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Abstract. This work explores a method for analytically computing the infinites-
imal phase response curves (iPRCs) of a synthetic nervous system (SNS) for a
hybrid exoskeleton. Phase changes, in response to perturbations, revealed by the
iPRCs, could assist in tuning the strength and locations of sensory pathways. We
model the SNS exoskeleton controller in a reduced form using a state-space rep-
resentation that interfaces neural and motor dynamics. The neural dynamics are
modeled after non-spiking neurons configured as a central pattern generator
(CPQ), while the motor dynamics model a power unit for the hip joint of the
exoskeleton. Within the dynamics are piecewise functions and hard boundaries
(i.e. “sliding conditions”), which cause discontinuities in the vector field at their
boundaries. The analytical methods for computing the iPRCs used in this work
apply the adjoint equation method with jump conditions that are able to account
for these discontinuities. To show the accuracy and speed provided by these
methods, we compare the analytical and brute-force solutions.

Keywords: Infinitesimal phase response curve, synthetic nervous system, hy-
brid exoskeleton

1 Introduction

Research and development of exoskeleton devices to mimic or assist walking have been
ongoing since the 1960s [1]. The mechanical design and control strategies for these
exoskeletons can vary widely. A collaborative team at Case Western Reserve Univer-
sity and the Cleveland Stokes Veteran’s Affairs (VA) hospital is currently developing
a hybrid exoskeleton [2]. The exoskeleton is considered a hybrid because it combines
functional electrical stimulation (FES) [3] of the user’s muscles with the bracing and
power assistance of an exoskeleton [4]. Such an exoskeleton will enable patients to
regain mobility and act as a form of physical therapy due to the physiological benefits
of FES [5]. Specifically, paraplegic patients benefit from the exoskeleton’s powered
joints that compensate for inadequate muscle activation when using FES.

Despite the progress of exoskeletons and biped robots to date, their movements re-
main in general less robust and adaptive compared to those of humans. The robustness



and adaptation of human walking is due to the structure and function of the neural con-
trol networks within the nervous system. Decades of study in neuroscience and biology
have begun to uncover how these controllers operate [6]. Controlling our exoskeleton
with a computational model of these networks, which we call a “Synthetic Nervous
System” (SNS) [7], may endow it with more robust and adaptive locomotion.

Our ultimate goal is to control our exoskeleton and FES with an SNS model that
incorporates sensory feedback to coordinate the motion of different limb segments in a
flexible framework that can be altered by descending influences in a task-dependent
way. These two features have been shown to underlie periodic motor output in animals
[8-10]. Neural models of animal locomotion in [11-13] can serve as a basis for the
organization of our SNS model moving forward. However, with the actuators of the
exoskeleton more closely resembling servomotors than antagonistic pairs of muscles,
design of joint movement controls will be more in line with the design process outlined
in [14]. Interjoint coordination will be relying on sensory feedback signals from the
positions of other joints and forces on the leg [11, 15].

An expected hurdle to developing and tuning this SNS will be in the coordination of
the multiple rhythmic systems, i.e. the oscillation of each joint. Inter-joint coordination
arises from sensory pathways between leg joints adjusting the oscillatory phase of the
other joints. For example, loading information from the foot adjusts the phase of the
hip’s control network to generate propulsion [11]. But how should the strength of such
pathways be tuned? One tool that quantifies how periodic trajectories are altered by
perturbations is the infinitesimal phase response curve, or iPRC. An iPRC reveals how
the cycle’s phase changes in response to perturbations applied to each of its state vari-
ables at different phases throughout its limit cycle. By locating the areas of higher and
lower sensitivity, we may be able to design sensory pathways that exploit the oscilla-
tors’ phase-dependent sensitivity to inputs. In addition, understanding how sensory in-
formation alters the relative phase of the joints, we may be able to determine the stabil-
ity of periodic trajectories (i.e. how the exoskeleton walks) and its robustness to system
parameters.

Despite the potential benefits these iPRCs could provide, the process of finding the
iPRCs via brute force guess-and-check can require long computation times, especially
as the dimensionality of the SNS model grows. Analytical methods for generating
iPRCs exist, which should be faster and computationally less expensive than brute force
methods. However, such methods mostly consider smooth systems and tend to break
down in non-smooth systems due to the Jacobian matrices of the system’s vector fields
not being well defined [16]. Our model joint model system contains piecewise functions
and certain hard boundaries (i.e. “sliding conditions”) that make it non-smooth. How-
ever, more recently developed analytical methods for finding iPRCs can treat systems
whose dynamics contain piecewise functions and sliding conditions [16, 17]. In this
work, we will apply these newer methods with a reduced model of our SNS exoskeleton
controller to compute its iPRC numerically. We compare this iPRC to one generated
via brute force (i.e. repeated perturbed simulation). We then discuss future applications
for this work.



