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Abstract

Perception plays a pivotal role in autonomous driving systems,
which utilizes onboard sensors like cameras and LiDARs
(Light Detection and Ranging) to assess surroundings. Recent
studies have demonstrated that LiDAR-based perception is
vulnerable to spoofing attacks, in which adversaries spoof a
fake vehicle in front of a victim self-driving car by strategi-
cally transmitting laser signals to the victim’s LiDAR sensor.
However, existing attacks suffer from effectiveness and gen-
erality limitations. In this work, we perform the first study to
explore the general vulnerability of current LiDAR-based per-
ception architectures and discover that the ignored occlusion
patterns in LiDAR point clouds make self-driving cars vul-
nerable to spoofing attacks. We construct the first black-box
spoofing attack based on our identified vulnerability, which
universally achieves around 80% mean success rates on all
target models. We perform the first defense study, proposing
CARLO to mitigate LIDAR spoofing attacks. CARLO detects
spoofed data by treating ignored occlusion patterns as invari-
ant physical features, which reduces the mean attack success
rate to 5.5%. Meanwhile, we take the first step towards explor-
ing a general architecture for robust LIDAR-based perception,
and propose SVF that embeds the neglected physical features
into end-to-end learning. SVF further reduces the mean attack
success rate to around 2.3%.

1 Introduction

Today, self-driving cars, or autonomous vehicles (AV), are un-
dergoing rapid development, and some are already operating
on public roads, e.g., self-driving taxis from Google’s Waymo
One [3] and Baidu’s Apollo Go [1], and self-driving trucks
from TuSimple [2] used by UPS. To enable self-driving, AVs
rely on autonomous driving (AD) software, in which percep-
tion is a fundamental pillar that detects surrounding obstacles
using sensors like cameras and LiDARs (Light Detection and
Ranging). Since perception directly impacts safety-critical
driving decisions such as collision avoidance, it is imperative
to ensure its security under potential attacks.

In AD perception, 3D object detection is indispensable for
ensuring safe and correct autonomous driving. To achieve
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this, almost all AV makers [4, 5, 7] adopt LiDAR sensors,
since they capture high-resolution 360° 3D information called
point clouds and are more reliable in challenging weather
and lighting conditions than other sensors such as cameras.
Due to such heavy reliance on LiDAR, a few prior studies
have explored the security of LiDAR and its usage in AD
systems [17, 48, 55]. Among them, Cao et al. are the first
to discover that the deep learning model for LiDAR-based
perception used in a real-world AD system can be fooled to
detect a fake vehicle by strategically injecting a small number
of spoofed LiDAR points [17]. Such LiDAR spoofing attacks
could lead to severe safety consequences (e.g., emergency
brake operations that may injure passengers). However, the
attack proposed was evaluated on only one specific model
(i.e., Baidu Apollo 2.5), assuming white-box access, which
may be unrealistic. Moreover, it is unclear 1) whether the
attack generalizes to other machine learning models, and 2)
how to mitigate such spoofing attacks.

In this work, we perform the first study to systematically
explore, discover, and defend against a general vulnerability
existing among three state-of-the-art LIDAR-based 3D object
detection model designs: bird’s-eye view-based, voxel-based,
and point-wise (introduced in §2). More specifically, we first
demonstrate that existing LiDAR spoofing attacks [17, 55]
cannot directly generalize to all three model designs (§4).
Meanwhile, we find that in these prior works the required sen-
sor attack capabilities to succeed in fooling AD perception are
quite intriguing: Cao et al. [17] found that an attack trace with
merely 60 points is sufficient to spoof a front-near vehicle in
Apollo 2.5, while a valid one should have ~2000 points [31],
which is almost two magnitudes more. Thus, there must exist
certain LiDAR-related physical invariants that are not cor-
rectly learned in the model, which could also be generalizable
to other state-of-the-art 3D object detection model designs.

To explore the cause, we perform experiments based on
hypotheses formed by empirical observations of deep learning
models and unique physical features of LiDAR, and discover
that all the three state-of-the-art 3D object detection model de-
signs above generally ignore the occlusion patterns in LIDAR
point clouds, a set of physical invariants for LIDAR (§5.2).



For example, when a vehicle is behind another vehicle, its
point cloud can legitimately have much fewer points due to
the front vehicle’s occlusion of the LIDAR beams. However,
such point cloud with much fewer points should not be de-
tected as a vehicle at front-near locations with no occlusions,
due to the physical law. Unfortunately, all three model designs
today fail to differentiate these two cases. This allows an ad-
versary to spoof almost two magnitudes fewer points into the
victim’s LiDAR but can still fool the perception model into
detecting a fake front-near vehicle (§5.3).

Based on this general vulnerability, we design the first
black-box (i.e., without any knowledge about the models)
adversarial sensor attack on LiDAR-based perception mod-
els to spoof a front-near vehicle to a victim AV that can al-
ter its driving decisions (§6). To realize this, we enumerate
different occlusion patterns of a 3D vehicle mesh (e.g., dif-
ferent occluded postures) to fit the sensor attack capability,
and leverage ray-casting techniques [18] to render the attack
traces. We perform large-scale experiments on the three target
model designs with around 15,000 point cloud samples from
the KITTI [31] dataset. Evaluations show that with the same
sensor attack capability as prior works [17] (i.e., 60 spoofed
points), adversaries can generally achieve over 80% success
rates on all three model designs.

Since these spoofed point clouds directly violate the physi-
cal laws of the LiDAR occlusion patterns mentioned above,
we then leverage them as physical invariants to defend
against this class of LiDAR spoofing attacks. First, we de-
sign a model-agnostic defense solution, CARLO: oCclusion-
Aware hieRarchy anomaLy detectiOn, which can be applied
to LiDAR-based perception immediately without changing
the existing models. CARLO exploits two occlusion-related
characteristics: 1) the free space inside a detected bounding
box, and 2) the locations of points inside the frustum corre-
sponding to a detected bounding box. Large-scale evaluations
of CARLO show that it can efficiently and effectively de-
fend both white- and black-box LiDAR spoofing attacks [17].
CARLO is also found to have high resilience to adaptive
attacks since it exploits physical invariants that are highly
difficult, if not impossible, for attackers to break.

While the model-agnostic defense is already useful, it is
also beneficial if we can improve the robustness of the model
designs themselves. Thus, we further design a general ar-
chitecture for robust LiDAR-based perception in AVs. We
observe that LIDAR measures range data by nature; hence the
front view (FV) of the LiDAR sensor preserves the physical
features as well as the occlusion information [38]. Recent
studies present view fusion-based models that combines the
FV and 3D representations [24, 35, 72]. However, our exper-
iment results show that current designs are still vulnerable
to LiDAR spoofing attacks since features from the 3D rep-
resentation dominate the fusion process. To address such
limitations, we propose sequential view fusion (SVF), a novel
view fusion-based model design that sequentially fuses the FV

and 3D representations to ensure that the end-to-end learning
makes sufficient use of the features from FV (§8.2). Evalua-
tions show that SVF can effectively reduce the attack success
rate to 2.3% without sacrificing the original performance,
which is a 2.2 x improvement compared to CARLO. We find
that SVF is also resilient to white-box attacks and adaptive
attacks.

Overall, our key contributions are summarized as follows:

e We perform the first study to explore the general vulner-
ability of current LIDAR-based perception architectures.
We discover that current LiDAR-based perception mod-
els do not learn occlusion information in the LiDAR
point clouds, which enables a class of spoofing attacks.
We construct the first black-box spoofing attack based
on this vulnerability. Large-scale evaluations show that
attackers can achieve around 80% mean success rates on
all target models.
To defend against LIDAR spoofing attacks, we design
a model-agnostic defense CARLO that leverages the
ignored occlusion patterns as invariant physical fea-
tures to detect spoofed fake vehicles. We also perform
large-scale evaluations on CARLO, and demonstrate that
CARLO can effectively reduce the mean attack success
rate to 5.5% on all target models without sacrificing the
original performance.
We design a general architecture for robust LiDAR-
based perception in AVs by embedding the front view
(FV) representation of LiDAR point clouds. We find that
existing view fusion-based models are dominated by fea-
tures from the 3D representation, meaning they are still
vulnerable to LiDAR spoofing attacks. To address such
limitations, we propose sequential view fusion (SVF).
SVF leverages a semantic segmentation module to bet-
ter utilize FV features. Evaluations show that SVF can
further reduce the mean attack success rate to 2.3%.

2 Background

2.1 LiDAR-based Perception in AVs

LiDAR-based perception leverages 3D object detection mod-
els to understand driving environments, in which the models
output 3D bounding boxes for detected objects. Deep learning
has achieved great success in computer vision tasks for 2D
images. However, standard convolutional pipelines cannot
digest point clouds due to their sparsity and irregularity. To
this end, significant research efforts have been made for 3D
object detection recently [36, 53, 54, 73], among which the
state-of-the-art models can be grouped into three classes:

1. Bird’s-eye view (BEV)-based 3D object detection.
Due to the remarkable progress made in 2D image recog-
nition tasks, a large number of existing works [7, 40, 43, 68]
attempt to transform LiDAR point clouds into the 2D structure
for 3D object detection in AD systems. Most state-of-the-art
methods [7, 40, 68] conduct the transformation by projecting
point clouds into the top-down view, also known as the BEV,
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Figure 1: State-of-the-art LIDAR-based perception models.
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and utilize convolutional neural networks (CNNs) to perform
the final detection. Figure 1 (a) shows the architecture of
Apollo 5.0, an industry-level BEV-based model, that has six
hard-coded feature maps in the BEV and follows a UNet-
like [52] pipeline to output the grid-level confidence score.
The final stage heuristically clusters the grids that belong to
the same object.

