
ARTIFACT

EVALUATED

PASSED

PHMon: A Programmable Hardware Monitor

and Its Security Use Cases

Leila Delshadtehrani, Sadullah Canakci, Boyou Zhou, Schuyler Eldridge, Ajay Joshi, and Manuel Egele

Department of Electrical and Computer Engineering, Boston University

{delshad, scanakci, bobzhou, schuye, joshi, megele}@bu.edu

Abstract

There has been a resurgent trend in the industry to enforce a
variety of security policies in hardware. The current trend for
developing dedicated hardware security extensions is an im-
perfect, lengthy, and costly process. In contrast to this trend, a
flexible hardware monitor can efficiently enforce and enhance
a variety of security policies as security threats evolve. Ex-
isting hardware monitors typically suffer from one (or more)
of the following drawbacks: a restricted set of monitoring
actions, considerable performance and power overheads, or
an invasive design. In this paper, we propose a minimally-
invasive and efficient implementation of a Programmable
Hardware Monitor (PHMon) with expressive monitoring rules
and flexible fine-grained actions. PHMon can enforce a va-
riety of security policies and can also assist with detecting
software bugs and security vulnerabilities.

Our prototype of PHMon on an FPGA includes the hard-
ware monitor and its interface with a RISC-V Rocket proces-
sor as well as a complete Linux software stack. We demon-
strate the versatility of PHMon and its ease of adoption
through four different use cases: a shadow stack, a hardware-
accelerated fuzzing engine, an information leak prevention
mechanism, and a hardware-accelerated debugger. Our pro-
totype implementation of PHMon incurs 0.9% performance
overhead on average, while the hardware-accelerated fuzzing
engine improves fuzzing performance on average by 16×
over the state-of-the art software-based implementation. Our
ASIC implementation of PHMon only incurs a 5% power
overhead and a 13.5% area overhead.

1 Introduction

In recent years, there has been a growing demand to enforce
security policies in hardware with the goal of reducing the
performance overhead of their software-level counterparts.
As a response to this growing demand, leading processor
companies have introduced several security extensions. A
successful hardware-based enforcement of security policies,

such as the NX (non-executable) bit, provides an efficient per-
manent security solution. The processor companies have also
established secure and isolated execution environments such
as Intel Trusted Execution Technology (TXT) [64], Intel Soft-
ware Guard Extensions (SGX) [3], ARM TrustZone [62], and
AMD Secure Virtual Machine (SVM) [61]. Additionally, Intel
has introduced Memory Protection Extensions (MPX) [65]
and Control-Flow Enforcement Technology (CET) [67] to
enforce security policies.

Unfortunately, the current trend to develop dedicated hard-
ware security extensions suffers from several drawbacks. Im-
plementing new security extensions in a new generation of
processors is a lengthy and costly process (which can take
up to several years and millions of dollars). Additionally, the
implemented extensions apply fixed security policies. Since
these fixed security policies are built in silicon, any problems
in the design or implementation of these policies requires
a fix in the next generation of the processors. For example,
Intel introduced MPX as a hardware-assisted extension to
provide spatial memory safety by adding new instructions
and registers to assist with software-based bounds check-
ing. Software-based techniques, such as Safe-C (1994) [6]
and SoftBound (2009) [53], existed several years before In-
tel MPX was announced in 2013 and introduced commer-
cially in late 2015. Unexpectedly, Intel MPX incurs a con-
siderable performance overhead (up to 4× slow down in the
worst case [55]) and its supporting infrastructure cannot com-
pile/run 3-10% of legacy programs [55]. Due to various Intel
MPX problems, GCC, LLVM, and Linux discontinued their
support for MPX [42, 43]. Additionally, MPX does not pro-
tect the stack against Return-Oriented Programming (ROP)
attacks. Hence, in 2016, Intel announced a new security tech-
nology specification, called Control-Flow Enforcement Tech-
nology (CET), for full stack protection.

The above Intel MPX example shows the lengthy and im-
perfect process of implementing fixed hardware security ex-
tensions. As a result, these extensions cannot evolve with the
same pace as security threats. In contrast to the current trend
in the industry to develop rigid hardware security extensions,



a flexible hardware implementation can enforce and enhance
a variety of security policies as security threats evolve. Such
a flexible hardware implementation provides a realistic envi-
ronment (a hardware prototype with full software stack) to
evaluate the security policies before a manufacturer enforces
a policy as a dedicated feature in hardware.

A flexible hardware to enforce security policies can be
designed in the form of a hardware-assisted runtime monitor.
To characterize a general runtime monitor, we present an
event-action model. In this model, we define the runtime
monitoring by a set of events, where each event is defined by a
finite set of monitoring rules, followed by a finite sequence of
actions. This definition does not restrict events/actions to high-
level (e.g., accessing a file) or low-level (e.g., execution of an
instruction) events/actions. Accordingly, runtime monitoring
consists of three main steps: 1) collecting runtime execution
information, 2) evaluating the finite set of monitoring rules on
the collected information to detect events, and 3) performing a
finite sequence of follow-up actions. Intuitively, a monitoring
system that allows the user to define generic rules, events, and
actions is more widely applicable than a system that restricts
the expressiveness of these aspects. Such a monitoring system
can be used in a wide range of applications, including, but
not limited to, enforcing security policies, debugging, and
runtime optimization.

A reference monitor [4,70] is a well-known concept, which
defines the requirements for enforcing security policies. A ref-
erence monitor observes the execution of a process and halts
or confines the process execution when the process is about
to violate a specified security policy. The reference monitor
observation can happen at different abstraction levels, e.g.,
OS kernel, hardware, or inline. We can describe a reference
monitor using our event-action monitoring model, where the
events are specified by security policies and the sequence of
actions is limited to halting/confining the process execution.
An event-action monitoring model has a broader scope and is
not restricted to specifying reference monitors for enforcing
security policies.

Software-only runtime monitoring techniques can enforce
the event–action monitoring model with virtually no restric-
tion. However, these software techniques are not suited for
always on monitoring and prevention mechanisms due to their
considerable performance overhead (2.5× to 10× [47, 60]
caused by the dynamic translation process of Dynamic Bi-
nary Instrumentation (DBI) tools). Hardware-assisted moni-
toring techniques reduce this significant overhead [26, 28, 89].
Nonetheless, they commonly restrict the expressiveness of
the event–action monitoring model. Some of the hardware-
assisted monitoring techniques are designed for a specific
monitoring use case, e.g., Bounds Checking (BC) [15, 27, 32,
51, 52], data-race detection [89], and Dynamic Information
Flow Tracking (DIFT) [18, 19, 78, 81]. Other techniques pro-
vide some flexibility [10, 11, 25, 26, 28] and can be applied to
a range of use cases including BC, DIFT, and Control Flow

Integrity (CFI). We refer to these flexible techniques as Flex-
ible Hardware Monitors (FHMons). However, the existing
FHMons suffer from three common limitations:

1. Most existing FHMon techniques (e.g., [25, 26, 28]) ex-
tend each memory address and register with a tag. These
techniques provide a set of actions only for tag propa-

gation and raising an exception (handled by software),
which restricts the expressiveness of their actions. Over-
all, this limits their deployment beyond tag-based mem-
ory corruption prevention. In principle, we can consider
the tag-based FHMons as hardware reference monitors
to enforce memory protection policies.

2. Some FHMon techniques [11, 12, 46] rely on a separate
general-purpose core to perform generic monitoring ac-
tions. These techniques incur large overheads (in terms
of performance, power, and area) despite leveraging fil-
tering and hardware-acceleration strategies.

3. Some FHMons require invasive modifications to the
processor design (e.g., [16,28,76]). This limits the feasi-
bility of FHMon adoption in commercial processors as
well as the composition of FHMon.

Overall, the existing hardware-assisted monitoring techniques
only implement a restricted subset of an ideal event–action

monitoring model. Hence, they suffer from limited applica-
bility. To address the aforementioned limitations and expand
the set of monitoring rules and follow-up actions, we propose
a minimally-invasive and low-overhead implementation of a
Programmable Hardware Monitor (PHMon).

