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Abstract. This work explores a method for analytically computing the infinites-
imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a 
hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the 
iPRCs, could assist in tuning the strength and locations of sensory pathways. We 
model the SNS exoskeleton controller in a reduced form using a state-space rep-
resentation that interfaces neural and motor dynamics. The neural dynamics are 
modeled after non-spiking neurons configured as a central pattern generator 
(CPG), while the motor dynamics model a power unit for the hip joint of the 
exoskeleton. Within the dynamics are piecewise functions and hard boundaries 
(i.e. “sliding conditions”), which cause discontinuities in the vector field at their 
boundaries. The analytical methods for computing the iPRCs used in this work 
apply the adjoint equation method with jump conditions that are able to account 
for these discontinuities. To show the accuracy and speed provided by these 
methods, we compare the analytical and brute-force solutions. 

Keywords: Infinitesimal phase response curve, synthetic nervous system, hy-
brid exoskeleton 

1 Introduction 

Research and development of exoskeleton devices to mimic or assist walking have been 
ongoing since the 1960s [1]. The mechanical design and control strategies for these 
exoskeletons can vary widely. A collaborative team at Case Western Reserve Univer-
sity and the Cleveland Stokes Veteran’s Affairs (VA) hospital is currently developing 
a hybrid exoskeleton [2]. The exoskeleton is considered a hybrid because it combines 
functional electrical stimulation (FES) [3] of the user’s muscles with the bracing and 
power assistance of an exoskeleton [4]. Such an exoskeleton will enable patients to 
regain mobility and act as a form of physical therapy due to the physiological benefits 
of FES [5]. Specifically, paraplegic patients benefit from the exoskeleton’s powered 
joints that compensate for inadequate muscle activation when using FES.  

Despite the progress of exoskeletons and biped robots to date, their movements re-
main in general less robust and adaptive compared to those of humans. The robustness 
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and adaptation of human walking is due to the structure and function of the neural con-
trol networks within the nervous system. Decades of study in neuroscience and biology 
have begun to uncover how these controllers operate [6]. Controlling our exoskeleton 
with a computational model of these networks, which we call a “Synthetic Nervous 
System” (SNS) [7], may endow it with more robust and adaptive locomotion.  

Our ultimate goal is to control our exoskeleton and FES with an SNS model that 
incorporates sensory feedback to coordinate the motion of different limb segments in a 
flexible framework that can be altered by descending influences in a task-dependent 
way. These two features have been shown to underlie periodic motor output in animals 
[8–10]. Neural models of animal locomotion in [11–13] can serve as a basis for the 
organization of our SNS model moving forward. However, with the actuators of the 
exoskeleton more closely resembling servomotors than antagonistic pairs of muscles, 
design of joint movement controls will be more in line with the design process outlined 
in [14]. Interjoint coordination will be relying on sensory feedback signals from the 
positions of other joints and forces on the leg [11, 15].  

An expected hurdle to developing and tuning this SNS will be in the coordination of 
the multiple rhythmic systems, i.e. the oscillation of each joint. Inter-joint coordination 
arises from sensory pathways between leg joints adjusting the oscillatory phase of the 
other joints. For example, loading information from the foot adjusts the phase of the 
hip’s control network to generate propulsion [11]. But how should the strength of such 
pathways be tuned? One tool that quantifies how periodic trajectories are altered by 
perturbations is the infinitesimal phase response curve, or iPRC. An iPRC reveals how 
the cycle’s phase changes in response to perturbations applied to each of its state vari-
ables at different phases throughout its limit cycle. By locating the areas of higher and 
lower sensitivity, we may be able to design sensory pathways that exploit the oscilla-
tors’ phase-dependent sensitivity to inputs. In addition, understanding how sensory in-
formation alters the relative phase of the joints, we may be able to determine the stabil-
ity of periodic trajectories (i.e. how the exoskeleton walks) and its robustness to system 
parameters.  

