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ABSTRACT

We consider a Multiaccess Edge Computing (MEC) network
where distributed servers have energy harvesting (e.g., so-
lar) and storage (e.g., batteries) capabilities. Energy from
a connected power grid is also available, in case that har-
vested from ambient sources is scarce or absent. Network
processors are deployed according to a given network topol-
ogy, across two tiers, and computing tasks are flexibly allo-
cated depending on considerations related to load balancing,
energy consumption (for communication and computing) and
energy purchases from the power grid. Specifically, an on-
line optimization problem, exploiting a predictive control ap-
proach, is formulated to minimize the monetary cost incurred
in the energy purchases from the power grid, by dispatching
the computation jobs to those servers that have enough en-
ergy and computation resources. Our proposed framework
uses forecasts of exogenous processes, such as the amount of
energy harvested and job arrivals, which are estimated on the
fly to steer the allocation of computation jobs to the servers.

Index Terms— Renewable Edge Networks, Sustainable
Edge Computing, Energy Harvesting.

1. INTRODUCTION

Due to the growth of the communication and computing
demands (such as for future vehicular related applications),
communication technologies could drain as much as 51% of
global electricity by 2030, as reported in [1]. For this rea-
son, and motivated by energy cost saving considerations and
environmental concerns, telecommunications operators are
considering the deployment of renewable energy sources to
supplement conventional energy sources in powering Base
Stations (BSs) [2].

In this paper, we formulate an optimization problem
aimed at scheduling the computation load, while minimizing
the cost due to the energy purchases from the power grid
incurred by a telecommunications operator in a Multiaccess
Edge Computing (MEC) network, where computing servers
have energy harvesting capabilities. This problem is tackled
exploiting predictions of harvested energy and computation

load via a Model Predictive Control (MPC) approach, ob-
taining cost savings higher than 50% with respect to myopic
strategies.

Related work: In the literature, there exist various works
coping with the management of access networks powered by
renewable energy sources and the power grid. The authors
of [3] consider a scenario with two BSs sharing their energy
through a power line and whose aim is to minimize the power
purchased from the power grid. A similar scenario with more
BSs is investigated in [4, 5], where BSs share their energy
to seek self-sustainability and energy independence from the
power grid. The objective of minimizing the power obtained
from the grid is also pursued in [6]. Here, the authors increase
the cell size of those BSs having more harvested energy avail-
ability and reduces the cell size of the BSs with low energy
availability. In this way, energy-rich BSs would serve more
users and spend more energy than energy-poor ones. In our
work, we aim at minimizing the monetary cost of the pur-
chased energy, which differs from minimizing the amount of
energy consumed/purchased. BSs cannot share their energy
nor modify their cell size, but they can share the computation
tasks that they have to process. In [7], the authors also con-
sider the same objective of minimizing the energy cost, by
predicting the energy demand and buying electricity one day
ahead. However, they do not consider energy harvesting nor
accumulation (e.g., batteries) systems.

This paper is organized as follows. In Section 2 we de-
scribe our system model, formulating the optimization prob-
lem and solving it in an online fashion through an MPC-based
approach. In Section 3 we show some selected results and we
quantify the monetary savings that can be achieved with our
framework. Finally, in Section 4 some concluding remarks
are given.

2. SYSTEM MODEL

The considered network’s architecture is composed of Edge
Servers (ESs) (setM) equipped with computing and energy
harvesting capabilities, see Fig 1. ESs belong to one of the
two following layers: tier-1 servers are co-located with BSs
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Fig. 1. Renewable edge network architecture. It is composed
of two layers of computing enabled nodes, equipped with
energy harvesting devices. They can communicate and ex-
change jobs between each other. Only ESs belonging to tier 1
are connected to BSs and can gather processing requests from
users (jobs).

and can receive computation tasks from the co-located BS or
from neighboring ESs (located at tiers 1 and 2), while tier-2
nodes are not co-located with BSs and, in turn, can only pro-
cess jobs received from neighboring ESs (we consider a full
mesh topology among first and second tier nodes). The inter-
nal architecture of an ES is shown in Fig 2. Edge nodes are
composed of several components: a processing unit, an en-
ergy buffer that can store energy harvested from the environ-
ment or purchased from the grid (with a maximum capacity
of Bmax

i [kWh], i ∈ M), a traffic dispatcher that separates
the traffic destined to local processing from the one that has
to be offloaded to other ESs, and lastly, a communication unit.

