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Abstract—Multi-homed mobile devices are capable of aggre-
gating traffic transmissions over heterogeneous networks. Multi-
Path TCP (MPTCP) is an evolution of TCP that allows the
simultaneous use of multiple interfaces for a single connection.
Despite the success of MPTCP, its deployment can be enhanced
by controlling which network interface to be used as an initial
path during the connectivity setup. In this paper, we proposed
an online MPTCP path manager based on the contextual bandit
algorithm to help choose the optimal primary path connection
that maximizes throughput and minimizes delay and packet loss.
The contextual bandit path manager deals with the rapid changes
of multiple transmission paths in heterogeneous networks. The
output of this algorithm introduces an adaptive policy to the path
manager whenever the MPTCP connection is attempted based
on the last hop wireless signals characteristics. Our experiments
run over a real dataset of WIiFi/LTE networks using NS3
implementation of MPTCP, enhanced to better support MPTCP
path management control. We analyzed MPTCP’s throughput
and latency metrics in various network conditions and found that
the performance of the contextual bandit MPTCP path manager
improved compared to the baselines used in our evaluation
experiments. Utilizing edge computing technology, this model
can be implemented in a mobile edge computing server to
dodge MPTCP path management issues by communicating to the
mobile equipment the best path for the given radio conditions.
Our evaluation demonstrates that leveraging adaptive context-
awareness improves the utilization of multiple network interfaces.

I. INTRODUCTION

The edge computing paradigm is expected to use different
technologies to deliver services and applications with high-
throughput and low-latency demands. To this aim, optimiz-
ing transmissions at the last mile within a wireless edge
network is important, especially for critical applications [1-
4]. Nowadays, smartphones, tablets, and laptops are multi-
homed, i.e., they are equipped with multiple radio interfaces,
such as WiFi and LTE. Past research has shown that standard
single-path TCP cannot efficiently serve the coexistence of
multi-access technologies. To allow efficient exploitation of
multiple Internet paths for the same user connection, several
variations of the Multipath TCP (MPTCP) protocol [5, 6]
have been recently proposed, with a vibrant activity of the
IETF [7]. For example, researchers have used MPTCP to
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exploit edge-cloud ecosystems [8], to optimize the offloading
mechanism in 5G networks [9], to improve video streaming
sessions [10], as well as within online gaming, energy-aware
telecommunications [11], or even to improve the throughput in
Unmanned Aerial Systems [12] and other IoT transmissions.
One of the fundamental mechanisms of the MPTCP protocol
is the algorithm that governs the path management of MPTCP.
Some notable examples of path management schema that have
recently been proposed include Context-Aware Multipath-TCP
[13], Dynamic MPTCP Path Configuration with SDN [14],
Multipath TCP with Path-aware Information [15], Ndiffport
Subflow Manager for Data Centres [16], and Fullmesh Path
Manager [17]. Nowadays, the Fullmesh has been chosen as
the default path manager algorithm in all MPTCP implemen-
tations. As the name suggests, the algorithm connects the
user with all available transmission paths by creating a full
mesh of subflows between the communicating hosts. While the
Fullmesh path manager has merit, it is known to be suboptimal
in dynamic network environments. One known problem of
Fullmesh is that it always starts with establishing the WiFi path
first, potentially affecting the MPTCP throughput significantly
when the WiFi signal is weak [18]. Moreover, the Fullmesh
path manager of MPTCP assigns subflow statically; this means
that when one subflow fails, e.g., for excessive retransmissions,
it is hard to re-establish it, causing significant performance
degradation. Finally, the Fullmesh strategy leads to a large
number of established subflows and ignores the benefits of-
fered by path diversity.

