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Abstract—This paper presents a novel approach to accelerate applica-

tions running on integrated CPU-GPU systems. Many integrated CPU-

GPU systems use cache-coherent shared memory to communicate. For

example, after CPU produces data for GPU, the GPU may pull the data

into its cache when it accesses the data. In such a pull-based approach,

data resides in a shared cache until the GPU accesses it, resulting in long

load latency on a first GPU access to a cache line. In this work, we propose

a new, push-based, coherence mechanism that explicitly exploits the CPU

and GPU producer-consumer relationship by automatically moving data

from CPU to GPU last-level cache. The proposed mechanism results in

a dramatic reduction of the GPU L2 cache miss rate in general, and

a consequent increase in overall performance. Our experiments show

that the proposed scheme can increase performance by up to 37%,

with typical improvements in the 5–7% range. We find that even when

tested applications do not benefit from the proposed approach, their

performance does not decrease with our technique. While we demonstrate

how the proposed scheme can co-exist with traditional cache coherence

mechanisms, we argue that it could also be used as a simpler replacement

for existing protocols.

Index Terms—Cache coherence, GPU, Integrated CPU/GPU.

I. INTRODUCTION

The abundance of transistors available on a die has led to new

integrated processor designs combining CPUs and GPUs on a single

chip [1]–[5]. This integration presents new opportunities for increased

performance and ease of programming as the CPU and GPU can

communicate through cache-coherent shared memory (CCSM) rather

than through explicit data copying.

For most integrated CPU-GPU systems, the critical operation is

moving data from CPU to GPU. The CPU-GPU relationship is

different from peer cores in the traditional CPU shared-memory

multiprocessor systems. In CPU-GPU systems, the CPU is a data

producer and the GPU is a consumer. Adopting CCSM mechanisms

from CPU multiprocessors is convenient but not efficient. GPU

performance depends directly on how fast it can consume the CPU-

produced data. Pulling data one block at a time upon a cache miss

slows down data supply needed for high GPU performance. This clear

producer-consumer relationship in CPU-GPU systems presents an

opportunity for further performance gain by eliminating unnecessary

cache coherence messages.

This paper proposes an alternative CPU-GPU cache coherence

mechanism. Specifically, performance critical data is homed on the

GPU. When the CPU writes to such data, the proposed protocol

automatically forwards the data to the GPU memory hierarchy—

instead of leaving it in the CPU memory. This proposal is an intuitive

match for the CPU to GPU producer-consumer relationship, as it

moves the data to the memory system where it will be consumed,

reducing GPU miss rate, and improving overall performance.

While the basic idea of homed memory has appeared in many

systems—from commercial products for distributed shared memory

[6] and manycores [7] to research designs [8]—the integrated CPU-

GPU system provides new challenges and opportunities. Specifically,

prior approaches required that users explicitly declare the home

core for different data ranges (e.g., in the TILE architecture [7]) or

required added hardware complexity to automatically move data to an

appropriate home (e.g., [8]). The unique nature of an integrated CPU-

GPU system makes it possible to automatically translate existing

programs to home memory and thus achieve the performance benefits

of homing data on the GPU while requiring no extra work from users

and keeping hardware complexity low.

Thus, in this paper we show how to support homed memory on

an integrated CPU-GPU system. Our proposed approach requires no

human intervention as it includes source to source translation that

converts existing GPU programs to use our mechanism. Specifically,

the translator changes existing memory allocation to allocate data

that will be homed on the GPU in a specific data range. Data in

that range cannot be cached on the CPU, only the GPU. Therefore,

when the CPU attempts to write it (to produce data for the GPU

consumption), there will be a write miss. Concurrently, the modified

Translation Look-aside Buffer (TLB) will detect the address range

and tell the CPU memory system to forward the write miss to the

GPU memory system. The GPU then resolves the write miss and the

produced data is stored in the GPU memory hierarchy. Then, when

the GPU accesses it, the data is already in cache locally, reducing

both compulsory misses and load latency on the first data access.

We test the proposed scheme by implementing it in the gem5-gpu

simulator and compare it with recent proposals for the traditional

CCSM between CPU and GPU. Across benchmarks from a range of

suites, we find that our proposed approach can achieve performance

improvements as high as 37%, with typical improvements in the range

of 5–7%. While the proposed technique can co-exist with CCSM, we

also believe it could be a simpler replacement for this approach.

