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Abstract— Although legged robots are becoming more non-
linear with higher degrees of freedom (DOFs), the centralized
nonlinear control methods required to achieve stable loco-
motion cannot scale with the dimensionality of these robots.
This paper investigates time-varying decentralized feedback
control architectures based on hybrid zero dynamics (HZD)
that stabilize dynamic legged locomotion with high degrees of
freedom. By conforming to the natural symmetries present in
the robot’s full-order model, three decentralization schemes are
proposed for control synthesis, namely left-right, front-hind
and diagonal. Our approach considers the strong nonlinear
interactions between the subsystems and relies only on the
intrinsic communication of the body’s translation and rotational
data that is readily available. Further, a quadratic programming
(QP) based feedback linearization is employed to compute the
control inputs for each subsystem. The effectiveness of the HZD-
based decentralization scheme is demonstrated numerically for
the stabilization of forward and inplace walking gaits on an 18
DOF robot.

[. INTRODUCTION

Many centralized and nonlinear control schemes have been
developed for stabilizing periodic gaits of legged locomo-
tion. In these approaches, multiple links and joints of the
robot communicate their sensor measurements to a central
nonlinear controller. This controller interprets the data from
all joints and relays decisions back to all actuators. These
centralized techniques include the ones based on geometric
reduction [1], [2], transverse linearization [3], [4], controlled
symmetries [5] and hybrid zero dynamics (HZD) [6]-[12].
Of these, only HZD and transverse linearization can sys-
tematically address underactuation, a situation common to
dynamic legged locomotion. In fact, a wide class of legged
robots have taken advantage of the rigorous controllers
synthesized by the HZD for periodic gaits and experimentally
demonstrated feasible walking under this framework, e.g.,
2D and 3D bipedal robots [7], [13]-[21], 3D powered
prosthetic legs [22]-[24], exoskeletons [25], and reduced-
order quadrupedal locomotion [26]. These advances render
the HZD approach highly attractive and correspondingly
persuaded the translation of HZD formulation to full order
quadrupedal robots [27], [28].
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Fig. 1.
DOF model is considered in this paper for numerical simulations. (Right)
Conceptual illustration of the proposed decomposition schemes to synthesize
decentralized controllers (Top Right: front-hind decomposition) (Bottom
Right: left-right decomposition).

(Left) Quadrupedal robot, Vision 60, whose full-order and 18-

Despite the superior performance of centralized schemes,
they exhibit a lack of scalability with the increasing com-
plexity of legged robots. For example, HZD schemes re-
quire the inversion of a state-dependent decoupling matrix
at every time sample to compute the control inputs. The
computational complexity of this operation scales as O(n?),
where n is the number of degrees of freedom (DOFs) [29].
This increasing computational complexity presents one of the
key roadblocks to the application of traditional HZD-based
centralized controllers to high-DOF systems. Moreover, in-
verting the decoupling matrix may amplify and distribute
local modelling errors across the entire full-order model.
In addition to the computational bottlenecks, the system
integration required to implement centralized feedback con-
trol architectures is also a significant challenge in high-
DOF robots. Because a single micro-controller does not
have nearly enough I-O channels to integrate all the sensors
and actuators of a high-DOF robot, these robots require
a sophisticated high-throughput network of computers to
achieve centralized computation and control [30].

An alternative school of thought advocates decentraliza-
tion schemes that preserve rich structural characteristics
embedded in higher-order models while simultaneously al-
leviating the computational burden and minimizing com-
munication between subsystems. A considerable body of
research in neurophysiology also indicates the existence of
locality in the control architectures of animal locomotion.
Specifically, spinal cat experiments have demonstrated that
cats are capable of walking with a wide range of gaits on a
treadmill after their spinal cord has been severed to isolate
the rear legs from the brain and front legs [31]. This mo-
tivates the development and exploitation of decentralization
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Fig. 2. (a) Illustration of the 8-domain directed graph to describe periodic walking. (b) Schematic representation of the HZD-based centralized control

architecture. (c) Illustration of the HZD-based decentralized controllers for 12 DOF, left-right subsystems. A similar schematics can be obtained for both

front-hind and diagonal decompositions.

schemes. Design of decentralized controllers presents sig-
nificant challenges, especially for high-DOF legged robots.
Particularly, the existence of strong nonlinear interaction
among subsystems, underactuation, and hybrid nature of the
dynamical systems exacerbates the task. Furthermore, state-
of-the-art decentralized control schemes are tailored to the
stabilization of equilibrium points for ordinary differential
equations (ODEs) and not periodic orbits of hybrid dynam-
ical systems [32].