2. Voxel-based 3D object detection. VoxelNet [73] is the
first model that slices the point clouds into voxels and extracts
learnable features by applying a PointNet [49] to each voxel,
after which a 2D convolutional detection layer is applied in
the final stage. Many recent works [36, 37, 58, 67] adopt this
voxel-based architecture and achieve state-of-the-art perfor-
mance [9]. Figure | (b) shows the architecture of PointPillars
that creatively voxelizes the point cloud into pillars (a rep-
resentation of point clouds organized in vertical columns)
to enhance the efficiency and follows the general design of
voxel-based detection architectures. Notably, PointPillars is
adopted by Autoware [6], an industry-level AV platform.

3. Point-wise 3D object detection. Instead of transform-
ing point clouds to regular 2D structures or voxels for feature
extraction, recent studies propose to directly operate on point
clouds for 3D object detection [25, 53, 54, 71] and achieve
the state-of-the-art performance. Most existing works in this
category use a classic two-stage architecture similar to Faster
RCNN [51] in 2D object detection. The first stage is respon-
sible for generating high-quality region proposals in the 3D
space. Based on these proposals, the second stage regresses
the bounding box parameters and classifies the detected ob-
jects. As shown in Figure | (c), PointRCNN adopts a bottom-
up method that generates point-wise region proposals in the
first stage and regresses these proposals in the later stage.

2.1.1 KITTI Benchmark

KITTI [31] is a popular dataset for benchmarking AD re-
search, of which the point cloud data are by design divided
into a trainval set containing 7481 samples and a test set con-
taining 7518 samples. We follow the methodology by Chen et
al. to split the trainval set to a training set (3712 samples) and

UIn this paper, we use “Apollo 5.0” to denote the Baidu Apollo 5.0 model.

a validation set (3769 samples) for better experimental stud-
ies [23]. KITTI evaluates 3D object detection performance
by average precision (AP) using the PASCAL [27] criteria
and requires a 3D bounding box overlap (IoU) over 70% for
car detection. KITTT also defines objects into three difficulty
classes: Easy, Moderate, and Hard [9]. The difficulties corre-
spond to different occlusion and truncation levels. We train
PointPillars and PointRCNN on the training set, and Table |
shows their APs evaluated on the validation set. We utilize the
publicly released Apollo 5.0 model since it has its own label-
ing, which is incompatible with KITTL. In this work, we target
car detection on the KITTI benchmark as the APs of pedes-
trian and cyclist detection are not yet satisfactory. However,
our methodology can be generalized to other categories.

2.2 LiDAR Sensor and Spoofing Attacks

LiDAR sensor. A LiDAR instrument measures the distance
to surroundings by firing rapid laser pulses and obtaining the
reflected light with a sensor. Since the speed of light is con-
stant, the accurate distance measurements can be derived from
the time difference between laser fires and returns. By firing
laser pulses at many predetermined vertical and horizontal
angles, a LIDAR generates a point cloud that can be used to
make digital 3D representations of surroundings. Each point
in a point cloud contains its xyz-i information, corresponding
to its location and the intensity of the captured laser return.

2.2.1 Sensor-level LiDAR Spoofing Attack

In the context of sensors, a spoofing attack is the injection of a
deceiving physical signal into a victim sensor [46]. Since they
share the same physical channels, the victim sensor accepts
the malicious signal, trusting it as legitimate. Prior works [48,
55] have shown that LiDAR is vulnerable to laser spoofing
attacks. Specifically, Petit ef al. showed the feasibility to relay
LiDAR laser pulses from other locations to inject fake points
into the point cloud [48]. Shin et al. further improved the
attack to control fake points at different locations in the point
cloud, even very close to the victim vehicles [55].

2.2.2 Adv-LiDAR: Model-level LiDAR Spoofing Attack

Besides directly spoofing fake points into LiDAR point
clouds, a recent study proposes Adv-LiDAR that uses ad-
versarial machine learning to not only spoof a set of fake
points into the point cloud but also manage to deceive the
LiDAR-based perception model [17]. The authors formulate
the attack on Apollo 2.5” as an optimization problem:

min Lxat'; M)

1
st. ' e{d(T)|T €4} & x=d(X) M
where X is the pristine point cloud and x represents the
hard-coded feature maps in Apollo (§2.1). ®(-) is the pre-
processing function for crafting the feature maps. 77 and ¢/

2 Apollo 2.5 was the latest version when Adv-LiDAR [17] was published.
In this work, we target Apollo 5.0, the latest version at the time of writing.



are the spoofed point cloud and its corresponding feature
maps, respectively. 4 stands for the sensor attack capability,
and & merges the pristine and adversarial feature maps.

The attack goal is to spoof a fake vehicle right in front of the
victim AV that leads to safety issues, and the success condition
is that the confidence score of the optimized spoofed points
(T") exceeds the default threshold so that Apollo 2.5 (M) will
detect 7" as a valid vehicle. The authors formulate the sensor
attack capability () for general LiDAR spoofing attacks and
design a specific loss function (£) and a merging function ()
for Apollo 2.5 (M). By strategically controlling the spoofed
points, Adv-LiDAR achieves around 75% attack success rate
towards Apollo 2.5 and is considered as the state-of-the-art
LiDAR spoofing attack.

3 Threat Model

Sensor attack capability. We perform the sensor-level spoof-
ing attack experiments towards a Velodyne VLP-16 PUCK
LiDAR [32]. The attack setup is the same as Cao et al. [17],
and the utilized devices are detailed in Appendix A.

We adopt the formulation in Adv-LiDAR [17] to describe
the sensor attack capability (A):

o Number of spoofed points. Compared to Adv-LiDAR,
we fine-tune the comparator circuit that bridges the pho-
todiode and delay components to calculate the time delay
more accurately. Moreover, we also use a better COTS
lens put in front of the attack laser to refract the laser
beams to a slightly wider azimuth range. Based on these
improvements, we can stably spoof at most 200 points.
Thus, we assume that attackers can spoof at most 200
points in the pristine point cloud. Such a capability is
constrained by the attack hardware devices.

e Location of spoofed points. Similar to Adv-LiDAR, we
assume that attackers are able to modify the distance,
altitude, and azimuth of a spoofed point to the victim
LiDAR by changing the delay intervals of the attack
devices. Especially, the azimuth of a spoofed point can
be modified within a horizontal viewing angle of 10°.

Black-box model-level spoofing attack. We consider Li-

DAR spoofing attacks as our threat model, which has been
shown as a practical attack vector for LiDAR sensors [48, 55].
We adopt the attack goal of Adv-LiDAR: to spoof a front-
near vehicle located 5-8 meters in front of the victim AV. To
perform the attack, adversaries can place an attack device at
roadsides to shoot malicious laser pulses to AVs passing by,
or launch attacks in another vehicle in front of the victim car
(e.g., on the adjacent lane) [17]. LiDAR spoofing attack has
been demonstrated to cause severe safety consequences in
Sim-control, an AV simulator provided by Baidu Apollo [7].
For example, spoofing a front-near vehicle to a high-speed
AV will make it trigger a hard brake, which may injure the
passengers. Adversaries can also launch a spoofing attack on
an AV waiting for the traffic lights to freeze the local trans-
portation system [17]. We assume that attackers can control

the spoofed points within the observed sensor attack capabil-
ity (A4). Note that attackers do not have access to the machine
learning model nor the perception system. We deem such an
attack model realistic since we adopt the demonstrated sensor
attack settings by Shin ef al. [55] and relax the white-box
assumptions in Adv-LiDAR [17].

Defense against general spoofing attacks. We also con-
sider defending such LiDAR spoofing attacks. We assume
a stronger attack model that adversaries have white-box ac-
cess to the machine learning model and the perception sys-
tems. We also assume that defenders can only strengthen the
software-level design, but cannot modify the AV hardware
(e.g., sensors) due to cost concerns. We deem it a realistic
setting since we propose to defend state-of-the-art spoofing
attacks, and software-level countermeasures can be easily
adopted in current AD systems.

4 Limitations of Existing Attacks

In this section, we first study whether existing LiDAR spoof-
ing attacks can realize the attack goal on three target models,
and further discuss their limitations accordingly.

Limitations of sensor-level LiDAR spoofing attacks:

1. Blind attack limitation. The sensor-level spoofing at-
tack suffers from the effectiveness issue due to no control
strategies for the spoofed points. We apply the reproduced
sensor attack traces to three target models and further explore
whether they will be detected as vehicles at target locations.
The results (detailed in §6.1.1) show that blindly spoofing
cannot effectively achieve the attack goal other than Apollo
5.0, which also confirms the findings by Cao ef al. [17].

