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Abstract

In this paper, we adopt results in nonlinear
time series analysis for causal inference in
dynamical settings. Our motivation is policy
analysis with panel data, particularly through
the use of “synthetic control” methods. These
methods regress pre-intervention outcomes of
the treated unit to outcomes from a pool of
control units, and then use the fitted regres-
sion model to estimate causal effects post-
intervention. In this setting, we propose to
screen out control units that have a weak dy-
namical relationship to the treated unit. In
simulations, we show that this method can
mitigate bias from “cherry-picking” of control
units, which is usually an important concern.
We illustrate on real-world applications, in-
cluding the tobacco legislation example of
Abadie et al. (2010), and Brexit.

1 Introduction

In causal inference, we compare outcomes of units who
received the treatment with outcomes from units who
did not. A key assumption, often made implicitly, is
that the relationships of interest are static and invariant.
For example, in studying the effects of schooling on later
earnings, we usually consider potential outcomes Y;(k),
for some student ¢ had the student received k years
of schooling. Since only one potential outcome can be
observed for each student, causal inference needs to rely
on comparisons between students who received varying
years of schooling. The validity of the results there-
fore rests upon the assumption that the relationship
between years of schooling and earnings is temporally
static and unidirectional.
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Figure 1: A Lorenz attractor plotted in 3D.

However, in many real-world settings, different vari-
ables exhibit dynamic interdependence, sometimes
showing positive correlation and sometimes negative.
Such ephemeral correlations can be illustrated with
a popular dynamical system shown in Figure 1, the
Lorenz system (Lorenz, 1963). The trajectory resem-
bles a butterfly shape indicating varying correlations
at different times: in one wing of the shape, variables
X and Y appear to be positively correlated, and in the
other they are negatively correlated. Such dynamics
present new methodological challenges for causal in-
ference that have not been addressed. In relation to
the schooling example, our analysis of schooling effect
on earnings could occur on one wing of the system,
where the correlation is, say, positive. However, crucial
policy decisions, such as college subsidies, could occur
on the other wing where the relationship is reversed.
Such discord between data analysis and policy making
is clearly detrimental to policy effectiveness.

Despite its longstanding importance in many scien-
tific fields, dynamical systems theory has not found
a way into modern causal inference (Durlauf, 2005).
The main goal of this paper is to leverage key results
from dynamical systems to guide causal inference in
the presence of dynamics. For concreteness, we focus
on synthetic control methods (Abadie et al., 2010),
which are popular for policy analysis with panel data.
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Our methods, however, can more generally be applied
when causal inference involves some form of matching
between treated and control units in the time domain.

2 Preliminaries

Here, we give a brief overview of comparative case
studies with panel data to fix concepts and notation.
Later, in Section 3, we describe our method.

Following standard notation, we consider J + 1 units,
with only one unit being treated. Let Y, be the
potential outcome for unit ¢ at time ¢ in a hypothetical
world where the intervention did not occur (denoted by
the exponent “N”), where ¢ = 1,2,...,J 4+ 1, and t =
1,2,...,T; also let Y;I be the corresponding potential
outcome assuming the intervention did occur. Let D,
be a binary indicator of whether unit ¢ is treated at
time ¢. By convention, and without loss of generality,
only unit 1 receives the treatment, and there exists
To € (0,T) such that

Dy =1, ifand only if i =1 and t > Tp.

The observed outcome for unit ¢ at time ¢, denoted by
Y;:, therefore satisfies:

Yie =Yy + (Vi = YY)Dy, (1)

where 7;; = Y, — YV is the causal effect of interven-
tion on unit ¢ at time ¢. Suppose there exist weights
Wa, ..., wy+1 such that Ej;l w; =1 and w; > 0, and
Y = Z;]izl w;Yje, for t =1,...,Tp. Then, the causal
effect of the intervention can be estimated through:

J+1
71t = Y1 — Z w;Yj, for every t > Tj. (2)
j=2

The time series defined with the term ZJJI; w; Y in
Equation (2) is the synthetic control. This synthetic
control unit can be construed to be representative of
the treated unit (¢ = 1) had the treated unit not re-
ceived treatment. Because of the constraints put on
w;, namely that they are nonnegative and sum to one,
the fitted values of the weights reside on the edges of
a polytope, and so many weights are set to 0. Such
sparsity in the weights corresponds to control selection,
and so only a few control units are used to model the
outcomes of the treated unit.

