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Abstract—This paper presents a novel approach to accelerate applica-
tions running on integrated CPU-GPU systems. Many integrated CPU-
GPU systems use cache-coherent shared memory to communicate. For
example, after CPU produces data for GPU, the GPU may pull the data
into its cache when it accesses the data. In such a pull-based approach,
data resides in a shared cache until the GPU accesses it, resulting in long
load latency on a first GPU access to a cache line. In this work, we propose
a new, push-based, coherence mechanism that explicitly exploits the CPU
and GPU producer-consumer relationship by automatically moving data
from CPU to GPU last-level cache. The proposed mechanism results in
a dramatic reduction of the GPU L2 cache miss rate in general, and
a consequent increase in overall performance. Our experiments show
that the proposed scheme can increase performance by up to 37%,
with typical improvements in the 5-7% range. We find that even when
tested applications do not benefit from the proposed approach, their
performance does not decrease with our technique. While we demonstrate
how the proposed scheme can co-exist with traditional cache coherence
mechanisms, we argue that it could also be used as a simpler replacement
for existing protocols.

Index Terms—Cache coherence, GPU, Integrated CPU/GPU.

1. INTRODUCTION

The abundance of transistors available on a die has led to new
integrated processor designs combining CPUs and GPUs on a single
chip [1]-[5]. This integration presents new opportunities for increased
performance and ease of programming as the CPU and GPU can
communicate through cache-coherent shared memory (CCSM) rather
than through explicit data copying.

For most integrated CPU-GPU systems, the critical operation is
moving data from CPU to GPU. The CPU-GPU relationship is
different from peer cores in the traditional CPU shared-memory
multiprocessor systems. In CPU-GPU systems, the CPU is a data
producer and the GPU is a consumer. Adopting CCSM mechanisms
from CPU multiprocessors is convenient but not efficient. GPU
performance depends directly on how fast it can consume the CPU-
produced data. Pulling data one block at a time upon a cache miss
slows down data supply needed for high GPU performance. This clear
producer-consumer relationship in CPU-GPU systems presents an
opportunity for further performance gain by eliminating unnecessary
cache coherence messages.

This paper proposes an alternative CPU-GPU cache coherence
mechanism. Specifically, performance critical data is homed on the
GPU. When the CPU writes to such data, the proposed protocol
automatically forwards the data to the GPU memory hierarchy—
instead of leaving it in the CPU memory. This proposal is an intuitive
match for the CPU to GPU producer-consumer relationship, as it
moves the data to the memory system where it will be consumed,
reducing GPU miss rate, and improving overall performance.

While the basic idea of homed memory has appeared in many
systems—from commercial products for distributed shared memory
[6] and manycores [7] to research designs [8]—the integrated CPU-
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GPU system provides new challenges and opportunities. Specifically,
prior approaches required that users explicitly declare the home
core for different data ranges (e.g., in the TILE architecture [7]) or
required added hardware complexity to automatically move data to an
appropriate home (e.g., [8]). The unique nature of an integrated CPU-
GPU system makes it possible to automatically translate existing
programs to home memory and thus achieve the performance benefits
of homing data on the GPU while requiring no extra work from users
and keeping hardware complexity low.

Thus, in this paper we show how to support homed memory on
an integrated CPU-GPU system. Our proposed approach requires no
human intervention as it includes source to source translation that
converts existing GPU programs to use our mechanism. Specifically,
the translator changes existing memory allocation to allocate data
that will be homed on the GPU in a specific data range. Data in
that range cannot be cached on the CPU, only the GPU. Therefore,
when the CPU attempts to write it (to produce data for the GPU
consumption), there will be a write miss. Concurrently, the modified
Translation Look-aside Buffer (TLB) will detect the address range
and tell the CPU memory system to forward the write miss to the
GPU memory system. The GPU then resolves the write miss and the
produced data is stored in the GPU memory hierarchy. Then, when
the GPU accesses it, the data is already in cache locally, reducing
both compulsory misses and load latency on the first data access.

We test the proposed scheme by implementing it in the gem5-gpu
simulator and compare it with recent proposals for the traditional
CCSM between CPU and GPU. Across benchmarks from a range of
suites, we find that our proposed approach can achieve performance
improvements as high as 37%, with typical improvements in the range
of 5-7%. While the proposed technique can co-exist with CCSM, we
also believe it could be a simpler replacement for this approach.