The objective of this paper is to design time-varying
and HZD-based decentralized control schemes that stabilize
periodic gaits of quadrupedal locomotion. We present a de-
composition approach based on the natural symmetries of the
quadrupedal robot, namely left-right symmetry, front-hind
symmetry and diagonal symmetry. The dynamics of each
subsystem are addressed to set up a feedback linearization
based Quadratic Programming (QP) problem that synthe-
sizes local controllers. The proposed approach estimates the
nonlinear interactions amongst subsystems by assuming that
the other subsystem is on the periodic orbit. This reduces
the need for information sharing between subsystems. We
validate our HZD-based decentralization control scheme
through simulations on forward and inplace walking gaits,
using the full-order model of Vision 60, manufactured by
GhostRobotics' (see Fig. 1). In our previous work [33],
[34], we demonstrated the feasibility of time-invariant de-
centralized algorithms for bipedal locomotion albeit under
the assumption that each subsystem has access to position
and orientation data from strategically placed additional in-
ertial measurement units (IMUs). The current paper extends

I'https://www.ghostrobotics.io/

the work in [33], [34] to quadrupedal locomotion by 1)
proposing decentralized control laws that eliminate the need
for communication among subsystems, and 2) extending
the decentralized feedback laws to be time-varying. The
paper numerically verifies the effectiveness of the proposed
approach for synthesizing local HZD controllers for different
decentralization schemes. In addition, a robustness analysis
is performed to study the resilience of these schemes against
external disturbances.

II. PRELIMINARIES

A. System Description and Robot Model

Vision 60 is an n = 18-DOF quadrupedal robot with m =
12 actuators. To provide a complete mechanical description
of the robot, we consider the inertial world frame {O} and a
base frame { B} that is rigidly attached to the geometric cen-
tre of the robot. The Cartesian position associated with the
three translational DOFs of the robot is represented by p, €
R3. Correspondingly the three rotational DOFs with respect
to {O} are encoded in ¢, € SO(3) and are cumulatively
parameterized by 1) := col(py, ¢p). The remaining 12-DOFs
are the actuated joints that define the robot’s shape variables
and are denoted by g+ € R™. In particular, each leg of
the robot has 3-DOFs: 2-DOFs at the hip for the roll and
pitch motion together with a 1-DOF knee. The generalized
coordinates are then defined by ¢ := col(¥, gact) € Q, where
Q represents the configuration space. Subsequently, the state
vector is taken as x := col(q,¢) € X := TQ, where X is
the state manifold and TQ denotes the tangent bundle of Q.



B. Hybrid Dynamic Framework for Legged Locomotion

Throughout this work, we will refer to the hybrid model
of the quadrupedal locomotion by the following tuple

2= (G,D,S, A, FG), (1)

where G = (V,€) is the directed cycle with the vertex
set V := {vy,...,u5} and edge set & = {eq,...,ex} (see
Fig. 2(a)). In our formulation, D is the set of admissible
domains on which the unilateral constraints are met and
ground reaction forces are feasible, S := {S.}ece is the
set of switching surfaces, referred to as the guards of the
hybrid system, and A := {A_.}.ce is the set of reset
laws that describe discrete-time transitions triggered on Se.
Finally, 7G := {(fy, gv) }vey represents the set of control
systems on D, defined by the affine control system = =
fu() + gu(z) u, for all (x,u) € D. The notion of hybrid
dynamics is further detailed in [27], [35].