The synthetic control methodology is an important ex-
ample of comparative case studies (Angrist and Pischke,
2008; Card and Krueger, 1994), and generalizes other
well-known methods, such as “difference-in-differences”.
As a methodology it is simple and transparent, and so
synthetic controls have become widely popular in the

fields of policy analysis (Abadie et al., 2010; Kreif et al.,
2016; Shaikh and Toulis, 2019), criminology (Saunders
et al., 2015), politics (Abadie and Gardeazabal, 2003;
Abadie et al., 2015), and economics (Billmeier and
Nannicini, 2013).

Theoretically, the treatment effect estimator, 7y,
is asymptotically unbiased as the number of pre-
intervention periods grows when the outcome model is
linear in (possibly unobserved) factors and the treated
unit “lives” in the convex hull of the controls (Abadie
et al., 2010, Theorem 1). As such, a key assumption of
model continuity is implicitly made for identification,
where the weights w; are assumed to be time-invariant.
Furthermore, control selection in synthetic controls de-
pends only on the statistical fit between treated and
control outcomes in the pre-intervention period, which
opens up the possibility of cherry-picking controls to
bias causal inference. In the following section, we illus-
trate these problems with an example.

2.1 Motivation: an Adversarial Attack to the
Synthetic Control Method

As a motivation, we use the example of California’s
tobacco control program in 1989, as described in the
original paper of synthetic controls (Abadie et al., 2010).
The goal is to estimate the effect of Proposition 99,
a large-scale tobacco control program passed by elec-
torate majority in 1988 in California. The proposition
took effect in 1989 through a sizeable tax hike per
cigarette packet. The panel data include annual state
per-capita cigarette sales from 1970 to 2000 as outcome,
along with related predictors, such as state median in-
come and %youth population. We have a pool with 38
states as potential controls, after discarding states that
adopted similar programs during the 1980’s.

The synthetic control methodology proceeds by cal-
culating a weighted combination of control unit out-
comes to fit cigarette sales of California, using only
pre-1989 data. In this application, the weighted combi-
nation is: Colorado (0.164), Connecticut (0.069), Mon-
tana (0.199), Nevada (0.234), and Utah (0.334), where
the numbers in the parentheses are the corresponding
weights. The implied model is the following:

Yoa,e = 0.164 x Yoo, + 0.069 x Yo, (3)
+0.199 x Ymo,e +0.234 x Ynv ¢ + 0.334 X Yy,

where Y denotes packet sales at a particular state and
time (a state is denoted by a two-letter code; e.g., CA
stands for California). We note that time ¢ in the model
of Equation (3) is before intervention (¢t < 1989), so
that all states in the data, including California, are in
control for the entire period considered in the model.

The idea for causal inference through this approach is
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that the same model in Equation (3) can be used to esti-
mate the counterfactual outcomes for California, Yca +,
for t > 1989, had California not been treated with the
tax hike in 1989. By comparing the post-intervention
data from actual California that was treated with the
tobacco control program in 1989, and predictions for
synthetic California that hypothetically stayed in con-
trol in 1989, we can estimate that per-capita cigarette
sales reduced by 19 packs on average by Proposition 99,
suggesting a positive causal effect. This is illustrated in
the left figure of Figure 2. As mentioned earlier, an im-
plicit assumption here is that of model continuity: we
assume that the same model that fits pre-intervention
California can be used to predict the counterfactual
outcomes of a post-intervention, non-treated California.