II. RELATED WORK

There is a rich set of papers in literature for pull-based data supply
(e.g. prefetching), and to some extent push-based data supply (e.g.
forwarding). Many prefetching techniques have been proposed both
in hardware and software [9], including a technique that assumes
that the integrated CPU-GPU system shares the last-level cache
(LLC) [10], a dynamically adaptive prefetching strategy to reduce
memory latency and improve better power efficiency [11], and a
hybrid of software and hardware prefetching [12], which combines
conventional stride prefetching and a hardware-implemented inter-
thread technique, where each thread prefetches for threads located in
other warps.

A GPU selective caching strategy that enables unified shared
memory without hardware cache-coherence is proposed in [13].
This involves architectural improvements of selective caching by
aggressive request coalescing, CPU-side coherent caching for GPU



uncacheable requests, and a CPU-GPU interconnect optimization to
support variable-sized transfers. On the other hand, a heterogeneous
system coherence for CPU-GPU system to address the effect of the
huge number of GPU memory requests is proposed in [2]. This
proposed mechanism replaces the standard directory with a region
directory and inserts a region buffer into the L2 cache.

Push-based techniques could be found in the design of classical
CPU multiprocessor systems, such as the DASH multiprocessor’s
Deliver instruction, KSR’s poststore, and Multicube Notify, among
others [14]. In general, it has been recognized that push-based tech-
niques can sometimes outperform pull-based techniques if the sharing
pattern is known at the producer more than at the consumer. Outside
of CPU multiprocessors, direct cache access allows the network
interface card (NIC) to push data it receives directly to the CPU
caches for packet processing by the CPU [15]. While building upon
past observations, this paper targets a different platform: CPU-GPU
system where the CPU is the producer and GPU is the consumer.
Therefore, the program transformation and architecture support in
this paper are quite distinct from those in CPU multiprocessor and
NIC cases.

While prefetching shares a goal of minimizing load latency,
prefetching mechanisms are very different from, and complemen-
tary to, the mechanism proposed in this paper. The most related
mechanism to ours is remote store programming (RSP) [7]. RSP is
a memory model for multicores that allows data to be homed on
particular cores, and data to be cached only on the home core. Our
direct store shares similarity to RSP, but with several fundamental
differences. First, RSP was designed for CPU multicores whereas
direct store is designed for GPU. We argue that it is much better
suited for GPU because the producer consumer relationships are well-
defined and easily determined. Second, direct store works by simple
modification to the cache coherence and can even replace traditional
cache coherence between CPU and GPU, whereas RSP must rely
on traditional CPU cache coherence. Third, thread migration is
problematic in RSP, whereas GPU kernels will always execute in
GPU and the lack of migration possibility between GPU and CPU
simplifies the direct store coherence design.

[1I. DESIGN AND IMPLEMENTATION

In a conventional integrated CPU-GPU system, data is pulled to
GPU on a load instruction. In contrast, we propose a scheme for
pushing data directly to GPU cache to reduce load latency. To realize
this scheme, several requirements arise: (1) A mechanism to identify
data to be stored remotely, (2) separate memory allocation modes for
such data, (3) mechanism in the memory system to handle such data
correctly, and (4) a dedicated interconnection network to provide fast
data delivery and to reduce the complexity of the cache coherence
modifications. We will now describe our cache coherence scheme
direct store in greater details.

A. Data Flow

The data flow of traditional cache coherence and of our proposed
scheme are different. Figure 1 illustrates the difference in data move-
ment between a traditional state-of-the-art CCSM used in integrated
CPU-GPU and the proposed direct store. In the Hammer protocol,
all CPU and GPU caches maintain cache coherence, except for the
GPU L1 cache [16]. Software can still enforce coherence of GPU L1
caches by by writing through dirty data and flash invalidating at the
time the kernel starts execution. Data movement in CCSM involves
longer steps than in direct store (Figure 1 (left)). In CCSM, when a
CPU core issues a store instruction st x, it also copies the data from

the register file (RF) to its L1 cache. At a later time, there are three
possibilities: the data remains in the CPU’s L1 cache, it is moved to
lower (L2) cache, or it is evicted to DRAM. On the other hand, with
direct store, when the CPU issues a store st x, a copy is directly sent
to the GPU L2 cache (Step 1 in Figure 1 (right)). If the GPU L2
cache is full, the system then writes data to DRAM.
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Fig. 1. Comparison of data movement between CPU and GPU under (left)
CCSM and (right) the proposed direct store.