II. RELATED WORK

There is a rich set of papers in literature for pull-based data supply

(e.g. prefetching), and to some extent push-based data supply (e.g.

forwarding). Many prefetching techniques have been proposed both

in hardware and software [9], including a technique that assumes

that the integrated CPU-GPU system shares the last-level cache

(LLC) [10], a dynamically adaptive prefetching strategy to reduce

memory latency and improve better power efficiency [11], and a

hybrid of software and hardware prefetching [12], which combines

conventional stride prefetching and a hardware-implemented inter-

thread technique, where each thread prefetches for threads located in

other warps.

A GPU selective caching strategy that enables unified shared

memory without hardware cache-coherence is proposed in [13].

This involves architectural improvements of selective caching by

aggressive request coalescing, CPU-side coherent caching for GPU







data, the CPU will issue GETX command. The store will be issued

as PUTX action indicating the store is to the GPU L2 cache.

G. Interconnection Network

When a CPU store instruction targeting the GPU is detected by

the TLB, it tells the MMU to direct the store to the GPU L2

cache. We therefore add a fast network directly connecting the CPU

and the GPU L2 cache. Figure 2 (right) shows the newly added

network, indicated by the dotted line. By connecting the CPU and

GPU L2 cache directly, the data transfer will be faster because it

bypasses much of the cache hierarchy and eliminates many coherence

messages. Since we bypass many cache hierarchies and go straight

to the GPU L2 cache, we need only introduce minor modifications

on the cache coherence protocol, namely those related to CPU’s L1

cache and GPU L2 cache. The newly added interconnection network

will have exactly the same characteristics as the network used in

many cache coherence systems to exchange the messages.

H. Implementing Direct Store without Traditional Cache Coherence

Although we have presented this scheme as a complement to

existing coherence mechanisms (since we think that would be the

most likely use case), it could be adopted as a simpler, stand-alone

replacement for CPU to GPU communication. The proposed scheme

is simple to implement because it requires fewer coherence messages

than traditional protocols because the proposed scheme only allows

memory shared between GPU and CPU to exist in the GPU cache.

Thus, there will not be multiple sharers and so there are no transitions

from (for example) shared states to exclusive states.

The proposed scheme could be easily attached to systems that

use the state-of-the-art CCSM. This opens a new possibility for the

programmer to use the new approach for only a particular type of

data and other remaining data still uses the traditional approach. The

programmer can set large variables to use this approach, since this

will speed up the data movement and the remaining small-sized data

to use CCSM system. Thus, the programmer benefits from using the

fast CPU-GPU transfer of direct stores.

The proposed scheme could also replace the entire CCSM system

and thus gains a simpler design with better performance. To do

this we only need an interconnection network that directly connects

the CPU to the GPU L2 cache and to remove the CCSM system’s

interconnection network. Finally, an existing program would just be

run through our source-to-source translator, then compiled and run

in the standard way. Thus, direct stores could completely replace

more complicated CPU-GPU coherence schemes with no programmer

burden and increased performance.

IV. EXPERIMENTAL EVALUATION

Through experiments, we seek to answer two questions. First,

does direct store improve performance over CCSM? We answer this

question by measuring the execution time of both CCSM and our

direct store for various applications, both for small inputs, which

fit into the GPU LLC, and for large inputs, which exceed the

LLC capacity. Second, does the proposed approach reduce cache

misses overall? Here we measure the miss rate reductions for both

CCSM and the proposed approach. In addition, we believe the

proposed approach should specifically reduce compulsory misses, so

we measure those for both approaches.

The results and analysis for all these experiments are included in

subsequent sections. While omitted for space, we have also compared

direct stores to prefetching and find that direct store’s performance

improvements there are even higher.

A. Simulation Infrastructure

Direct store is evaluated on gem5-gpu [18], a simulator that models

tightly-coupled CPU-GPU systems. It merges two popular simulators:

gem5 [19] and GPGPU-Sim [20]. Our baseline implementation in

gem5-gpu is based on the configuration listed in Table I.

TABLE I
SYSTEM CONFIGURATION

CPU

Cores 1

L1D cache 64KB, 2 ways

L1I cache 32KB, 2 ways

L2 cache 2MB, 8 ways

GPU

SMs 16 - 32 lanes per SM @ 1.4Ghz

L1 cache 16KB + 48 KB shared memory, 4 ways

L2 cache 2MB, 16 ways, 4 slices

MEMORY

Memory 2GB, 1 channel, 2 ranks, 8 banks @ 1GHz

All evaluations were performed using gem5-gpu in syscall-

emulation mode. We use the Ruby memory system instead of the

classic memory system. We simulate an integrated CPU-GPU system

comprising of a CPU core and a GPU with 16 Fermi-like SMs. Each

L1 data and instruction cache and L2 cache are private to each CPU

core. For GPU, each L1 cache is private to each SM, while the L2

cache is shared by all SMs. Cache line size is 128 bytes across the

whole system. The system has 2GB of total memory. The simulator

provides full system coherence between CPU and GPU using the

modified Hammer cache coherence protocol.

