s
encoding performance. By solving a maximum matching

ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada Tong Liu, Shakeel Alibhai, and Xubin He

0
100
200
300
400
500
600
700
800

(6,3,2) (8,4,2) (8,4,3) (12,4,2) (12,4,3)

To
ta

l r
ep

ai
r t

im
e

(s
ec

on
ds

) Tra RPR

Figure 13: Total repair time for traditional repair (Tra) and
RPR repair of multi-block failures (2 ∼ k − 1 failures) with
different RS codes on AWS EC2 machines. The third argu-
ment of each code represents the number of block failures.

0
100
200
300
400
500
600
700
800

RS(6,2) RS(8,2) RS(12,4)

To
ta

l r
ep

ai
r t

im
e

(s
) Tra RPR

Figure 14: Total repair time for traditional repair (Tra) and
RPR repair of multi-block failures with different RS codes
on AWS EC2 machines when the worst case (k failures) oc-
curs.

problem, EAR avoids downloading data blocks from other
racks during the encoding operation.
• Reduce the data transfer for data updates in intensive-
updating erasure-coded storage systems. To mitigate fre-
quent data updates in erasure-coded storage systems, CAU
[30] selectively chooses the parity based on the update pat-
tern and the data layout to reduce the cross-rack update
traffic when an update occurs.
• Reduce the data transfer for reconstructing the failed data
when failure occurs. Gong et al. [11] considers the mini-
mization of the regeneration time by selecting the participat-
ing nodes in heterogeneous networks. Nevertheless, it only
works well when the nodes’ bandwidth vary significantly.
CAR [32] examines the per-stripe recovery solutions across
multiple stripes and constructs a multi-stripe recovery so-
lution that balances the amount of cross-rack repair traffic
across multiple racks. However, it only focuses on the single-
block failure scenario, which is not enough in practical data
center where multiple failures are possible. In contrast, RPR
is capable of giving an optimal reconstruction solution for
both single-block and multi-block failures.

7 CONCLUSION
In this paper, we focus on the cross-rack data transfer overhead issue
with respect to both traffic and repair time when failures occur in a

data center. We propose RPR, a rack-aware pipeline repair scheme
comprised of three techniques: data-parity placement, inner-rack
partial decoding, and cross-rack pipeline scheduling. RPR supports
both single-block and multi-block failures. We conduct experiments
on both Simics and AWS EC2; results from both platforms show
that, in the single-block failure scenario, RPR significantly improves
the repair performance compared to the traditional RS code as
well as CAR, the state-of-the-art rack-aware single-block recovery
scheme, with total repair time reductions of up to 81.5% and 50.2%,
respectively. When multiple blocks fail, RPR also improves the
repair performance compared to the traditional RS code repair with
total repair time reductions of up to 64.5% and cross-rack data
transfer reductions of up to 50%.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their valuable comments
and feedback. This work was supported by the National Science
Foundation (CCF-1717660, CCF-1813081 and CNS-1828363).

REFERENCES
[1] [n.d.]. Amazon Elastic Compute Cloud (Amazon EC2). https://aws.amazon.com/

ec2/.
[2] [n.d.]. Simics Full System Simulator. https://www.windriver.com/products/

simics/.
[3] [n.d.]. wondershaper - A network traffic management tool in Linux. https:

//github.com/magnific0/wondershaper.
[4] AA Bjrrck and V Pereyra. 1970. Solution of Vandermonde system of equations.

Math Comput 24 (1970), 893–903.
[5] Mosharaf Chowdhury, Srikanth Kandula, and Ion Stoica. 2013. Leveraging end-

point flexibility in data-intensive clusters. In ACM SIGCOMM Computer Commu-
nication Review, Vol. 43. ACM, 231–242.

[6] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: simplified data processing
on large clusters. Commun. ACM 51, 1 (2008), 107–113.

[7] Daniel Ford, François Labelle, Florentina Popovici, Murray Stokely, Van-Anh
Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010. Availability in
globally distributed storage systems. (2010).

[8] Svend Frolund, Arif Merchant, Yasushi Saito, Susan Spence, and Alistair Veitch.
2004. A decentralized algorithm for erasure-coded virtual disks. In International
Conference on Dependable Systems and Networks, 2004. IEEE, 125–134.

[9] Yingxun Fu, Jiwu Shu, and Xianghong Luo. 2014. A stack-based single disk
failure recovery scheme for erasure coded storage systems. In 2014 IEEE 33rd
International Symposium on Reliable Distributed Systems. IEEE, 136–145.

[10] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The Google file
system. (2003).

[11] Qingyuan Gong, Jiaqi Wang, Dongsheng Wei, Jin Wang, and Xin Wang. 2015.
Optimal node selection for data regeneration in heterogeneous distributed storage
systems. In 2015 44th international conference on parallel processing. IEEE, 390–
399.

[12] Yuchong Hu, Patrick PC Lee, and Xiaoyang Zhang. 2016. Double regenerating
codes for hierarchical data centers. In 2016 IEEE International Symposium on
Information Theory (ISIT). IEEE, 245–249.

[13] Yuchong Hu, Xiaolu Li, Mi Zhang, Patrick PC Lee, Xiaoyang Zhang, Pan Zhou,
and Dan Feng. 2017. Optimal repair layering for erasure-coded data centers:
From theory to practice. ACM Transactions on Storage (TOS) 13, 4 (2017), 33.

[14] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit
Gopalan, Jin Li, and Sergey Yekhanin. 2012. Erasure coding in windows azure
storage. In Presented as part of the 2012 {USENIX} Annual Technical Conference
({USENIX}{ATC} 12). 15–26.