With CCSM, when GPU wants to consume data produced by CPU,
it fetches it from the L1 cache. If L1 cache misses, GPU requests
it from its L2 cache. If data is found in the L2 cache, it is fetched
into the L1 cache (Step b in Figure 1 (left)). If the L2 cache misses,
there are three possible places where data needs to be fetched from,
as illustrated by Steps c1, ¢2, and ¢3 in Figure 1 (left). Thus CCSM’s
data movement is very different from what we propose in direct store.
In our proposal, the GPU only needs to pull data to the L1 cache,
since it is likely that it is already in the GPU L2 cache (Steps a and b
in Figure 1 (right)). In summary, the main upside of direct store over
CCSM is that the GPU does not need to pull data to its local cache,
which reduces memory access time and reduces coherence traffic for
providing the data to the GPU. We will now disucss the direct store
mechanism in greater details.

B. Overall Design

There are five steps in the direct store scheme. The first is an
automatic code translation, which modifies a program written for an
integrated CPU/GPU to a program that can run on our proposed
scheme. Secondly, when the program is running, it reserves and
allocates a region of memory in the GPU L2 cache. The third step
is address translation, which occurs when a CPU store targets the
reserved memory. The address translation is accomplished by an
added functionality of the TLB. The fourth step is a special cache
coherence mechanism, which kicks in when a CPU store targets the
reserved memory. The fifth is a new interconnection network that
will bring data directly to the GPU L2 cache.

Intuitively, direct store increases the latency of CPU stores to
memory regions designated for the GPU. In exchange, the data to
be loaded by the GPU is moved into its memory hierarchy on the
write. Thus, the protocol is designed to decrease GPU load latency
(which is hard to hide) in exchange for increased CPU store latency
(to which most programs are less sensitive).

C. Automatic Code Translation

We develop a code translator to implement our proposed scheme
automatically from the baseline benchmarks that use no memory
copy. The translator takes the source files of a program and iden-
tifies variables that will be accessed by the GPU. Specifically, all
variable inferences in CUDA kernel invocations are scanned. The
translator then searches for the pattern that matches the kernel call as
kernel _name<<<Dg, Db, Ns, S>>>(x1,Z2,...,Zn), Where
Z1,Z2,...,Tn are the variable names captured by the translator and
stored in the temporary memory. Once all kernel invocations are



inspected, the translator scans each source code file to determine the
amount of memory needed for each variable and the variable type.
Finally, the translator searches the source code to find the memory
declaration of the stored variables in the temporary memory.

The translator searches for memory declarations that use malloc
and cudamalloc syntax. Whenever such a declaration is found, the
translator modifies the memory declaration to use mmap and sets
its memory size and the starting virtual address and saves this
modification to the associated file. The translator increments the
starting virtual address to the memory size needed by the variable,
such that there is no overlapping starting virtual addresses for all
variables. After all iterations are completed, the application is ready
to be compiled in the standard way. By using this automatic code
translator, there is no effort for the programmer to modify the source
code to implement the direct store scheme.

D. Special Memory Allocation

The proposed method needs OS support for reserving exclusive
memory regions. In the implementation, we use mmap, a Unix system
call that maps files or devices to a virtual address space of the calling
process. Our approach specifies the argument addr to high-order
address bits and sets flags to MAP_FIXED. By, allocating high-order
addresses for remotely stored data, we can signal to the TLB that this
memory needs to be stored remotely to the GPU L2 cache.