The widespread machine learning techniques inspired us
to seek a “dynamic” path manager. Various efforts have been
carried out to apply machine learning to MPTCP. For example,
Rosello and Molla [19] considered the scheduling problem in
MPTCP with a non-standard multipath implementation of the
QUIC protocol. They used Deep Q-Network reinforcement
learning to determine the best action chosen by the agent.
Xu et al. [20] presented a deep reinforcement learning-based
architecture for MTCP to maximize the throughput of the
LTE and WiFi flows. Qi et al. [14] used a support vector
machine approach as a regression model to predict the



MPTCP throughput ratio to improve its performance. While
the solutions behind these machine learning approaches
are sound, their models were designed based on just a
limited feature set and did not capture the features of
multiple available paths in heterogeneous networks, as we
do. Considering the features of multiple available paths in
MPTCP is essential for a few reasons. First, the decision of
which technology should be the primary path should consider
the radio conditions. Second, existing path manager learning
algorithms are mostly based on full reinforcement learning
models, that are often expensive to train and converge
slowly. In the context of MPTCP path management, the state
space increases exponentially with the number of features
in each subflow, but multiple consecutive actions are not
required. Therefore a more efficient learning framework is
desirable. Third, as learned from the simulations, deploying
a learning-based path manager mechanism in a real wireless
network environment has several practical issues, such as
the exploration strategy in each location, the cost of model
training, and the guarantee of training on real data for
real-time decision making.

To cope with the above three challenges, in this paper, we
focus on establishing a learning framework for self-evolving
path management withing MPTCP, capable of adapting to the
diverse last mile wireless radio environment. In particular, we
show that the MPTCP path manager module can be viewed
as a learning task with an agent seeking optimal actions that
maximize a definition of reward in a dynamic wireless network
environment. To do so, we proposed a contextual bandit path
manager whose workflow is composed of three stages: (i)
collection of contexts, (ii) training and updating the agent
oracle, and (iii) online recommendation. During the collection
of contexts, without prior knowledge of the optimal action,
the learning agent follows some heuristic path manager rules
to explore and takes actions using a probabilistic approach
exploring its historical experience. In the training stage, the
agents’ oracle trains a Stochastic Gradient Descent (SGD)
binary classifier based on the collected context experiences
and generates actions representing the optimal primary path
for the MPTCP connection setup. In the recommendation
stage, the MPTCP system uses the up-to-date actions to make
online path management decisions and feedback the agent as
experience for future learning and model refitting. To improve
the learning efficiency, we measure the cumulative reward of
the agent policies to derive the optimal path manager.

QOur Contributions. The main contributions of this work are
summarized as follows. We first present an architecture for
an online learning-based network transmission path selection
with a high cumulative mean reward. The focus of the learning
is on resolving and optimizing path diversity decisions in
heterogeneous networks. e.g., composed of both WiFi and LTE
technologies. We then formulate the MPTCP path management
problem as a contextual bandit learning task and design
a Bernoulli reward function to address the path diversity
component of MPTCP. Our reward function aims at achieving
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Fig. 1. System Architecture: Online contextual bandits for MPTCP primary
path selection: LTE or Wi-Fi.

optimal throughput for every connection by utilizing the max-
imum available network resources. We prototype our solution
within NS3 to demonstrate the proposed system by modifying
the MPTCP path manager module. The simulated contextual
bandit path manager framework collects radio interface data,
train the model to generate classification predictions, apply the
predicted actions for a real-time online decision of MPTCP
primary path manager connection setup, and update the agent
asynchronously to adapt to radio coverage rapid changes. Our
experiments compare our contextual bandit path manager’s
performance with other approaches using available WiFi and
LTE measurement traces from 20 separate locations across
the USA. We show that our contextual bandit path manager
improves the aggregated throughput by up to 30% compared
to baseline algorithms.

II. PATH MANAGER IMPORTANCE IN MULTI-PATH TCP

The Multi-path TCP (MPTCP) provides concurrent trans-
missions to increase resilience of the connectivity and maxi-
mizes the usage of all the available network resources. MPTCP
implementations are backwards compatible with all versions
of TCP, and allow the transmission of a single data stream to
be split across multiple paths. Mobile devices designed with
two wireless interfaces are a common use case for MPTCP.
The MPTCP consists of three main components, the scheduler,
the path manager and the congestion control. Path management
task is to only establish new subflows. How these subflows are
used during the connection is determined by the scheduler.
A good path manager algorithm is needed to manage the
multiple paths creation efficiently, each path is equivalent to
a subflow and is identified by a pair of source and destination
IP addresses. It is used to explore and initialize multiple
paths, manage signaling alternative addresses to hosts, and
setup new subflows to join the existing MPTCP transmission
connectivity. The path management function of MPTCP is
independent from other scheduling interface and congestion
control functions, this makes it feasible to redefine a smart
path management algorithm with no significant changes to
other functional components [21, 22].