Our PHMon can enforce a variety of security policies and
it can also assist with detecting software bugs and security
vulnerabilities. We interface PHMon with a RISC-V [83]
Rocket [5] processor and we minimally modify the core to
expose an instruction execution trace to PHMon. This execu-
tion trace captures the whole architectural state of the core.
Each event is identified based on programmable monitoring
rules applied to the instruction execution trace. Once PHMon
detects an event, it performs follow-up actions in the form of
hardware operations including ALU operations and memory
accesses or an interrupt (handled by software). We modify the
Linux Operating System (OS) to support PHMon at process
level. Hence, unlike most existing FHMons and tag-based
memory corruption prevention techniques, PHMon offers the
option of enforcing different security policies for different
processes. Additionally, we provide a software API consist-
ing of a set of C functions to program PHMon. A user can
simply use this API to specify the monitoring rules and pro-
gram PHMon to monitor separate events, count the number of
event occurrences, and take a series of follow-up actions. We
demonstrate the versatility of PHMon and its ease of adop-
tion through four representative use cases: a shadow stack, a
hardware-accelerated fuzzing engine, information leak pre-
vention, and hardware-accelerated debugging.



To evaluate PHMon in a realistic scenario, we implement
a prototype of PHMon interfaced with a RISC-V Rocket
core [5] using Xilinx Zedboard FPGA [63]. Our FPGA-based
evaluation shows that PHMon improves the performance of
fuzzing by 16× over the state-of-the art software-based im-
plementation while our programmed shadow stack (for call
stack integrity protection) has 0.9% performance overhead,
on average. When implemented as an ASIC, PHMon incurs
less than 5% power and 13.5% area overhead compared to an
unmodified RISC-V core.

In summary, we make the following contributions:

• Design: We propose a minimally-invasive and efficient
programmable hardware monitor to enforce an event–

action monitoring model with programmable monitor-
ing rules and flexible hardware-level follow-up actions.
Additionally, we provide the OS and software support
for our hardware monitor.

• Application: We demonstrate the flexibility and ease of
adoption of our hardware monitor to enforce different
security policies and to assist with detecting software
bugs and security vulnerabilities via four use cases.

• Implementation: We implement a practical prototype,
consisting of a Linux kernel and user-space running
on a RISC-V processor interfaced with our PHMon,
on an FPGA. Our evaluation indicates that PHMon in-
curs low performance, power, and area overheads. In the
spirit of open science and to facilitate reproducibility
of our experiments, we will open-source the hardware
implementation of our PHMon, our patches to the Linux
kernel, and our software API: https://github.com/bu-
icsg/PHMon.

2 Related work

In this section, we discuss existing hardware features in pro-
cessors and hardware-assisted monitors, which are applied
in security use cases, and compare them with PHMon. We
classify the hardware-assisted runtime monitors into two cate-
gories: “trace-based” and “tag-based”. Trace-based monitors
apply the monitoring rules and actions on the whole execution
trace, while the tag-based monitors restrict the monitoring
rules and/or actions to tag propagation. Table 1 compares
different features of our trace-based PHMon with other tag-
based and trace-based monitors. We can consider the tag-
based monitors as reference monitors that can enforce one or
more security policies for memory corruption prevention. In
general, trace-based monitors are applied to a wider range of
applications than merely memory protection. For example, as
listed in Table 1, data race detection is one of the use cases of
the Log-Based Architectures (LBA) [10, 11].

2.1 Custom Hardware for Monitoring

Dedicated hardware monitors have been used for a variety
of debugging and security applications including hardware-

assisted watchpoints for software debugging [35, 88] and
hardware-assisted Bounds Checking (BC) [27, 32, 51]. Simi-
lar to [35, 88], PHMon can be integrated with an interactive
debugger, such as GDB, and provide watchpoints by effec-
tively filtering and monitoring different ranges of memory
addresses. PHMon can also evaluate conditional break points
and we illustrate this capability in Section 5.4.

Dynamic Information Flow Tracking (DIFT) is a tech-
nique for tracking information during the program’s execu-
tion by adding tags to data and tracking the tag propagation.
Software-only implementations of DIFT [50, 54, 59] have
large performance overheads. To reduce the performance
overhead, hardware implementations for DIFT have been pro-
posed [13, 19, 78, 81]. These techniques provide different
levels of flexibility for DIFT, from 1-bit tags [59] and multi-
bit tags [19] to more flexible designs [13, 81]. Instead of
comparing PHMon with custom hardware for BC and DIFT,
Section 2.2 provides a comparison with FHMons that are
capable of performing both BC and DIFT.

2.2 Flexible Hardware Monitors (FHMons)

FHMons provide flexible monitoring capabilities and can be
applied to a range of applications. MemTracker [82] imple-
ments tag-based hardware support to detect memory bugs.
Several existing works [25, 26, 28] extend DIFT tag-based
monitoring into more flexible frameworks capable of support-
ing different security use cases. PUMP [28] provides pro-
grammable software policies for tag-based monitoring with
invasive changes to the processor pipeline. FlexCore [25] is
a re-configurable architecture decoupled from the processor,
which provides a range of runtime monitoring techniques.
The programmable FPGA fabric of FlexCore restricts its in-
tegration with a high-performance core. Harmoni [26] is a
coprocessor designed to apply different runtime tag-based
monitoring techniques, where the tagging capability is not
as flexible as FlexCore or PUMP. HDFI [76] and REST [74]
provide memory safety through data-flow isolation by adding
a 1-bit tag to the L1 data cache.

Among the tag-based FHMons, HDFI [76] is the closest
work to PHMon in terms of providing a realistic evaluation
environment. Both HDFI and PHMon implement a hardware
prototype, rather than relying on simulations, and evaluate
a full Linux-based software stack on an FPGA. Contrary to
PHMon, HDFI applies invasive modifications to the processor
pipeline (adds a 1 bit tag to L1 data cache and modifies the
decode and execute stages of the pipeline). HDFI is restricted
to enforcing data-flow isolation policies to prevent memory
corruption. Although PHMon can be used for sensitive data
protection (e.g., preventing Heartbleed), compared to HDFI,
PHMon has limited capabilities to protect against memory
corruption. However, unlike HDFI, PHMon can be applied
in security use cases beyond memory corruption prevention,
such as accelerating the detection of security vulnerabilities



Table 1: Comparison of previous hardware monitoring techniques with PHMon

Mechanism
Monitoring

Use Cases
Source Code Hardware Evaluation Avg. Performance Power/Area

Mechanism Requirement Modification Methodology Overhead Overhead

Hardbound [27] Tag-based BC Yes Inv Sim 5%-9% # N/A

SafeProc [32] Tag-based BC Yes Inv Sim 5% # N/A

Watchdog [51] Tag-based BC Yes Inv Sim 15%-25% # N/A

LIFT [59] SW (DBI) DIFT No SW SW ∼200%-300% # N/A

TaintCheck [54] SW (Tag-based) DIFT No SW SW Avg: # N/A # N/A

Multi-Core DIFT [50] SW (Threads) DIFT No SW Sim 48% # N/A

DIFT [78] Tag-based DIFT No Min-inv Sim & Emul 1.1% # N/A

Raksha [19] Tag-based DIFT No Inv FPGA 48% # N/A

FlexiTaint [81] Tag-based DIFT Yes Min-inv Sim 1%-3.7% # N/A

MemTracker [82] Tag-based MC Yes Inv Sim 2.7% # N/A

DataSafe [13] Tag-based DIFT No Inv Sim Avg: # N/A # N/A

DISE [16] Binary Rewriting FI, (De)compress No Inv Sim Avg: # N/A # N/A

LBA [11] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 390%-700% # N/A

Optimized LBA [12] Trace-based MC, DIFT, LOCKSET No Min-inv Sim 2%-327% # N/A

FADE [30] Trace-based Memory & Propagation Tracking No Min-inv Sim 20%-80% Raw numbers

Partial Monitoring [46] Trace-based MC, RC, DIFT, BC No Min-inv Sim 50% (4%-11%) / (7%)

PUMP [28] Tag-based NXD+NWC, DIFT, CFI, MC Yes Inv Sim ∼8% (47%) / (55%)

Harmoni [26] Tag-based MC, RC, DIFT, BC Yes Min-inv RTL Sim ∼1%-8% (10%) / (110%)

FlexCore [25] Tag-based MC, DIFT, BC, SEC Yes Min-inv RTL Sim 5%-44% (14.6%) / (32.5%)

HDFI [76]
Tag-based

SL Enhancement, Code Ptr Sep, Info Leak
Yes Inv FPGA 0.94% # N/A

Kernel, Stack, and VTable Ptr Prot

Nile [23] Trace-based Shadow Stack No Min-inv FPGA 0.78% (26%) / (15%)

REST [74] Tag-based Stack & Heap Prot No Inv Sim 2%-25% # N/A

PHMon (This Work) Trace-based
Shadow Stack, Fuzzing

No Min-inv FPGA 0.94% (5%) / (13.5%)
Info Leak, Debugging

“Inv” = Invasive; “Min-inv” = Minimally-invasive; “# N/A” = Numbers not available; Sim = “Simulation”; Emul = “Emulation”; “MC” = Memory Checking; “RC” = Reference Counting
“BC” = Bounds Checking; “FI” = Fault Isolation; “SEC” = Soft Error Checking; “SEP” = Seperation; “SL” = Standard Library; “Ptr” = Pointer; “Prot” = Protection; “Info” = Information; “Leak” = Leakage

(we demonstrate this capability in Section 5).