This model continuity assumption relies critically on
the choice of control units in the model of Equation (3).
Currently, this choice relies mostly on the subject-
matter expert, which leaves open opportunities for
cherry-picking in constructing the control pool. To
illustrate this problem we can perform the following
manipulation. First, we add 9 unemployment-related
time series!, namely YADl,tv . ,YADg’t, into the pool of
potential controls, where “AD” stands for “adversarial”.
Second, before adding these units to the control pool we
transform the time series as follows: Yap;: = Yip;,; —
50+ 90 - I{t < 1989}. This transformation ensures that
the adversarial time series has similar scale to time
series on cigarette consumption before treatment. Since
the synthetic control method only relies on statistical
fit, it may pick up the artificial time series from the
new control pool. Indeed, the new synthetic California
is now described by the following model:

Yoar = 0.247 X Yoo, + 0.179 X Yoo, (4)
+ 0.196 x YNV,t + 0.06 x YNH,t + 0.011 x YWY,t
+ 03 X YAD*,t;

where Yap« ; represents that the adversarial time series
was selected — the specific index is irrelevant. This
produces a new synthetic California that is drastically
different than before. The weight on the artificial con-
trol unit is in fact the highest compared to the weights
on all other units, which is clearly undesirable. More
importantly, with the new synthetic control Califor-
nia, we estimate a negative causal effect of 8 packs on
average (see right sub-figure in Figure 2).

To address this problem, our paper leverages funda-
mental results in dynamical systems theory, such as
time-delay embeddings. The goal is to pre-screen con-
trol units based on how strongly related they are to
treated units from a dynamical point of view. The key

!'Data from the Local Area Unemployment Statistics
(LAUS) program of the Bureau of Labor Statistics (Bu-
reau of Labor Statistics, 2018). See Supplement for details.

idea is that state cigarette consumption data evolve on
the same attractor, whereas adversarial time series do
not. Thus, the latter should be less dynamically related
to the treated state, and so they should be removed
from the control pool.

We note that our proposed method differs from recent
work in synthetic controls, which has mainly focused
on high-dimensional, matrix completion, or de-biasing
methods (Amjad et al., 2018; Ben-Michael et al., 2018;
Athey et al., 2018; Hazlett and Xu, 2018). These meth-
ods take a regression model-based approach, whereas
we treat panel data as a nonlinear dynamical system.
More broadly, our approach shows that dynamical sys-
tems theory can be integrated into statistical frame-
works of causal inference, a goal that so far has re-
mained elusive (Rosser, 1999; Durlauf, 2005).

3 Methods

In this section, we describe our proposed method. In
Section 3.1, we present the method of convergent cross
mapping (CCM), which is the fundamental building
block of our method. In Section 3.2, we motivate CCM
through a theoretical analysis on a simple, non-trivial
time-series model. Finally, in Section 3.3, we give
details on our proposed method.

3.1 Convergent Cross Mapping (CCM)

The basis of our approach is to consider the available
panel data as a dynamical system. In particular, the
state of the system at time ¢ is the collection of all time
series, (Y14, Ya¢,...,Y(s41)¢), where J is the number
of controls. Taken across all possible ¢, this implies a
manifold, known as the phase space, denoted by M =
{(Yj:5€l,...,J+1):t€0,T]}, where T denotes
the length of time series, and is fixed. For example,
when J = 1 there are two units in total and M is a
curve (possibly self-intersecting) on the plane.

A seminal result in nonlinear dynamics is Takens’ theo-
rem (Takens, 1981), which shows that the phase space
of a dynamical system can be reconstructed through
time-delayed observations from the system. Specifically,
let us define a delay-coordinate embedding of the form

Yi—(a-1)n)l, (5)

where 7 > 0 is the time delay. The key theoretical re-
sult of Takens (1981) is that the manifold, M;, defined
from outcomes {173,5} is diffeomorphic (i.e., the mapping
is differentiable, invertible, and smooth) to the original
manifold M, meaning that some important topological
information is preserved, such as invariance to coordi-
nate changes. In other words, Mj is a reconstruction

of M. It follows that different reconstructions ]\A/[/j, for

}/_Vjt = D/_rjt7)/j(t77')7 s
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Figure 2: Trends in per-capita cigarette sales. The solid line is actual California and the dashed line is synthetic
California, while the vertical line indicates time of intervention. Left: original setting. Right: adversarial setting
where the synthetic California is created according to Equation (4).

various j, are diffeomorphic to each other, including the

original manifold M, which implies cross-predictability.

For two different reconstructions M and M., with

their correspondmg base time series th and Yjr¢, we
could use M to predict Yj;; and use M to predict
Y;. By measuring this cross—predlctablhty, the relative
strength of dynamical relationship between any two

variables in the system can be quantified (Schiff et al.,

1996; Arnhold et al., 1999).