MPTCP can be set to backup mode or single mode; in backup
mode, the system setup a TCP subflow over each interface



and sets the cellular interface as a backup path. Traffic flows
only over the WiFi interface and if it fails, then the data
transfer switches to the cellular interface. In single-path mode
instead, a subflow is created over the WiFi interface and no
packet is sent over the cellular interface until the WiFi interface
goes down. The MPTCP path manager options are currently
ndiffports [6] and fullmesh [17]. Ndiffports opens multiple
subflows between the same IP pairs on both end-hosts, and
fullmesh opens a full mesh of subflows among the available
IPs. This mode creates multiple subflows for each pair of
source-destination IP-address pair, up to the maximum limit
of allowed subflows. This policy leads to a large number of
established subflows and ignores the benefits offered by the
path diversity.

III. MULTI-PATH TCP AND MULTI-ARMED BANDITS

Since our solutions uses Contextual Multi-Armed Bandits

approach to MPTCP, in this section we give some background
of this approach. In the rest of the paper, we will use notations
and definitions highlighted in this section. Multi-armed bandits
(MAB) are a set machine learning algorithms that make
decisions under uncertainty by balancing between exploration
and exploitation of several agents (bandits). A MAB algorithm
defines a set A of possible actions, known as “arms”. At each
round 7', the algorithm selects an action and collects a reward
for that chosen arm. Unlike reinforcement learning, bandit
problems only observe the outcome of a selected action for
a given state. Each MAB algorithm solves the exploration /
exploitation tradeoff with the help of a policy w. For each
round ¢t € [T], the algorithm observes a context x;, picks
an arm a, and experience a reward r; € [0, 1], whose value
depends on the context x; and the chosen action a; [23, 24].
The contextual bandit policies are greedy, that is, they only
take into account short term effects.
The context affects how a reward is associated with each
bandit, so as contexts change, the model should learn to adapt
its bandit choice. Contextual bandits have valuable statistical
properties, such as regret guarantees. A good policy allows
the choice of different good actions in different contexts. The
policy explores by trying with various actions to understand
what reward is given by each of them, then it exploits the
collected information so far and take actions which maximizes
an immediate reward.

IV. AUTOMATING MPTCP PATH MANAGER DECISIONS

Analyzing existing MPTCP path manager mechanisms, we
found two suboptimalities in regard with the protocol design
and its deployment compatibility for heterogeneous networks:
(1) adaptability and (2) autonomy. The classical methods of
path management rely on static and predefined rules, lacking
the ability of adapting to the rapid network conditions, espe-
cially at network edge. Moreover, the latency and link capacity
of mobile network is notoriously variable, depends on the
radio signal characteristics and on the number of concurrent
connections. With an active online path manager algorithm,
we improve the MPTCP path selection criteria by actively

learning the evolution of the paths.

In our design, we employ a contextual bandit algorithm, a
machine learning technique that generates path management
decisions for MPTCP to mitigate the above issues. To make
its decision, our algorithm uses real dataset collected from
different locations. MPTCP leads to better user experience and
higher throughput if the primary path was selected correctly.
In our design, we aim at answering two network transmissions
related questions: (i) what is the benefit of following an online
MPTCP path management decision scheme, with respect to a
predefined rule? (ii) What is the added value of feeding back
the observed physical layer contexts i.e., states, for every link
that a packet has traversed?

V. OUR SOLUTION: MPTCP PATH MANAGER VIA
BI-ARMED BANDIT

In this section, we describe the details of our proposed
dynamic path management algorithm for MPTCP. Our MPTCP
path manager leverages the wireless signal contexts awareness
to decide the best primary interface as recommended by the
contextual bandit algorithm, either LTE mobile network or
WiFi. Each arm is an MPTCP session with both LTE and
WiFi connections to be set up. In our solution the model
assigns the primary path based on the given contexts of the
wireless parameters, unlike the default fullmesh path manager
that always establishes WiFi first despite the signal quality.
The online contextual bandit module is integrated with the
mobile device to obtain the features for the active learner
module. Such module makes the primary path decision based
on the emulated wireless environment. As the currently default
approach in MPTCP, the proposed contextual bandit path
manager creates a fullmesh of subflows among all available
flows, but it starts with the recommended first primary that
helps maximizing the throughput and utilizing the available
network resources efficiently.