C. Continuous-Time Dynamics

The evolution of the robot in each domain v € V can be
described by Euler-Lagrange equations and the principle of
virtual work as follows:

D(q)§ +H(q,q) =Bu+J, (q)A )
Jo(q) G+ Ju(q,d) 4 =0, 3)

where D(q) € R™*™ is the positive definite mass-inertia
matrix, H(q,q) := C(q,¢) ¢ + G(q) € R™ represents the
coriolis and gravitational terms, B € R™*" is the input
distribution matrix, A represents the ground reaction forces,
and J, is the contact Jacobian matrix.

D. Discrete-Time Dynamics

Every time the robot makes or breaks contact with the
environment, a discrete-time transition occurs. Whenever the
robot breaks a contact, the discrete-time transition is simply
taken as the identity map, ie., 7 = A, (z7) = z~.
During contact initiation, the state of the robot, specifically
the velocities undergo an abrupt change according to the
instantaneous impact model between two rigid bodies [36].
The evolution of the system during the infinitesimal contact
initiation can be given by

D(q) ¢t —D(q) ¢~ =J)1(q) 60X, Jua(q) gt =0. (4)

Here, ¢*, ¢~ are the generalized velocities right after and
before impact, A represents the intensity of the impulsive
ground reaction forces during the impact, and the contact
Jacobian matrix J,41 corresponds to the domain right after
impact. Assuming the continuity of position (g7 = ¢~), the
state of the robot after the impact can be computed from (4)
as a discrete-time map by 7 = A (z7).

ITII. HZD-BASED CENTRALIZED CONTROL

The proposed decentralization structure depends on the de-
composition of stabilizing centralized controllers. The objec-
tive of this section is to develop time-varying and centralized
virtual constraint controllers that stabilize dynamic gaits for

the hybrid model of locomotion. The decentralized versions
of these controllers will be addressed in Section IV.

Virtual constraints [6], [8] are a set of kinematic con-
straints that can be imposed by the action of feedback control
laws to coordinate the motion of links during locomotion. In
this work, we consider the following time-varying virtual
constraints for the domain v € V

Yo(T,2) == h0(q) — hi(r). (5)

Here, h9(q) and hd(7) represent the set of holonomic
functions to be controlled and their corresponding desired
evolution on the gait, respectively. Furthermore, 7 denotes
the gait timing (i.e., phasing) variable which represents the
progress of the robot on the gait. In particular, it is taken as
zero at the beginning of each domain (i.e., 77 = 0) and then

evolves according to
1

i

T (6)
where ¢ is the desired elapsed time for the domain v. We
would like the controller to be able to track the absolute
position and orientation of the robot’s base together with
pre-planned foot trajectories. In order to achieve this, the first
six holonomic functions are chosen as the COM position and
absolute orientation. The rest of the holomonic outputs are
chosen to regulate the Cartesian coordinates of the swing leg
end-effectors.

Complying with the standard I-O linerization [37], the
output dynamics become

Uy := Lg, Ly, yo (T, 2) u + L?U Yo (T, ), @)

where the right-hand side of equation (7) can be written as
Ay(t,x) u+by(t,x) with A, := Ly Ly, y, and b, := L?vyv.
We are now interested in having the following desired output
dynamics

yv = _kpyv - kdyv =: wv(Ta .CE), (8)
where k,, and k4 are positive gains. From (8), the minimum-

power (i.e., least-square) state feedback law that results in
the asymptotic output tracking can be obtained as follows:

u="Ty(1,2) = —A] (A, A )" (by — wy). 9)

The feasibility of torques u cannot be guaranteed by
the minimum-power control law in (9). To this end, one
can alternatively formulate the centralized control synthesis
problem as the following QP:

. 1 w
argmin = |lull3 + =613
(,0)
st. Ayu+96=w,—b,
Umin <u< Umax
5min < 0 < 5max‘

Here, a slack variable § is introduced to ensure feasibility of
the QP, whenever A, is not full rank. To minimize the effect
of the slack variable §, a high gain w is chosen accordingly.
Further, upper (tmax, Omax) and lower (Umin, Omin) bounds
on the control input and slack variable are added to ensure
feasibility.