Limitations of Adv-LiDAR:

1. White-box attack limitation. Adv-LiDAR, the state-of-
the-art spoofing attack by Cao et al., demonstrates the feasi-
bility of leveraging adversarial machine learning techniques
to enhance its effectiveness [17]. However, it suffers from
the white-box limitation. Adv-LiDAR assumes that attackers
have access to the deep learning model parameters and its
pre- and post-processing modules. However, very few AV
companies publicly release their perception systems, making
Adv-LiDAR challenging to launch in the real world.

2. Attack generality limitation. Adv-LiDAR cannot be eas-
ily generalized. First, as introduced in §2.2.2, Adv-LiDAR
only targets Apollo 2.5 and utilizes a specific pre-processing
function (®(-)) and merging function () which are not ap-
plicable to other models. Constructing such functions is non-
trivial since they need to be differentiable so that the opti-
mization problem can be solved by gradient descent-based
methods [19]. For example, the ®(-) and @ correspond to the
voxelization and stacking processes, respectively, in Point-
Pillars. It is still unknown whether such processes can be
properly approximated differentiablely. Second, adversarial
examples generated by Adv-LiDAR cannot transfer between
models. We construct 20 optimized attack traces using Adv-
LiDAR that successfully fool Apollo 5.0, and apply them to
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Figure 2: Illustration of an occluded vehicle (C1) in LiDAR point
clouds. The yellow points from another vehicle occlude the vehicle

v from the perspective of the LiDAR sensor. The blue 3D cubes are
the bounding boxes of detected vehicles.

the other two models. However, none can achieve the attack
goal in either PointPillars or PointRCNN. Third, the attack
trace T is optimized with one specific point cloud at a time
(Equation 1), which indicates that 7/ may not succeed in at-
tacking other point cloud samples. The robustness analysis
by Cao et al. also validates that the attack success rate consis-
tently drops with the change of the pristine point cloud [17].
Overall, existing spoofing attacks cannot easily achieve the
attack goal on all target models. Though Adv-LiDAR shows
the feasibility to attack Apollo 2.5, more work is needed to
understand the potential reasons that lead to its success.

5 A General Design-level Vulnerability

Motivated by the limitations of existing attacks, in this sec-
tion, we leverage an in-depth understanding of the intrinsic
physical nature of LiDAR to identify a general design-level
vulnerability for LiDAR-based perception in AD systems.

5.1 Behind the Scenes of Adv-LiDAR

Despite a lack of generality, Adv-LiDAR was able to spoof a
fake front-near vehicle by injecting much fewer points than re-
quired for a valid vehicle representation. For example, Cao et
al. have demonstrated that an attack trace with merely 60
points and 8° of horizontal angles is sufficient to deceive
Apollo 2.5 [17]. However, a valid front-near vehicle (§3) con-
tains around 2000 points and occupies about 15° of horizontal
angles in KITTI point clouds [31]. It remains unclear why
such spoofing attacks can succeed despite a massive gap in
the number of points between that of a fake and a valid ve-
hicle. To answer this question and comprehend the general
vulnerability exposed by Adv-LiDAR, it is necessary to con-
sider the distinct physical features of LiDAR. In particular,
we identify two situations where a valid vehicle contains a
small number of points in LiDAR point clouds: 1) an oc-
cluded vehicle and 2) a distant vehicle, each corresponding
to a unique characteristic (C) of LiDAR.

C1: Occlusions between objects will make occluded ob-
jects partially visible in the LiDAR point cloud. As introduced
in §2.2, a LiDAR sensor functions by firing laser pulses and
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Figure 3: Illustration of a distant vehicle (C2) and a front-near vehicle in
LiDAR point clouds, where the front-vehicle occupies 17.8° in azimuth
from the perspective of the LiDAR sensor. The blue 3D cubes are the
bounding boxes of detected vehicles.

capturing their returns. As a result, each point in a point cloud
represents the distance to the nearest solid object along the
laser ray. Similar to human eyes, a LIDAR sensor can only
perceive parts of an object (e.g., a vehicle) if other obstacles,
that obstruct the laser beams, are standing between the LIDAR
and the object. Consequently, an occluded vehicle contains
significantly fewer points than a fully exposed one since only
a portion of it is visible.

In this paper, we name such occluded objects as occludees
and the obstacles that occlude others as occluders. Particu-
larly, as shown in Figure 2, we use O(v) to represent the point
set that occludes a vehicle v, and V to denote the point set that
belongs to the vehicle v in a point cloud F.

C2: The density of data decreases with increasing distance
from the LiDAR sensor, due to the working principles of
LiDAR sensors (§2.2). Since the generated point clouds are
collected uniformly in vertical and horizontal angles, the den-
sity of point clouds varies in the 3D space. Similar to human
eyes in which a far object occupies much fewer pixels than a
near one with identical size, a distant vehicle contains signif-
icantly fewer points since its point set is much sparser than
that of a front-near vehicle in LiDAR point clouds (Figure 3).

Based upon these observations, we propose two hypotheses
of potential false positive (FP) conditions for current LIDAR-
based perception models, which could contribute to the suc-
cess of Adv-LiDAR:

FP1: If an occluded vehicle can be detected in the pristine
point cloud by the model, its point set will still be detected as
a vehicle when directly moved to a front-near location.

FP2: If a distant vehicle can be detected in the pristine point
cloud by the model, its point set will still be detected as a
vehicle when directly moved to a front-near location.

5.2 Experimental Validation

We design experiments (E) to test the existence of such po-
tential erroneous predictions (i.e., FP) on three target models
using the KITTI validation set.

E1: To validate FP1, we first randomly pick 100 point



cloud samples F = {F;}/% that contain 100 target occluded

vehicles {v; }2(1) with their point sets V; C F;. We then feed F
into three target models and record the confidence scores (i.e.,
outputs of models to represent the confidence of detection) of
the occluded vehicles as s; for each v;.

Second, we leverage a global translation matrix H(6,7)
(Equation 2) to move every V; to a front-near location (i.e.,
5-8 meters in front of the victim AV) in the point cloud F; as
V!, where 8 and 7 correspond to the azimuth and distance of
the translation, respectively:

Vi/Wi = Viwi
Vi cos® —sin® 0 tcos(O0+a)| [Viw,
V,-/wy _ |sin® cos® 0 tTsin(@+a)| |Viw,
Viw, o 0 1 0 Viw,
) 0 0 0 1 1
)

(Viws Viwy s Viw, » Viw; ) denotes the xyz-i feature vectors (intro-
duced in §2.2) of all points in V;, and o0 = arctcm(Vi‘,,y /Viw,)-
We make sure that there are no other objects standing between
the LiDAR and each Vi’ . By doing so, we construct a new set,
where the points belong to the target occluded vehicles are
moved to a front-near location by Equation 2. We further feed
the new point cloud set F into three target models and record
the confidence scores of the translated points V/ as s/.

Experimental results show that all of the translated points
V! are detected by three target models, and we calculate the

relative errors e = ‘S’/S;s" Figure 4 shows the CDF of e for
three target models. As shown, 99.5% of the picked occluded
vehicles only have below 10% fluctuations of their confidence
scores, which successfully validate FP1.

The success of E1 comes from the fact that LIDAR-based
3D object detection models perform amodal perception,
where given only the visible portions of a vehicle v, the model
attempts to reason about occlusions and predict the bounding
box for the complete vehicle (Figure 2). However, convolu-
tional operations exploit spatial locality by enforcing a local
connectivity pattern between neurons of adjacent layers. Such
architecture thus ensures to produce the strongest response
to a spatially local input pattern. Since the occludee’s and
occluder’s point sets V and O(v) stand apart from each other
in the 3D space, deep learning models may fail to identify the
causality between V and O(v) and thus learns to regress the
bounding box for v by V only.

E2: To validate FP2, similarly, we first randomly pick 100
point cloud samples that contain 100 target distant vehicles
{vi}}% that locate farther than 30 meters away from the AV,
and follow the same procedure with E1 to record the confi-
dence score changes. Experimental results show that all of the
translated points V; are detected by three target models, and

I .
we calculate the relative errors ¢/ = ‘S’S—S’l Figure 4 shows
1

the CDF of ¢’ for three target models. As shown, 99.5% of
the picked distant vehicles only have below 7.5% fluctuations
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Figure 4: Left: CDF of the relative errors e in E1. Right: CDF of the
relative errors ¢’ in E2.

of their confidence scores, which successfully validate FP2.

The success of E2 comes from that 3D object detection
models are designed to be non-sensitive to the locations of
objects. For example, Apollo 5.0 does not incorporate location
information in its hard-coded feature maps, and PointRCNN
regards the centers of each bounding box as the origins of
their coordinates. Hence the global locations of objects are
not valued by the 3D object detection models in AD systems.

5.3 Vulnerability Identification

As mentioned earlier, the sensor attack capability A4 is far
from spoofing a fully exposed front-near vehicle’s point set.
However, E1 and E2 provide two strategies for adversaries
to launch spoofing attacks with fewer points and horizontal
angles. As a result, attackers can directly spoof a vehicle imi-
tating various occlusion and sparsity patterns that satisfy the
sensor attack capability 4 to fool the state-of-the-art models.
For example, the V (red points) in Figure 2 only contains 38
points and occupies 4.92° horizontally when translated to 6
meters in front of the AV. We confirm that it can deceive all
three target models successfully, as visualized in Appendix E.