One recent method utilizing this idea is convergent cross
mapping (Sugihara et al., 2012, CCM). In addition to
the idea of cross-predictability, CCM also relies on a
smoothness implication of Takens’ theorem, whereby
neighboring points in the reconstructed manifold are

close to neighboring points in the original manifold.

This suggests that cross predictability will increase and
stabilize as the number of data points grow. The cross
predictability is quantified by a CCM score, which we
will address later.

Operationally, the generic CCM algorithm considers
two time series, say X; and Y;, and their corresponding
delay-coordinate embedding vectors at time ¢, namely

X = (6)
i\//t =

[Xtvx(tffrﬁ s
[Y;fa Yr(tf'r)7 e

5 X(tfd'rJrT)] 5
5 }/(tdeJr'r)L

where d is known as the embedding dimension and
te{l+(d-1)r,1+dr,...,T}. The manifold based
on the phase space of Y; is denoted by My, and the
manifold based on X; is denoted by Mx, where the
manifold definitions follow from Equation (5). The
idea is that these manifolds are diffeomorphic to the

original manifold of the dynamical system of Y and X.

A manifold from the delay embedding of one variable
can be used to predict the other variable, and the
quality of this prediction is an indication of which

variable “drives” the other.

Such prediction proceeds in discrete steps as follows.
First, we build a nonparametric model of X; using
the reconstruction manifold based on Y;. For a given
time point ¢ we pick the (d + 1)-nearest neighbors from
te{l+(d—1)7r1+dr,...,L} inY,;, where L < T is
called the library size, and denote their time indices
(from closest to farthest) as {t1, - ,tq+1}. A linear
model for X; is as follows:

~ d+1
Xt = Zi:l w(tivt)th (7)

where w(t;, t) is the weight based on the Euclidean dis-
tance between Yt and its i-th nearest neighbor on Y} ,
for example, w(t;,t) = exp(—d;/d1)/>_; exp(—d;/d1)
and d; = ||}~’t — ﬁl ||, with the usual Ly norm. The dif-
ference defined by mean absolute error (MAE) between
X, and )?t across t is defined as the CCM score of Y;
on X; (lower is better):

CCM(X, | Yy) = | X, — X4, (8)
COM(Y; | Xy) = [ — V4.

Intuitively, the CCM score captures how much informa-
tion is in Y; about X;. For instance, if X dynamically
drives Y; we expect X; to be close to X;. Similarly,
CCM(Y;: | X:) is obtained by repeating the above pro-
cedure symmetrically, using Mx of the values from the
delay embedding X; of X;. The value of CCM(Y; | X;)
quantifies the information in X; about Y;. The two
CCM scores jointly quantify the dynamic coupling be-
tween the two variables. As mentioned earlier, Takens’
theorem implies that there exists a one-to-one mapping
such that the nearest neighbors of Y; identify the corre-
sponding time indices of nearest neighbors of X;, if X;
and Y; are dynamically related. As the library size, L,
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increases, the reconstruction manifolds Mx and My
become denser and the distances between the nearest
neighbors shrink, and so the CCM scores will converge;
see Sugihara and May (1990); Casdagli et al. (1991) for
more details.

From a statistical perspective, the CCM method is
a form of nonparametric time-series estimation (Hér-
dle et al., 1997). The unique feature of CCM, and
more generally of delay embedding methods, is that
the nonparametric components are in fact the time
indices t1,...,t4+1 in Equation (7). This differs from,
say, kernel smoothing (Hastie et al., 2001), where the
target point X, is fitted by neighboring observations
to smooth estimation. Importantly, CCM is not in
competition with Granger causality (Granger, 1969),
but rather complements it. The key problem with
Granger causality is that it requires “separability” of
the effects from different causal factors. This condition
generally does not hold in real-world dynamical sys-
tems that exhibit so called “weak coupling”. CCM is
unique because it can work in such systems (Sugihara
et al., 2012). Finally, CCM is backed up by a growing
literature in the physical sciences as it is tailored to
dynamical complex systems (Runge et al., 2019).