The design of a path management mechanism for MPTCP
can be represented as a machine learning task to generate op-
timal path decision rules under uncertain network conditions.
The contextual bandit provides the methodology for an agent
to learn by interacting with the dynamic network environment
and produce actions that maximize the reward. We adopt the
contextual bandit to find the optimal primary path for MPTCP
under heterogeneous networks as an online active learner. A
typical contextual bandit involves the concepts of context,
agent, arm (action), and reward, which are defined as follows.

1) Contexts: The contexts module is responsible for parsing
the signal data from the user environment, obtaining the
contextual features that are continuously observed from
the users devices by the agent. In our MPTCP system,
the contexts z! : t = rounds, k = arms represent
the dynamic LTE and WiFi radio signal characteristics as
described in Table I.

2) Agent: agent is the core entity of the system that performs
the learning and recommends the actions. In our MPTCP
path management problem, the agent is the component re-
sponsible for making decisions of primary path according
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Fig. 2. MTCP throughput for coexisting WiFi and LTE in all the locations given by the dataset, having different proportion of WiFi and LTE throughputs
with uplink and downlink combined.
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to different wireless network conditions. Those decisions
in contextual bandit algorithm are made by the policy and
will be discussed in section V-A.

) Arms or Actions: The arms in the bandit setting in-
dicate how an agent responds to the observed context.
In MPTCP path management, the arms determine the
number of possible paths or subflows in the network
topology. This work is concerned with a scenario of fixed
number of arms k = 2, from which an agent must choose
one as his action a; in each round ¢. Each arm in our
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4)

problem represents the Radio Access Technology (RAT),
LTE or WiFi.

Reward: The reward is the long-term overall benefit that
agents wish to maximize. We assign stochastic binary
rewards for each arm r{ € {0,1} using the Bernoulli
distribution function, and is concerned with cumulative
rewards throughout the rounds. The reward 7%, equals one
when the agent observes a throughput and latency above
the threshold values, and 0 otherwise.



TABLE I

CONTEXTUAL FEATURES OF THE DYNAMIC LTE

AND WIFI RADIO SIGNAL CHARACTERISTICS

WiFi and cell RTT Allow devices to measure the distance to nearby WiFi routers and determine their location with a precision of 1 to 2 meters.

delays while resolving the domain

WiFi DNS lookup time | Reflects how long it takes the DNS servers to respond to a request for the domain. It identifies the DNS hosting performance

WiFi RSSI Received Signal Strength Indicator, measures how

determines if there is enough signal for getting a good wireless connection

well the device can hear a signal from an access point or a router. It

WiFi linkspeed Link speed is the maximum speed in bits per second. For wireless connections many factors affect the link speed, such as
wireless standard, WiFi signal strength, and level of interference.

WiFi and cell lossrate The percentage of frames that should have been forwarded by a network but were not. It is the ratio of the number of lost
packets to the total number of sent packets. It expresses the reliability of the cell and WiFi paths in the network

WiFi UDP delta the variation of network delay computed by time delta between two frame timestamps.

Cell Signal Strength Signal Strength measured in decibels and indicates the signal received from a cell tower. Represents the entire received

power including the wanted power from the serving cell as well as all co-channel power and other sources of noise.

Cell dBm Represent the strength of a signal at any given location, as well as the amount of power an antenna is capable of amplifying.
Measures the average power received from a single Reference signal.

Cell RSRQ Reference Signal Received Quality indicates quality of the received signal and ranges from -19.5dB (bad) to -3dB (good)). It
is a key measure of signal level and quality for mobile network.

Cell CQI Channel Quality Indicator, carrying the information on how good or bad the communication channel quality is. It is the
information that the user equipment sends to the network about current communication channel quality.