(10)



IV. HZD-BASED DECENTRALIZED CONTROL

The objective of this section is to present the HZD-
based decentralized controllers to asymptotically stabilize
dynamic quadrupedal locomotion. In particular, we exploit
the natural symmetry present in the robot’s full-order model
and partition it into three decompositions, left-right, front-
hind and diagonal. We remark that all local subsystems
in the aforementioned decomposition schemes include two
legs of the robot and we will design local controllers for all
individual subsystems. Here, we present the control synthesis
for the left-right decentralization scheme. The decentralized
controllers for the other decompositions can be obtained
similarly and will be discussed in Section V.

A. Left-Right Decomposition

This section eliminates the need for full-order model
knowledge for the purposes of control synthesis by the
construction of two subsystems under the left-right decompo-
sition scheme (see Fig. 1). We assume that both subsystems
have access to the absolute positions and orientations of
the body frame B that are encoded in vectors ¢ and 0.
This ensures each subsystem is aware of its own con-
tribution to the cumulative goal of locomotion. However,
there is no other variable sharing/communication between
the local controllers. Consequently, the configuration vari-
ables for the left subsystem can be represented by ¢q; :=
col(9, ¢1, g2, g3, Q4 95, qs), Where, (q1,...,q6) are the six
actuated DOFs that parameterize the two legs on the left half
of the robot. Similarly, ¢, := col(¥, g7, gs, 99, q10, q11, G12)
and likewise, (g7, ...,¢q12) denote the six actuated DOFs of
the two legs on the right half of the robot.

Note that each individual subsystem has 12-dimensional
generalized coordinates, ie., ¢ € R'2 and ¢, € R'? as
they both share the 6-dimensional ) vector for the global
coordinates of the body. Furthermore, the corresponding
state variables are taken as x; := col(q, ;) € R?** and
2, = col(q.,q,) € R**. The decomposition of the control
vector is straight forward and follows the same convention.
This will result in u; € RS and w, € RS that correspond
to the actuated joints in the respective subsystems (see Fig.
2(b)).

B. Continuous-Time Subsystem Dynamics

We can now proceed to separate the individual subsystem’s
continuous-time dynamics and capture its evolution during
domain v € V. We rewrite (2) and (3) as

D(q) G+ F*(q,q) =T"(q) u, (11)

where the definitions of F'¥ and T are readily available
in [27]. For the left subsystem, the dynamics of the entire
robot are computed using (11) with the estimated con-
figuration vector § := col(q;,q’) € R!®, where ¢ :=
col(q%, %, a3, dto, 4i1, qF2) € RC represents the desired evo-
Iution of the six actuated DOFs of the right subsystem.
In particular, the left subsystem assumes that the right
subsystem is on the desired periodic orbit. This assumption
lets us estimate the strong nonlinear interactions between the

subsystems. We observe in simulations that failure to account
for these interactions in the decentralized control synthesis
leads to instability. Now, the entire dynamics of the robot
can be estimated as

Dy, D 1] FP 1y

Dy Dy |Gr 3k Ty To. | |uy
where the dynamic terms D, FV and TV are evaluated at

(q, é) Eliminating ¢ from the above equations, we get the
dynamics of the left subsystem as follows:

Dud+ Y =T} u, (13)
in which Dy := Dy — D;,D;;'D,, F/ = FV —
DD FY — (T, — D DRI )y, Ty = T —

DITD;rlTT?’l, and u are the desired control inputs (i.e.,
feedforward) for the right subsystem. Similar dynamics can

be obtained for the right subsystem as well.