Overall, to the best of our knowledge, the existing flexible
tag-based monitoring techniques are a subset of an event-

action monitoring model, where the actions are restricted to
tag-propagation and raising an exception (handled by soft-
ware). In this regard, these tag-based FHMons are reference
monitors that enforce memory protection policies. PHMon
provides a more comprehensive language for actions. Hence,
we can leverage PHMon in a wider range of security appli-
cations, not limited as a reference monitor to enforce mem-
ory protection policies. An efficient implementation of a tag-
based FHMon, such as HDFI, is complementary to PHMon.

In a multi-core system, Log-Based Architectures (LBA)
[10, 11] implement trace-based monitors that capture an exe-
cution log from a monitored program on one core and transfer
the collected log to another general-purpose core, where a
dynamic tool (lifeguard) executes and enforces the security
policies. The optimized LBA [12] considerably reduces the
performance overhead of LBA [11] (from 3×-5× to ∼50%)
at the cost of higher power and area overheads. From the
perspective of the event-action monitoring model, LBA’s
expressiveness in terms of monitoring rules and actions is
close to software-based techniques. However, the LBA trace-
based monitor suffers from considerable performance, power,
and area overheads. Similar to optimized LBA, FADE [30],

DISE [16], and partial monitoring [46] apply filtering, pattern
matching, and dropping decisions to the execution trace, re-
spectively. Rather than utilizing an additional general-purpose
core, PHMon provides a programmable hardware capable of
performing a smaller range of monitoring techniques, but
does so efficiently and with significantly lower power and
area overheads. Among the trace-based FHMons, Nile [23] is
the closest work to PHMon. Compared to LBA architectures
and PHMon, Nile provides a restricted set of possible actions;
however, Nile’s actions are not limited to tag propagation.
Nile only supports comparison operations (no other arith-
metic or logical operations), which restricts its applicability
for different use cases.

2.3 Generic Monitoring Hardware Extensions

Modern processors provide hardware features and extensions
to collect runtime hardware usage information. Hardware Per-
formance Counters (HPCs) are hardware units for counting
the occurrence of microarchitectural events, such as cache
hits and misses, at runtime. A number of previous works use
HPCs for malware detection [24, 40, 57, 73]. However, recent
studies [21, 87] shed light on the pitfalls and challenges of
using HPCs for security. Moreover, HPCs are limited to a
predefined pool of microarchitectural events, while PHMon
and FHMons provide a set of monitoring rules to specify cus-







can configure an MU to monitor these four instructions using
the following matching condition:

BLT, BGE, BLTU, BGEU: inst = 0x00004063; mask bit = 0xffffbf80

The matching condition for inst evaluates to true when the
current instruction is a match with one of the BLT, BGE, BLTU,
or BGEU instructions. Note that each of these instructions is
identified based on the opcode and func3 bits (refer to [83]).
For each of the remaining entries of the commit log (i.e.,
pc_src, pc_dst, addr, and data), we set the masking bits
to 0xffffffffffffffff, indicating these fields are don’t
cares. In Section 4.2, we will present our software interface
for programming MUs to monitor the target events. Whenever
the predicate (the logical conjunction of the matches on all
the commit log entries) evaluates to true, a counter in the
corresponding MU increases. Once the counter reaches a
programmed threshold value, the MU triggers an activation
signal and sends a match packet to the AU. The AU queues
the incoming match packets, while it performs actions for
the packets arrived earlier. To reduce the queuing traffic, an
MU filters commit log traces based on the monitoring rules
before queuing them.

An MU may be programmed by a user process to mon-
itor only its own execution or by an admin to monitor pro-
cesses with lower permissions. In both cases, MU configu-
ration becomes part of a process’ context and is preserved
across context switches by the OS. In Section 6.2, we evalu-
ate the performance overhead caused by preserving PHMon’s
configuration across context switches.

Although each MU monitors a separate event, PHMon is
capable of monitoring a sequence of events using multiple
MUs communicating through a shared memory space set up
by either the OS or the monitored process itself. For exam-
ple, multiple MUs may all write to or read from the shared
memory.

4.1.3 Action Unit (AU)

The AU is responsible for performing the follow-up actions.
Our main goal in designing the AU is to provide a minimal

design that supports a variety of actions including arithmetic
and logical operations, memory operations, and interrupts. To
this end, we effectively design our AU as a small microcon-

troller with restricted I/O consisting of four microarchitectural
components: Config Units (CFUs), an Arithmetic and Logical
Unit (ALU), a Local Register File, and a Control Unit (CU).
In addition to these four components, the Match Queue that
records the match packets (generated by MUs) is placed in
the AU (see Figure 3).

Each MU is paired with a CFU, where the CFU stores the
sequence of actions to be executed once the MU detects a
match. These programmable actions are in fact the instruc-
tions of a small program that executes in the AU. The CU
performs the sequence of actions via hardware operations

(i.e., ALU operations and memory requests) or an interrupt
(handled by software). The CU uses the registers in the Local
Register File (6 registers in total) to perform the hardware
operations. Our AU implementation enforces the atomic ex-
ecution of actions. To this end, the CU executes all of the
follow-up actions of one match packet before switching to
the actions of the next match packet.

As part of the actions, the AU can access memory by
sending requests to the L1 data cache, a virtually-indexed
physically-tagged cache, through the RoCC interface. Hence,
all memory accesses are to virtual addresses. The L1 data
cache of Rocket processor has an arbiter to handle incom-
ing requests from several agents including the Rocket core
and the RoCC interface. Note that the memory hierarchy of
Rocket core manages the memory consistency.

In Appendix A, we provide a detailed description about
each of the AU’s microarchitectural components.

4.2 PHMon: Software Interface

We use RISC-V’s standard ISA extensions [83], called
custom RISC-V instructions, to configure PHMon’s MUs
and CFUs, as well as to communicate with PHMon. We pro-
vide a list of functions that one can use to communicate with
PHMon, where each function is accessible by a user-space
process, a supervisor, or both. Note that when a user process
programs PHMon, then PHMon only monitors that process’
execution. When an admin programs PHMon, it can be con-
figured to monitor a specific user process or monitor all user
processes. To prevent an unauthorized process from recon-
figuring PHMon (after an MU and its paired CFU are con-
figured), we provide an optional feature to stop any further
configuration. To this end, we leverage the Rocket’s privilege
level (MStatus.priv) provided to PHMon through the RoCC
interface. According to the privilege level, PHMon permits or
blocks incoming configuration requests.

4.3 PHMon: OS Support
In this section, we discuss the necessary modifications to
the Linux OS kernel to support PHMon. We categorize our
modifications into two classes: per process modifications and
interrupt handling modifications.

4.3.1 Per Process OS Support

We extend Linux to support PHMon and provide a complete
computing stack including the hardware, the OS, and soft-
ware applications. We provide the OS support for PHMon
at the process level. To this end, we alter the task_struct
in the Linux Kernel to maintain PHMon’s state for each pro-
cess. We store the MUs’ counters, MUs’ thresholds, the value
of local registers, and CFUs’ configurations as part of the
task_struct (using the custom instructions for reading PH-
Mon register values).