Despite the potential benefits these iPRCs could provide, the process of finding the 
iPRCs via brute force guess-and-check can require long computation times, especially 
as the dimensionality of the SNS model grows. Analytical methods for generating 
iPRCs exist, which should be faster and computationally less expensive than brute force 
methods. However, such methods mostly consider smooth systems and tend to break 
down in non-smooth systems due to the Jacobian matrices of the system’s vector fields 
not being well defined [16]. Our model joint model system contains piecewise functions 
and certain hard boundaries (i.e. “sliding conditions”) that make it non-smooth. How-
ever, more recently developed analytical methods for finding iPRCs can treat systems 
whose dynamics contain piecewise functions and sliding conditions [16, 17]. In this 
work, we will apply these newer methods with a reduced model of our SNS exoskeleton 
controller to compute its iPRC numerically. We compare this iPRC to one generated 
via brute force (i.e. repeated perturbed simulation). We then discuss future applications 
for this work. 
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2 Methods 

This work establishes a system wherein the direction, timing, and speed of the hip joint 
of a powered exoskeleton is controlled by simple neural network consisting of a central 
pattern generator (CPG), modeled using two non-spiking leaky neurons. The hip joint 
is powered by a DC motor with a gearbox, and the rotation of the joint provides feed-
back to the CPG.  

2.1 Motor Dynamics 

The hip power unit is the actuator driving the movement. It is composed of a DC motor 
paired with a transmission to produce a larger torque, while still being capable of out-
putting the needed speeds of the hip during walking locomotion. The power unit can be 
modeled as a motor. 

Kirchhoff’s Current Law. To model the electrical properties of the motor we use 
Kirchhoff’s Current Law, 

 𝐿𝐿 ⋅ 𝐼𝐼̇ = 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑣𝑣 ⋅ 𝜃̇𝜃 − 𝑅𝑅𝑚𝑚 ⋅ 𝐼𝐼 (1) 

Where 𝐿𝐿 is the motor armature inductance, 𝑉𝑉𝑖𝑖𝑖𝑖is the motor voltage input, 𝐾𝐾𝑣𝑣 is the motor 
speed constant, 𝜃̇𝜃 is the angular velocity, 𝑅𝑅𝑚𝑚 is the motor terminal resistance, and 𝐼𝐼 is 
the motor current. Equation 1 makes up the basis of our motor current state. Due to 
limitations of the motor controller and transmission inside the power unit, only a certain 
amount of current can be sourced at once. This restriction introduces a sliding condition 
to the state equation for current, where it can only reach a set maximum amount of 
current. 

Newton’s Law of Motion. To model the mechanical properties of the motor we use 
Newton’s Law of Motion resulting in  

 𝐽𝐽 ⋅ 𝜃̈𝜃 = 𝐾𝐾𝑡𝑡 ⋅ 𝐼𝐼 − 𝐵𝐵 ⋅ 𝜃̇𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) ⋅ 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 (2) 

where the 𝐽𝐽 is the motor mass moment of inertia, 𝐾𝐾𝑡𝑡 is the motor torque constant, 𝐵𝐵 is 
the motor viscous friction, and 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 is the external torque, which is used to account for 
the static friction. Equation 2 makes up the basis of the angular velocity state of the 
motor. 

Angular Position. To describe the dynamics in a state-space representation, we add a 
differential equation modeling the angular position of the motor, 

 𝜃̇𝜃 = 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 (3) 
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2.2 Neural Dynamics 

The neural dynamics contribute four state variables to the system. These variables 
model the activation level of the two neurons in our CPG, as well as those neurons’ 
persistent sodium channel inactivation. 