E. Translation Look-aside Buffer

Figure 2 (left) illustrates the control flow of direct store targeting
the GPU L2 cache. First, the CPU allocates data that will be read by
the GPU with a special memory allocation. Using the mechanisms
described above, we reserve bits of the virtual address space to
represent data that is homed in the GPU’s. This special data range
can never be cached on the CPU side (so accesses from the CPU will
always miss), but it can be cached on the GPU. When CPU stores
target this memory, the memory management unit (MMU) translates
the virtual address (VA) to a physical address (PA) by consulting the
TLB. By definition, this memory will always result in a cache miss
on the CPU. On detecting the special memory region’s VA, the TLB
signals the MMU to forward the store to the GPU (over a dedicated
network), which resolves it. When a GPU wants to consume data
stored by CPU, it simply issues a standard load.
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Fig. 2. Left: The control flow when the CPU issues a store instruction and the
roles of the TLB; Right: the topology of the simulated system with a network
connecting CPU and the GPU LLC (assumed to be L2 in this paper).

We modify the TLB by adding logic to detect high-order virtual
addresses, which will use the memory range of the reserved system’s
virtual address space as described in the previous subsection. When
a virtual address is referenced by a program, the TLB performs
an address comparison to detect a high-order virtual address. When
detected, the TLB sends a signal to the MMU indicating to the CPU’s
L1 cache controller to forward the store onto the GPU L2 cache.
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Fig. 3. The modified state-transition diagram of the Hammer protocol (based
on [17]).

F. Cache Coherence Protocol

Since we add a network between the CPU and the GPU L2 cache,
we need only a simple modification to the cache coherence protocol
because data does not travel through the whole cache hierarchy and
therefore does not affect the protocol much. However, for direct store
to function correctly, we need to specify to the protocol the store
state of the remotely stored data. Figure 3 depicts a modified state-
transition diagram of AMD’s Hammer cache coherence protocol [17],
which consists of 5 stable states: MM, M, O, S, and 1. State MM
represents that the node has an exclusive hold on the cache block
and the block is potentially locally modified (similar to conventional
M state). State O indicates that the node owns the cache block, but
has not modified the block, and no other node holds the block in
exclusive mode, although sharers may exist. State M indicates that
the cache block is held in exclusive mode, but has not been written
to (similar to conventional E state), and no other node holds a copy
of the block. Stores are not allowed in state M. State S indicates that
the cache line holds the most recent, correct copy of the data, but
other processors in the system may hold copies of the data in the
shared state. The cache line can be read, but not written to in state
S. State I indicates that the cache line is invalid and it does not hold
a valid copy of the data.

We modify the protocol for handling a store instruction that targets
remote location by adding new actions, depicted by bold text in the
figure. The modification is minimal because CPU to GPU stores travel
through the new network. When a remote store instruction arrives at
the CPU’s L1 cache targeting the GPU L2 cache, the protocol starts
from state I and then data is forwarded directly from the CPU’s L1
cache to GPU L2 cache without caching it into L1 cache through the
newly added network that connects them. After data is sent through
the network the protocol remains in state I.

To cover other possibilities, where the CPU might load data after
remotely storing it, we add the ability to do a remote store from states
S, M, and MM. All remote stores that begin from these states always
go to state I. This is safe because when the protocol wants to flip
from a beginning state to state I, it gets exclusive permission to the
cache block needed. In the GPU L2 cache, after a store instruction
is forwarded there, it begins in state I then always proceeds to state
MM. This is safe because we make sure that the directly stored data
will only be deposited in GPU L2 cache, not any other.

The GPU L2 cache has exactly the same protocol as the CPU.
However, there is a single additional feature that makes it possible
for the GPU to store data from a remote location. Every time a remote
store arrives at the GPU L2 cache, it will transition from state I to
MM as illustrated by the blue dashed-lined transition in Figure 3.
This transition always starts from state I since before forwarding the



data, the CPU will issue GETX command. The store will be issued
as PUTX action indicating the store is to the GPU L2 cache.

G. Interconnection Network

When a CPU store instruction targeting the GPU is detected by
the TLB, it tells the MMU to direct the store to the GPU L2
cache. We therefore add a fast network directly connecting the CPU
and the GPU L2 cache. Figure 2 (right) shows the newly added
network, indicated by the dotted line. By connecting the CPU and
GPU L2 cache directly, the data transfer will be faster because it
bypasses much of the cache hierarchy and eliminates many coherence
messages. Since we bypass many cache hierarchies and go straight
to the GPU L2 cache, we need only introduce minor modifications
on the cache coherence protocol, namely those related to CPU’s L1
cache and GPU L2 cache. The newly added interconnection network
will have exactly the same characteristics as the network used in
many cache coherence systems to exchange the messages.