The vulnerability comes from the observation that the state-
of-the-art 3D object detection architectures ignore the distinct
physical features of LiDAR. Therefore, they leave a gap, as
well as an attack surface, between the model capacity and Li-
DAR point clouds. We further abstract the neglected physical
features as two occlusion patterns inside the LiDAR point
clouds, described below.

Inter-occlusion. We abstract the typical occlusion intro-
duced in §5.1 as inter-occlusion. As its name indicates, inter-
occlusion describes a causal relationship between occludee
and the corresponding occluders (i.e., the occluders cause the
occludee partially visible). FP1 violates the physical law of
inter-occlusion since a translated “occluded” vehicle’s point
set V/ no longer has its valid occluder O(v). However, E1
demonstrates that state-of-the-art LIDAR-based perception
models overlook such inter-occlusions in the point clouds.

Intra-occlusion. We abstract the other occlusion pattern
hidden inside an object as intra-occlusion. The facing surface
of a solid object (e.g., a vehicle) occludes itself in the point
cloud, which indicates that the LiDAR cannot perceive the
interior of the object (Figure 9). FP2 violates the physical
law of intra-occlusion since the abnormal sparseness of a
translated “distant” vehicle’s point set V’ can no longer fully
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Figure 5: Attack success rates (ASRs) of proposed black-box spoofing attacks on target state-of-the-

art models.

occlude a valid vehicle since other laser pulses could penetrate
its “surface”. However, E2 demonstrates that state-of-the-art
LiDAR-based perception models are unable to differentiate
reflected points of real solid objects from sparse injected
points of the same overall shape so that they also overlook
the intra-occlusions in the LiDAR point clouds.

To demonstrate the potential real-world impacts of this
identified vulnerability, we construct the first black-box spoof-
ing attack on state-of-the-art LIDAR-based perception models
in §6. We find the violations of the physical law of occlusion
generally enable LiDAR spoofing attacks. Therefore, we per-
form the first defense study, exploiting the occlusion patterns
as physical invariants to detect spoofing attacks in §7. Lastly,
in §8, we present a general architecture for robust LiDAR-
based perception that embeds occlusion patterns as robust
features into end-to-end learning.

6 Black-box Spoofing Attack

Constructing black-box attacks on deep learning models is
non-trivial. Prior works have studied black-box attacks on
image classification [45] and speech recognition models [8].
However, none explored LiDAR-based perception models,
and their approaches usually suffer from efficiency limitations
(e.g., building a local substitute model). In this section, we
present the first black-box LiDAR spoofing attack based on
our identified vulnerability (§5.3) that achieves both high
efficiency and success rates.

1. Constructing original attack traces. As demonstrated
in §5.3, occluded or distant vehicles’ point sets that meet
the sensor attack capability can be utilized to spoof front-
near vehicles. Therefore, our methodology attempts to closely
represent realistic physical attacks using traces from real-
world datasets (e.g., KITTI). In order to test different sensor
attack capability, we extract occluded vehicles’ point sets with
varying numbers of points (5-200 points) from the KITTI
validation set. Furthermore, we take 10 points as interval,
and divide the extracted point sets into 20 groups per their
number of points (The first group contains traces with the
number of points from 0 to 10, and the second group contains
traces with the number of points from 10 to 20, etc.). We
then randomly pick five traces in each group forming a small
dataset X containing 100 point sets.
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Figure 6: The process of generating
attack traces for & from the imple-
mented renderer.

Besides collecting existing real-world traces, the identi-
fied vulnerability also supports adversaries in generating cus-
tomized attack traces, which are more efficient for pipelining
the attack process. We leverage ray-casting techniques to gen-
erate customized attack traces. More specifically, we utilize
a 3D car mesh and implement a renderer [18] simulating the
function of a LiDAR sensor that probes the car mesh by cast-
ing lasers. By doing so, we can render the car mesh’s point
cloud. We further simulate different occlusion and sparsity
patterns on the car mesh to fit the sensor attack capability, as
shown in Figure 6. Similar to X, we collect rendered point
clouds with different numbers of points by using different
postures and occlusion patterns. We also follow the same
procedure to build a small dataset & containing 100 rendered
point sets. More figures of & are shown in Appendix E.

2. Spoofing original attack traces at target locations. To
trigger severe security and safety consequences, adversaries
need to inject the constructed attack traces at target locations
in the point cloud. We consider spoofing X and X in both
digital and physical environments. For digital spoofing, we
make sure the injection of attack traces meets the sensor
attack capability A and real-world requirements. We follow
the high-level formulation in Adv-LiDAR [17] utilizing a
global transformation matrix H(0,7) (Equation 2) to translate
the attack traces (i.e., V/T = H(0,7)-VT, where V € KUR).
Here the translation interprets the attack capability (A4) in
terms of modifying the azimuth and distance of attack traces.
We further calibrate each point in the translated attack trace to
its nearest laser ray’s direction and prune the translated attack
trace to fit the attack capability (i.e., V' € 4). Finally, we
merge the attack trace with the pristine point cloud according
to the physics of LIDAR. We feed the modified point cloud
samples containing the attack traces into three target models.
For physical spoofing, we program attack traces from &_ as
input to the function generator so that we can control the
spoofed points and launch the spoofing attack [55] in our lab.
We further collect the physical attack traces and feed them
into target models. Due to the limitation of our attack devices,
we only conduct preliminary physical spoofing experiments.
More details of physical spoofing can be found in §9.1.2. It is
worth noting that such limitations do not hurt the validity of



our attack model (§3) since the attack capability 4 is adopted
from Adv-LiDAR [17], in which has been demonstrated in
the real world.

6.1 Attack Evaluation and Analysis

We perform large-scale evaluations on our proposed black-
box attack in terms of effectiveness and robustness.
Experimental setup. The evaluations are performed on the
KITTI trainval and test sets (introduced in §2.1.1), which are
collected in the physical world. As mentioned before, limited
by our attack devices, we leverage X, R to launch digital
spoofing attacks. We also utilize attack traces (§) generated
by the sensor-level spoofing attack (§4) as a baseline. S is
collected from blindly physical spoofing attacks on a real
Velodyne VLP-16 PUCK LiDAR [32]. We further inject all
the attack traces from above three constructed datasets into
the KITTI point clouds at front-near locations (i.e., 5-8 meters
in front of the victim AV) to test their effectiveness.
Evaluation metrics. Object detection models often have
default thresholds for confidence scores to filter out detected
objects with low confidence (potential false positives). We
leverage the default thresholds used by three target models
to measure the attack success rate (ASR). We label an attack
successful as long as the model detects a vehicle at the target
location whose confidence score exceeds the default threshold:

# of successful attacks

ASR 3)

~ #of total point cloud samples

Besides the default threshold, we also define a new metric
that leverages multiple thresholds to evaluate LiDAR spoofing
attacks. The corresponding definitions and evaluations are de-
scribed in Appendix B, which provide insights that point-wise
features appear to be more robust than voxel-based features.

6.1.1 Attack Effectiveness

Figure 5 shows the ASR of the digital spoofing attack with
different attack capabilities (i.e., number of points). As ex-
pected, the ASR increases with more spoofed points. The
ASRs are able to universally achieve higher than 80% in all
target models with more than 60 points spoofed, and it also
stabilizes to around 85% with more than 80 points spoofed.
Notably, the attack traces from & can achieve comparable
ASR with K on all target models, which demonstrates that
adversaries can efficiently leverage a customized renderer to
generate attack traces (Figure 6). Such rendered traces can
be directly programmed into hardware for physical spoofing
attacks (Appendix A). Interestingly, § achieves much higher
ASR on Apollo 5.0, indicating that BEV-based features are
less robust to spoofing attacks than the other two categories,
which could be attributed to the information loss of feature
encoding from BEV.

6.1.2 Robustness Analysis

We analyze the robustness of the proposed attack to variations
of attack traces V' and the average precision (AP) of target
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Figure 7: Attack robustness to Figure 8: Attack robustness to
variations in generated attack variations in target models’ per-
traces from R. formance.

models M. We also evaluate the attack robustness against
state-of-the-art defense strategies [66, 70] designed for image-
based adversarial attacks. We find that spoofed traces with
around 60 points to trigger major changes in ASR. Note that
Cao et al. also utilized spoofed traces with 60 points for
analysis [17]. Therefore, we use attack traces with (60, 70)
points from & _for the robustness analysis.

Robustness to variations in attack traces. First, we apply
a scaling matrix S to the attack traces V' with different-level
randomness to simulate the inaccuracy of sensor attack:

V//wi _ V/wi
V' s 0 0 V'
S . )
V: iwy =10 s 0Of- V: wy
V', 0 0 s Vs,

where s subjects to a uniform distribution U(1 —¢,1+¢€). We
use the mean /-2 norm to measure the distance between V"
and V'. Figure 7 shows the ASR drops with larger [-2 distances
which is expected. However, as shown, the ASR still reaches
around 70% while the distance is around 10 cm. We also
observe that the ASR for PointRCNN drops faster than for
PointPillars and Apollo 5.0, which also validates that point-
wise features are arguably more robust than voxel-based and
BEV-based features (detailed in Appendix B).