Non-spiking Leaky Neuron Model. The neurons are modeled as non-spiking Hodg-
kin-Huxley compartments with the substitution 𝑈𝑈 = 𝑉𝑉 − 𝐸𝐸𝑟𝑟, as used in [7, 14] to sim-
plify analysis, where 𝐸𝐸𝑟𝑟 is the resting potential, 𝑉𝑉 is the neuron voltage, and 𝑈𝑈 is the 
activation level above the resting voltage. This gives us 

 𝐶𝐶𝑚𝑚 ⋅ 𝑈̇𝑈 = −𝐺𝐺𝑚𝑚 ⋅ 𝑈𝑈 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑈𝑈) ⋅ �Δ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑈𝑈� + 𝐺𝐺𝑁𝑁𝑁𝑁 ⋅ 𝑚𝑚∞(𝑈𝑈) ⋅ ℎ ⋅ (Δ𝐸𝐸𝑁𝑁𝑁𝑁 − 𝑈𝑈) +
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 + 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐺𝐺𝑓𝑓𝑓𝑓 ⋅ (Δ𝐸𝐸𝑓𝑓𝑓𝑓 − 𝑈𝑈)  (4) 

where 𝐶𝐶𝑚𝑚 is the membrane capacitance, 𝐺𝐺𝑚𝑚 is the membrane conductance, 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠 is the 
instantaneous synaptic conductance, Δ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 is the synaptic reversal potential, 𝐺𝐺𝑁𝑁𝑁𝑁 is the 
sodium conductance, 𝑚𝑚∞ is a sigmoid for the persistent sodium channel activation, ℎ 
is the persistent sodium channel inactivation, Δ𝐸𝐸𝑁𝑁𝑁𝑁  is the sodium channel reversal po-
tential, 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 is the membrane applied current, and 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 is a small current pulse that is 
only applied to one of the neurons at the beginning to create an offset to begin oscilla-
tion of the CPG. The terms 𝐺𝐺𝑓𝑓𝑓𝑓 and Δ𝐸𝐸𝑓𝑓𝑓𝑓 are feedback terms used to interface feedback 
pathways with the motor. 𝐺𝐺𝑓𝑓𝑓𝑓 is the feedback synapse conductance and Δ𝐸𝐸𝑓𝑓𝑓𝑓 is the 
feedback reversal potential. 

Central Pattern Generator. The central pattern generator is formed by mutual inhibi-
tion between two neurons with persistent sodium channels [14]. The synaptic conduct-
ance, 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠, of the inhibitory synaptic connections between the two neurons is described 
by the piecewise-linear function 

 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑈𝑈) =  �
0,

𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 ⋅ 𝑈𝑈𝑅𝑅,
𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 ,

     
if 𝑈𝑈 ≤ 0

if 0 < 𝑈𝑈 < 𝑅𝑅
if 𝑈𝑈 ≥ 𝑅𝑅

 (5) 

where 𝑅𝑅 is the expected range of voltage output from the neuron and 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 is the maxi-
mum synaptic conductance. To have our network oscillate between the voltage range 
of 0 to 𝑅𝑅 at steady state when one neuron is inhibited and the other is uninhibited, 𝐺𝐺𝑁𝑁𝑁𝑁 
is found using 

 𝐺𝐺𝑁𝑁𝑁𝑁 = 𝐺𝐺𝑚𝑚⋅𝑅𝑅
𝑚𝑚∞(𝑅𝑅)⋅ℎ∞(𝑅𝑅)⋅(Δ𝐸𝐸𝑁𝑁𝑁𝑁−𝑅𝑅)

. (6) 

The maximum synaptic conductance, 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠, is found using 

 𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 =  −𝛿𝛿−𝐺𝐺𝑁𝑁𝑁𝑁⋅𝑚𝑚∞(𝛿𝛿)⋅ℎ∞(𝛿𝛿)⋅(𝛿𝛿−Δ𝐸𝐸𝑁𝑁𝑁𝑁)
𝛿𝛿−Δ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠

. (7) 
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Here, 𝛿𝛿 is a bifurcation parameter that represents the strength of the synaptic inhibition 
as the difference between the inhibited neuron’s resting potential and the lower thresh-
old of the synapse [14]. The term ℎ∞ is another sigmoid, similar to 𝑚𝑚∞, but for the 
sodium inactivation channel. The sigmoids are defined as 

 𝑚𝑚∞(𝑉𝑉) = 1
1+𝑒𝑒𝑒𝑒𝑒𝑒�𝑆𝑆⋅(𝑅𝑅−𝑉𝑉)�

 (8) 

 ℎ∞(𝑉𝑉) = 1
1+0.5⋅𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆⋅𝑉𝑉)

 (9) 

where 𝑆𝑆 is the maximum slope of the sigmoid. 