2 Methods

This work establishes a system wherein the direction, timing, and speed of the hip joint
of'a powered exoskeleton is controlled by simple neural network consisting of a central
pattern generator (CPG), modeled using two non-spiking leaky neurons. The hip joint
is powered by a DC motor with a gearbox, and the rotation of the joint provides feed-
back to the CPG.

2.1  Motor Dynamics

The hip power unit is the actuator driving the movement. It is composed of a DC motor
paired with a transmission to produce a larger torque, while still being capable of out-
putting the needed speeds of the hip during walking locomotion. The power unit can be
modeled as a motor.

Kirchhoff’s Current Law. To model the electrical properties of the motor we use
Kirchhoff’s Current Law,

L-i=Vy,—K,-0—Ry, -1 (1)

Where L is the motor armature inductance, V;,is the motor voltage input, K, is the motor
speed constant, @ is the angular velocity, R, is the motor terminal resistance, and I is
the motor current. Equation 1 makes up the basis of our motor current state. Due to
limitations of the motor controller and transmission inside the power unit, only a certain
amount of current can be sourced at once. This restriction introduces a sliding condition
to the state equation for current, where it can only reach a set maximum amount of
current.

Newton’s Law of Motion. To model the mechanical properties of the motor we use
Newton’s Law of Motion resulting in

]-é=Kt'1—B'9—5ign(9)'Text @

where the J is the motor mass moment of inertia, K, is the motor torque constant, B is
the motor viscous friction, and 7., is the external torque, which is used to account for
the static friction. Equation 2 makes up the basis of the angular velocity state of the
motor.

Angular Position. To describe the dynamics in a state-space representation, we add a
differential equation modeling the angular position of the motor,

6=2 3)

dt



2.2 Neural Dynamics

The neural dynamics contribute four state variables to the system. These variables
model the activation level of the two neurons in our CPG, as well as those neurons’
persistent sodium channel inactivation.

Non-spiking Leaky Neuron Model. The neurons are modeled as non-spiking Hodg-
kin-Huxley compartments with the substitution U = V — E,., as used in [7, 14] to sim-
plify analysis, where E, is the resting potential, V is the neuron voltage, and U is the
activation level above the resting voltage. This gives us

Cn - U=—=Gp - U+ Gsyn(U) - (AEgyn —U) + Gng - Mo(U) - h- (AEy, — U) +
[app + [pert + Gfb ' (AEfb - U) (4)

where C,;, is the membrane capacitance, G, is the membrane conductance, Gy, is the
instantaneous synaptic conductance, AE,,, is the synaptic reversal potential, Gy, is the
sodium conductance, m,, is a sigmoid for the persistent sodium channel activation, h
is the persistent sodium channel inactivation, AEy, is the sodium channel reversal po-
tential, Iy, is the membrane applied current, and I, is a small current pulse that is
only applied to one of the neurons at the beginning to create an offset to begin oscilla-
tion of the CPG. The terms Gy, and AEf,, are feedback terms used to interface feedback
pathways with the motor. Gy, is the feedback synapse conductance and AEj, is the
feedback reversal potential.

Central Pattern Generator. The central pattern generator is formed by mutual inhibi-
tion between two neurons with persistent sodium channels [14]. The synaptic conduct-
ance, Ggyy, of the inhibitory synaptic connections between the two neurons is described
by the piecewise-linear function

0, ifU<0
Gsyn(U) = {Gsyn %: if0<U<R ®)
Isyn» ifU>=R

where R is the expected range of voltage output from the neuron and g, is the maxi-
mum synaptic conductance. To have our network oscillate between the voltage range
of 0 to R at steady state when one neuron is inhibited and the other is uninhibited, Gy,
is found using
_ Gm-R
GNa = 3 heaR) @B ©)

The maximum synaptic conductance, gsyn, is found using

_ —6-GNg'Moeo(8)-heo(8)-(6—AENG)
Isyn = = 8—AEgyn 2 (7)




Here, § is a bifurcation parameter that represents the strength of the synaptic inhibition
as the difference between the inhibited neuron’s resting potential and the lower thresh-
old of the synapse [14]. The term h,, is another sigmoid, similar to m,, but for the
sodium inactivation channel. The sigmoids are defined as

1

Me (V) = 1+exp(S-(R-V))

®

1

ho(V) = isemcn)
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where S is the maximum slope of the sigmoid.