Cell RSSNR Reference Signal Signal to Noise Ratio, level of a

desired signal to the level of background noise.
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and the fullmesh MPTCP path management. Contextual bandit path manager maximize utilization of available resource within given capacity limit

A. Contextual Bandit Policies Evaluation

The policy is implemented in the agent and it defines a
mapping from the observed contexts of the network environ-
ment to the action to be taken in those contexts setup, policy
7w : ( context x) + ( action a) . The policy helps the
agent choose actions based on contexts by finding a good
decision rule for selecting the action. We use a policy that

involves machine learning algorithm as an oracle to learn from
past information and choose optimal actions based on learnt
response patterns. In our work, this oracle fit a linear logistic
regression classifier model with Stochastic Gradient Descent
(SGD).

Before determining the contextual bandit strategy to deploy,
we compared six different policies that differ in their exploring
and exploiting strategies. The policies are detailed here below:



1) Epsilon-Greedy. This policy chooses the empirical best
arm a, based on the classification oracle f («?), with some
given high probability p or a random arm otherwise.
Several variations of this explore-exploit dilemma have
been proposed for this policy; for example, decaying
the probability of choosing a random arm with each
successive round, or even dropping it to zero after some
turning point.

Bootstrapped Upper Confidence Bound (UCB). This pol-

icy obtains an upper confidence bound by considering the

percentile of the predictions among a set of k classifiers

fl:k:,l:m that fit with different bootstrapped samples m

per arm.

3) Adaptive Greedy. This policy sets a threshold value z
on the classification oracle f1;k predictions then pick the
action a with maximum value of that at each successive
round, or else choose either randomly or according to an
active learning heuristic.

4) Explore First. This policy is also known as “explore
then exploit”. The policy uses a breakpoint ¢, for each
successive round ¢ with context z!, and it selects action
a uniformly at random if ¢ < ¢, to explore, or else
exploits by selecting the action with maximum reward
value a argmaz f(x'). This reward a is hence
estimated to be the best arm.

5) Adaptive Active Greedy. This policy sets an initial thresh-
old zp on which it takes action with highest estimated
reward, otherwise it takes an action either randomly or
based to an active learning heuristic.

6) Active Explorer: Selects a proportion of actions according
to an active learning heuristic based on gradient. The
predictions are made according to an active learning
heuristic (the gradient that the observation would pro-
duce on each model predicting a class. Since the active
explorer policy can control the probability p of selecting
an action a according to active learning criteria w,, it
is a good candidate for the rapidly changing network
condition contexts. The learning heuristic of this policy
is explained as part of Algorithm 1

2)

VI. PERFORMANCE EVALUATION

A. Experimental Setup

To evaluate our proposed contextual bandit MPTCP solu-
tion, we implemented the system described in Fig. 1. Our
implementation is based on on Kheirkhah’s MPTCP imple-
mentation in Network Simulator 3 (NS3) [25]. We have im-
plemented the MPTCP transport layer conforming to the RFC-
6824, and following the MPTCP Linux kernel design [26]. We
integrated the online contextual algorithm with NS3 running
the NS library to control the MPTCP primary path selection
by modifying the MPTCP path manager module. To quantify
the benefits of our approach, we evaluate the performance
using real data collected by the NMS lab at MIT CSAIL
[27] using a crowd-sourced network measurement tool. The
dataset refer to end-to-end measurements of WiFi and cellular

N

6 Until obtained reward !

Algorithm 1 Primary Path selection for User Equipment in
any edge based server using contextual multi-armed bandit
based on active explore policy.

Input: probability p, classification oracles f («?) with gradient
functions g(x,r)
Qutput: The primary path selection for each user equipment
MPTCP new connection attempt

repeat
Collecting the contexts data from the last mile radio environ-
ment of LTE and WiFi z?
for each successive MPTCP connection attempts t with con-
texts 2t do
With probability p:

Select action a = argmaz f(z)

Otherwise:

for arm g do

Set wg = (1= fq(z")lgq (", 0)[| + fo(a")l|gq (=", 1)]|
Select action argmax w

end

end

¢, update observation {z’, 7%} to the
history for arm a, update classification oracle fa

return The selected primary path for every connection based
on online last 50 trained and updated batch

network performance on the user equipment, simultaneously.
The dataset has different properties. In particular, analyzing the
dataset (Figure 3 ) we found: (¢) always a dominant arm to
which most observations belong in few locations, (i) a more
balanced scenario with no dominant label, (ii7) a large number
of labels useful for training if the right hyper-parameters were
set.