Sodium Channel Inactivation. The differential equation that governs the sodium 
channel inactivation term, ℎ, found in Equation 4 is 

 ℎ̇ = ℎ∞(𝑈𝑈)−ℎ
𝜏𝜏ℎ(𝑈𝑈)

 (10) 

where 𝜏𝜏ℎis the sodium inactivation time constant found using 

 𝜏𝜏ℎ(𝑉𝑉) = 𝜏𝜏ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 ⋅ ℎ∞(𝑉𝑉) ⋅ �0.5 ⋅ 𝑒𝑒𝑒𝑒𝑒𝑒(𝑆𝑆 ⋅ 𝑉𝑉) (11) 

2.3 Interfacing the Dynamics 

With the motor and neural dynamics laid out in the sections above, we must establish 
coupling terms between them. Our goal is to use the neural states to specify position 
and velocity commands for the motor. For the CPG to be able to control the movement 
of the motor, the states of the neural dynamics are integrated in to the motor dynamics 
as inputs as well as having certain states from the motor dynamics used in new feedback 
pathways for the neurons. 

Neuron Activation as Inputs to the Motor. To have the CPG specify the velocity of 
the motor, the motor voltage input, 𝑉𝑉𝑖𝑖𝑖𝑖, becomes a piecewise-linear function of the 
neuron activation states. 

 𝑉𝑉𝑖𝑖𝑖𝑖(𝑈𝑈1,𝑈𝑈2) = 𝑃𝑃 ⋅min(max(𝑈𝑈1, 0),𝑅𝑅) −min(max(𝑈𝑈2, 0),𝑅𝑅)) (12) 

where 𝑈𝑈1and 𝑈𝑈2 represent the activation states of neurons 1 and 2, respectively. The 
term 𝑃𝑃 is a gain term represented as  

 𝑃𝑃 = 4⋅𝐾𝐾𝑣𝑣
1000⋅𝑅𝑅

 (13) 

that limits the maximum commanded speed to 4𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟/𝑠𝑠, since this is the approximate 
speed of the hip joint during walking locomotion found in [18]. 
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Angular Position as Feedback for the Neurons. The feedback synapse conductance, 
𝐺𝐺𝑓𝑓𝑓𝑓, is set as a function of position 𝜃𝜃. If neuron 1 (𝑈𝑈1) was active when 𝜃𝜃 reaches a 
certain threshold, the feedback synapse conductance activates to allow a strong inhibi-
tory current to inhibit 𝑈𝑈1. With 𝑈𝑈1 now inhibited, 𝑈𝑈2 is allowed to escape and become 
the active neuron in the CPG. This causes the angular velocity to switch signs due to 
Equation 12, leading to a change in direction. 𝐺𝐺𝑓𝑓𝑓𝑓 for neurons 1 and 2 are represented 
by the following piecewise functions 

 𝐺𝐺𝑓𝑓𝑓𝑓,1(𝜃𝜃) = � 0, 𝜃𝜃 < 𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹
𝑔𝑔𝐹𝐹𝐹𝐹 , 𝜃𝜃 ≥ 𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹

 (14) 

 𝐺𝐺𝑓𝑓𝑓𝑓,2(𝜃𝜃) = � 0, 𝜃𝜃 > 𝜃𝜃𝐸𝐸𝑋𝑋𝑋𝑋
𝑔𝑔𝐹𝐹𝐹𝐹 , 𝜃𝜃 ≤ 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸

 (15) 

Where 𝑔𝑔𝐹𝐹𝐹𝐹 is the maximum feedback conductance, 𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹 is the flexion position trigger 
and 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸 is the extension position trigger. The current model sets 𝜃𝜃𝐹𝐹𝐿𝐿𝐿𝐿 = 30 degrees 
and 𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸 = −10 degrees based on hip angle ranges during locomotion found in [18]. 
For completeness, all state equations are listed in Table 1 and all variable values and 
units are shown in Table 2. 