H. Implementing Direct Store without Traditional Cache Coherence

Although we have presented this scheme as a complement to
existing coherence mechanisms (since we think that would be the
most likely use case), it could be adopted as a simpler, stand-alone
replacement for CPU to GPU communication. The proposed scheme
is simple to implement because it requires fewer coherence messages
than traditional protocols because the proposed scheme only allows
memory shared between GPU and CPU to exist in the GPU cache.
Thus, there will not be multiple sharers and so there are no transitions
from (for example) shared states to exclusive states.

The proposed scheme could be easily attached to systems that
use the state-of-the-art CCSM. This opens a new possibility for the
programmer to use the new approach for only a particular type of
data and other remaining data still uses the traditional approach. The
programmer can set large variables to use this approach, since this
will speed up the data movement and the remaining small-sized data
to use CCSM system. Thus, the programmer benefits from using the
fast CPU-GPU transfer of direct stores.

The proposed scheme could also replace the entire CCSM system
and thus gains a simpler design with better performance. To do
this we only need an interconnection network that directly connects
the CPU to the GPU L2 cache and to remove the CCSM system’s
interconnection network. Finally, an existing program would just be
run through our source-to-source translator, then compiled and run
in the standard way. Thus, direct stores could completely replace
more complicated CPU-GPU coherence schemes with no programmer
burden and increased performance.

IV. EXPERIMENTAL EVALUATION

Through experiments, we seek to answer two questions. First,
does direct store improve performance over CCSM? We answer this
question by measuring the execution time of both CCSM and our
direct store for various applications, both for small inputs, which
fit into the GPU LLC, and for large inputs, which exceed the
LLC capacity. Second, does the proposed approach reduce cache
misses overall? Here we measure the miss rate reductions for both
CCSM and the proposed approach. In addition, we believe the
proposed approach should specifically reduce compulsory misses, so
we measure those for both approaches.

The results and analysis for all these experiments are included in
subsequent sections. While omitted for space, we have also compared
direct stores to prefetching and find that direct store’s performance
improvements there are even higher.

A. Simulation Infrastructure

Direct store is evaluated on gem5-gpu [18], a simulator that models
tightly-coupled CPU-GPU systems. It merges two popular simulators:
gem5 [19] and GPGPU-Sim [20]. Our baseline implementation in
gem5-gpu is based on the configuration listed in Table I.

TABLE I
SYSTEM CONFIGURATION
CPU
Cores 1
LI1D cache | 64KB, 2 ways
L1I cache 32KB, 2 ways
L2 cache 2MB, 8 ways
GPU
SMs 16 - 32 lanes per SM @ 1.4Ghz
L1 cache 16KB + 48 KB shared memory, 4 ways
L2 cache 2MB, 16 ways, 4 slices
MEMORY
Memory [ 2GB, 1 channel, 2 ranks, 8 banks @ 1GHz

All evaluations were performed using gemS5-gpu in syscall-
emulation mode. We use the Ruby memory system instead of the
classic memory system. We simulate an integrated CPU-GPU system
comprising of a CPU core and a GPU with 16 Fermi-like SMs. Each
L1 data and instruction cache and L2 cache are private to each CPU
core. For GPU, each L1 cache is private to each SM, while the L2
cache is shared by all SMs. Cache line size is 128 bytes across the
whole system. The system has 2GB of total memory. The simulator
provides full system coherence between CPU and GPU using the
modified Hammer cache coherence protocol.