Robustness to variations in model performance. To un-
derstand the relationship between ASR and the original perfor-
mance of models (i.e., AP), we first extract the intermediate
models when we trained PointPillars and PointRCNN. We
then try to launch attacks on these models. Surprisingly, we
find that the ASR increases with higher AP’ (Figure 8), which
implies that a model with better performance could be more
vulnerable to such attacks. Our results indirectly demonstrate
that the identified vulnerability could be attributed to an ig-
nored dimension (i.e., occlusion patterns) by current models.
Since the models do not notice such a hidden dimension, they
will be overfitted to be more vulnerable during training.

Robustness to adversarial training. Adversarial training
is not rigorously applicable because it targets classification
models, and requires norm-bounded perturbations to make

3We evaluate the ASRs until the training procedures (i.e., APs) converge
on both models.



the optimization problem tractable [42]. In contrast, our study
targets 3D object detection models, and the proposed attack
is constrained by the sensor attack capability (A1), which does
not fit any existing norm-bounded formulations. Thus, we
perform this robust analysis in an empirical setting. Specif-
ically, we generate another 100 attack traces with 60 points
using the customized renderer and randomly inject two of
them into each point cloud sample in the KITTI training
set at areas without occlusions. We further train PointPillars
and PointRCNN on this modified dataset and evaluate our
proposed attack using the same 60-point attack traces with
§6.1.1 on them. We observe that the ASRs drop from 83.6%
to 70.1% and 88.3% to 79.7% on PointPillars and PointR-
CNN, respectively, on the KITTI validation set. However, the
“Hard” category’s original detection performance has signif-
icant degradation of over 10% on both models. Our results
empirically show that current LIDAR-based perception model
designs cannot learn the occlusion information correctly. The
slight drop of the ASRs comes from the under-fitting effect of
existing occluded vehicles (i.e., significant AP degradation),
which is not acceptable in real AD systems.

Robustness to randomization-based defenses. We lever-
age state-of-the-art image-based defenses: feature squeez-
ing [66] and ME-Net [70] to test the attack robustness on
Apollo 5.0 since it has similar pipelines with image-based
models. We demonstrate that none of them can defend the
black-box spoofing attack without hurting the original AP.
More details can be found in Appendix B.

7 Physics-Informed Anomaly Detection

Our results show that a lack of awareness for occlusion pat-
terns enables the proposed black-box attack in §6. Since ad-
versaries exploit an ignored hidden dimension, such attacks
can succeed universally in target models and appear to be
robust to existing defenses (§6.1). Since anomaly detection
methods have been widely adopted in different areas [20, 39],
one intuitive and immediate mitigation is to detect such vio-
lations of physics. We find that no existing open-source AV
platforms enable such physical checking [6, 7]. In this section,
we present CARLO: oCclusion-Aware hieRarchy anomaLy
detectiOn, that harnesses occlusion patterns as invariant phys-
ical features to accurately detect such spoofed fake vehicles.

7.1 CARLO Design

CARLO consists of two building blocks: free space detection
and laser penetration detection.

7.1.1 Free Space Detection

Free space detection (FSD) integrates both inter- and intra-
occlusions (§5.3) to detect spoofed fake vehicles. As intro-
duced in §2.2, each laser in a LiDAR sensor is responsible
for perceiving a direction in the spherical coordinates. Due to
resolution limits, such a laser direction actually corresponds
to a thin frustum in the 3D space. As shown in Figure 9, the

Intra-occlusion ~ _ _ _._ ,. Occluded space occupies
» i most of the volume inside
the bounding box.
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Figure 9: Illustration of free space (FS) and occluded space (OS) in
a frustum corresponding to a detected bounding box.

frustum (as well as the straight-line path p — 6) from the Li-
DAR sensor (¢ = (0,0,0)) and any point in the point cloud
(VP = (x,,2)) is considered as free space (drivable space oc-
cupied by air only). Therefore, combined with all laser beams
of the LiDAR, the entire 3D space is divided into free space
(FS) and occluded space (OS) (i.e., space behind the hit point
from the LiDAR sensor’s perspective). FS information is em-
bedded at the point level. Occlusions, on the other hand, exist
at the object level. FS, thus, is more fine-grained and incorpo-
rates occlusion information since the OS of an object directly
reflects its occlusion status (Figure 9).

Due to inter-occlusion and intra-occlusion, we observe that
the ratio f of the volume of FS over the volume of a detected
bounding box should be subject to some distribution and
upper-bounded by 35 € (0,1), implying f € (0,b] (Figure
9). Nevertheless, since the fake vehicles do not obey the two
occlusion patterns, their ratio f” should be large enough and
lower-bounded by Ja € (0,1) such that ' € [a,1). Clearly,
as long as a > b, we have opportunities to distinguish valid
vehicles with the spoofed fake vehicles statistically. To esti-
mate the ratio f, we grid the 3D space into cells and calculate:

_ ZCGB]]‘ FS(C)
|B|

where FS(c) indicates whether the cell ¢ is free or not, and
|B| denotes the total number of cells in the bounding box B.
The algorithm to derive FS(c) can be found in Appendix C.
We then estimate the distributions of valid and fake vehi-
cles.We empirically set the cell size to 0.25 m?, and utilize
the KITTTI training set and 600 new attack traces generated
by the implemented renderer (§6) for estimation. Figure 10
shows that the CDF of f and f’ clearly separate from each
other. We further take the models’ error into considerations
(0.7 IoU), and estimate the distributions again. The two dis-
tributions still do not overlap with each other, as shown in
Figure 10, which demonstrate the feasibility to leverage the
ratio f as an invariant indicator for detecting anomalies.
However, though FSD provides a statistically signifi-
cant method to detect adversarial examples, it is too time-
consuming to perform ray-casting to all the detected bounding
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the two distributions are clearly but the two distributions overlap
separate. with each other.

boxes in real-time. The mean processing time of one vehicle
is around 100 ms in our implementation using C++ on a com-
modity Intel i7-6700K CPU @ 4.00GHz, which is already
comparable to the inference time of deep learning models.

7.1.2 Laser Penetration Detection

Laser penetration detection (LPD) is a variant of FSD that
aims to provide better efficiency for CARLO. As introduced
in §7.1, each point in the point cloud represents one laser
ray and the boundary between free space and occluded space.
Given a vehicle’s point set, its bounding box B also divides
the corresponding frustum into three spaces which are: 1)
the space between the LiDAR sensor and the bounding box
B 1, 2) the space inside the bounding box B, and 3) the space
behind the bounding box B . Intuitively, only a small number
of laser rays can penetrate the bounding box (Figure 9). As a
result, from the perspective of the LIDAR sensor, the ratio g of
the number of points located in the space behind the bounding
box B | over the total number of points in the whole frustum
should be upper bounded by 35’ € (0, 1). For the same reason
in §7.1, the ratio g’ of the spoofed vehicles is supposed to be
large enough and lower bounded by 34’ € (0,1).
Therefore, the ratio g is derived from:

Y jee, 1(P)

=_=P="r v’ 6
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Since LPD leverages information directly from the output of
models, it is a good fit for parallel acceleration. The mean
processing time of LPD is around 5 ms for each bounding
box using Python on a commodity GeForce RTX 2080 GPU.

Similarly, Figure 11 shows the CDF of g and g’ for valid
vehicles from the KITTI training set and the 600 generated
attack traces, respectively. As shown, though the distributions
of ground-truth are separate, the error-considered distributions
overlap with each other (i.e., ¥’ > a'). We verify that the
overlap comes from the noise introduced by points of the
ground plane. As a result, LPD will cause erroneous detection
of potential anomalies.

7.1.3 Hierarchy Design

To achieve both robustness and efficiency, CARLO hierar-
chically integrates FSD and LPD. In the first stage, CARLO
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Figure 12: Attack success rates (ASRs) of proposed black-box spoof-
ing attacks on three CARLO-guarded models.

accepts the detected bounding boxes and leverages LPD to
filter the unquestionably fake and valid vehicles by two thresh-
olds (§7.1.2). The rest bounding boxes are uncertain and will
be further fed into FSD for final checking. CARLO achieves
around 8.5 ms mean processing time for each vehicle. The
entire algorithm of CARLO is detailed in Appendix C.

7.2 CARLO Evaluation

Experimental setup. We evaluate the defense performance
of CARLO on the KITTI trainval and test sets. We apply
all the attack traces from X, R_to all point cloud samples at
target locations (5-8 meters in front of the victim), and feed
them into three CARLO-guarded models CARLO(M (-)). We
also evaluate CARLO against Adv-LiDAR [17] on Apollo
5.0. The defense goal is to successfully detect the spoofed
fake vehicles from the output bounding boxes without hurting
the original performance (i.e., AP) of the target models.

Evaluation metrics. We evaluate the performance of
CARLO in two aspects, which are the ASR of the CARLO-
guarded models, and the precision and recall of CARLO itself.
ASR directly relates to the defense performance, while the
precision and recall of CARLO reflect whether it will harm
the original AP of target models. We test the ASR on the val-
idation set and test set since the distributions are estimated
from the training set. We only evaluate the precision and re-
call of CARLO on the validation set as we do not have the
ground-truth for the test set.