Table 1. State equations of the system 

Variable Name State Equation 
Current 𝐿𝐿 ⋅ 𝐼𝐼̇ = 𝑉𝑉𝑖𝑖𝑖𝑖 − 𝐾𝐾𝑣𝑣 ⋅ 𝜃̇𝜃 − 𝑅𝑅𝑚𝑚 ⋅ 𝐼𝐼 

Angular Position 𝜃̇𝜃 =
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑  

Angular Velocity 𝐽𝐽 ⋅ 𝜃̈𝜃 = 𝐾𝐾𝑡𝑡 ⋅ 𝐼𝐼 − 𝐵𝐵 ⋅ 𝜃̇𝜃 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝜃𝜃) ⋅ 𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 

Neuron 1 Activation 
𝐶𝐶𝑚𝑚 ⋅ 𝑈𝑈1̇ = −𝐺𝐺𝑚𝑚 ⋅ 𝑈𝑈1 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑈𝑈2) ⋅ �Δ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 − 𝑈𝑈1�+ 𝐺𝐺𝑁𝑁𝑁𝑁

⋅ 𝑚𝑚∞(𝑈𝑈1) ⋅ ℎ1 ⋅ (Δ𝐸𝐸𝑁𝑁𝑁𝑁 − 𝑈𝑈1) + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 + 𝐺𝐺𝑓𝑓𝑓𝑓,1(𝜃𝜃) ⋅ (Δ𝐸𝐸𝑓𝑓𝑓𝑓 − 𝑈𝑈1) 

Neuron 2 Activation 
𝐶𝐶𝑚𝑚 ⋅ 𝑈𝑈2̇ = −𝐺𝐺𝑚𝑚 ⋅ 𝑈𝑈2 + 𝐺𝐺𝑠𝑠𝑠𝑠𝑠𝑠(𝑈𝑈1) ⋅ �Δ𝐸𝐸𝑠𝑠𝑦𝑦𝑦𝑦 − 𝑈𝑈2� + 𝐺𝐺𝑁𝑁𝑁𝑁

⋅ 𝑚𝑚∞(𝑈𝑈2) ⋅ ℎ2 ⋅ (Δ𝐸𝐸𝑁𝑁𝑁𝑁 − 𝑈𝑈2) + 𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎
+ 𝐺𝐺𝑓𝑓𝑓𝑓,2(𝜃𝜃) ⋅ (Δ𝐸𝐸𝑓𝑓𝑓𝑓 − 𝑈𝑈2) 

Neuron 1 Sodium 
Channel Inactivation ℎ1̇ =

ℎ∞(𝑈𝑈1)− ℎ1
𝜏𝜏ℎ(𝑈𝑈1)  

Neuron 2 Sodium 
Channel Inactivation ℎ2̇ =

ℎ∞(𝑈𝑈2) − ℎ2
𝜏𝜏ℎ(𝑈𝑈2)  

 

Table 2. Parameter values and units. 