3.2 Theory of CCM on Autoregressive Model

In this section, we illustrate CCM through an AR(1)
autoregression model. Of course, AR(1) is a simple
model that most certainly does not capture the details
of real-world time series. However, its simplicity allows
us to do two things. First, we derive analytic formulas
for the CCM scores in Equation (8). Due to CCM’s
nonlinear nature, such formulas are not easily attain-
able, in general. In fact, we are unaware of any other
analytic expressions for CCM in the literature, so our
work here makes a broader contribution. Second, we
can compare the CCM formulas with the parameters of
the AR(1) model to better understand CCM as a tool;
this is only possible because AR(1) is simple enough
that the strength of causal relationships between vari-
ables is discernible from the model parameters.

The outcome model we consider is as follows:
Y, =0Xi 1 +p+G (9)

where «, (3 are fixed, with || < 1, 8 > 0, u is the drift,
e ~ N(0,0%) and (; ~ N(0,0%) are zero-mean and
constant-variance normal errors, with oy > ox. In this
joint dynamical system of X and Y, it is evident that
X generally drives Y since X evolves independently
of Y, whereas the evolution of Y depends on X. We
are interested in knowing how CCM quantifies this
asymmetric dynamic relationship between X and Y,
and whether it captures the dependence on parameters

2 2
057/67.uaO-X70-Y'

Xy =aXi_ 1+ p+ e,

Assumption 1. Fiz t and let L — co. Suppose that:
(a) min;—; . 4+1 min{t;, ¢;} — oo;

(b) for both crossmaps, max; |wy (t;,t) — d%H| — 0,
and max; |wx (t;,t) — ﬁ| — 0;

(¢) mingz; [t; — t;] — oo and min;; [t; —t;| — oco.

Remarks. Assumption 1(a) requires some form of
smoothness for the delay-coordinate system, and is mild.
Assumption 1(b) is similar to stationarity as it implies
exchangeability within the sets {¢; : i =1,...,d+ 1}
and {t/ : i = 1,...,d + 1}. Assumption 1(c) may
be strict. It could fail, for instance, when the order
statistics (e.g., {Y;,}) are periodic.

Theorem 1. Suppose that Assumptions 1(a)-(c) hold
for the CCM scores of the autoregressive model in Equa-
tion (9), then

d
CCM(X, | Vy) FN<(X0 - et g

2t
H )Oét 2-a 2
) _aggX )

coM; | %) % FN (80X - ot

2704%

1—a?

B*o% + 2o%>,

where FN(u, 02) = |N (11, 0?)| is the folded normal dis-
2

tribution with mean p and variance o~.
Remarks. To unpack this theoretical result, we make
the following remarks:

(a) When § = 0, the dependence of Y; on X} is entirely
lost, and so X; and Y; evolve independently imply-
ing that there is no driving factor in the system.
CCM captures this relationship, since CCM(X |
}/t> = OP(U)() and CCM(Yt ‘ Xt) = OP(Uy), with
the two scores being independent (this is shown in
the proof of the theorem in the Supplement).

(b) When § is small or moderately large, Y; is weakly
dependent on X;. On average, we expect to see that
CCM(Y; | X¢) > CCM(X; | Yz). CCM analysis
indicates correctly that the driving factor in the
system is X; and not Y; (recall that we are using
the absolute error-CCM, and so smaller values are
better).

(¢) When g is very large we could sometimes have
CCM(Y: | X¢) < CCM(X, | Yz), which leads to the
wrong “causal direction”. This shows some inherent
limitations of CCM, as it depends to some extent
on predictive ability, and so it can fail in similar
ways as Granger causality.

In conclusion, Theorem 1 is a new connection of statis-
tics and nonlinear dynamics. As mentioned earlier, the
goal is not to analyze AR(1) per se, which indeed is a
simple model, but to understand CCM’s causal predic-
tions by comparing to AR(1) coefficients. The theorem
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explains how and why CCM is capturing the directions
correctly, and justifies using CCM in synthetic controls.
A similar analysis of CCM in more complex models
would be desirable, but is generally hard since CCM is
highly nonlinear. We leave this for future work.