[15] Cheng Huang and Lihao Xu. 2008. STAR: An efficient coding scheme for correct-
ing triple storage node failures. IEEE Trans. Comput. 57, 7 (2008), 889–901.

[16] Jianzhong Huang, Xianhai Liang, Xiao Qin, Qiang Cao, and Changsheng Xie.
2014. Push: A pipelined reconstruction i/of or erasure-coded storage clusters.
IEEE Transactions on Parallel and Distributed Systems 26, 2 (2014), 516–526.

[17] Kevin M. Greenan James S. Plank. [n.d.]. Jerasure: A Library in C Facilitating Era-
sure Coding for Storage Applications Version 2.0. https://github.com/magnific0/
wondershaper.

[18] Osama Khan, Randal C Burns, James S Plank, William Pierce, and Cheng Huang.
2012. Rethinking erasure codes for cloud file systems: minimizing I/O for recovery
and degraded reads.. In FAST. 20.

https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper

A Rack-Aware Pipeline Repair Scheme for Erasure-Coded Distributed Storage Systems ICPP ’20, August 17–20, 2020, Edmonton, AB, Canada

[19] Runhui Li, Yuchong Hu, and Patrick PC Lee. 2017. Enabling efficient and reliable
transition from replication to erasure coding for clustered file systems. IEEE
Transactions on Parallel and Distributed Systems 28, 9 (2017), 2500–2513.

[20] Peter S Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. 2002. Simics: A full system simulation platform. Computer 35, 2 (2002),
50–58.

[21] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,
Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,
et al. 2014. f4: Facebook’s Warm {BLOB} Storage System. In 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14). 383–
398.

[22] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. 2007. Failure
trends in a large disk drive population. (2007).

[23] James S. Plank. [n.d.]. Jerasure: A Library in C/C++ Facilitating Erasure Coding
for Storage Applications. http://web.eecs.utk.edu/~jplank/plank/papers/CS-07-
603.pdf.

[24] KV Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah, and Kannan Ram-
chandran. 2015. Having your cake and eating it too: Jointly optimal erasure codes
for i/o, storage, and network-bandwidth. In 13th {USENIX} Conference on File
and Storage Technologies ({FAST} 15). 81–94.

[25] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. 2013. A solution to the network challenges of data
recovery in erasure-coded distributed storage systems: A study on the Facebook
warehouse cluster. In Presented as part of the 5th {USENIX} Workshop on Hot
Topics in Storage and File Systems.

[26] KV Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur, and
Kannan Ramchandran. 2014. A hitchhiker’s guide to fast and efficient data
reconstruction in erasure-coded data centers. In ACM SIGCOMM Computer Com-
munication Review, Vol. 44. ACM, 331–342.

[27] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite
fields. Journal of the society for industrial and applied mathematics 8, 2 (1960),
300–304.

[28] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris Papailiopoulos,
Alexandros G Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.
2013. Xoring elephants: Novel erasure codes for big data. In Proceedings of the
VLDB Endowment, Vol. 6. VLDB Endowment, 325–336.

[29] Bianca Schroeder and Garth A Gibson. 2007. Disk failures in the real world: What
does an MTTF of 1, 000, 000 hours mean to you?. In FAST, Vol. 7. 1–16.

[30] Zhirong Shen and Patrick PC Lee. 2018. Cross-Rack-Aware Updates in Erasure-
Coded Data Centers. In Proceedings of the 47th International Conference on Parallel
Processing. ACM, 80.

[31] Zhirong Shen, Patrick PC Lee, Jiwu Shu, and Wenzhong Guo. 2017. Cross-rack-
aware single failure recovery for clustered file systems. IEEE Transactions on
Dependable and Secure Computing (2017).

[32] Zhirong Shen, Jiwu Shu, and Patrick PC Lee. 2016. Reconsidering single failure
recovery in clustered file systems. In 2016 46th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN). IEEE, 323–334.

[33] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al. 2010.
The hadoop distributed file system.. In MSST, Vol. 10. 1–10.

[34] Hakim Weatherspoon and John D Kubiatowicz. 2002. Erasure coding vs. repli-
cation: A quantitative comparison. In International Workshop on Peer-to-Peer
Systems. Springer, 328–337.

[35] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David A Pease. 2015. A Tale of
Two Erasure Codes in {HDFS}. In 13th {USENIX} Conference on File and Storage
Technologies ({FAST} 15). 213–226.

[36] Yanwen Xie, Dan Feng, and Fang Wang. 2017. Non-sequential striping for
distributed storage systems with different redundancy schemes. In 2017 46th
International Conference on Parallel Processing (ICPP). IEEE, 231–240.

http://web.eecs.utk.edu/~jplank/plank/papers/CS-07-603.pdf
http://web.eecs.utk.edu/~jplank/plank/papers/CS-07-603.pdf

	Abstract
	1 Introduction
	2 Background
	2.1 Erasure Coding
	2.2 Data Center Architecture and Chunk Placement
	2.3 Traditional Repair Process

	3 Design
	3.1 Inner-rack Partial Decoding
	3.2 Cross-rack Pipeline Scheduling
	3.3 Data Pre-placement Optimization for Single-block Failure
	3.4 Extension to Multi-block Failures

	4 Analysis
	4.1 Total Repair Time with Partial Decoding
	4.2 Greedy Pipeline Cross-rack Schedule
	4.3 Multi-block Failure Recovery Limitations

	5 Evaluation
	5.1 Simics Simulation
	5.2 Amazon EC2 Evaluation

	6 Related Work
	7 Conclusion
	Acknowledgments
	References