Variables Parameter Base Value/Units 
𝑉𝑉𝑖𝑖𝑖𝑖 Motor Voltage Input V 

𝐾𝐾𝑣𝑣 Motor Speed Constant 5.7886
𝑉𝑉

𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

𝑅𝑅𝑚𝑚 Motor Armature Resistance 0.608Ω 
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𝐿𝐿 Motor Armature Inductance 0.000463𝐻𝐻 
𝐾𝐾𝑡𝑡 Motor Torque Constant 4.11𝑁𝑁𝑁𝑁 𝐴𝐴⁄  

𝐵𝐵 Motor Viscous Friction 0.859
𝑁𝑁𝑁𝑁
𝑟𝑟𝑟𝑟𝑟𝑟 𝑠𝑠⁄  

𝜏𝜏𝑒𝑒𝑒𝑒𝑒𝑒 External Torque 2.38𝑁𝑁𝑁𝑁 
𝐽𝐽 Motor Mass Moment of Inertia 0.444𝑘𝑘𝑘𝑘 ⋅ 𝑚𝑚2 
𝐺𝐺𝑚𝑚 Membrane Conductance 1𝜇𝜇𝜇𝜇 
𝑔𝑔𝑠𝑠𝑠𝑠𝑠𝑠 Max Synaptic Conductance 0.2819𝜇𝜇𝜇𝜇 
Δ𝐸𝐸𝑠𝑠𝑠𝑠𝑠𝑠 Synaptic Reversal Potential −100𝑚𝑚𝑚𝑚 
𝐺𝐺𝑁𝑁𝑁𝑁 Sodium Conductance 3.1455𝜇𝜇𝜇𝜇 
Δ𝐸𝐸𝑁𝑁𝑁𝑁  Sodium Channel Reversal Potential 50𝑚𝑚𝑚𝑚 
𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 Membrane Applied Current 0𝑛𝑛𝑛𝑛 
𝐼𝐼𝑝𝑝𝑝𝑝𝑝𝑝𝑡𝑡 Membrane Perturbation Current 1𝑛𝑛𝑛𝑛 
𝐶𝐶𝑚𝑚 Membrane Capacitance 5𝑛𝑛𝑛𝑛 
𝜏𝜏ℎ Sodium Inactivation Time Constant 𝑚𝑚𝑚𝑚 

𝜏𝜏ℎ,𝑚𝑚𝑚𝑚𝑚𝑚 Sodium Inactivation Time Constant Max 300𝑚𝑚𝑚𝑚 
𝛿𝛿 Bifurcation Parameter 0.1 
𝑅𝑅 Voltage Range 20 
𝑆𝑆 Slope of sigmoid 0.05 

𝜃𝜃𝐹𝐹𝐹𝐹𝐹𝐹 Hip Flexion Angle 30° 
𝜃𝜃𝐸𝐸𝐸𝐸𝐸𝐸 Hip Extension Angle −10° 

2.4 Deriving/generating analytically the infinitesimal phase response curves 
(iPRCs) 

The system, governed by the state equations shown above in Table 1, exhibits a limit 
cycle with both piecewise functions and hard boundaries acting as sliding conditions. 
Deriving iPRCs for piecewise-linear and limit cycles with sliding conditions (LCSCs) 
have been treated in detail in [16, 17]. However, we will briefly summarize the process. 

Finding the Infinitesimal Phase Response Curve via Brute Force. To generate the 
iPRC of a system via brute force, the unperturbed system is simulated for at least one 
period. After obtaining this unperturbed limit cycle, the system is integrated up to given 
phases. Once reaching the given phase, the solution is halted, perturbed in the direction 
of a basis vector at a sufficiently small magnitude (1E-2 – 1E-4 are common values 
[17]) and re-initialized. The system is then integrated after this perturbation for a suffi-
ciently long time (typically 10 times the period). The value of the iPRC for the phase 
at which the perturbation is applied is calculated as the difference between the duration 
of the unperturbed and perturbed limit cycles, divided by the magnitude of the pertur-
bation. 

Analytically Finding the Infinitesimal Phase Response Curve. For a general smooth 
nonlinear system which produces a limit cycle, the iPRC can be found using an adjoint 
equation method [19]. The adjoint equation is  
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 𝑧̇𝑧 = −�𝐷𝐷𝐷𝐷(𝛾𝛾)�𝑇𝑇 ⋅ 𝑧𝑧, (16) 

where 𝑧𝑧 is the iPRC and 𝐷𝐷𝐷𝐷(𝛾𝛾) is the Jacobian matrix evaluated on the limit cycle 𝛾𝛾. 
Usually, the adjoint equation cannot be used on nonsmooth systems due to the discon-
tinuities present at the boundaries of piecewise functions or sliding conditions. How-
ever, [16, 17] introduce methods to account for these discontinuities.  