We modify the Linux kernel to initialize the PHMon infor-
mation before the process starts its execution. Once PHMon is



configured to monitor a process, we enable a flag (part of the
task_struct) for that process. Our modified OS allocates
a shared memory space for communication between MUs.
After allocation, the OS maintains the base address and the
size of the shared memory as part of the PHMon information
for the process in the task_struct. Additionally, the OS
sends the base and size values to PHMon. PHMon can sim-
ply protect the shared memory from unauthorized accesses,
where only the AU and the OS are authorized to access the
shared memory. To provide this protection, one of the MUs
can monitor any user-space load or store accesses to this
range of memory and trigger an interrupt in case of memory
access violation.

During a context switch, the OS reads the MU information
(counter and threshold values) as well as the Local Register
File information from PHMon and stores them as the PHMon
information of the previous process in the task_struct.
Before the OS context switches to a monitored process, it
reads the MU information of the next process and writes
it to PHMon registers using the functions provided in the
PHMon API. Note that to retain the atomicity of the pro-
grammed actions, our modifications to the OS delay a context
switch until the execution of the current set of actions and
the corresponding actions of all the match packets stored
in the Match Queue are completed. It is worth mentioning
that our current implementation of PHMon is not designed
for real-time systems. Hence, we currently do not provide any
guarantees for meeting stringent real-time deadlines.

4.3.2 Interrupt Handling OS Support

The OS is responsible for handling an incoming interrupt
triggered by the CU. We configure our RISC-V processor
to delegate the interrupt to the OS. Additionally, we modify
the Linux kernel to handle the incoming interrupts from the
RoCC interface. In our security-oriented use case, the OS
terminates the process that caused the interrupt based on the
assumption that an anomaly or violation has triggered the
interrupt. Note that the OS can handle the interrupt in various
ways according to the user’s requirements (e.g., trapping into
GDB for the debugging use case in Section 5.4).

5 Use Cases

PHMon distinguishes itself from related work by its flexibility,
versatile application domains, and its ease of adoption. To
demonstrate the versatility of PHMon, we present four use
cases: a shadow stack, a hardware-accelerated fuzzing engine,
an information leakage prevention mechanism, and hardware-
accelerated debugging.

5.1 Shadow Stack

Our first use case is a shadow stack, a security mechanism
that detects and prevents stack-based buffer overflows as well
as Return-Oriented-Programming (ROP) attacks. As data on
the stack is interleaved with control information such as func-
tion return addresses, an overflow of a buffer can violate

the integrity of such control information and in consequence
compromise system security. A shadow stack is a secondary
stack that keeps track of function return addresses to protect
them from being tampered with by an attacker. A stack buffer
overflow attack occurs when a program writes data into a
stack-allocated buffer, such that the data is larger than the
buffer itself. ROP is a contemporary code-reuse attack that
combines a sequence of so-called gadgets into a ROP-chain.
Gadgets typically consist of a small number of instructions
ending in a ret instruction. However, executing a ROP-chain
violates function call semantics (i.e., there are no correspond-
ing calls to the rets in the chain). A shadow stack can
therefore detect ROP attacks.

Rather than providing a dedicated hardware solution (e.g.,
Intel’s proposed shadow stack [67]), we leverage PHMon’s
flexibility to implement a hardware shadow stack. A shadow
stack can easily be realized in PHMon with two MUs. We
program one MU (MU0) to monitor call instructions and
another MU (MU1) to monitor ret instructions. Also, we
configure each of the MUs to trigger an action for every mon-
itored instance of call and ret (threshold = 1).

The OS allocates a shared memory space, i.e., space for
the shadow stack, for each process that is being monitored.
Both MUs have access to this shared memory space. We can
simply protect this shared memory space against unautho-
rized accesses by monitoring load and store accesses to this
range of addresses leveraging a third MU (as described in Sec-
tion 4.3). Any user-space access to this memory space results
in an interrupt and termination of the violating process. Once
the OS allocates this memory space (during the initialization
of a new process), it stores the base address and the size of the
allocated memory in the first two general-purpose registers of
the Local Register File in PHMon (refer to Appendix A for
more information about the Local Register File). We config-
ure the CFUs to use the base address register as the shadow
stack pointer. The AU accesses the shadow stack by sending
memory requests to the L1 cache using the RoCC interface.

The summary of our event-action scenario for implement-
ing a shadow stack is as follows: the first MU (MU0) mon-
itors calls and pushes the corresponding pc_src value to
the shadow stack. The second MU (MU1) monitors rets
and compares the pc_dst value with the value stored on
the top of the shadow stack. If there is a mismatch between
calls and rets (e.g., an illegal ret address or a ROP attack),
PHMon triggers an interrupt and the OS handles the inter-
rupt. In our current implementation, the OS simply terminates
the process that caused the interrupt. Note that analogous
to [8], we can address call-ret matching violations caused
by setjmp/longjmp by augmenting the jmp_buf struct with
one more field to store the shadow stack pointer.

5.2 Hardware-Accelerated Fuzzing

Fuzzing is the process of providing a program under test
with random inputs with the goal of eliciting a crash due to





accesses, write accesses, or both by specifying the inst entry
of the commit log. It is worth mentioning that most modern
architectures only provide a few watchpoint registers (e.g.,
four in Intel x86). We have used and validated the watch-
point capability of PHMon as part of the information leak
prevention use case, described in Section 5.3.

In addition to watchpoints, PHMon accelerates the debug-
ging process. As an example, PHMon can provide an efficient
conditional breakpoint and trap into GDB. Consider a debug-
ging scenario for a conditional breakpoint in a loop as “break
foo.c:1234 if i==100”, where i is the loop counter. Here,
we want to have a breakpoint and trap into GDB when the
loop reaches its 100th iteration. To this end, PHMon monitors
an event where pc_src has the corresponding PC value of
line 1234. Then, PHMon triggers an interrupt when the MU’s
counter reaches the threshold of 100. Subsequently, the
interrupt handler traps into GDB. In Section 6.2, we measure
the performance improvement of PHMon over GDB for such
a conditional breakpoint.

For the debugging use cases, such as watchpoints and con-
ditional breakpoints, the only required action in case of de-
tecting an event is triggering an interrupt. As a result, PHMon
is synchronized with the program’s execution.

6 Evaluation

In this section, we discuss our approach to validate the func-
tionality of PHMon as well as our evaluation of PHMon using
performance, power, and area metrics.

6.1 Experimental Setup

We implemented PHMon as a RoCC (using Chisel HDL [7])
and interfaced it with the RISC-V Rocket processor [5] that
we prototyped on a Xilinx Zynq Zedboard evaluation plat-
form [63]. We performed all experiments with a modified
RISC-V Linux (v4.15) kernel. We compared the PHMon de-
sign with a baseline implementation of the Rocket processor.
For both the baseline and PHMon experiments, we used the
same Rocket processor configurations featuring a 16K L1
instruction cache and a 16K L1 data cache. Table 2 lists the
microarchitectural parameters of Rocket core and PHMon.
Note that similar to HDFI [76], we do not include an L2 data
cache in our experiments running on Rocket core. Currently,
TileLink2 (the protocol that Rocket Chip uses to implement
the cache coherent interconnect) does not support L2 cache
while the L2 cache in older versions of TileLink is not mature
enough [76]. Due to the limitations of our evaluation board, in
our experiments, the Rocket Core operated with a maximum
frequency of 25 MHz (both in the baseline and PHMon exper-
iments). Note that for our ASIC evaluation, we synthesized
the Rocket core with a target frequency of 1 GHz.

For our shadow stack use case, we calculated the run time
overhead of 14 applications from MiBench [36], 9 appli-
cations (out of 12) from SPECint2000 [37], and 8 applica-
tions (out of 12) from SPECint2006 [38] benchmark suites.
To measure the performance improvement of our hardware-

Table 2: Parameters of Rocket core and PHMon.
Rocket Core

Pipeline 6-stage, in-order
L1 instruction cache 16 KB, 4-way set-associative
L1 data cache 16 KB, 4-way set-associative
Register file 31 entries, 64-bit

PHMon

MUs 2
Local Register File 6 entries, 64-bit
Match Queue 2,048 entries, 129-bit
Action Config Table 16 entries

accelerated AFL, we evaluated 6 vulnerable applications [85]
including indent 2.2.1, zstd, PCRE 8.38, sleuthkit 4.1.3,
nasm 2.11.07, and unace 1.2b.