Figure 12 (a-c) shows the ASR of three CARLO-guarded
models. As shown, CARLO reduces the ASR from more than
95% to below 9.5% with the maximum attack capability,
and reduce the mean ASR to around 5.5%. We observe that
the remaining 5.5% comes from the detection errors (i.e.,
the detected bounding box of the fake vehicle cannot match
well with the ground-truth) that shift the ' and g’ to the
distribution of valid vehicles. The errors occur randomly in
the point clouds so that it is hard for adversaries to utilize.
The recall in Figure 12 (d) reaches around 95% in all targets



Table 1: PointPillars’ and PointRCNN’s APs (%) of 3D car detection
on the KITTI validation set. “Mod.” refers to the Moderate category
introduced in §2.1.1; “Original” refers to the original performance
of two models; “Attack” refers to the performance after spoofing
attacks; “CARLO” refers to the performance after CARLO applied.
PointPillars PointRCNN
Easy | Mod. | Hard [ Easy [ Mod. | Hard
Original | 86.56 | 76.87 | 72.09 | 88.80 | 78.58 | 77.64
Attack 74.06 | 56.69 | 5398 | 84.51 | 71.17 | 68.06
CARLO | 86.57 | 78.60 | 73.55 | 88.91 | 78.61 | 77.63

Model

models which also validate the results in Figure 12 (a-c).

Besides delivering satisfactory defense performance,
CARLO barely introduces misdetections (i.e., false nega-
tives) to the models. Figure 12 (d) shows that the precision of
anomaly detection reaches at least 99.5% for all target models.
We manually verify the 0.5% misdetections, and find they are
all vehicles at least 40 meters away from the AV, which will
not affect its immediate driving behavior. Table | also shows
that the AP will slightly increase after CARLO being applied
to the original model because the original model has internal
false positives such as detecting a flower bed as a vehicle.
CARLO detects some of those false positives generated by
the original model.

7.2.1 Defense against White-box and Adaptive Attacks

To further evaluate CARLO against white-box attacks, we first
leverage Adv-LiDAR to generate adversarial examples that
fool Apollo 5.0 and test whether they can succeed in attacking
CARLO-guarded Apollo 5.0. Figure 13 demonstrates that
CARLO can effectively defend Adv-LiDAR, where the ASR
drops from more than 95% to below 5% consistently. We
observe that the defense effects are better than the results
shown in Figure 12 (a). We find out that Adv-LiDAR tends
to translate the attack traces to a slightly higher place along z
axis. Such translations will isolate the adversarial examples
in the point cloud, making themselves easier to be detected
by CARLO.

We also try our best efforts to evaluate CARLO on the adap-
tive attacks. We assume attackers are aware of the CARLO
pipelines and utilize Adv-LiDAR to break CARLO’s defense.
Due to the sensor attack capability, adversaries have limited
ability to modify the absolute free space (¥ .cg 1 - FS(c)) in
Equation 5. However, attackers can try to shrink the volume of
the bounding box (|B]) to shift the distribution of f’, since it
is controlled purely by models. Therefore, the attack goal is to
spoof a vehicle at target locations at the same time, minimize
the size of the bounding box. We formulate the loss function
and follow Adv-LiDAR [17] to utilize a global transforma-
tion matrix H(0,t) (Equation 2) for solving the optimization
problem:

min - L@V -HO.0)")+A-V5(V-HO.0T) (7

where L(-) is the loss function defined in Adv-LiDAR [17],
Vg(-) is the volume of the target bounding box B, and A
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Figure 13: Attack success rates Figure 14: Attack success rate
(ASRs) of Adv-LiDAR on Apollo (ASR) of the adaptive attack on
5.0 and CARLO-guarded model. CARLO-guarded Apollo 5.0.

is a hyper-parameter. Figure 14 shows that such adaptive
attacks cannot break CARLO, either. We attribute the reason
to H(0,7) that holistically modifies the spoofed points so that
it can barely change the size of the bounding box.

8 Physics-Embedded Perception Architecture

In this section, we take a step further to explore the feasibil-
ity of embedding physical features into end-to-end learning
that provides better robustness for AD systems. We find that,
despite BEV or 3D representations, which are used by most
models, the front view (FV) is a better representation for
learning occlusion features by nature. However, prior works
adopting FV are still vulnerable to the proposed attacks due
to their model architecture designs’ fundamental limitations.
To improve the design and further enforce the learning of
occlusion features, we propose sequential view fusion (SVF),
a general architecture for robust LIDAR-based perception.

8.1 Why should FV Representations help?

We observe that LiDAR natively measures range data (§2.2).
Thus, projecting the LiDAR point cloud into the perspective
of the LiDAR sensor will naturally preserve the physical fea-
tures of LIDAR. Such projecting is also known as the FV of
LiDAR point clouds [38]. Given a 3D point p = (x,y,z), we
can compute its coordinates in FV pry = (r,¢) by:

¢ = |arctan(y,x)/A8|
r = |arctan(z, v/x2 +y2) /Ad |

where AO and A¢ are the horizontal and vertical fire angle
intervals (§2.2). As shown in Figure 2, since the occluder
O(v) and occludee V neighbor with each other in the FV,
deep learning models have opportunities to identify the inter-
occlusion. The abnormal sparseness of a fake vehicle will
also be exposed, as valid vehicles’ points are clustered, while
the spoofed points scatter in the FV (§5.3). Therefore, the FV
representation of point clouds embeds both ignored occlusion
patterns.

Although prior works have utilized FV for object detec-
tion, little is known about its robustness to LIDAR spoofing
attacks. LaserNet [43] is the latest model that only takes the
FV representation of point clouds as input for 3D object de-
tection. However, LaserNet cannot achieve state-of-the-art
performance compared to models in the three classes intro-
duced in §2. Other studies [38] also confirm that only by
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Figure 15: Existing view fusion-based architectures.

leveraging the FV representation, models cannot provide sat-
isfactory detection results. The failure of FV-based models
comes from the scale variation of objects as well as occlusions
between objects in a cluttered scene [72].

Besides the models that only take FV as input, several
studies [24, 35, 72] present fusion-based architectures for
LiDAR-based perception that utilize the combinations of data
from different sensors and views as input. MV3D [24] is
a classic fusion-based design that takes both LiDAR point
clouds and RGB images as input and predicts 3D bounding
boxes, where the point cloud is projected into multi-views
(i.e., FV and BEV) for feature encoding. Zhou et al. recently
proposed multi-view fusion (MVF), which combines FV with
3D representations [72]. MVF builds on top of PointPillars.
Instead of only voxelizing points in 3D, MVF also voxelizes
the point cloud into FV frustums and integrates the two voxels’
features based on coordination mapping in the 3D space.

To better understand the robustness of fusion-based archi-
tectures, we reproduce MV3D and MVF based on PointPillars.
For MV3D, we ignore the RGB images, and take the FV and
BEV as the model input since we focus on LiDAR-based
perception. We use a VGG-16 [56] for FV feature learning
in MV3D. Figure 15 shows the architectures we adopt and
reproduce. We train the two reproduced models on the KITTI
training set and evaluate them on the KITTTI validation set. As
Table 2 shows, the FV-augmented models can achieve compa-
rable performance than the original PointPillars. The repro-
duced results also align well with the evaluations in [24, 72].

Table 2: MV3D-PointPillars’ and MVF-PointPillars’ APs (%) of 3D
car detection on the KITTI validation set.

Car Detection
Easy [ Moderate | Hard
MV3D-PointPillars | 85.67 77.12 71.65
MVF-PointPillars 86.77 79.15 75.72

Model

We then evaluate their robustness against our proposed
black-box attack. The experimental setups are identical to the
settings in §6.1. Figure 16 shows that the ASR of reproduced
models are as high as the original PointPillars. It indicates
that existing view fusion-based architectures both cannot help
with defending against LIDAR spoofing attacks, although they
provide marginally gain on the AP. We further perform abla-
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tion studies and find that the BEV (or 3D) features dominate
the model decisions (elaborated in Appendix D). Since the
identified vulnerability exists in 3D space, the models are still
vulnerable to LiDAR spoofing attacks.

8.2 Sequential View Fusion

The insights drawn from existing view fusion schemes show
that existing fusion designs cannot provide better robustness
compared to the original models. The 3D (or BEV) represen-
tation dominates the model leaving the FV representation not
critical in the end-to-end architectures.

Based on the above understandings, we propose a new view
fusion schema called sequential view fusion (SVF). SVF com-
prises of three modules (Figure 17), which are: 1) semantic
segmentation: a semantic segmentation network that utilizes
the FV representation to computes the point-wise confidence
scores (i.e., the probability that one point belongs to a ve-
hicle). 2) view fusion: the 3D representation is augmented
with semantic segmentation scores. 3) 3D object detection:
a LiDAR-based object detection network that takes the aug-
mented point clouds to predict bounding boxes. Instead of
leaving the models to learn the importance of different repre-
sentations by themselves, we attach a semantic segmentation
network to the raw FV data. By doing so, we enforce the
end-to-end learning to appreciate the FV features, so that the
trained model will be resilient to LiDAR spoofing attacks.