TABLE II
BENCHMARKS
Name | Small input Big input Suite Shared
BP 1536 10000 Rodinia [21] Yes
BF 4096 6000 Rodinia No
GA 256x256 700x700 Rodinia Yes
HT 64x64 512x512 Rodinia Yes
KM 2000, 34 feat | 5000, 34 feat. | Rodinia Yes
LV 2 4 Rodinia Yes
LU 256x256 512x512 Rodinia Yes
NN 10691 42764 Rodinia No
NW 160x160 320x320 Rodinia Yes
PT 2500 5000 Rodinia Yes
SR 256x256 512x512 Rodinia Yes
ST 128x128x32 164x164x32 Parboil [22] Yes
GC power delaunay-nl5 Pannotia [23] No
FwW 256_16384 512_65536 Pannotia No
MS power delaunay-n13 Pannotia No
SP power delaunay-n13 Pannotia No
BL 5000 10000 NVIDIA SDK No
VA 50000 200000 NVIDIA SDK No
BS 262144 524288 [24] No
MM 256x256 900x900 [25] No
MT 32x32 1600x1600 [25] No
CH 150x150 600x600 [26] No

B. Applications

To show a variety of applications running on direct store, we use
4 standard benchmark suites and 4 other individual benchmarks; as
shown in Table II. The table lists each benchmark code name, the
sizes of small and big inputs, benchmark suite name, and whether the
benchmark uses the GPU’s shared memory feature or not. Some of
the benchmarks are provided in the gemS5-gpu project [18], namely
Rodinia [21], Parboil [22] and Pannotia [23]. In addition to the
four suites, four other benchmarks are also used: bitonic sort from
[24], matrix multiplication and transpose from [25], and Cholesky



decomposition from [26]. All benchmarks are used to compare the
performance of direct store and CCSM.

Our code translator assumes that the input program performs no
CUDA memory copy. For Rodinia and Parboil in [18], benchmark
codes have specifically excluded memory copy from CPU to GPU and
vice versa. For other benchmarks, this has to be done manually, by
converting the code to eliminate all CUDA memory copy functions
and deleting all device variables, because in integrated CPU-GPU
systems the GPU can easily access CPU data without the need to
explicitly copy it. After all source codes contain no CUDA memory
copy, they are then processed by the automatic translator to produce
modified source codes ready to be compiled in the usual way.

C. Speedup

We evaluate the effect of direct store by running all benchmarks
with two different types of memory accesses: cache-coherent shared
memory (CCSM) and the proposed direct store memory access.
We report the speedup obtained by the direct store approach by
normalizing its total ticks to the total ticks of CCSM.

Figure 4 shows the speedup produced by the proposed scheme
for small (top) and big (bottom) inputs, ignoring those benchmarks
with zero percent speedup for both small and big inputs, namely GA,
KM, LV, PT, SR, ST, and MS. For these benchmarks the proposed
scheme does not bring benefit but also does not hurt the application.
For small inputs, of the 22 benchmarks, 5 show a speedup of over
10%, 7 show no speedup, while 10 show modest speedup. NN,
BL, VA, MM, and MT are the benchmarks with a speedup above
10%. Almost all of these benchmarks also have large miss rate
reduction as shown in Figure 5, except for MM and MT, which
instead experience miss rate increase. Moreover, these benchmarks
do not use GPU shared memory, and therefore, they extensively
make use of the GPU’s cache. BP, HT, and GC have large miss
rate reduction but their speedup is not high, because they use the
shared memory feature and therefore do not involve the GPU L2
cache much in their computation. The rest are benchmarks with small
miss rate reduction followed by small speedup or zero speedup. Note
that the proposed approach never decreases performance, and can
often provide performance increases.
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Fig. 4. Direct store speedup over CCSM for small (top) and big (bottom)
inputs.

Figure 4 (bottom) shows that for BP, HT, LU, NW and FW,
when input is big, although the benchmarks use shared memory, the
massively parallel threads are unable to hide memory latency, and
thus direct store impacts the performance significantly. For NN, BL,

VA, MM, and TP, the speedup for big inputs is smaller compared to
that for small inputs. This is because the input is larger than the size
of the GPU L2 cache, and hence the miss rate reduction decreases
followed by the speedup. The extreme condition happens for MM
and MT, where the speedup drops to zero followed by a decrease in
miss rate reduction. The rightmost bars on both figures represent the
geometric means of all non-zero speedups, namely 7.8% speedup for
small and 5.7% speedup for big inputs.

In summary, direct store does improve performance over CCSM.
The mean performance improvements are moderate, but are achieved
with no direct intervention from the programmer other than running
our code translator on an existing program. Furthermore, while we
might expect that the performance gains disappear for very large
inputs, direct store programs still retain a performance advantage
over CCSM in this case. Finally, we see that converting programs to
use direct store never hurts performance compared to CCSM. Given
these observations, we conclude that direct store can be a viable
replacement for CCSM that requires little programming effort, never
hurts performance, and often provides performance gains.