C. HZD-Based Decomposition for Local Control

This section describes decentralized controllers that indi-
vidually work towards the stabilization of dynamic gaits.
Local Outputs Selection: Similar to the holonomic outputs
of the centralized controller, we choose to regulate the abso-
lute position and orientation of the robot’s base together with
the end-effector of the individual subsystem’s swing legs. In
particular, when both the legs of an individual subsystem
are in stance phase, the COM position and the absolute
orientation of the robot’s base are chosen as holonomic
outputs. These holonomic outputs are further augmented
with the Cartesian coordinates of the swing foot when the
subsystem is in single-contact domain. When both the legs
of the subsystem are in swing phase (i.e., flight phase), only
the Cartesian coordinates of the swing foot end-effectors are
chosen as holonomic outputs. The idea is to regulate the
robot’s position and orientation only when there is at least
one stance leg. With this choice, the local output functions
for the left subsystem can be written as follows:

Yo () == By (@) — Rl (7), (14)

where hY (¢;) and h{, (7) denote the local controlled vari-
ables and their desired evolutions on the gait, respectively.
Local QPs and HZD Controllers: Following the same
procedure as in section III and rearranging (7) and (8), the
local outputs (14) can be linearized along the local dynamics
(13) as follows:

L, Ljywow = =kpyo — kago — LG yo, (15
——— — g
AL (t,21) wy, (8,21) bl (t,21)
where 2; = fv(xl) + Go(z;) u; represents the state space

form of (13). Similar equations can be obtained for the
right subsystem. Now, we are in a position to to set up the
decentralized QPs that generate local control inputs for each
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Fig. 3. Illustration of the centralized controller’s performance over 35
cycles: (a) Limit cycle convergence of the body roll (b) Limit cycle
convergence of the body pitch (c) Limit cycle convergence of the body
yaw (d) Time profile of virtual constraints over 15 cycles.

subsystem by imposing local virtual constraints as:

. 1 Wy
argmin - | w |3 +7 (RIRE:
(u1,01)

st. Alu+6=w! — b
U, min S uy S UL, max
5l,min < 5l < 6l,max-

(16)

The definitions of Al b}, and w! are taken from (15)
and are analogous to (10). In addition, wo; is introduced to
minimize the effect of the slack variable ¢;. Similarly, one
may reformulate (16) for the right subsystem to compute the

corresponding local control.

V. NUMERICAL SIMULATIONS

The objective of this section is to demonstrate the ef-
fectiveness of the proposed methodology through extensive
numerical simulations.

A. Gait Planning

This paper studies inplace and forward walking gaits in
quadrupedal locomotion that consists of 8 continuous time
domains (see Fig. 2(a)). A 0.15 (m/s) gait is designed
utilizing the Hermite-Simpson based direct collocation ap-
proach exploited in the FROST (Fast Robot Optimization and
Simulation Toolkit) framework [38]. We utilize the resultant
gait as a reference trajectory to evaluate all the proposed
decentralized controllers. The gait planning in FROST is
transcribed into a nonlinear programming (NLP) problem
which is readily addressable by the IPOPT solver [39]. The
centralized HZD controller synthesized in section III with the
optimized output matrices results in asymptotic stability of
the gait as shown in Fig. 3. The convergence of limit cycles
is clearly illustrated in Fig.3 (a-c).

o)

(rad) <10

Time (s)

Fig. 4. Left-Right decentralized control scheme performance over 35 cycles
on forward walking gait: (a) limit cycle convergence of body roll (b) Body
pitch phase portrait (c) Yaw phase portrait (d) Time profile of local virtual
constraints over 15 cycles.

B. QP based Decentralized Controller

We next implement the proposed decentralized controllers
on different decomposition schemes at a control frequency of
1kHz, utilizing qpSWIFT [40]. In what follows, we provide
the results for the aforementioned decentralized schemes.

Figure 4 (a-c) shows the body roll, pitch and yaw phase
portraits for the Left-Right decentralization scheme in for-
ward walking gait. Figure 4 (d) depicts the time profile
of combined outputs for both subsystems. Figures 5 and
6 represent the same plots for front-hind and diagonal
decentralization schemes respectively. A clear convergence
to a limit cycle in all of the decentralization schemes can
be observed. In the interest of space, graphical results for
inplace walking gait are not presented here, but can be readily
found in the accompanying video.