1) Network Topology: We simulate a heterogeneous net-
work with WiFi and LTE coexisting links, illustrated in
Figure 1. The network consists of an MPTCP compatible
user equipment and an internet MPTCP compatible server. We
emulated the WiFi and LTE link capacity and all other radio
channel properties according to the real dataset to evaluate the
performance of the proposed contextual MPTCP path manager
in 20 different locations provided in the dataset. Each location
has divert and dynamic WiFi and LTE coverage throughout
time as shown in Figs. 2 and 3.

2) Baseline Algorithms: We compared the performance of
MPTCP with our contextual bandit path manager approach
and the default MPTCP fullmesh path manager, using two
congestion control algorithms: the decoupled (TCP reno) and
the coupled congestion control [28]. We also compared our
approach with the most similar and recent MPTCP work [14]
where the authors used Support Vector Machine (SVM) to
decide (based on a throughput threshold) whether to select
both paths for LTE and WiFi or the single path with the highest
bandwidth.
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Fig. 6. CDF of the throughput of contextual bandit vs. fullmesh path manager of MPTCP for the 12 simulated locations. The throughput of contextual bandit
approach is higher at a rate of around 50% of the times in average for all locations.

B. Performance Metrics and Analysis

We quantified the performance gains of our approach across
two metrics: throughput and latency, arguably the most im-
portant network performance metrics. Throughput measures
the total number of bytes within a unit of time, and latency
indicates the delay of the network.

1) Performance of the trained contextual bandit policies:

We apply a few multi-armed bandits policies to the online
contextual bandits with Bernoulli rewards and binary clas-
sification using Stochastic Gradient Descent (SGD) [29].
We implemented the active learning policies to capture the
fluctuating behavior of the network environment at the edge
of the network. We trained the decision maker model on the
full dataset including all locations in a centralized way. This
approach can, however be easily ported at each edge where
each location trains only with a subset of the data.
We are particularly interested in selecting the policy that
maximizes our cumulative reward for each 50 online batch
training representing the new MPTCP connections. Figure 4
illustrates the average cumulative reward behavior for all
policies with respect to the training time. In our settings,
we found that the overall best policy is the contextual active
explorer, in terms of both performance and learning speed.
This is due to its ability to adapt to the rapid network channel
changes and its property of actively exploring probabilities
against the variant contexts. Moreover, the policy considers
also the characteristics of the network in its last-mile. Figure 4
also shows that the active explorer policy converged faster
after 1000 training rounds. For these reasons, the rest of the
evaluation experiments are carried using the active explorer
policy.

2) Comparison with baselines: We compared our contex-
tual bandit path manager, using active explorer policy, with
the default fullmesh path manager. We plotted the results
across different locations, each having different radio network
behavior. Figure 5 shows the throughput over time as depicted
by our NS3 simulation experiments for the default MPTCP
with fullmesh path manager and our contextual path manager
MPTCP using the same decoupled congestion control on both.
The physical properties of radio propagation such as loss rate
and signal power eventually cause changes in link perfor-
mance. As a result, wireless radio channels fluctuate rapidly
over short timescales (milliseconds) and change more dramat-
ically over slightly longer time scales. Thus, such instabilities
motivate adaptive exploration mechanisms. We observed that
contextual path manager helps the MPTCP to outperforms and
manages to adapt faster to the rapid network capacity changes.
It managed to achieve the highest possible throughput while
preventing packets to exceed the link capacity threshold value
and thus invoke congestion avoidance procedure.

Fig. 6 show the CDF throughput comparison between con-
textual and fullmesh path manager of MPTCP for all locations
given in the dataset. The overall throughput in those locations
is higher using the contextual MPTCP since it will assign
to each user the optimal primary path of a given location,
based on the wireless signal characteristic at that time. Due
to the fluctuating behavior of wireless signals, the fullmesh
path manager MPTCP algorithm does not perform well, since
it always initiates any new connection with WiFi despite the
network environment.