Sodium Channel Inactivation. The differential equation that governs the sodium
channel inactivation term, h, found in Equation 4 is

A — heo(U)—h
Th(U)

(10)
where 7,is the sodium inactivation time constant found using

7,(V) = Thmax * ho (V) - vV 0.5-exp(S-V) 11

2.3  Interfacing the Dynamics

With the motor and neural dynamics laid out in the sections above, we must establish
coupling terms between them. Our goal is to use the neural states to specify position
and velocity commands for the motor. For the CPG to be able to control the movement
of the motor, the states of the neural dynamics are integrated in to the motor dynamics
as inputs as well as having certain states from the motor dynamics used in new feedback
pathways for the neurons.

Neuron Activation as Inputs to the Motor. To have the CPG specify the velocity of
the motor, the motor voltage input, V;,, becomes a piecewise-linear function of the
neuron activation states.

Vin(Uy, Uy) = P - min(max(Uy, 0), R) — min(max(U,, 0), R)) (12)

where Ujand U, represent the activation states of neurons 1 and 2, respectively. The
term P is a gain term represented as

4K,
1000-R

(13)

that limits the maximum commanded speed to 4rads/s, since this is the approximate
speed of the hip joint during walking locomotion found in [18].



Angular Position as Feedback for the Neurons. The feedback synapse conductance,
Gyp, 1s set as a function of position 6. If neuron 1 (U;) was active when 6 reaches a
certain threshold, the feedback synapse conductance activates to allow a strong inhibi-
tory current to inhibit U;. With U; now inhibited, U, is allowed to escape and become
the active neuron in the CPG. This causes the angular velocity to switch signs due to
Equation 12, leading to a change in direction. Gg,, for neurons 1 and 2 are represented
by the following piecewise functions

0,6<86
Grp1(0) = { ’ FLX 14
fb,l( ) gFB; 9 2 GFLX ( )
0,0>0
G 0 ={ ) EXT 15
72(6) 9grpr 0 < Opxr (15

Where gpp is the maximum feedback conductance, 85,y is the flexion position trigger
and Ogxr is the extension position trigger. The current model sets 8z, x = 30 degrees
and Ogxr = —10 degrees based on hip angle ranges during locomotion found in [18].
For completeness, all state equations are listed in Table 1 and all variable values and
units are shown in Table 2.

Table 1. State equations of the system

Variable Name State Equation
Current L-I=Vyu,—K,-§—Ry -1
Angular Position 6= Z_f
Angular Velocity J-0=K 1—B-0—sign(0) - Tex
Cp-Up=—Gp- U + Gsyn(UZ) : (AEsyn - Ul) + Gyg
Neuron 1 Activation ‘Mo (Uy) - hy - (AEng — Uy) + Igpp

) + Ipert + Gfb,l(e) ' (AEfb - Ul)
Cm " Uy = =G - Uy + Gy (U)) - (BEgyn, — Uy) + Gng

Neuron 2 Activation Mo (Up) * hy - (AEng — Up) + Igpy
+ Grp2(0) - (AEpp — Us)
Neuron 1 Sodium . he(Uy)) —hy
Channel Inactivation LT (U)
Neuron 2 Sodium = hoo(Us) — hy

Channel Inactivation 7, (U3)

Table 2. Parameter values and units.

Variables Parameter Base Value/Units
Vi Motor Voltage Input v
%4
K, Motor Speed Constant 5.7886 m

Ry Motor Armature Resistance 0.6080



L Motor Armature Inductance 0.000463H
K, Motor Torque Constant 411Nm/A
B Motor Viscous Friction 0.859 _Nm
rad/s
Toxt External Torque 2.38Nm
] Motor Mass Moment of Inertia 0.444kg - m?
G Membrane Conductance 1uS
syn Max Synaptic Conductance 0.2819uS
AEsy, Synaptic Reversal Potential —100mV
Gna Sodium Conductance 3.1455uS8
AEy, Sodium Channel Reversal Potential 50mV
Lapp Membrane Applied Current 0nA
Lpert Membrane Perturbation Current 1nA
Cn Membrane Capacitance 5nF
Ty Sodium Inactivation Time Constant ms
Thmax Sodium Inactivation Time Constant Max 300ms
6 Bifurcation Parameter 0.1
R Voltage Range 20
S Slope of sigmoid 0.05
OrLx Hip Flexion Angle 30°
Opxr Hip Extension Angle —10°