C. Robustness of Decentralization Schemes

The objective of this section is to evaluate the proposed
decentralization schemes in the presence of external distur-
bances. For this purpose, each of the three decentralized
controllers along with the centralized controller are evaluated
by perturbing the dynamical system with a constant external
force of 250N in the y-direction at the geometric center of
the robot. Figure 7 shows the phase portraits of the pitch
angle of the robot’s base for a forward walking gait. It can
be observed from Fig. 7 (a) and (d) that the phase portraits of
front-hind decentralization scheme and the centralized con-
troller are in the same range, indicating similar performance
for both controllers. This can be attributed to the presence of
at-least one stance leg for both the subsystems across all the
domains of the walking gait in the front-hind decentralization
scheme. However, this is not the case for left-right and
diagonal decentralization schemes. The presence of stance
legs in all domains enabled the front-hind decentralization
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Fig. 5. Front-Hind decentralized control scheme performance over 35
cycles on forward walking gait: (a) limit cycle convergence of the body roll
(b) Body pitch phase portrait (¢) Yaw phase portrait (d) Time profile of
local virtual constraints over 15 cycles.

strategy to better regulate the body orientation in comparison
to other decentralization strategies.

VI. CONCLUSIONS

This paper introduced a decomposition approach for syn-
thesizing HZD-based decentralized controllers that stabilize
periodic orbits for quadrupedal locomotion. In contrast to
the existing approaches, the proposed methods are not con-
strained on the availability of any additional information
(e.g., the orientation of each subsystem from external IMUs).
We avail the fact that the already existing IMU is com-
mon to both the subsystems and the exploitation of this
property leads to the notion of no information sharing.
Further, by conforming to the natural symmetries of the
robot’s dynamic model, the original 36-dimensional full-
order model is decomposed into two 24-dimensional sub-
systems. Similar decomposition structure was then imparted
on the dynamics as a precursor for developing individual
subsystem controllers. Finally, a layer of safety for each
subsystem, in the form of QP was imposed to account for
the strong interactions that arise due to decentralization. The
potential of the decentralization scheme was then illustrated
by demonstrating asymptotically stable periodic forward and
inplace walking gaits. The paper numerically demonstrated
that the proposed controller synthesis approach can sys-
tematically stabilize locomotion patterns for three different
decentralization schemes: left-right, front-hind, and diagonal
decompositions.

We have also observed that with the existing walking
gaits and the choice of output functions, the front-hind
decentralization scheme shows better performance in com-
parison to other decentralization schemes. Future work will
investigate alternative decomposition schemes, one example
of which is considering each leg as a separate subsystem.
Additionally, we wish to rigorously study and address the
ramifications of decentralization on different quadrupedal
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Body pitch phase portrait (c) Yaw phase portrait (d) Time profile of local
virtual constraints over 15 cycles.
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gaits such as ambling, trotting, and bounding. From an
experimental standpoint, we will evaluate the performance
of the proposed decentralized controllers on a quadrupedal
robot.

REFERENCES

[1] A. D. Ames, R. D. Gregg, E. D. B. Wendel, and S. Sastry, “On the
geometric reduction of controlled three-dimensional bipedal robotic
walkers,” in 3rd Workshop on Lagrangian and Hamiltonian Methods
for Nonlinear Control, 2006.

[2] R. D. Gregg and M. W. Spong, ‘“Reduction-based control of three-
dimensional bipedal walking robots,” The International Journal of
Robotics Research, vol. 29, no. 6, pp. 680-702, May 2010.

[3]1 A. Shiriaev, L. Freidovich, and S. Gusev, “Transverse linearization
for controlled mechanical systems with several passive degrees of
freedom,” Automatic Control, IEEE Transactions on, vol. 55, no. 4,
pp- 893-906, April 2010.



[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

I. R. Manchester, U. Mettin, F. lida, and R. Tedrake, “Stable dynamic
walking over uneven terrain,” The International Journal of Robotics
Research, vol. 30, no. 3, pp. 265-279, 2011.