D. GPU L2 Cache Miss Rate Reduction

We now attempt to breakdown the performance gains of direct
store (DS) over CCSM. Specifically, direct store ’s performance
gains should come from more favorable cache behavior compared
to CCSM. We therefore begin by investigating the GPU L2 miss rate
under both direct store and CCSM.

Figure 5 shows the GPU L2 cache miss rate for all benchmarks,
ignoring those benchmarks with zero L2 cache miss rate both in
CCSM and direct store, namely GA, LU, and BS. The red bar is the
miss rate for CCSM, while the blue bar is for direct store.

Figure 5 (top) depicts the GPU L2 cache miss rate for small inputs.
We can observe that in most cases the GPU L2 cache miss rate in
CCSM is higher than in direct store. Benchmarks whose miss rate
gets reduced are BP, BF, HT, KM, LU, NN, NW, SR, GC, FW, MS,
SP, BL, VA, and CH. This is as we expect; since data is directed to
the GPU L2 cache when the CPU stores, GPU does not need to fetch
it again and this will reduce the miss rate.
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Fig. 5. GPU L2 miss rate for (top) small and (bottom) big inputs.

Nevertheless, some cases need further explanation. For MM and
MT, the miss rate in direct store is higher than in CCSM. For both
benchmarks, the total misses in CCSM and direct store actually



decrease. However, the GPU L2 accesses are also reduced and this
reduction is even larger than the reduction in total misses. The rest
of the benchmarks (GA, LV, PT, ST, and BS) produce no difference
in miss rate between CCSM and direct store. For GA, LV, ST, and
BS, the total misses decrease significantly; however, since the total
cache accesses to the GPU L2 cache are extremely large compared
to the total misses, the miss rate remains the same. For PT, there is
no significant change in GPU L2 cache miss rate when direct store is
implemented. The total misses and the total cache accesses to GPU
L2 cache also do not change. This is due to the fact that in this
benchmark the CPU does not store any data that will later be used
by GPU.

Figure 5 (bottom) depicts the GPU L2 cache miss rate for big
inputs. The miss rate reduction from CCSM to direct store is similar
to the small input cases. The miss rate is reduced for BP, BF, HT,
KM, LU, NN, NW, GC, MS, SP, BL, VA, and CH, while the rest
shows no difference. For SR and FW, when input size is big, the
reduction is canceled out due to the fact that cache accesses actually
increase because the input is larger, while the total miss reduction
is relatively small compared to the increase in cache accesses. Note
again that the rightmost bars on both figures represent the geometric
means of all L2 miss rate, namely 9.3% for CCSM compared to 7.3%
for direct store for small inputs and 12.5% for CCSM compared to
11.1% for direct store for big inputs.

This data confirms that the proposed approach is having a pos-
itive impact on cache behavior. Specifically, under the direct store
approach we hope that data resides in the GPU L2 cache on the first
access, rather than being pulled to the GPU after a first miss.

E. Hardware Overhead

To apply direct store in integrated CPU-GPU systems, a small
hardware overhead is incurred (all performance overhead is included
in the above numbers). We add a network that directly connects the
CPU’s L1 cache and GPU L2 cache and a logic in the TLB to detect
the incoming remotely stored data (Section III). The logic works
by comparing store instructions’ high-order addresses to the baseline
address. This small overhead can be done by wiring to a logic gate.

V. CONCLUSION

We have proposed direct store, a new memory model for integrated
CPU-GPU systems. In direct store, when a CPU stores data that will
be consumed by the GPU, the memory system automatically deposits
the data in the GPU LLC.

Our experimental results show that direct store reduces the GPU
LLC miss rate and increases performance at the cost of a small
hardware overhead for adding interconnection network and a new
TLB logic. Additionally, direct store is much simpler than CCSM
and needs less hardware support.

In summary, our proposed mechanisms can complement existing
cache coherence mechanisms and provide a modest boost to perfor-
mance in many cases, or they could be used as a simpler replacement
for CPU to GPU communication.
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