TABLE II
BENCHMARKS

Name Small input Big input Suite Shared

BP 1536 10000 Rodinia [21] Yes

BF 4096 6000 Rodinia No

GA 256x256 700x700 Rodinia Yes

HT 64x64 512x512 Rodinia Yes

KM 2000, 34 feat 5000, 34 feat. Rodinia Yes

LV 2 4 Rodinia Yes

LU 256x256 512x512 Rodinia Yes

NN 10691 42764 Rodinia No

NW 160x160 320x320 Rodinia Yes

PT 2500 5000 Rodinia Yes

SR 256x256 512x512 Rodinia Yes

ST 128x128x32 164x164x32 Parboil [22] Yes

GC power delaunay-n15 Pannotia [23] No

FW 256 16384 512 65536 Pannotia No

MS power delaunay-n13 Pannotia No

SP power delaunay-n13 Pannotia No

BL 5000 10000 NVIDIA SDK No

VA 50000 200000 NVIDIA SDK No

BS 262144 524288 [24] No

MM 256x256 900x900 [25] No

MT 32x32 1600x1600 [25] No

CH 150x150 600x600 [26] No

B. Applications

To show a variety of applications running on direct store, we use

4 standard benchmark suites and 4 other individual benchmarks; as

shown in Table II. The table lists each benchmark code name, the

sizes of small and big inputs, benchmark suite name, and whether the

benchmark uses the GPU’s shared memory feature or not. Some of

the benchmarks are provided in the gem5-gpu project [18], namely

Rodinia [21], Parboil [22] and Pannotia [23]. In addition to the

four suites, four other benchmarks are also used: bitonic sort from

[24], matrix multiplication and transpose from [25], and Cholesky



decomposition from [26]. All benchmarks are used to compare the

performance of direct store and CCSM.

Our code translator assumes that the input program performs no

CUDA memory copy. For Rodinia and Parboil in [18], benchmark

codes have specifically excluded memory copy from CPU to GPU and

vice versa. For other benchmarks, this has to be done manually, by

converting the code to eliminate all CUDA memory copy functions

and deleting all device variables, because in integrated CPU-GPU

systems the GPU can easily access CPU data without the need to

explicitly copy it. After all source codes contain no CUDA memory

copy, they are then processed by the automatic translator to produce

modified source codes ready to be compiled in the usual way.

C. Speedup

We evaluate the effect of direct store by running all benchmarks

with two different types of memory accesses: cache-coherent shared

memory (CCSM) and the proposed direct store memory access.

We report the speedup obtained by the direct store approach by

normalizing its total ticks to the total ticks of CCSM.

Figure 4 shows the speedup produced by the proposed scheme

for small (top) and big (bottom) inputs, ignoring those benchmarks

with zero percent speedup for both small and big inputs, namely GA,

KM, LV, PT, SR, ST, and MS. For these benchmarks the proposed

scheme does not bring benefit but also does not hurt the application.

For small inputs, of the 22 benchmarks, 5 show a speedup of over

10%, 7 show no speedup, while 10 show modest speedup. NN,

BL, VA, MM, and MT are the benchmarks with a speedup above

10%. Almost all of these benchmarks also have large miss rate

reduction as shown in Figure 5, except for MM and MT, which

instead experience miss rate increase. Moreover, these benchmarks

do not use GPU shared memory, and therefore, they extensively

make use of the GPU’s cache. BP, HT, and GC have large miss

rate reduction but their speedup is not high, because they use the

shared memory feature and therefore do not involve the GPU L2

cache much in their computation. The rest are benchmarks with small

miss rate reduction followed by small speedup or zero speedup. Note

that the proposed approach never decreases performance, and can

often provide performance increases.
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Fig. 4. Direct store speedup over CCSM for small (top) and big (bottom)
inputs.

Figure 4 (bottom) shows that for BP, HT, LU, NW and FW,

when input is big, although the benchmarks use shared memory, the

massively parallel threads are unable to hide memory latency, and

thus direct store impacts the performance significantly. For NN, BL,

VA, MM, and TP, the speedup for big inputs is smaller compared to

that for small inputs. This is because the input is larger than the size

of the GPU L2 cache, and hence the miss rate reduction decreases

followed by the speedup. The extreme condition happens for MM

and MT, where the speedup drops to zero followed by a decrease in

miss rate reduction. The rightmost bars on both figures represent the

geometric means of all non-zero speedups, namely 7.8% speedup for

small and 5.7% speedup for big inputs.