To assess power and area, we used Cadence ASIC toolflow
for 45nm NanGate process [69] to synthesize PHMon and the
Rocket processor to operate at 1 GHz. We then measured the
post-extraction power consumption and the area of our system
as well as our baseline system, i.e., the unmodified Rocket
processor. We considered all memory blocks (both in PHMon
and Rocket) as SRAM blocks and used CACTI 6.5 [80] to
estimate their power and area.

6.2 Functionality Validation and Performance

Results

In this subsection, we validate the functionality of our use
cases and evaluate their performance overhead. Additionally,
we evaluate the performance overhead PHMon imposes dur-
ing context switches.
Shadow Stack. We validated the functionality of our shadow
stack using benign benchmarks and programs vulnerable to
buffer overflow attacks. All benchmark programs ran suc-
cessfully with the shadow stack enabled resulting in no false
detections from PHMon. We developed simple programs vul-
nerable to the buffer overflow using strcpy and exploited
this vulnerability.3 As designed, PHMon detected the mis-
matches between calls and rets, triggered an interrupt, and
the Linux Kernel terminated the process.

We measured the runtime overhead of our shadow
stack on different benchmark applications from MiBench,
SPECint2000, and SPECint2006 benchmark suites. We ran
each benchmark five times and calculated the average runtime
overhead. All standard deviations were below 1.5%. Unfortu-
nately, we were not able to successfully cross-compile and run
three of the SPECint2000 benchmarks, i.e., eon, perlbmk, and
vortex, for RISC-V. For the rest of the SPECint2000 bench-
marks, we used -O2 for compilation and reference input
for evaluation (we clarify the exceptions in the results). For
SPECint2006 benchmark applications, we used -O2 for com-
pilation. Considering the limitations of our evaluation board,

3We disabled Address Space Layout Randomization (ASLR) to simplify
our buffer overflow attack.









in Rocket is non-blocking, PHMon blocks the rest of the
actions while waiting to receive a memory response. This can
increase the run time for performing actions. The evaluation
results presented in the paper include the effect of blocking
actions. Potentially, we can modify PHMon such that it can
perform non-blocking actions. Although such a design will
improve the performance, it will increase the complexity and
power/area overheads of PHMon.

In this paper, we interface our PHMon with an in-order
RISC-V processor. We implement the AU of PHMon as a mi-
crocontroller with restricted I/O, which implements a limited
hand-crafted 16-bit ISA and provides a safe and restricted
domain to take actions. Our developed ISA does not include
branches/jumps, i.e., our AU is not Turing complete. This
limited processing implementation is useful for preventing se-
curity threats. However, if a user requires actions that cannot
be implemented by our restricted ISA, the option of trigger-
ing an interrupt provides the user with flexibility of executing
actions in form of arbitrary programs. Then, PHMon can
enforce the programmed security policies on these arbitrary
action programs.

In the current implementation, we monitor the committed
instruction stream. However, PHMon can apply the same
monitoring model using other data streams, e.g., execution
information from different stages of the pipeline or cache ac-
cess information. Applying PHMon to other data streams will
require minimal modifications to the processor for collecting
the data streams and transmitting them to PHMon.

The number of MUs is another design decision when de-
signing PHMon. The number of MUs directly affects power
and area overheads. A user can monitor more events than
the available number of MUs by time-multiplexing the MUs
(similar to HPCs). Note that several MUs may trigger actions
simultaneously; in this case, several match packets enter
the Match Queue, where the MU with the lowest MU_id gets
the highest priority to enter the queue. The user has an option
to set a priority order for MUs. Currently, PHMon does not
include a dedicated local memory shared between MUs. For
future work, we will include a scratchpad memory or a Con-
tent Addressable Memory (CAM) in PHMon to reduce the
number of outgoing accesses to the L1 data cache and in turn
further reduce the performance overhead.

7.2 Security Aspect

Regarding the security capabilities, in principle, we can ex-
tend PHMon to protect (parts of) the OS kernel as well. How-
ever, to achieve this protection from an attacker who has com-
promised the kernel, PHMon must be able to guarantee that
an attacker cannot reprogram or disable engaged protections.
As PHMon is configured from the kernel, providing such a
guarantee is challenging against an adversary who holds the
same privilege as the defense mechanism. The same is true
for most architecturally supported security features, such as
page permissions or Intel’s proposed CET. While PHMon

can easily be configured to ensure the integrity of configura-
tion information and control instructions, integrity is merely
a necessary condition to protect against a kernel-level adver-
sary, it is not sufficient. For example, with integrity intact,
attackers can launch mimicry or confused deputy attacks to
reprogram PHMon. “Sealing” configurations (as mentioned in
Section 4.2) and protecting integrity will raise the bar against
kernel-level adversaries, but a complete solution that protects
an OS kernel with a kernel-controlled defense mechanism
requires further study.

7.3 Application Aspect

The user can leverage multiple MUs to apply several moni-
toring policies simultaneously. For example, one can use 6
MUs to simultaneously apply all four use cases of PHMon
presented in this paper. PHMon enables per process monitor-
ing capabilities; hence, we can reuse an MU to apply different
policies based on the requirements of the running process. For
example, an MU that is used for debugging of a specific pro-
cess can be reconfigured to prevent Heartbleed in any other
process that is using openssl.

8 Conclusion

We presented the design, implementation, and evaluation of
PHMon, a minimally-invasive programmable hardware mon-
itor. PHMon is capable of enforcing a variety of security
policies at runtime and also assisting with detecting software
bugs and security vulnerabilities. Our PHMon prototype in-
cludes a full FPGA implementation that interfaces the monitor
with a RISC-V processor, along with the necessary OS and
software support. We demonstrated the versatility and ease of
adoption of PHMon through four use cases; a shadow stack,
a hardware-accelerated fuzzing engine, information leak pre-
vention, and a hardware-accelerated debugger. On average,
our shadow stack incurs 0.9% performance overhead while
our hardware-assisted AFL improves the performance by up
to 16×. An ASIC implementation of PHMon with 2 MUs has
less than 5% and 13.5% power and area overheads, respec-
tively.

Acknowledgements

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1916393 and CCF-
1533663 and a Google Faculty Research award.

References

[1] ABADI, M., BUDIU, M., ERLINGSSON, Ú., AND LIGATTI, J.
Control-flow integrity principles, implementations, and applica-
tions. ACM Transactions on Information and System Security

(TISSEC) 13, 1 (2009).

[2] AIZATSKY, M., SEREBRYANY, K., CHANG, O., ARYA, A.,
AND WHITTAKER, M. Announcing OSS-Fuzz: continuous
fuzzing for open source software. Google Testing Blog (2016).



[3] ANATI, I., GUERON, S., JOHNSON, S. P., AND SCARLATA,
V. R. Innovative technology for CPU based attestation and
sealing. In Proceedings of the International Workshop on

Hardware and Architectural Support for Security and Privacy

(HASP) (2013).

[4] ANDERSON, J. P. Computer security technology planning
study. Tech. Report ESD-TR-73-51, The Mitre Corporation,

Air Force Systems Division, Hanscom AFB, Badford, 1972.

[5] ASANOVIĆ, K., AVIZIENIS, R., BACHRACH, J., BEAMER,
S., BIANCOLIN, D., CELIO, C., COOK, H., DABBELT, D.,
HAUSER, J., IZRAELEVITZ, A., KARANDIKAR, S., KELLER,
B., KIM, D., KOENIG, J., LEE, Y., LOVE, E., MAAS, M.,
MAGYAR, A., MAO, H., MORETO, M., OU, A., PATTERSON,
D. A., RICHARDS, B., SCHMIDT, C., TWIGG, S., VO, H.,
AND WATERMAN, A. The Rocket Chip generator. Tech. Re-

port, EECS Department, UC Berkeley (2016).

[6] AUSTIN, T. M., BREACH, S. E., AND SOHI, G. S. Efficient
detection of all pointer and array access errors. In Proceedings

of the Conference on Programming Language Design and

Implementation (PLDI) (1994).

[7] BACHRACH, J., VO, H., RICHARDS, B., LEE, Y., WATER-
MAN, A., AVIŽIENIS, R., WAWRZYNEK, J., AND ASANOVIĆ,
K. Chisel: constructing hardware in a scala embedded lan-
guage. In Proceedings of the Design Automation Conference

(DAC) (2012).