Semantic segmentation. The semantic segmentation net-
works accept the FV represented point clouds and associate
each point in FV with a probability score that it belongs to
a vehicle. These scores provide aggregated information on
the FV representation. Semantic segmentation over FV has
several strengths. First, as mentioned before, the FV represen-
tation is noisy because of the nature of LiIDAR. Compared
to 3D object detection or instance segmentation, which is
intractable over FV, semantic segmentation is an easier task
as it does not need to estimate object-level output. Second,
there are extensive studies on semantic segmentation over FV
represented point clouds [15, 59, 63], and the segmentation
networks achieve much more satisfactory results than the 3D
object detection task over FV.

In our implementation, we adopt the high-level design in
LU-Net [15]. It is worth noting that the end-to-end SVF ar-
chitecture is agnostic to the semantic segmentation module.
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View fusion. The fusion module re-architects existing sym-
metric designs which integrate the 3D representation with the
confidence scores generated by the semantic segmentation
module. Specifically, we use Equation 8 for mapping between
P = (x,y,z) and pry (r,c), and augment each p with the point-
wise confidence score from its corresponding pry.

3D object detection. SVF is also agnostic to the 3D ob-
ject detection module. In this paper, we utilize PointPillars
and PointRCNN in our implementation. Most of the models
introduced in §2 can fit into the end-to-end SVF architecture.

8.3 SVF Evaluation

Experimental setup. We train SVF-PointPillars and SVF-
PointRCNN on the KITTI training set. The setup of robust-
ness analysis against LIDAR spoofing attacks is identical
to the settings in §6.1. We also try to evaluate SVF against
Adv-LiDAR [17] on Apollo 5.0 and the adaptive attacks.

Evaluation metrics. We evaluate the AP of SVF-
PointPillars and SVF-PointRCNN on the KITTT validation
set, and leverage ASR to test their robustness against LIDAR
spoofing attacks.

As shown in Table 3, both SVF models achieve compa-
rable AP compared to the original models. The marginal
degradation comes from two-state training. More specifically,
the distributions of the semantic segmentation outputs in the
training and validation sets do not align well with each other.
We find that the drop of AP will indeed cause a tiny amount
of false negatives but will not influence the driving behaviors.
Moreover, such degradation could be compensated with better
training strategies (e.g., finer-tuning of the parameters) since
the capacity of SVF is larger than the original models.

Table 3: SVF-PointPillars’ and SVF-PointRCNN’s APs (%) of 3D
car detection on the KITTI validation set.

Car Detection
Easy [ Moderate | Hard
SVF-PointPillars 85.93 74.12 70.19
SVF-PointRCNN | 88.12 76.56 74.81

Model

We then perform the robustness evaluation of SVF models.
Figure 18 shows the ASR of our proposed spoofing attacks.
As shown, the attacks are no longer effective in SVF models.
The ASR reduces from more than 95% (original models) to
less than 4.5% on both models with the maximum attack capa-
bility, which is also an around 2.2 x improvement compared
to CARLO-guarded models. The mean ASR also drops from
80% to around 2.3%. We also perform ablation study on SVF,
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and demonstrate that the FV features are more important in
SVF models (detailed in Appendix D).

8.3.1 Defense against White-box and Adaptive Attacks

Since SVF requires re-training for the model, we cannot di-
rectly evaluate Adv-LiDAR on SVF-Apollo (§2.1.1). As a
result, we decouple the problem to whether Adv-LiDAR can
fool both the semantic segmentation and 3D object detection
modules. We first directly apply the attack traces that success-
fully fool Apollo 5.0 to the segmentation network and record
the mean confidence score of all the points belonging to the
attack trace. Figure 19 shows that the mean confidence scores
are consistently below 0.08, which is too low to be classified
as a valid vehicle with mean confidence scores of around 0.73
in our trained model.

Model-level defenses are usually vulnerable to simple adap-
tive attacks [13, 19]. To demonstrate the effectiveness of SVF
against adaptive attack, we assume that the adversaries are
aware of the SVF architecture. The attack goal is to both fool
the semantic segmentation and 3D object detection modules.
We also leverage the formulation in [17] to utilize the global
transformation matrix H(8,7) to control the spoofed points.

II&igl —Lye(x®V-H(8,T)7) )
where © represents the point cloud merge in the front view
and Ly, (-) defines the average confidence score of the attack
trace (i.e., V- H(8,7)7). Figure 20 shows that none of the
attack traces’ average confidence score reaches 0.2 in the
segmentation module, which is still far from the mean average
confidence score of valid vehicle 0.73. Therefore, the adaptive
attacks also cannot break the robustness of SVF.

9 Discussion and Future Work

In this section, we discuss the distinct features of our proposed
black-box attack along with its practicality and completeness.
We further discuss the comparisons between the presented
defense strategies and their limitations, accordingly.

9.1 Attack Discussion
9.1.1 Comparison with Physical Adversarial Attacks

First, we distinguish the spoofing attacks on LiDAR with
extensive prior work on physical-world adversarial machine
learning attacks in mainly three aspects:
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mentation network. the segmentation network.

1. Different perturbation methods. Images and point clouds
have different data structures, which further lead to differ-
ent perturbation methods applied. Images have compact and
ordered structures. In contrast, point clouds are irregular, rep-
resented as N x C, where N is the number of points, and C
contains the location and intensity information (i.e., xyz-i) [9].
Attackers are able to generate adversarial examples by mod-
ifying the RGB values in images. For attacks on LiDAR,
however, attackers can directly shift the point in the 3D Eu-
clidean space as long as it obeys the physics of LiDAR.

2. Different perturbation capabilities. Prior attacks on 2D
images treat the whole target area as the attack surface since
the threat model assumes that attackers have full controls over
the target object (e.g., attackers can potentially modify any
area of a stop sign in [28]). However, due to the characteristics
of LiDAR spoofing attacks, the attack surface is limited by
the sensor attack capability (A4) in §3. Such a small attack
surface also introduces difficulties in launching the attack.

3. Different perturbation constraints. Prior attacks on 2D
images leverage L, norms as the main constraints for the for-
mulated optimization problem [28] whose goal is to minimize
the perturbation to be stealthy. Such constraints do not apply
to attack LiDAR because point clouds are not perceived by
humans. Thus, stealthiness is not a focus in such attacks. In-
stead, the optimized attack traces must not exceed the sensor
attack capability (A) boundary, in which case A naturally
becomes the primary constraint for attacking LiDAR.

Second, the high-level methodology of our proposed attack
is similar to replay attacks, in which adversaries playback
the intercepted data to deceive target systems [11]. However,
different from existing replay attacks [44] that retransmit log-
ically correct data to launch attacks, the limited sensor attack
capability (A) cannot support the injection of a physically
valid vehicle’s trace into the LiDAR point cloud [17]. Thus,
the success of our black-box attack indeed relies on the iden-
tified vulnerability.

9.1.2 Attack Practicality and Completeness

One major limitation of our proposed attack is that the pre-
sented results cannot directly demonstrate attack practicality
in the physical world. First, due to the limitations of our
delay component (i.e., the function generator in our imple-
mentation), we can only control spoofed points at 10cm-level
precision. Therefore, we only construct two fine-controlled
physical attack traces for a proof-of-concept demonstration.
The two attack traces contain 140 and 47 points. We evalu-

ated them on the KITTI trainval set, and they achieve 87.68%,
98.12%, and 74.91% ASRs on Apollo 5.0, PointPillars, and
PointRCNN, respectively. Second, launching our black-box
attack on a real AV requires accurate aiming of attack lasers at
a target LiIDAR, which is challenging to perform without real-
world road tests and precision instruments [17]. Since this
paper aims to explore and expose the underlying vulnerability,
we leave real-world testing as future work.

Although we demonstrate that our proposed black-box at-
tack achieves high attack success rates, the identified vulnera-
bility does not provide completeness. This means that there
may exist other potential vulnerabilities hidden in the AD
systems to be discovered and exploited. Future research may
include verification of the AD models and comprehensive
empirical studies to explore the underlying vulnerabilities.

9.2 Defense Discussion

CARLO vs. SVF. Both CARLO and SVF achieve satisfac-
tory defense performance while maintaining comparable AP
with the original model. In addition, both of them are model-
agnostic so that they can be incorporated into most existing
LiDAR-based perception systems. CARLO is a practical post-
detection module. It does not require re-training the model,
which can be quite labor-intensive. CARLO is also realistic
because it does not assume that users have white-box access
to the model. SVF, on the other hand, is a general architecture
for ensuring robust LiDAR-based perception. SVF embeds
physical information into model learning, which requires re-
training. Compared to CARLO, SVF achieves better defense
performance but suffers from a slight drop in AP, indicating
that it may require more training efforts.

Limitations. The main limitation of our mitigation strate-
gies is the lack of guarantees. First, although both defenses
can effectively defend against LiDAR spoofing attacks under
the current sensor attack capability, our countermeasures may
not work at some point with the increasing capability of sen-
sor attacks. We argue that if attackers can spoof a set of points
located in the distribution of physical invariants for valid vehi-
cles (e.g., injecting around 1500 points into the point cloud),
there is arguably no way to distinguish them at the model
level and it is safer for AVs to engage emergency brakes in
that situation. Second, both defenses have a small portion of
false alarms (i.e., the 0.5% false negatives in CARLO and the
slight AP drop of SVF). However, we manually verify that
they are not front-near vehicles; hence they would not impact
the AV’s driving behaviors, as mentioned before. Third, since
the adaptive attacks are formulated with our efforts, future
research may present more powerful attacks or advanced per-
turbation methods to break our defenses. In the future, we
plan to improve SVF to provide guaranteed robustness by
combining multiple sensors’ inputs.