To account for the discontinuities at the boundaries, jump matrices are calculated at 
each boundary crossing. These jump matrices capture the abrupt changes that happen 
to the vector field of the system at the boundaries. To use the jump matrices to properly 
calculate the iPRC, one evaluates the adjoint equation backwards in time. The adjoint 
equation is calculated backwards in time because the jump matrix at the liftoff point for 
sliding conditions would not be well defined otherwise, as detailed in Remark 3.9 and 
Theorem 3.7 in [16]. When a boundary is encountered, the iPRC just before (in for-
wards time) the boundary is calculated by 

 𝑧𝑧− = 𝒥𝒥𝑧𝑧+, (17) 

where 𝑧𝑧− is the iPRC just before the boundary, 𝑧𝑧+ is the iPRC just after the boundary 
and 𝒥𝒥 is the jump matrix. How to calculate the jump matrix is detailed in Theorem 2.2 
for piecewise smooth limit cycles in [17] and Remark 3.10 for LCSCs in [16]. Once 
𝑧𝑧−is found, one re-initializes the adjoint equation using 𝑧𝑧− and continues to evaluate 
the adjoint equation backwards in time. 

3 Results 

3.1 Simulation of the Full System 

The state equations shown in Table 1 were simulated in MATLAB (The Mathworks, 
Natick, MA) using its ODE15s solver with relative and absolute tolerances set at 1 ×
10−10, for 5000 ms to produce Figure 1. Figure 1 shows that the system is rhythmically 
oscillating. The flattening of the peaks in plot (c) in Figure 1 verifies and displays the 
locations of the system’s sliding conditions, where the motor’s current draw is limited. 
Because the motor’s current draw is a dynamical state variable, this limitation repre-
sents a sliding condition, not a discontinuity. The period of the system was calculated 
as 𝑇𝑇 ≈ 545 𝑚𝑚𝑚𝑚.  

 
3.2 Infinitesimal Phase Response Curve  

The brute force and analytical iPRCs of the limit cycle are displayed together in Figure 
2. The perturbation magnitude used for the brute force iPRC was calculated as 10−2 
times the average absolute value of each state over one period. Two hundred fifty 
equally spaced given phase positions were used to generate the brute force iPRC. The 
Jacobian matrix 𝐷𝐷𝐷𝐷 used in the adjoint equation for the analytically obtained iPRC was 
calculated numerically by finite difference. Figure 2 shows good agreement between 
the brute force and analytical iPRCs. The runtime for the analytical solution was 28.65 
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seconds versus more than 5 hours for the brute force solution, representing a massive 
speedup.  

 

 
Fig. 1. Simulation results of the SNS controlled hip power unit model. (a): Plot of neuron 1 
(𝑈𝑈1) and neuron 2 activation (𝑈𝑈2) represented by black lines and dashed gray lines, respec-

tively. (b): Plot of neuron 1 (ℎ1) and neuron 2 sodium channel inactivation (ℎ2) represented by 
black lines and dashed gray lines, respectively. (c): Plot of the motor current. Sliding conditions 
take place at the maximum and minimum allowable currents of magnitude 8.76 𝐴𝐴. (d): Plot of 
the angular position of the motor in degrees. (e): Plot of the angular velocity of the motor in ra-

dians per second. 