M. Spong and F. Bullo, “Controlled symmetries and passive walking,”
Automatic Control, IEEE Transactions on, vol. 50, no. 7, pp. 1025—
1031, July 2005.

E. Westervelt, J. Grizzle, C. Chevallereau, J. Choi, and B. Morris,
Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor &
Francis/CRC, 2007.

E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics
of planar biped walkers,” Automatic Control, IEEE Transactions on,
vol. 48, no. 1, pp. 42-56, Jan 2003.

J. Grizzle, G. Abba, and F. Plestan, “Asymptotically stable walking for
biped robots: Analysis via systems with impulse effects,” Automatic
Control, IEEE Transactions on, vol. 46, no. 1, pp. 51-64, Jan 2001.

B. Morris and J. Grizzle, “Hybrid invariant manifolds in systems with
impulse effects with application to periodic locomotion in bipedal
robots,” Automatic Control, IEEE Transactions on, vol. 54, no. 8, pp.
1751-1764, Aug 2009.

A. Ames, K. Galloway, K. Sreenath, and J. Grizzle, “Rapidly ex-
ponentially stabilizing control Lyapunov functions and hybrid zero
dynamics,” Automatic Control, IEEE Transactions on, vol. 59, no. 4,
pp. 876-891, April 2014.

A. D. Ames, P. Tabuada, A. Jones, W.-L. Ma, M. Rungger,
B. Schiirmann, S. Kolathaya, and J. W. Grizzle, “First steps toward
formal controller synthesis for bipedal robots with experimental imple-
mentation,” Nonlinear Analysis: Hybrid Systems, vol. 25, pp. 155-173,
2017.

K. Akbari Hamed and A. D. Ames, “Nonholonomic hybrid zero
dynamics for the stabilization of periodic orbits: Application to un-
deractuated robotic walking,” IEEE Transactions on Control Systems
Technology, 2019.

C. Chevallereau, G. Abba, Y. Aoustin, F. Plestan, E. Westervelt,
C. Canudas-de Wit, and J. Grizzle, “RABBIT: A testbed for advanced
control theory,” Control Systems Magazine, IEEE, vol. 23, no. 5, pp.
57-79, Oct 2003.

C. O. Saglam and K. Byl, “Meshing hybrid zero dynamics for rough
terrain walking,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015, pp. 5718-5725.

A. E. Martin, D. C. Post, and J. P. Schmiedeler, “The effects of
foot geometric properties on the gait of planar bipeds walking under
HZD-based control,” The International Journal of Robotics Research,
vol. 33, no. 12, pp. 1530-1543, 2014.

K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “Compliant
hybrid zero dynamics controller for achieving stable, efficient and fast
bipedal walking on MABEL,” The International Journal of Robotics
Research, vol. 30, no. 9, pp. 1170-1193, Aug. 2011.

K. Sreenath, H.-W. Park, I. Poulakakis, and J. Grizzle, “Embedding
active force control within the compliant hybrid zero dynamics to
achieve stable, fast running on MABEL,” The International Journal
of Robotics Research, vol. 32, no. 3, pp. 324-345, 2013.

A. Hereid, C. M. Hubicki, E. A. Cousineau, and A. D. Ames,
“Dynamic humanoid locomotion: A scalable formulation for HZD gait
optimization,” IEEE Transactions on Robotics, pp. 1-18, 2018.

B. Buss, K. Akbari Hamed, B. A. Griffin, and J. W. Grizzle, “Ex-
perimental results for 3D bipedal robot walking based on systematic
optimization of virtual constraints,” in 2016 American Control Con-
ference (ACC), July 2016, pp. 4785-4792.

A. Ramezani, J. Hurst, K. Akbai Hamed, and J. Grizzle, ‘Performance
analysis and feedback control of ATRIAS, a three-dimensional bipedal
robot,” Journal of Dynamic Systems, Measurement, and Control De-
cember, ASME, vol. 136, no. 2, December 2013.