Time is slotted, with a slot duration of one hour. At ev-
ery time slot k, each node i ∈ M requires an amount of en-
ergy ci(k) to perform the needed operations (computation and
communication). (Throughout the paper energy is measured
in Wh.) The nodes’ energy sources are the power grid and the
energy harvesting system and nodes’ batteries can be used ei-
ther as energy sources or sinks, depending on the time slot.
We denote by di(k) the energy drained by node i from its bat-
tery at time slot k, and by hi(k) the energy harvested by node
i during time slot k. hi(k) is split into two components: the
first one, hbi (k), is the portion of harvested energy used for
charging the battery; the second one, hci (k), is the portion of
harvested energy immediately used by the node to sustain its
operations. This is encoded through the following equation,

hi(k) = hbi (k) + hci (k). (1)

The same reasoning is applied to the energy purchased by
node i in time slot k, denoted by gi(k), which is split into
two components: the first one, gbi (k), representing the por-
tion of purchased energy that is used for charging the battery;
the second one, gci (k), representing the portion of purchased
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Fig. 2. Edge servers’ internal architecture. Each ES is
equipped with an energy harvesting device, a computing unit,
a traffic dispatcher, and a communication unit.

energy that is immediately used by the node to sustain its op-
erations. It follows that,

gi(k) = gbi (k) + gci (k). (2)

In the interest of optimizing the network energy and com-
putation resources, ESs can cooperate by offloading (in full
or in part) the jobs collected from the BSs. We define rij(k)
(jobs/hour) as the job flow that node i ∈ M transfers (of-
floads) towards node j (one among its neighboring nodes) in
time slot k. Note that rii(k) represents the portion of job flow
that is directly collected by ES i from the co-located BS. We
model the energy required by node i in time slot k as

ci(k) = α

rii + ∑
j∈M\{i}

rji

+ β

 ∑
j∈M\{i}

rij

 . (3)

Note that α > 0 while β < 0 (with |α| > |β|).
The amount of energy ci(k) can be gathered from the

power grid, the harvesting system and/or the node’s battery.
In particolar, it must hold

ci(k) = gci (k) + hci (k) + di(k). (4)

The battery evolution is described as

bi(k) = ηi (bi(k − 1)− di(k)) + µi

(
hbi (k) + gbi (k)

)
, (5)

where ηi ∈ (0, 1] is a parameter accounting for the self-
discharging behavior of the battery, whereas µi ∈ (0, 1] ac-
counts for the losses in the charging process.

There are other constraints in addition to (1), (2), (3), (4),
and (5), as detailed next.

Non-negativity: the variables (and, actually, all the consid-
ered signals) are non-negative

gi(k) ≥ 0, ∀i, ∀k. (6)

Maximum battery capacity: the battery charge level must
be smaller than or equal to the battery capacity

bi(k) ≤ Bmax
i , ∀i, ∀k. (7)



Maximum battery drained: the energy drained from the bat-
tery must be smaller than or equal to the battery charge level

di(k) ≤ bi(k − 1), ∀i, ∀k, (8)

where with bi(0) we mean the initial battery level of node i.
Maximum harvested energy: the actual amount of harvested
energy cannot exceed the maximum amount of energy that
could be harvested from the environment at a certain time slot.
In formulas, this means that

hci (k) + hbi (k) ≤ Hmax
i (k), ∀i, ∀k. (9)

Flow conservation: at every time slot, the number of jobs
exiting a node cannot exceed the number of jobs entering the
same node∑

j∈M\{i}

(rij(k)− rji(k)) ≤ rii(k), ∀i, ∀k. (10)

Additional flow constraints: nodes have a maximum flow
processing constraint per time slot

rii +
∑

j∈M\{i}

(rji(k)− rij(k)) ≤ Rmax
i (k), ∀i, ∀k. (11)

2.1. Optimization problem

We formulate an optimization problem with the objective of
minimizing the monetary cost of the purchased energy, while
meeting the above constraints,

minimize
gi(k), i∈M, 0≤k≤T

T∑
r=1

p(r)
∑
i∈M

gi(k) (12)

subject to: Eqs. (1), (2), (3), (4), (5), (6),
(7), (8), (9), (10), (11).

2.2. Model Predictive Control approach

Solving problem (12) entails a complete knowledge of har-
vested energy arrivals, job flows, and energy price across all
(T ) time slots. Since in a real scenario such knowledge is im-
possible to achieve (in fact, we only have knowledge of the
processes in the current, k, and past time slots), we adopt a
more practical MPC approach to solve problem (12) in an on-
line fashion [8]. Specifically, at every time slot k, we compute
predicted values of harvested energy arrivals, job flows and
energy price for the nextW < T time slots, and we solve (12)
for theseW time slots using such predictions (see Section 2.3
for additional details on forecasting). The solution of this
problem specifies the energy purchases and the computation
flow dispatchment for slots k, k + 1, . . . , k +W − 1. Out of
these, according to the receding horizon principle, only the
actions for the current slot k are implemented, whereas those
associated with future time slots, k + 1, . . . , k +W − 1, are
discarded. At time k+1, the predictions are updated and this
procedure is iterated.
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Fig. 3. The three load profiles used in the simulations. Notice
that the lines exhibit spikes approximately in correspondence
to the hours of the day when most people commute.