4 Discussion 

In this work, we present a model wherein the direction, timing, and speed of the hip 
joint of a powered exoskeleton are controlled by simple neural network consisting of a 
central pattern generator (CPG), modeled using two non-spiking leaky neurons.  The 
model identifies the CPG, the plant, and the coupling between them in a control archi-
tecture directly reflecting the structure of biological motor systems [20]. For this sys-
tem, we show that the analytical methods in [16, 17] for generating iPRCs of limit cy-
cles containing piecewise-linear functions and sliding conditions agree with the iPRCs 
calculated for our system via brute force. This method will enable us to precisely tune 
the interjoint coordinating influences in our exoskeleton control model. 
The analytical method for generating iPRCs will enable us to more rapidly tune the 
parameters of our system. One of our intended uses for the iPRCs is to find and evaluate 
ideal parameter values for interjoint coordinating influences in our networks. Proper 
walking emerges from sensory feedback pathways that synapse onto the CPGs to 
change their oscillation phases [8]. However, it is not clear which states should alter 
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CPG phase, or how strong those influences should be. We can use iPRCs to determine 
at what phases a network is most sensitive to inputs, and exploit this knowledge to 
design locomotion-stabilizing coordination pathways. Even though this could be ac-
complished by generating iPRCs via simulation and brute force [14], the analytical 
iPRC method is faster and computationally less expensive, allowing quicker evaluation 
of possible changes to the system.  

 
 

 
Fig. 2. The brute force (dots) and analytical (lines) iPRCs of the SNS controlled hip power unit 
model. (a): iPRC of 𝑈𝑈1 and 𝑈𝑈2 with the brute force iPRC represented by blue and green dots re-
spectively, and the analytical iPRC represented by black and gray lines, respectively. (b): iPRC 
of ℎ1 and ℎ2 with the brute force iPRC represented by blue and green dots respectively, and the 
analytical iPRC represented by black and gray lines, respectively. (c): iPRC of the motor cur-

rent. (d): iPRC of the angular position. (e): iPRC of the angular velocity. 

 
This analytical method for generating iPRCs will also enable us to determine synap-

tic sites for descending influences that alter locomotion. Descending influences from 
the brain are known to be critical for directing (but not necessarily generating) ongoing 
periodic motor output in all types of animals [9, 10]. However, it is not always clear 
what parts of the network descending commands modify to alter locomotion, or how 
strong those influences are. With the ability to rapidly generate iPRCs, we can identify 
how the parameters of a joint controller change its response to descending signals, and 
how the form and strength of those signals affect locomotion.  

 The ability of the analytical methods to account for piecewise and sliding conditions 
is also of great value. As shown in our methods and [14], the SNS can depend on piece-
wise equations to function correctly. Importantly, such piecewise equations enable the 
output of a neuron to be completely “shut off,” such as when a neuron stops firing action 
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potentials. This effect cannot be produced by traditional recurrent neural networks with 
continuous synaptic activation functions [21]. As the system in this work is scaled up 
and developed for use as a controller for an assistive exoskeleton for walking gait re-
habilitation, the discontinuous mechanics of walking will introduce more sliding con-
ditions [22], such as making and breaking contact with the ground, which must be ac-
counted for. We believe we can continue to scale this method up to more accurately 
and quickly predict how a dynamical system’s periodic orbit may be altered by pertur-
bations in a phase-dependent way. 

For future work we intend to continue development towards a larger and more real-
istic network for controlling our exoskeleton, that would include additional joints, as 
well as expanded sensory pathways and descending commands. We also plan to explore 
additional methods in [16] for analytically finding the infinitesimal shape response 
curves (iSRCs) for our systems. The iSRC would show how the values of each state 
change throughout its period when system parameters are perturbed from their baseline 
values for the duration of the limit cycle. Understanding how these lasting perturbations 
alter the periodic trajectory of the system will assist tuning of parameter values. Essen-
tially, by perturbing one or more parameters for the full period of the limit cycle, their 
effects on the state values can be determined at each instance of the period. With this 
information, the proper parameter values needed for the trajectory to exhibit key fea-
tures (i.e. level body height during the stance phase) can be found. We expect this ana-
lytical method to again be faster and computationally less expensive than solving the 
iSRC via brute force, allowing tuning to be done more quickly and efficiently. 
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