3.3 CCM+SCM Method and Proposition 99

Here, we present CCM scores in the Proposition 99
example introduced in Section 2.1. Specifically, Cali-
fornia (CA) is cross-mapped with five control states
selected by the standard synthetic control method as
shown in Equation (3). We use per-capita cigarette
sales from the pre-intervention period as the outcome
variable, which gives 19 data points for each unit’s time-
series. The cross predictability measured by the CCM
scores for each pair is shown in Figure 3. For example,
the California-Colorado pair includes two CCM curves,
namely, CCM(YQA¢ | YCO,t) and CCM(YCOJ | YCA,t)~

We see that cross predictability for all pairs roughly
converge as the library size, L, grows. Furthermore,
most pairs converge to the same low level of CCM
score, indicating a strong and bidirectional dynamical
relationship between the state pairs. The only obvious
exception is the California-Connecticut pair, where a
big gap occurs between the two curves exists, indicating
a weak dynamical relationship between them.

In particular, we see that Connecticut is better pre-
dicted from California than the other way round. For
this reason, we argue that Connecticut is not a suitable
control for California and should be removed from the
donor pool. If we apply an averaging transformation
to smooth out the 1970-1980 trend of Connecticut, the
CCM score changes and now shows a strong dynamic
coupling between the two states (bottom-right plot in
Figure 3). If Connecticut is removed, SCM will pick
Minnesota. However, CCM will screen Minnesota as
well because the cigarette price trends are similar be-
tween Minnesota and Connecticut, but distinct from
California.

Our proposed method is therefore to use CCM to filter
out controls that have a weak dynamical relationship
with the treated unit, and then apply the standard
SCM method as described in Section 2. We refer to
this method as “CCM+SCM". In practice, we propose
that CCM+SCM filters out a control unit if in the two
CCM plots with the treated unit, either the minimum
MAE or the MAE gap exceed some thresholds. To
determine the cutoff values, we may use Monte-Carlo
simulations where we add noise to the original series,
and then estimate the null distribution of CCM values
under a hypothesis of weak dynamical relationship.

To illustrate the potential of CCM+SCM, we return to
the example of Section 2.1, where we showed that adver-

Colorado Connecticut

0.5 0.44% ~
W 0.44% L Sre e
< 0'3 N\ < 0.3+ -
= U =

0.24

4 8 12 16
L

w i}
< <
= =
w i}
< <
= =

= CCM(~|CA) == CCM(CAJ~)

Figure 3: CCM scores based on MAE between Cali-
fornia and control states with varying library size L.
CCM(CA |~) means cross predicting California from
control, and CCM(~| C'A) means cross predicting con-
trol from California.

sarial units in the control pool affected the performance
of synthetic controls. Figure 4 shows that CCM+SCM
is able to screen the adversarial units, and is able to
produce a synthetic control that is indistinguishable
from the non-adversarial setting. In the following sec-
tion, we explore the performance of CCM-+SCM further
through simulated studies and real-world data.

4 Experiments and Applications

Here, we design adversarial settings where artificial
units are added to the donor pool to bias the syn-
thetic control method. Of particular interest is whether
CCM-+SCM can help filter out the artificial units in
all cases, without affecting the baseline performance
when artificial units are not present. We also consider
real-world applications.

4.1 Simulations with Artificial Units

First, we expand the tobacco legislation example of
Section 2.1 by introducing a larger set of artificial units,
which are created adversarially. These artificial data
were created based on real-world time series macroe-
conomic data. The detailed generation process can be
found in the Supplement. We run simulation studies in
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Figure 4: Trends in per-capita cigarette sales after CCM pre-screening. The solid line is actual California
and the dashed line is synthetic California, while the vertical line indicates time of intervention. Left: original
setting. Right: adversarial setting where artificial units are added to the donor pool.

which the true effect is known for the treated unit. We
replace the true California with the following formula:

Year = 0.164 X Yoo, + 0.069 X Yor, 4 0.199 x Yao.,
+0.234 x Ynv,. + 0.334 x Yyr,, + 7I{t > 1989},

where 7 is the true treatment effect and the other terms
construct the synthetic California from the original
data. This construction ensures that the ground truth
of synthetic California in the post-intervention period
is known. To illustrate that CCM is a general frame-
work for pre-screening, we incorporate CCM to three
different synthetic control methods: 1) SCM: vanilla
synthetic control method by Abadie et al. (2010); 2)
MC: matrix completion method for causal panel data
by Athey et al. (2017); 3) RSC: robust synthetic control
method by Amjad et al. (2018).