10 Related Work

Vehicular system security. Extensive prior works explore
security problems in vehicular systems and have identified



vulnerabilities in in-vehicle networks of modern automo-
biles [10, 21, 26, 34], in-vehicle cache side channels [12], and
Connected Vehicle (CV)-based systems [22, 29, 61]. Other
studies try to provide robustness vehicular systems, such as
secured in-vehicle communications [14, 47, 62], secured in-
vehicle payment transactions [30], and secured CV communi-
cations [50]. In comparison, our work focuses on the emerg-
ing autonomous vehicle systems and specifically targets the
robustness of LiDAR-based perception in AVs, which are
under-explored in previous studies.

3D adversarial machine learning. Adversarial attacks
and defenses towards 3D deep learning have been increas-
ingly explored recently. Point cloud classification models
have been demonstrated vulnerable to adversarial perturba-
tions [57, 60, 64]. Xiao et al. generate adversarial examples
for 3D mesh classification [65]. Liu ef al. and Yang et al., on
the other hand, leverage heuristics to detect the adversarial ex-
amples for point cloud classification [41, 69]. In comparison,
our work targets LiDAR-based 3D object detection in AVs.
As introduced in §2.2, LiDAR point clouds only have mea-
surements of the object’s facing surface, which are different
from full 3D point cloud data or meshes. Our attack method
is motivated to generate adversarial examples in a black-box
manner based on the discovered vulnerability. The mitigation
strategies are designed to defend against current sensor attack
capability, thus provide better robustness against both white-
and black-box LiDAR spoofing attacks.

11 Conclusion

In this paper, we perform the first study to explore the gen-
eral vulnerability of LiIDAR-based perception architectures.
We construct the first black-box spoofing attack based on the
identified vulnerability, which universally achieves an 80%
mean success rate on target models. We further perform the
first defense study, proposing CARLO to accurately detect
spoofing attacks which reduce their success rate to 5.5%.
Lastly, we present SVF, the first general architecture for ro-
bust LiDAR-based perception that reduces the mean spoofing
attack success rate to 2.3%.
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Appendices

A Spoofing Attack Details

The attack consists of three modules: a photodiode, a delay
component, and an infrared laser [55]. The photodiode func-
tions as a synchronizer that triggers the delay component
whenever it captures laser signals from the victim LiDAR
sensor. The delay component triggers the laser module after a
configurable time delay to attack the following firing cycles of
the victim LiDAR sensor. The attack can be programmatically
controlled so that an adversary can target different locations
and angles in the point cloud. Specifically, we use an OS-
RAM SFH 213 FA as the photodiode, a Tektronix AFG3251
function generator as the delay component, and a PCO-7114
laser driver that drives the attack laser OSRAM SPL PL90
in our setups. Figure 21 shows the physical spoofing attack
conducted in a controlled environment.
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Figure 22: Average attack suc-
cess rates (A2SRs) of proposed
Figure 21: Physical spoofing in  black-box attack on PointPillars
in-lab environments. and PointRCNN.

B Supplementary Attack Evaluation

We define a new metric for general evaluations on the ob-
ject detection-based attacks called average attack success rate
(AZSR). As mentioned before, the default thresholds are empir-
ically set. Thus, evaluations of ASR provide limited insights.
Similar to AP defined in PASCAL [27] criteria, we average
the ASR in 11 recall intervals to better understand the impact
of the proposed attacks and the characteristics of different
architectures:

A’SR= — ASR,, (10)
r€{0.0,0.1,...,1.0}

where ¢, represents the threshold that makes the recall of
the target model at r. The evaluation of recall follows the
description of the Moderate category in §2.1.1. In this paper,
we test A2SR on PointPillars and PointRCNN since Apollo
model is not designed to be evaluated on KITTI (§2.1.1).

Figure 22 shows that the A2SR of PointPillars is generally
higher than PointRCNN, which means the spoofed points
can achieve higher confidences in PointPillars. Such results
are expected since point-wise features contain more detailed
information than voxel-based features; hence point-wise fea-
tures could be more resilient to spoofing attacks.

attack trace attack trace

valid i : valid
vehicle vehicle
Both cannot be detected,
due to reconstructioh noise.

Both can be detected.

Both can still be detected.

Figure 23: Illustrative example: the left figure is the original feature
map of a point cloud sample from Apollo 5.0; the middle one is the
feature map after ME reconstruction; and the right one is the feature
map after squeezing.

We also leverage feature squeezing [66] and ME-Net [70]
to evaluate our proposed attack on Apollo 5.0. We utilize
median smoothing as the method for feature squeezing, and
follow general settings in [70] for matrix estimation. We per-
form evaluations on 100 samples from the KITTTI validation
set. Results show that ME-Net can eliminate the fake vehicle
but introduce new false negatives, which will lead to more
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view fusion-based models (w-:
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Figure 25: APs of weakened
SVF models (PP: PointPillars;
PR: PointRCNN).

severe safety issues. In contrast, feature squeezing cannot
effectively eliminate fake vehicles, as shown in Figure 23.

C CARLO Algorithm Details

Algorithm | shows the detailed CARLO algorithm combined
with its two building blocks: FSD and LPD. Especially, to
estimate the free space inside a bounding box B, we first
extract all the laser fires that have chances to hit B, which form
a frustum in the 3D space. We then grid the 3D Euclidean
space of the frustum into small 3D cells and initialize all the
cells as occluded cells in the beginning. For each laser, we
use 3D Bresenham’s line algorithm [16] to compute the cells
it traversed from the origin of the laser beam (i.e., the LIDAR
sensor) to the end (i.e., the hit point). If a cell is traversed
by a laser beam, we label it as a free cell because it does not
belong to a solid object. Finally, we union the free cells for all
the possible laser rays to get the total free cells in the frustum.

D Ablation Study of View Fusion Models

We perform ablation studies to explore the reasons behind
the results shown in Figure 16. In particular, we find most
of the existing fusion-based models utilize a symmetric de-
sign where the FV and 3D (or BEV) features are fed into
similar modules for learning, and the learned features are
simply stacked or averaged for later stages (Figure 15). We
design experiments to study the effectiveness of such a design
empirically. Explicitly, we zero out the features from FV to
measure how much the FV representation contributes to the
final detection. As shown in Figure 24, the APs only have
relatively small degradation, which implies that BEV (or 3D)
features dominate the model decisions. Kim ez al. also empir-
ically demonstrates that current sensor fusion-based models
are vulnerable to single-source perturbations [33]. Similarly,
we showcase that current view fusion-based models are vul-
nerable to the perturbation represented in the dominated view.

To better understand why SVF models can provide better
robustness, we analyze how the FV representation helps in
SVF models. Similarly, we zero out the augmented confidence
score features and evaluate the AP. Figure 25 shows the weak-
ened models’ performance, which empirically demonstrates
that the features from FV account more in SVF models.

E Supplementary Figures

Figure 26 shows an illustrative example that translated points
from Figure 2 can be detected as a valid vehicle in PointR-

CNN. Figure 27 shows more rendered original attack traces.

Translated points are
z, detected as a vehicle.
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Figure 26: Translated points
from Figure 2 are detected as a Figure 27: More examples of our
valid vehicle by PointRCNN. rendered traces with occlusions.

Algorithm 1: CARLO

input: Detected bounding boxes B = {B};
LiDAR laser ray directions L = {L};
3D point cloud X = {5} ;
Threshold of FSD # ;
Thresholds of LPD b’ +¢,d' —¢

output: Valid bounding boxes By,jiq = {B};
Adversarial bounding boxes B,y = {B};

—

2 Initialization : B,jjq < 0, Bygy < 0, g+ 0, f < 0;

/* Initiate parameters. */
3 for B Bdo
/* Initiate parameters, where FS(-) is the
free space and Fg is the frstum of B. */
4 | Fg0,FS()«0;
5 for L€ Ldo
/* Predict whether L will intersect with
B. */
6 if LN B then
7 ﬁL — L;
8 Fg.append([L, 5 ]);
/* Extract the frustum Fg of B. */
9 end
10 g < Equation 6;
/* Calculate g by Fg for B (LPD). */
1 if g < a’' —¢€ then
12 Byalia-append(B);
/* Certainly valid vehicles. */
13 else if g > b’ + € then
14 B,4,.append(B);
/* Certainly spoofed vehicles. */
15 else
/* Calculatef by Fg for B (FSD). */
16 for [L,p. | € Fg do
17 FS(L) < Bresenham([L, p ])[16];
18 FS(B) <+ FS(B)UFS(L) ;
19 end
20 f < Equation 5;
21 if f < % then
2 | Byaiia-append(B);
23 else
24 ‘ B,4,.append(B);

25 end
26 Return : By,idq, Bagv;
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