2.3. Prediction of exogenous processes

Three exogenous processes are considered in our framework:
the energy price p(k), the harvested energy arrivals hi(k) and
the loads rii(k) (i.e., the job flows to be processed). In this
section, we describe how the traces used in the simulations
were collected and how their predictions were performed.

Energy price: hourly electric energy prices were gathered
from the US National Grid database [9] (we collected the
prices for year 2018). Usually, energy prices are available
one day ahead (“one day ahead Market”), so their prediction
is not needed if we consider a time horizon within 24 hours.
Harvested energy: we used the SolarStat tool [10], that
comes with real solar energy traces collected over 20 years
across the city of Los Angeles. To generate harvested energy
predictions we adopted Long Shot-Term Memory (LSTM)
neural networks [11]. Our LSTM-based predictor has been
trained to directly output the forecasts for the required num-
ber of future time slots W . We trained an LSTM network
with one hidden layer consisting of 40 neurons, for 80 epochs
over 4 years of harvested energy measurements, see also [12].
Job flows: job flows rii(k) are obtained considering a vehic-
ular edge computing scenario. We assume that the job flow
arriving at server i is directly proportional to the vehicular
traffic present in the areas served by the BSs connected to that
server. To obtain numerical time series, we used the mobility
simulator SUMO [13] to track the number of vehicles in dif-
ferent areas of the city of Cologne during an entire day. Aver-
aging and normalizing the time series obtained in 30 days for
3 different areas of the city (each of 200×200 square meters),
we obtained the load profiles for the three tier-1 servers (see
Fig. 3). (Normalization is performed by dividing by the max-
imum number of vehicles that were simultaneously present in
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Fig. 4. Telemetry of tier-1 server 1 energy processes plus
energy price process across 24 hours. Note that purchases are
made when the energy price exhibits local minima.

Name Value
α 0.108 Wh/(job/h)

β -0.036 Wh/(job/h)

ηi 0.9999

µi 0.900

Name Value
Tsim 360 h

Bmax
i 1.00 kWh

bi(0) 0.00 Wh

Rmax
i 3330 job/h

Table 1. Simulation parameters. Parameters depending on i
apply to all nodes i ∈M.

the areas.) Such load profiles are used as job flow predictions
in the considered MPC optimization approach.

3. RESULTS

Next, we present some selected results that have been ob-
tained simulating the system described in section 2 using the
parameters reported in Table 3. In particular, we compare
the performance obtained through three different approaches:
the globally optimal (offline) approach (Eq. (12) with full
information across all time slots), the genie-aided MPC
(Genie-MPC) and the predictor-based MPC (Pred-MPC).
The globally optimal solver has knowledge of the exoge-
nous processes over the whole simulated interval Tsim; the
genie-aided MPC method has knowledge about future ar-
rivals over W time slots; the predictor-based approach uses
load profiles and LSTM-based energy forecasts, as discussed
in section 2.3.
Energy purchase decisions: Fig 4 shows the energy price
and the state evolution of server 1 (in tier 1) obtained us-
ing Pred-MPC with W = 24 hours. Notably, the ES pur-
chases energy from the power grid in correspondence of en-
ergy price’s local minima, thus reducing the incurred cost.
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Fig. 5. Comparison in terms of energy cost between
Genie-MPC and Pred-MPC while varying W . Results are
reported as percentage with respect to the myopic approach
(W = 1). The black line indicates the globally optimal en-
ergy cost.

Energy cost savings: Fig. 5 shows the energy cost achieved
by Genie-MPC and Pred-MPC while varying the length of the
prediction horizon W . Results are expressed as a percentage
with respect to the energy cost incurred with W = 1 (cor-
responding to a myopic allocation of jobs). Note that, when
W = 1, the system makes decision based only on the job
and energy arrivals for the current time slot, without exploit-
ing predictions and without considering energy price fluctu-
ations (and, indeed, Genie-MPC and Pred-MPC coincide for
W = 1). The black horizontal line represents the globally op-
timal solution’s cost: perfect knowledge of all processes at all
time slots and its exploitation in the optimization ideally al-
lows to save up to 70% of the overall energy cost with respect
to a myopic allocation strategy. In a more realistic scenario,
setting W = 4 hours, allows reducing the energy expenses by
20%. With W = 18 hours, the energy cost is halved using
Pred-MPC. Finally, we remark that increasing W the perfor-
mances of Pred-MPC are close to that of Genie-MPC.

4. CONCLUSIONS

We have considered a MEC network where servers are dis-
tributed across two tiers and have energy harvesting capabil-
ities. Energy from a connected power grid is also available,
in case that harvested from ambient sources is scarce or ab-
sent. For this scenario, we advocated the use of predictive
control to steer, at runtime, the allocation of computation jobs
to the servers, and the amount of energy that the MEC net-
work purchases from the power grid. We showed that pre-
dictive control provides considerable savings on the overall
energy cost incurred (up to 50%), even when imperfect esti-
mates are available for future energy and traffic arrivals.
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