[8] BROADWELL, P., HARREN, M., AND SASTRY, N. Scrash: a
system for generating secure crash information. In Proceedings

of the USENIX Security Symposium (2003).

[9] CARLINI, N., AND WAGNER, D. ROP is still dangerous:
breaking modern defenses. In Proceedings of the USENIX

Security Symposium (2014).

[10] CHEN, S., FALSAFI, B., GIBBONS, P., KOZUCH, M., MOWRY,
T., TEODORESCU, R., AILAMAKI, A., FIX, L., GANGER,
G., AND SCHLOSSER, S. Logs and lifeguards: accelerating
dynamic program monitoring. Tech. Report IRP-TR-06-05,

Intel Research (2006).

[11] CHEN, S., FALSAFI, B., GIBBONS, P. B., KOZUCH, M.,
MOWRY, T. C., TEODORESCU, R., AILAMAKI, A., FIX, L.,
GANGER, G. R., LIN, B., AND SCHLOSSER, S. W. Log-based
architectures for general-purpose monitoring of deployed code.
In Proceedings of the Workshop on Architectural and System

Support for Improving Software Dependability (ASID) (2006).

[12] CHEN, S., KOZUCH, M., STRIGKOS, T., FALSAFI, B., GIB-
BONS, P. B., MOWRY, T. C., RAMACHANDRAN, V., RUWASE,
O., RYAN, M., AND VLACHOS, E. Flexible hardware accel-
eration for instruction-grain program monitoring. In Proceed-

ings of the International Symposium on Computer Architecture

(ISCA) (2008).

[13] CHEN, Y.-Y., JAMKHEDKAR, P. A., AND LEE, R. B. A
software-hardware architecture for self-protecting data. In Pro-

ceedings of the Conference on Computer and Communications

Security (CCS) (2012).

[14] CHENG, Y., ZHOU, Z., YU, M., DING, X., AND ROBERT H.,
D. ROPecker: A generic and practical approach for defend-
ing against ROP attack. In Proceedings of the Network and

Distributed System Security Symposium (NDSS) (2014).

[15] CLAUSE, J., DOUDALIS, I., ORSO, A., AND PRVULOVIC,
M. Effective memory protection using dynamic tainting. In
Proceedings of the International Conference on Automated

Software Engineering (ASE) (2007).

[16] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. DISE: a
programmable macro engine for customizing applications. In
Proceedings of the International Symposium on Computer Ar-

chitecture (ISCA) (2003).

[17] CORLISS, M. L., LEWIS, E. C., AND ROTH, A. Using DISE
to protect return addresses from attack. ACM SIGARCH Com-

puter Architecture News 33, 1 (2005).

[18] CRANDALL, J. R., AND CHONG, F. T. Minos: control data
attack prevention orthogonal to memory model. In Proceedings

of the International Symposium on Microarchitecture (MICRO)

(2004).

[19] DALTON, M., KANNAN, H., AND KOZYRAKIS, C. Raksha:
a flexible information flow architecture for software security.
Proceedings of the International Symposium on Computer Ar-

chitecture (ISCA) (2007).

[20] DANG, T. H., MANIATIS, P., AND WAGNER, D. The per-
formance cost of shadow stacks and stack canaries. In Pro-

ceedings of the Symposium on Information, Computer and

Communications Security (ASIACCS) (2015).

[21] DAS, S., WERNER, J., ANTONAKAKIS, M., POLYCHRON-
AKIS, M., AND MONROSE, F. SoK: the challenges, pitfalls,
and perils of using hardware performance counters for secu-
rity. In Proceedings of the Symposium on Security and Privacy

(S&P) (2018).

[22] DAVI, L., SADEGHI, A.-R., AND WINANDY, M. ROPde-
fender: a detection tool to defend against return-oriented pro-
gramming attacks. In Proceedings of the Symposium on Infor-

mation, Computer and Communications Security (ASIACCS)

(2011).

[23] DELSHADTEHRANI, L., ELDRIDGE, S., CANAKCI, S.,
EGELE, M., AND JOSHI, A. Nile: a programmable monitoring
coprocessor. Computer Architecture Letters (CAL) 17, 1
(2018).

[24] DEMME, J., MAYCOCK, M., SCHMITZ, J., TANG, A., WAKS-
MAN, A., SETHUMADHAVAN, S., AND STOLFO, S. On the
feasibility of online malware detection with performance coun-
ters. In Proceedings of the International Symposium on Com-

puter Architecture (ISCA) (2013).

[25] DENG, D. Y., LO, D., MALYSA, G., SCHNEIDER, S., AND

SUH, G. E. Flexible and efficient instruction-grained run-time
monitoring using on-chip reconfigurable fabric. In Proceedings

of the International Symposium on Microarchitecture (MICRO)

(2010).

[26] DENG, D. Y., AND SUH, G. E. High-performance parallel
accelerator for flexible and efficient run-time monitoring. In
Proceedings of the International Conference on Dependable

Systems and Networks (DSN) (2012).

[27] DEVIETTI, J., BLUNDELL, C., MARTIN, M. M., AND

ZDANCEWIC, S. Hardbound: architectural support for spa-
tial safety of the C programming language. In Proceedings

of the International Conference on Architectural Support for



Programming Languages and Operating Systems (ASPLOS)

(2008).

[28] DHAWAN, U., HRITCU, C., RUBIN, R., VASILAKIS, N.,
CHIRICESCU, S., SMITH, J. M., KNIGHT JR, T. F., PIERCE,
B. C., AND DEHON, A. Architectural support for software-
defined metadata processing. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2015).

[29] DING, R., QIAN, C., SONG, C., HARRIS, B., KIM, T., AND

LEE, W. Efficient protection of path-sensitive control security.
In Proceedings of the USENIX Security Symposium (2017).

[30] FYTRAKI, S., VLACHOS, E., KOCBERBER, O., FALSAFI, B.,
AND GROT, B. FADE: a programmable filtering accelera-
tor for instruction-grain monitoring. In Proceedings of the

International Symposium on High Performance Computer Ar-

chitecture (HPCA) (2014).

[31] GE, X., CUI, W., AND JAEGER, T. GRIFFIN: guarding control
flows using Intel processor trace. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2017).

[32] GHOSE, S., GILGEOUS, L., DUDNIK, P., AGGARWAL, A.,
AND WAXMAN, C. Architectural support for low overhead
detection of memory violations. In Proceedings of the Con-

ference on Design, Automation and Test in Europe (DATE)

(2009).

[33] GOOGLE. OSS-Fuzz: five months later, and rewarding
projects. https://opensource.googleblog.com/2017/

05/oss-fuzz-five-months-later-and.html/, 2017.

[34] GRAHAM-CUMMING, J. Searching for the
prime suspect: how heartbleed leaked pri-
vate keys. https://blog.cloudflare.com/

searching-for-the-prime-suspect-how-heartbleed-/

leaked-private-keys/, 2015.

[35] GREATHOUSE, J. L., XIN, H., LUO, Y., AND AUSTIN, T. A
case for unlimited watchpoints. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS) (2012).

[36] GUTHAUS, M. R., RINGENBERG, J. S., ERNST, D., AUSTIN,
T. M., MUDGE, T., AND BROWN, R. B. MiBench: a free,
commercially representative embedded benchmark suite. In
Proceedings of the International Workshop on Workload Char-

acterization (WWC) (2001).

[37] HENNING, J. L. SPEC CPU2000: measuring CPU perfor-
mance in the new millennium. Computer 33, 7 (2000).

[38] HENNING, J. L. SPEC CPU2006 benchmark descrip-
tions. Special Interest Group on Computer Architecture News

(SIGARCH) 34, 4 (2006).

[39] HU, H., QIAN, C., YAGEMANN, C., CHUNG, S. P. H., HAR-
RIS, W. R., KIM, T., AND LEE, W. Enforcing unique code
target property for control-flow integrity. In Proceedings of the

Conference on Computer and Communications Security (CCS)

(2018).

[40] KHASAWNEH, K. N., OZSOY, M., DONOVICK, C., ABU-
GHAZALEH, N., AND PONOMAREV, D. Ensemble learning

for low-level hardware-supported malware detection. In Pro-

ceedings of the International Symposium on Recent Advances

in Intrusion Detection (RAID) (2015).