In summary, direct store does improve performance over CCSM.

The mean performance improvements are moderate, but are achieved

with no direct intervention from the programmer other than running

our code translator on an existing program. Furthermore, while we

might expect that the performance gains disappear for very large

inputs, direct store programs still retain a performance advantage

over CCSM in this case. Finally, we see that converting programs to

use direct store never hurts performance compared to CCSM. Given

these observations, we conclude that direct store can be a viable

replacement for CCSM that requires little programming effort, never

hurts performance, and often provides performance gains.

D. GPU L2 Cache Miss Rate Reduction

We now attempt to breakdown the performance gains of direct

store (DS) over CCSM. Specifically, direct store ’s performance

gains should come from more favorable cache behavior compared

to CCSM. We therefore begin by investigating the GPU L2 miss rate

under both direct store and CCSM.

Figure 5 shows the GPU L2 cache miss rate for all benchmarks,

ignoring those benchmarks with zero L2 cache miss rate both in

CCSM and direct store, namely GA, LU, and BS. The red bar is the

miss rate for CCSM, while the blue bar is for direct store.

Figure 5 (top) depicts the GPU L2 cache miss rate for small inputs.

We can observe that in most cases the GPU L2 cache miss rate in

CCSM is higher than in direct store. Benchmarks whose miss rate

gets reduced are BP, BF, HT, KM, LU, NN, NW, SR, GC, FW, MS,

SP, BL, VA, and CH. This is as we expect; since data is directed to

the GPU L2 cache when the CPU stores, GPU does not need to fetch

it again and this will reduce the miss rate.
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Fig. 5. GPU L2 miss rate for (top) small and (bottom) big inputs.

Nevertheless, some cases need further explanation. For MM and

MT, the miss rate in direct store is higher than in CCSM. For both

benchmarks, the total misses in CCSM and direct store actually



decrease. However, the GPU L2 accesses are also reduced and this

reduction is even larger than the reduction in total misses. The rest

of the benchmarks (GA, LV, PT, ST, and BS) produce no difference

in miss rate between CCSM and direct store. For GA, LV, ST, and

BS, the total misses decrease significantly; however, since the total

cache accesses to the GPU L2 cache are extremely large compared

to the total misses, the miss rate remains the same. For PT, there is

no significant change in GPU L2 cache miss rate when direct store is

implemented. The total misses and the total cache accesses to GPU

L2 cache also do not change. This is due to the fact that in this

benchmark the CPU does not store any data that will later be used

by GPU.

Figure 5 (bottom) depicts the GPU L2 cache miss rate for big

inputs. The miss rate reduction from CCSM to direct store is similar

to the small input cases. The miss rate is reduced for BP, BF, HT,

KM, LU, NN, NW, GC, MS, SP, BL, VA, and CH, while the rest

shows no difference. For SR and FW, when input size is big, the

reduction is canceled out due to the fact that cache accesses actually

increase because the input is larger, while the total miss reduction

is relatively small compared to the increase in cache accesses. Note

again that the rightmost bars on both figures represent the geometric

means of all L2 miss rate, namely 9.3% for CCSM compared to 7.3%

for direct store for small inputs and 12.5% for CCSM compared to

11.1% for direct store for big inputs.

This data confirms that the proposed approach is having a pos-

itive impact on cache behavior. Specifically, under the direct store

approach we hope that data resides in the GPU L2 cache on the first

access, rather than being pulled to the GPU after a first miss.

E. Hardware Overhead

To apply direct store in integrated CPU-GPU systems, a small

hardware overhead is incurred (all performance overhead is included

in the above numbers). We add a network that directly connects the

CPU’s L1 cache and GPU L2 cache and a logic in the TLB to detect

the incoming remotely stored data (Section III). The logic works

by comparing store instructions’ high-order addresses to the baseline

address. This small overhead can be done by wiring to a logic gate.

V. CONCLUSION

We have proposed direct store, a new memory model for integrated

CPU-GPU systems. In direct store, when a CPU stores data that will

be consumed by the GPU, the memory system automatically deposits

the data in the GPU LLC.

Our experimental results show that direct store reduces the GPU

LLC miss rate and increases performance at the cost of a small

hardware overhead for adding interconnection network and a new

TLB logic. Additionally, direct store is much simpler than CCSM

and needs less hardware support.

In summary, our proposed mechanisms can complement existing

cache coherence mechanisms and provide a modest boost to perfor-

mance in many cases, or they could be used as a simpler replacement

for CPU to GPU communication.
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