2.4  Deriving/generating analytically the infinitesimal phase response curves
(iPRCs)

The system, governed by the state equations shown above in Table 1, exhibits a limit
cycle with both piecewise functions and hard boundaries acting as sliding conditions.
Deriving iPRCs for piecewise-linear and limit cycles with sliding conditions (LCSCs)
have been treated in detail in [16, 17]. However, we will briefly summarize the process.

Finding the Infinitesimal Phase Response Curve via Brute Force. To generate the
iPRC of a system via brute force, the unperturbed system is simulated for at least one
period. After obtaining this unperturbed limit cycle, the system is integrated up to given
phases. Once reaching the given phase, the solution is halted, perturbed in the direction
of a basis vector at a sufficiently small magnitude (1E-2 — 1E-4 are common values
[17]) and re-initialized. The system is then integrated after this perturbation for a suffi-
ciently long time (typically 10 times the period). The value of the iPRC for the phase
at which the perturbation is applied is calculated as the difference between the duration
of the unperturbed and perturbed limit cycles, divided by the magnitude of the pertur-
bation.

Analytically Finding the Infinitesimal Phase Response Curve. For a general smooth
nonlinear system which produces a limit cycle, the iPRC can be found using an adjoint
equation method [19]. The adjoint equation is



z=—(DF() -z, (16)

where z is the iPRC and DF (y) is the Jacobian matrix evaluated on the limit cycle y.
Usually, the adjoint equation cannot be used on nonsmooth systems due to the discon-
tinuities present at the boundaries of piecewise functions or sliding conditions. How-
ever, [16, 17] introduce methods to account for these discontinuities.

To account for the discontinuities at the boundaries, jump matrices are calculated at
each boundary crossing. These jump matrices capture the abrupt changes that happen
to the vector field of the system at the boundaries. To use the jump matrices to properly
calculate the iPRC, one evaluates the adjoint equation backwards in time. The adjoint
equation is calculated backwards in time because the jump matrix at the liftoff point for
sliding conditions would not be well defined otherwise, as detailed in Remark 3.9 and
Theorem 3.7 in [16]. When a boundary is encountered, the iPRC just before (in for-
wards time) the boundary is calculated by

z-=Jz", 17

where z~ is the iPRC just before the boundary, z* is the iPRC just after the boundary
and J is the jump matrix. How to calculate the jump matrix is detailed in Theorem 2.2
for piecewise smooth limit cycles in [17] and Remark 3.10 for LCSCs in [16]. Once
z~is found, one re-initializes the adjoint equation using z~ and continues to evaluate
the adjoint equation backwards in time.

3 Results

3.1 Simulation of the Full System

The state equations shown in Table 1 were simulated in MATLAB (The Mathworks,
Natick, MA) using its ODE15s solver with relative and absolute tolerances set at 1 X
10719, for 5000 ms to produce Figure 1. Figure 1 shows that the system is rhythmically
oscillating. The flattening of the peaks in plot (c) in Figure 1 verifies and displays the
locations of the system’s sliding conditions, where the motor’s current draw is limited.
Because the motor’s current draw is a dynamical state variable, this limitation repre-
sents a sliding condition, not a discontinuity. The period of the system was calculated
as T = 545 ms.

3.2  Infinitesimal Phase Response Curve

The brute force and analytical iPRCs of the limit cycle are displayed together in Figure
2. The perturbation magnitude used for the brute force iPRC was calculated as 1072
times the average absolute value of each state over one period. Two hundred fifty
equally spaced given phase positions were used to generate the brute force iPRC. The
Jacobian matrix DF used in the adjoint equation for the analytically obtained iPRC was
calculated numerically by finite difference. Figure 2 shows good agreement between
the brute force and analytical iPRCs. The runtime for the analytical solution was 28.65



seconds versus more than 5 hours for the brute force solution, representing a massive
speedup.
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Fig. 1. Simulation results of the SNS controlled hip power unit model. (a): Plot of neuron 1
(U;) and neuron 2 activation (U,) represented by black lines and dashed gray lines, respec-
tively. (b): Plot of neuron 1 (h,) and neuron 2 sodium channel inactivation (h;,) represented by
black lines and dashed gray lines, respectively. (c): Plot of the motor current. Sliding conditions
take place at the maximum and minimum allowable currents of magnitude 8.76 A. (d): Plot of
the angular position of the motor in degrees. (e): Plot of the angular velocity of the motor in ra-
dians per second.