[41] KIM, Y., DALY, R., KIM, J., FALLIN, C., LEE, J. H., LEE,
D., WILKERSON, C., LAI, K., AND MUTLU, O. Flipping bits
in memory without accessing them: an experimental study of
DRAM disturbance errors. In Proceedings of the International

Symposium on Computer Architecture (ISCA) (2014).

[42] LARABEL, M. Intel MPX support will be removed from
Linux. https://www.phoronix.com/scan.php?page=

news_item&px=Intel-MPX-Kernel-Removal-Patch/,
2018.

[43] LARABEL, M. Intel MPX support removed from GCC
9. https://www.phoronix.com/scan.php?page=news_

item&px=MPX-Removed-From-GCC9/, 2018.

[44] LEE, Y., WATERMAN, A., AVIZIENIS, R., COOK, H., SUN,
C., STOJANOVIĆ, V., AND ASANOVIĆ, K. A 45nm 1.3 GHz
16.7 double-precision GFLOPS/W RISC-V processor with
vector accelerators. In Proceedings of the European Solid

State Circuits Conference (ESSCIRC) (2014).

[45] LI, P. S., IZRAELEVITZ, A. M., AND BACHRACH, J. Speci-
fication for the FIRRTL language. Tech. Report UCB/EECS-

2016-9, EECS Department, UC Berkeley (2016).

[46] LO, D., CHEN, T., ISMAIL, M., AND SUH, G. E. Run-time
monitoring with adjustable overhead using dataflow-guided
filtering. In Proceedings of the International Symposium on

High Performance Computer Architecture (HPCA) (2015).

[47] LUK, C.-K., COHN, R., MUTH, R., PATIL, H., KLAUSER,
A., LOWNEY, G., WALLACE, S., REDDI, V. J., AND HAZEL-
WOOD, K. Pin: building customized program analysis tools
with dynamic instrumentation. In Proceedings of the Confer-

ence on Programming Language Design and Implementation

(PLDI) (2005).

[48] MIJAT, R. Better trace for better software: introducing the new
ARM CoreSight system trace macrocell and trace memory
controller. ARM, White Paper (2010).

[49] MOON, H. Hardware techniques against memory corruption

attacks. PhD thesis, Seoul National University, 2017.

[50] NAGARAJAN, V., KIM, H.-S., WU, Y., AND GUPTA, R. Dy-
namic information flow tracking on multicores. In Proceedings

of the Workshop on Interaction Between Compilers and Com-

puter Architectures (INTERACT) (2008).

[51] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC,
S. Watchdog: hardware for safe and secure manual memory
management and full memory safety. In Proceedings of the

International Symposium on Computer Architecture (ISCA)

(2012).

[52] NAGARAKATTE, S., MARTIN, M. M., AND ZDANCEWIC, S.
Watchdoglite: hardware-accelerated compiler-based pointer
checking. In Proceedings of the International Symposium on

Code Generation and Optimization (CGO) (2014).

[53] NAGARAKATTE, S., ZHAO, J., MARTIN, M. M., AND

ZDANCEWIC, S. Softbound: highly compatible and complete
spatial memory safety for C. In Proceedings of the Confer-

ence on Programming Language Design and Implementation

(PLDI) (2009).



[54] NEWSOME, J., AND SONG, D. Dynamic taint analysis: auto-
matic detection, analysis, and signature generation of exploit
attacks on commodity software. In Proceedings of the Network

and Distributed Systems Security Symposium (NDSS) (2005).

[55] OLEKSENKO, O., KUVAISKII, D., BHATOTIA, P., FELBER,
P., AND FETZER, C. Intel MPX explained: a cross-layer anal-
ysis of the Intel MPX system stack. In Proceedings of the

ACM on Measurement and Analysis of Computing Systems

(SIGMETRICS) (2018).

[56] OZDOGANOGLU, H., VIJAYKUMAR, T., BRODLEY, C. E.,
KUPERMAN, B. A., AND JALOTE, A. SmashGuard: a hard-
ware solution to prevent security attacks on the function return
address. IEEE Transactions on Computers (TC) 55, 10 (2006).

[57] OZSOY, M., DONOVICK, C., GORELIK, I., ABU-GHAZALEH,
N., AND PONOMAREV, D. Malware-aware processors: a
framework for efficient online malware detection. In Pro-

ceedings of the International Symposium on High Performance

Computer Architecture (HPCA) (2015).

[58] PAPPAS, V., POLYCHRONAKIS, M., AND KEROMYTIS, A. D.
Transparent ROP exploit mitigation using indirect branch trac-
ing. In Proceedings of the USENIX Security Symposium

(2013).

[59] QIN, F., WANG, C., LI, Z., KIM, H.-S., ZHOU, Y., AND WU,
Y. Lift: a low-overhead practical information flow tracking
system for detecting security attacks. In Proceedings of the In-

ternational Symposium on Microarchitecture (MICRO) (2006).

[60] REDDI, V. J., SETTLE, A., CONNORS, D. A., AND COHN,
R. S. Pin: a binary instrumentation tool for computer architec-
ture research and education. In Proceedings of the Workshop

on Computer Architecture Education (WCAE) (2004).

[61] ADVANCED MICRO DEVICES. AMD64 architecture pro-
grammer’s manual volume 2: system programming. https:
//support.amd.com/techdocs/24593.pdf, 2006.

[62] ARM. ARM security technology, building a se-
cure system using TrustZone technology. http:

//infocenter.arm.com/help/topic/com.arm.

doc.prd29-genc-009492c/PRD29-GENC-009492C_

trustzone_security_whitepaper.pdf, 2009.

[63] DIGILENT’S ZEDBOARD ZYNQ FPGA. Development
board documentation. http://www.digilentinc.com/

Products/Detail.cfm?Prod=ZEDBOARD/, 2017.

[64] INTEL CORPORATION. Intel trusted execution tech-
nology. https://www.intel.com/content/dam/

www/public/us/en/documents/white-papers/

trusted-execution-technology-security-paper.pdf,
2006.

[65] INTEL CORPORATION. Introduction to In-
tel memory protection extensions. https:

//software.intel.com/en-us/articles/

introduction-to-intel-memory-protection-extensions/,
2013.

[66] INTEL CORPORATION. Intel 64 and IA-32 architectures soft-
ware developer’s manual. System Programming Guide, Part

3C (2016).

[67] INTEL CORPORATION. Control-flow enforce-
ment technology preview. https://software.

intel.com/sites/default/files/managed/4d/2a/

control-flow-enforcement-technology-preview.pdf,
2017.

[68] MICROSOFT CORPORATION. Microsoft security develop-
ment lifecycle. https://www.microsoft.com/en-us/sdl/
process/verification.aspx/, 2017.

[69] NANGATE, SUNNYVALE, CALIFORNIA. 45nm open cell li-
brary.

[70] SCHNEIDER, F. B. Enforceable security policies. ACM Trans-

actions on Information and System Security (TISSEC) 3, 1
(2000).

[71] SCHUMILO, S., ASCHERMANN, C., GAWLIK, R., SCHINZEL,
S., AND HOLZ, T. kAFL: hardware-assisted feedback fuzzing
for OS kernels. In Proceedings of the USENIX Security Sym-

posium (2017).

[72] SCHUSTER, F., TENDYCK, T., PEWNY, J., MAASS, A.,
STEEGMANNS, M., CONTAG, M., AND HOLZ, T. Evaluating
the effectiveness of current anti-ROP defenses. In Proceed-

ings of the International Symposium on Research in Attacks,

Intrusions and Defenses (RAID) (2014).

[73] SINGH, B., EVTYUSHKIN, D., ELWELL, J., RILEY, R., AND

CERVESATO, I. On the detection of kernel-level rootkits us-
ing hardware performance counters. In Proceedings of the

Asia Conference on Computer and Communications Security

(AsiaCCS) (2017).

[74] SINHA, K., AND SETHUMADHAVAN, S. Practical memory
safety with REST. In Proceedings of the International Sympo-

sium on Computer Architecture (ISCA) (2018).

[75] SINNADURAI, S., ZHAO, Q., AND FAI WONG,
W. Transparent runtime shadow stack: protec-
tion against malicious return address modifications.
http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.120.5702&rep=rep1&type=pdf, 2008.

[76] SONG, C., MOON, H., ALAM, M., YUN, I., LEE, B., KIM, T.,
LEE, W., AND PAEK, Y. HDFI: hardware-assisted data-flow
isolation. In Proceedings of the Symposium on Security and

Privacy (S&P) (2016).