The comparisons between the ground truth and three
synthetic control methods with and without CCM are
visualized in Figure 5. The different methods lead
to the same conclusion: with CCM pre-screening the
outcome estimates, in both pre- and post-intervention
periods, are closer to the ground truth than the origi-
nal method alone. We note that MC works by matrix
completion instead of selecting control units so CCM+MC
behaves very similarly to MC. RSC alone does not work
well because it uses the artificial unit to construct the
synthetic control, and the denoising via singular value
thresholding does not help here. The result suggests
that CCM can help in synthetic control models, and
is robust to the selection of the underlying outcome
imputation model. Intuitively, this is because CCM is
able to capture nonlinear dynamical information that
is not captured by standard statistical models.

4.2 Real-World Applications

Here, we consider how many artificial units CCM is
able to filter out with real-world data. To that end, we
work with two real applications: one is still the Califor-
nia’s Tobacco Control Program studied in Abadie et al.
(2010); and the other is on the economic costs of the
Brexit referendum vote on UK’s GDP reported in Born
et al. (2017). We only compare SCM and CCM+SCM.
Our results are robust to the selection of the underlying
model. As before, artificial units are created from noisy
copies of real-world time series.

Figure 6 shows the number of artificial units that are
selected as controls, and the corresponding average
treatment effect (ATE). Clearly, CCM+SCM selects
much fewer artificial units than just SCM. In addition,
CCM+SCM generates more stable estimates of ATE.
Specifically, in the tobacco example, the ATE reported
by CCM+SCM remains stable around 20, which is
close to the original ATE (=~ 19 packets) estimated
by SCM without artificial controls. In contrast, the
ATE estimate from SCM with artificial controls is more
varied in a range from 5 to 23. Another interesting
phenomenon is that the ATE estimate from SCM can
be negative under certain artificial controls in Brexit.
This means that the effects of the Brexit vote may have
been overstated in ongoing econometric work that uses
synthetic control methods, as the estimates are likely
to be sensitive to control pool construction.

5 Discussion

In this section, we discuss some general aspects of our
work, particularly CCM as a causal inference method,
and its underlying assumptions.

Our first point revolves around the use of CCM, and
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the Tobacco and Brexit applications.

related dynamical systems methods, for causal infer-
ence. In particular, due to the success of CCM in
quantifying dynamical relationships illustrated here, it
may be tempting to consider CCM as a general method
for causal inference (Sugihara et al., 2012; Deyle et al.,
2013). However, we do not advocate doing that directly,
for two main reasons. First, the statistical properties of
methods such as CCM are not well known. Theorem 1
in this paper is a step to this direction, but more work is
needed. Second, CCM does not account for the observa-
tion model (e.g., the treatment assignment mechanism),
which is crucial in causal inference (Imbens and Rubin,
2015). We also provide counterexamples and additional
discussion in the Supplement.

Regarding the stationarity assumption in Theo-
rem 1 (i.e., || < 1, and Assumption 1(b)), we note that
CCM assumes a deterministic (possibly chaotic) system,
and so stationarity is roughly mapped to “evolution on

an attractor”. Stationarity in Theorem 1 is thus not
directly applicable to Takens’ theorem, and is assumed
only in our effort to understand CCM vis-a-vis AR(1).
In this work, we argue that CCM can strengthen the
model continuity assumption (pre- and post-treatment),
which is left implicit in synthetic controls. But there is
much left to understand about the connection between
chaotic and stochastic systems (Casdagli, 1992). We
hope that this work provides a good motivation.

6 Conclusion

In this paper, we leveraged results from dynamical
systems theory to quantify the strength of dynamic
relationship between treated and control units in causal
inference. We showed that this is useful in the context
of comparative cases studies to guard against cherry-
picking of potential controls, which is an important
concern in practice.

More generally, our work opens up the potential for an
interplay between dynamical systems theory and causal
inference. In practice, interventions typically occur on
complex dynamical systems, such as an auction or a
labor market, which always evolve, before and after
treatment. Future work could focus more on theoreti-
cal connections between embedding methods, such as
CCM, and standard treatment effects in econometrics,
especially if we view the filtering process described in
Section 3 as a way to do treated-control matching.
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