4 Discussion

In this work, we present a model wherein the direction, timing, and speed of the hip
joint of a powered exoskeleton are controlled by simple neural network consisting of a
central pattern generator (CPG), modeled using two non-spiking leaky neurons. The
model identifies the CPG, the plant, and the coupling between them in a control archi-
tecture directly reflecting the structure of biological motor systems [20]. For this sys-
tem, we show that the analytical methods in [16, 17] for generating iPRCs of limit cy-
cles containing piecewise-linear functions and sliding conditions agree with the iPRCs
calculated for our system via brute force. This method will enable us to precisely tune
the interjoint coordinating influences in our exoskeleton control model.

The analytical method for generating iPRCs will enable us to more rapidly tune the
parameters of our system. One of our intended uses for the iPRCs is to find and evaluate
ideal parameter values for interjoint coordinating influences in our networks. Proper
walking emerges from sensory feedback pathways that synapse onto the CPGs to
change their oscillation phases [8]. However, it is not clear which states should alter
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CPG phase, or how strong those influences should be. We can use iPRCs to determine
at what phases a network is most sensitive to inputs, and exploit this knowledge to
design locomotion-stabilizing coordination pathways. Even though this could be ac-
complished by generating iPRCs via simulation and brute force [14], the analytical
iPRC method is faster and computationally less expensive, allowing quicker evaluation
of possible changes to the system.
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Fig. 2. The brute force (dots) and analytical (lines) iPRCs of the SNS controlled hip power unit
model. (a): iPRC of U; and U, with the brute force iPRC represented by blue and green dots re-
spectively, and the analytical iPRC represented by black and gray lines, respectively. (b): iPRC
of h; and h, with the brute force iPRC represented by blue and green dots respectively, and the
analytical iPRC represented by black and gray lines, respectively. (c): iPRC of the motor cur-
rent. (d): iPRC of the angular position. (e): iPRC of the angular velocity.

This analytical method for generating iPRCs will also enable us to determine synap-
tic sites for descending influences that alter locomotion. Descending influences from
the brain are known to be critical for directing (but not necessarily generating) ongoing
periodic motor output in all types of animals [9, 10]. However, it is not always clear
what parts of the network descending commands modify to alter locomotion, or how
strong those influences are. With the ability to rapidly generate iPRCs, we can identify
how the parameters of a joint controller change its response to descending signals, and
how the form and strength of those signals affect locomotion.

The ability of the analytical methods to account for piecewise and sliding conditions
is also of great value. As shown in our methods and [14], the SNS can depend on piece-
wise equations to function correctly. Importantly, such piecewise equations enable the
output of a neuron to be completely “shut off,” such as when a neuron stops firing action
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potentials. This effect cannot be produced by traditional recurrent neural networks with
continuous synaptic activation functions [21]. As the system in this work is scaled up
and developed for use as a controller for an assistive exoskeleton for walking gait re-
habilitation, the discontinuous mechanics of walking will introduce more sliding con-
ditions [22], such as making and breaking contact with the ground, which must be ac-
counted for. We believe we can continue to scale this method up to more accurately
and quickly predict how a dynamical system’s periodic orbit may be altered by pertur-
bations in a phase-dependent way.

For future work we intend to continue development towards a larger and more real-
istic network for controlling our exoskeleton, that would include additional joints, as
well as expanded sensory pathways and descending commands. We also plan to explore
additional methods in [16] for analytically finding the infinitesimal shape response
curves (iSRCs) for our systems. The iISRC would show how the values of each state
change throughout its period when system parameters are perturbed from their baseline
values for the duration of the limit cycle. Understanding how these lasting perturbations
alter the periodic trajectory of the system will assist tuning of parameter values. Essen-
tially, by perturbing one or more parameters for the full period of the limit cycle, their
effects on the state values can be determined at each instance of the period. With this
information, the proper parameter values needed for the trajectory to exhibit key fea-
tures (i.e. level body height during the stance phase) can be found. We expect this ana-
lytical method to again be faster and computationally less expensive than solving the
iSRC via brute force, allowing tuning to be done more quickly and efficiently.
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