[77] STEPHENS, N., GROSEN, J., SALLS, C., DUTCHER, A.,
WANG, R., CORBETTA, J., SHOSHITAISHVILI, Y., KRUEGEL,
C., AND VIGNA, G. Driller: augmenting fuzzing through se-
lective symbolic execution. In Proceedings of the Network and

Distributed System Security Symposium (NDSS) (2016).

[78] SUH, G. E., LEE, J. W., ZHANG, D., AND DEVADAS, S. Se-
cure program execution via dynamic information flow tracking.
In Proceedings of the International Conference on Architec-

tural Support for Programming Languages and Operating Sys-

tems (ASPLOS) (2004).

[79] SZEKERES, L., PAYER, M., WEI, T., AND SONG, D. SoK:
Eternal war in memory. In Proceedings of the Symposium on

Security and Privacy (S&P) (2013).

[80] THOZIYOOR, S., MURALIMANOHAR, N., AHN, J. H., AND

JOUPPI, N. P. CACTI 5.1. Tech. rep., HPL-2008-20, HP Labs,
2008.



[81] VENKATARAMANI, G., DOUDALIS, I., SOLIHIN, Y., AND

PRVULOVIC, M. Flexitaint: A programmable accelerator for
dynamic taint propagation. In Proceedings of the Interna-

tional Symposium on High Performance Computer Architec-

ture (HPCA) (2008).

[82] VENKATARAMANI, G., ROEMER, B., SOLIHIN, Y., AND

PRVULOVIC, M. Memtracker: efficient and programmable
support for memory access monitoring and debugging. In Pro-

ceedings of the International Symposium on High Performance

Computer Architecture (HPCA) (2007).

[83] WATERMAN, A., LEE, Y., PATTERSON, D. A., AND

ASANOVIĆ, K. The RISC-V instruction set manual, volume i:
Base user-level ISA. Tech. Report UCB/EECS-2011-62, EECS

Department, UC Berkeley (2011).

[84] YUAN, P., ZENG, Q., AND DING, X. Hardware-assisted fine-
grained code-reuse attack detection. In Proceedings of the

International Symposium on Research in Attacks, Intrusions

and Defenses (RAID) (2015).

[85] ZALEWSKI, M. American fuzzy lop (AFL) fuzzer. http:

//lcamtuf.coredump.cx/afl/, 2017.

[86] ZHANG, M., QIAO, R., HASABNIS, N., AND SEKAR, R. A
platform for secure static binary instrumentation. In Proceed-

ings of the International Conference on Virtual Execution En-

vironments (VEE) (2014).

[87] ZHOU, B., GUPTA, A., JAHANSHAHI, R., EGELE, M., AND

JOSHI, A. Hardware performance counters can detect mal-
ware: myth or fact? In Proceedings of the Asia Conference on

Computer and Communications Security (ASIACCS) (2018).

[88] ZHOU, P., QIN, F., LIU, W., ZHOU, Y., AND TORRELLAS,
J. iWatcher: efficient architectural support for software de-
bugging. In Proceedings of the International Symposium on

Computer Architecture (ISCA) (2004).

[89] ZHOU, P., TEODORESCU, R., AND ZHOU, Y. HARD:
hardware-assisted lockset-based race detection. In Proceed-

ings of the International Symposium on High Performance

Computer Architecture (HPCA) (2007).

A Appendix

In this appendix, we present the microarchitectural details of PH-
Mon’s Action Unit (AU) design. As discussed in Section 4.1, PHMon
receives the commit log from the RoCC interface and then PHMon
applies the configured monitoring rules to the commit log to detect
events and perform follow-up actions. Once an MU finds a match,
the MU sends an activation signal alongside a match packet to
the AU. The match packet consists of an address (MU_addr), data
(MU_data), and an MU identification number (MU_id). The MU_addr
contains the address of the instruction in the commit log (i.e., pc_src
element), while MU_data is programmable and can contain the con-
tents of any one of the commit log entries. The MU_id specifies
the index of the MU that triggered the activation signal. The AU
enqueues an incoming match packet from the MU into the Match
Queue while it performs actions for the packets arrived earlier. To
perform actions, as shown in Figure 3, the AU consists of four dis-
tinct microarchitectural components: Config Units (CFUs), Local
Register File, Arithmetic and Logic Unit (ALU), and Control Unit
(CU). In the next subsections, we explain each of AU’s microarchi-
tectural components in detail.

A.1 Config Units (CFUs)

In the PHMon design, each MU is paired with a CFU. Each CFU
consists of three main components: an Action Config Table, a
conf_ctr, and a conf_ptr. The Action Config Table contains
the list of actions (programmed by the user) that PHMon should
perform after the MU finds a match and triggers the activation signal.
The conf_ctr and conf_ptr preserve the index of the total number
of actions and the current action, respectively. Each entry in the Ac-
tion Config Table, called action description, consists of Type,
In1, In2, Fn, Out, and Data elements (see Figure 3).
Type specifies one of the following four types: ALU operation,

memory operation, interrupt, and skip actions. In case of an ALU
operation, In1 and In2 act as programmable input arguments of the
ALU whereas for memory operations, In1 and In2 are interpreted
as data and address of the memory request. In both cases, In1 and
In2 can be programmed to hold the local register values (maintained
in Local Register File) or an immediate value. The Out element
specifies where the output of the ALU/memory operation is stored.
The Fn element determines the functionality of an ALU operation or
the type of the memory request. The Data element only applies to
an ALU operation as immediate data. Note that in case of a memory
operation, PHMon sends a memory request through the L1 data
cache using the RoCC interface. The interrupt action triggers an
interrupt, which will be handled by the OS. The skip actions provide
the option of early action termination. In this case, when the result
of an ALU operation is equal to zero, the AU will skip the remaining
actions of the current event.

A.2 Local Register File

The Local Register File consists of three dedicated registers for
memory requests and their responses: Mem_addr, Mem_data, and
Mem_resp, and three general-purpose registers: Local_1, Local_2,
and Local_3. Memory operations occur using Mem_addr and
Mem_data registers as the addr and data of the request while the re-
sult gets stored in the Mem_resp register. The user can use Local_1,
Local_2, and Local_3 registers for ALU operations.

A.3 Arithmetic and Logic Unit (ALU)

We include a small ALU in PHMon to support a variety of actions.
The ALU operations are restricted inside PHMon; however, these
operations can be combined with other PHMon’s actions (i.e., mem-
ory operations and interrupts) to provide the user with the capability
to influence the process’ execution. The input and output arguments
of our ALU (including In1, In2, Fn, and Out) are programmable.
The Fn argument determines the ALU function out of the following
10 different operations: Addition, Subtraction, Logical Shift

Left, Logical Shift Right, Set Less Than, Set Equal, AND,
OR, XOR, and NOP.

A.4 Control Unit (CU)

The CU handles all the tasks related to performing actions. Our CU
consists of a small FSM with three states: ready, wait, and busy.
Depending on the current state of the CU, it performs one or more of
the following tasks: dequeue a match packet from the Match Queue,
update the Local Register File, receive the next action description,
and perform an action. Once all of the listed actions are performed,
the CFU notifies the CU. In this case, the CU enters the ready state,
repeating all of the described tasks for the next element stored in the
Match Queue.


	Introduction
	Related work
	Custom Hardware for Monitoring
	Flexible Hardware Monitors (FHMons)
	Generic Monitoring Hardware Extensions

	Threat Model and Assumptions
	PHMon
	PHMon: Architecture
	Trace Unit (TU)
	Match Units (MUs)
	Action Unit (AU)

	PHMon: Software Interface
	PHMon: OS Support
	Per Process OS Support
	Interrupt Handling OS Support


	Use Cases
	Shadow Stack
	Hardware-Accelerated Fuzzing
	Preventing Information Leakage
	Watchpoints and Accelerated Debugger

	Evaluation
	Experimental Setup
	Functionality Validation and Performance Results
	Power and Area Results

	Discussion and Future Work
	Architecture Aspect
	Security Aspect
	Application Aspect

	Conclusion
	Appendix
	Config Units (CFUs)
	Local Register File
	Arithmetic and Logic Unit (ALU)
	Control Unit (CU)