In Figure 7 we present the results of our trace driven experi-
ments for our contextual bandit MPTCP path manager against
the baseline algorithms, fullmesh MPTCP path manager and
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Fig. 7. WiFi and LTE mean throughput vs mean latency over the traced simulated links. The five represented points are: our contextual bandit MPTCP path
manager tested with decoupled TCP Reno congestion control, the algorithm of Zhao et al. [14] using SVM to decide the primary path, our method tested
with coupled MPTCP congestion control, the default fullmesh MPTCP with coupled congestion control, and the default fullmesh MPTCP with TCP Reno
congestion control. The Top-right part of the graph indicate better performance.

the related work of Zhao et al. [14]. The figures show 12 charts
for different locations given in the dataset with both downlink
and uplink directions. On each chart plot one point per MPTCP
path manager type with two congestion control mechanisms,
decoupled and coupled. The points correspond to measured
average throughput and latency combination, high throughput
and low latency are the preferable properties for all (up and
to the right).

We found that the contextual bandit path manager had almost
lowest or close to lowest latency among all others and across
all locations. On average, our contextual bandit path manager
almost always outperformed the other baseline algorithms in
terms of throughput as well. Finally, we observe that our
contextual path manager along with a good congestion control
algorithm react well together to achieve higher (the highest
among all tested solution) throughput for any given link
capacity.

VII. RELATED WORK

The Multi-Path TCP (MPTCP) was introduced by the IETF
as an extension for TCP to allow exchanging data via multiple
paths concurrently and to maximize network resource utiliza-
tion [30]. Several efforts have been carried out to improve
the MPTCP performance in different applications [14, 31—
34]. The throughput of MPTCP relies extensively on its path
management mechanism and path characteristics [18, 35].
Typical MPTCP path manager employs a fullmesh mechanism
to setup subflows between all available pair of interfaces [17].
Raiciu et. al [16] introduced the Ndiffport path manager,
specifically to improve datacenter performance and robustness
with MPTCP. With regard to mobile devices, a full mesh might

be undesirable as cellular interfaces require energy and are
unstable. Paasch et al.[36] proposed the backup and the single
path mode alternatives to the full mesh path management for
mobile devices, they all establish the WiFi connection first.
Deng et al. [18] studied the impact of network selection; their
experiments show that the primary selected network path has a
major effect on the network throughput degradation. Similarly,
we have proposed a proactive path manager, but our solution
triggers the establishment of the optimal primary subflow first
depending on the radio signal conditions at the connection
setup time.

A few solutions have been proposed employing machine
learning withing the MPTCP path management. Zhao et. al
[14], for example, presented a Support Vector Machine model
for MPTCP performance prediction using an SDN controller
to monitors and adjusts the paths. Ahmad et. al [37], used
reinforcement learning for MPTCP in multicast and wireless
scenarios. Xu et. al Xu et al. [20] presented a deep reinforce-
ment learning based architecture for MPTCP by defining the
state of the environment using throughput, delay, and jitter.
Similar to these approaches, we also used a machine learning
in general, a simplified version of reinforcement learning in
particular, and we also evaluated LTE and WiFi with the
objective of maximizing the throughput of the flows in the past
time epoch. However, we used a multi-armed bandit approach.
None of the previous solutions considered the problem of
primary path selection to tackle the path diversity issues.
Finally, multi-armed bandit has been considered to solve other
wireless network problems recently [38, 39].

Differently from these existing solutions, our proposed con-
textual bandit path manager is a learning-based primary path



selection approach with a particular focus on path diversity
for heterogeneous networks. We adopted the contextual bandit
learning framework to generate the optimal primary MPTCP
path selection decisions efficiently.

VIII. CONCLUSION

This work sought to solve an important concern for
Multi-Path TCP: how to automatically decide the primary
path for MPTCP connections to deal with the performance
degradation caused by rapid wireless signal fluctuations
in heterogeneous edge networks. We designed an efficient
MPTCP path manager selection strategy for LTE and WiFi. In
particular, we proposed a new MPTCP path manager module
that employs an online contextual bandits algorithm with
binary rewards. Our prototype implemented with Network
Simulator 3 (NS3) consists of two novel components: ) An
online contextual bandit algorithm using Stochastic Gradient
Descend classification as an oracle to decide the optimal
primary MPTCP path for each new connection, and i) a
patch to the MPTCP protocol that allows overwrites to the
path manager module.
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