S. Veer, M. S. Motahar, and 1. Poulakakis, “On the adaptation of
dynamic walking to persistent external forcing using hybrid zero
dynamics control,” in 2015 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 1EEE, 2015, pp. 997-1003.

H. Zhao, J. Horn, J. Reher, V. Paredes, and A. D. Ames, “First
steps toward translating robotic walking to prostheses: a nonlinear
optimization based control approach,” Autonomous Robots, vol. 41,
no. 3, pp. 725-742, Mar 2017.

R. Gregg and J. Sensinger, “Towards biomimetic virtual constraint
control of a powered prosthetic leg,” Control Systems Technology,
IEEE Transactions on, vol. 22, no. 1, pp. 246-254, Jan 2014.

A. E. Martin and R. D. Gregg, “Stable, robust hybrid zero dynamics

[25]

[26]

[27]

(28]

[29]
(30]

[31]
(32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

control of powered lower-limb prostheses,” IEEE Transactions on
Automatic Control, vol. 62, no. 8, pp. 3930-3942, 2017.

A. Agrawal, O. Harib, A. Hereid, S. Finet, M. Masselin, L. Praly, A. D.
Ames, K. Sreenath, and J. W. Grizzle, “First steps towards translating
hzd control of bipedal robots to decentralized control of exoskeletons,”
IEEE Access, vol. 5, pp. 9919-9934, 2017.

Q. Cao and I. Poulakakis, “Quadrupedal running with a flexible
torso: control and speed transitions with sums-of-squares verification,”
Artificial Life and Robotics, vol. 21, no. 4, pp. 384-392, Dec 2016.
K. Akbari Hamed, W. Ma, and A. D. Ames, “Dynamically stable 3D
quadrupedal walking with multi-domain hybrid system models and
virtual constraint controllers,” in 2019 American Control Conference
(ACC), July 2019, pp. 4588-4595.

K. Akbari Hamed, J. Kim, and A. Pandala, “Quadrupedal locomotion
via event-based predictive control and QP-based virtual constraints,”
IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4463-4470,
July 2020.

G. W. Stewart, Matrix Algorithms: Volume 1: Basic Decompositions.
Siam, 1998, vol. 1.

N. Radford et al., “Valkyrie: NASA’s first bipedal humanoid robot,”
Journal of Field Robotics, vol. 32, no. 3, pp. 397419, 2015.

M. Donner, Real-Time Control of Walking. Birkhduser Boston, 1987.
D. Siljak, Decentralized Control of Complex Systems. Dover Publi-
cations, December 2011.

K. Akbari Hamed and R. D. Gregg, “Decentralized event-based con-
trollers for robust stabilization of hybrid periodic orbits: Application to
underactuated 3-d bipedal walking,” IEEE Transactions on Automatic
Control, vol. 64, no. 6, pp. 2266-2281, June 2019.

K. Akbari Hamed and R. D. Gregg, “Decentralized feedback con-
trollers for robust stabilization of periodic orbits of hybrid systems:
Application to bipedal walking,” Control Systems Technology, IEEE
Transactions on, vol. 25, no. 4, pp. 1153-1167, July 2017.

A. Ames, “Human-inspired control of bipedal walking robots,” Auto-
matic Control, IEEE Transactions on, vol. 59, no. 5, pp. 1115-1130,
May 2014.

Y. Hurmuzlu and D. B. Marghitu, “Rigid body collisions of planar
kinematic chains with multiple contact points,” The International
Journal of Robotics Research, vol. 13, no. 1, pp. 82-92, 1994.

A. Isidori, Nonlinear Control Systems. Springer; 3rd edition, 1995.
A. Hereid and A. D. Ames, “Frost: Fast robot optimization and sim-
ulation toolkit,” in IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). Vancouver, BC, Canada: IEEE/RSJ, Sep.
2017.

A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear program-
ming,” Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.
A. G. Pandala, Y. Ding, and H. Park, “qpSWIFT: A real-time sparse
quadratic program solver for robotic applications,” IEEE Robotics and
Automation Letters, vol. 4, no. 4, pp. 3355-3362, Oct 2019.



