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ABSTRACT

Quantum Metrology with a Molecular Lattice
Clock and State-Selected Photodissociation of

Ultracold Molecules

Chih-Hsi Lee

Over the past few decades, rapid development of laser cooling techniques and narrow-linewidth

lasers have allowed atom-based quantum clocks to achieve unprecedented precision. Tech-

niques originally developed for atomic clocks can be extended to ultracold molecules, with

applications ranging from quantum-state-controlled ultracold chemistry to searches for new

physics. Because of the richness of molecular structure, quantum metrology based on molecules

provides possibilities for testing physics that is beyond the scope of traditional atomic clocks.

This thesis presents the work performed to establish a state-of-the-art quantum clock

based on ultracold molecules. The molecular clock is based on a frequency difference be-

tween two vibrational levels in the electronic ground state of 88Sr2 diatomic molecules. Such

a clock allows us test molecular QED, improve constraints on nanometer-scale gravity, and

potentially provide a model-independent test of temporal variations of the proton-electron

mass ratio. Trap-insensitive spectroscopy is crucial for extending coherent molecule-light in-

teractions and achieving a high quality factor Q. We have demonstrated a magic wavelength

technique for molecules by manipulating the optical lattice frequency near narrow polariz-

ability resonances. This general technique allows us to increase the coherence time to tens

of ms, an improvement of a factor of several thousand, and to narrow the linewidth of a 25

THz vibrational transition initially to 30 Hz. This width corresponds to the quality factor

Q = 8× 1011.

Besides the molecular quantum metrology, investigations of novel phenomena in state-

selected photodissociation are also described in this thesis, including magnetic-field control of

photodissociation and observation of the crossover from ultracold to quasiclassical chemistry.
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Chapter 1

Introduction

1.1 Molecular lattice clock

A molecular lattice clock is a unique tool for precision measurements and fundamental physics

test. Compared to atoms, which are governed purely by electronic interactions, molecules

have additional internal degrees of freedom, resulting in richer spectra. Besides electronic in-

teractions, nuclear dynamics of constituent atoms defines the molecular ro-vibrational struc-

ture, which makes molecule a special tool to test physics that is beyond the scope of current

atomic lattice clocks [1, 2].

Over the past few decades atomic lattice clocks have undergone tremendous developments

and are currently the most accurate timekeeping instruments. As of December 2019, the

cutting-edge atomic clock exhibits relative precision of 2.5×10−19 [3], meaning that it would

gain or lose no more than a second over the age of the universe. With this stability not only

can it serve as a primary time standard, it also has a wide range of industrial applications

and unique scientific importance.

Techniques originally developed for atomic clocks can be extended to ultracold molecules,

with applications ranging from quantum-state-controlled ultracold chemistry [4–6] to searches
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for new physics. In 2008 a molecule-based clock based on atomic clock techniques was pro-

posed [7]. In this thesis I will discuss the first results with this type of clock. This work

confirms the feasibility of the original proposal and lays down the foundation for further

measurements including probing the drift of fundamental constants and testing the Standard

Model.

1.1.1 What is a molecular clock and why is it interesting?

For a device to be claimed as a clock, it must possess two fundamental features. First, it

needs to be highly precise. In other words, a clock must be based on a consistently robust and

stable resonator. Quality factor (Q factor) is a good way to define stability. For a experiment

that measures a frequency f with uncertainty δf the Q factor is defined to be

Q =
f

δf
(1.1)

High Q factors have been demonstrated in many experiments. For instance, Q = 5.2 ×

1015 has been achieved in atomic lattice clock and Q > 1013 [10] has been realized in a

molecular experiment. In our molecular clock Q > 1011 has been demonstrated [9]. This is

not the fundamental precision limitation. Higher quality factors can be obtained by reducing

environmental perturbations and improving the spectra of critical lasers. A major part of

this thesis will be devoted to discussing the attempts to push the precision of the molecular

clock to the next era.

Second, a clock must be accurate, meaning that the measurement should be unbiased. In

this thesis we also discuss the leading factors that cause measurement bias in our molecular

lattice clock and how we tackle them.

So what is a molecular clock? How does it work? The molecular clock described in
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this thesis is based on ultracold 88Sr2 molecules trapped in an one-dimensional (1D) optical

lattice. The heart of the clock consists of two different states in the molecular ground state

potential. 88Sr2 electronic ground states have lifetimes that are as long as a million years.

Because of the longevity of the states an optical transfer between ground states forms an

excellent clock resonator. Specifically, a high precision measurement of the relative binding

energy of ground states is achieved via a two-photon Raman spectroscopy, depicted in Figure

1.1. Because of the long lifetimes, the natural linewidth of this Raman transition is essentially

zero.

0u
+

X

Figure 1.1: Precise measurement on relative binding energies in the ground state potential

is carried out using two-photon Raman spectroscopy. A laser connecting the least bound

ground state off-resonantly to an electronic excited state is shined on the molecules together

with another laser connecting the deeply bound ground state to the excited state. If both

lasers are detuned from the excited state by same amount, a two-photon coherent transition

is driven and the molecules are transferred back and forth between the two ground states.
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So what can we do with a molecular clock? Why do we need it if atomic clock is already

very good? As mentioned earlier, molecules have a richer energy structure, which enables a

molecular clock to probe new physics. With our molecular lattice clock, there are two aspects

of physics that we are eager to test: probing the temporal drift of the proton-electron mass

ratio and searching for a possible fifth force beyond the Standard Model.

1.1.2 Temporal drift of the proton-electron mass ratio

Precision measurement of ground state binding energies of the 88Sr2 molecules reveals the

possibility to test the temporal drift of the proton-electron mass ratio µ. Molecular vibrational

energies are µ-dependent. Moreover, the dependence is stronger in the middle of the potential

while it drops toward the top and bottom, as shown in Figure 1.2. Because of this varying

dependence, µ̇ can be probed with precision measurements on the relative binding energy

between ground states. If the drift of the relative energy is observed, a conclusion supporting

a non-zero mass ratio drift can be drawn.

The varying dependency of binding energies on µ can be understood in the perturbed

simple harmonic oscillator model. In a simple harmonic oscillator, the ground state binding

energies corrected by the first-order perturbation are given by

Eν = ω(ν +
1

2
)− χeω(ν +

1

2
)2, (1.2)

where ω is the vibrational constant, χe is the anharmonicity constant and ν is the vibrational

level. The dependence of molecular parameters on µ has been well-known for decades [11].

In Equation 1.2, ω scales with µ−1/2 and χeω scales with µ−1. These lead to the expression

of the energy levels’ µ dependence
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µ
∂Eν
∂µ

= −1

2
ω(ν +

1

2
) + χeω(ν +

1

2
)2 (1.3)

The varying dependency of energy levels on µ is indicated from Equation 1.3. In the

bottom of the potential where ν’s are small, the µ dependency is dominated by the first term

and thus the dependency increases with ν. As ν keeps growing, the second term increases

and gradually offsets the effect from the first term. This reverts the increasing trend into a

decaying trend, which makes the energy levels close to the potential threshold µ insensitive.

potential depth

binding energy 
dependence on 

‧
‧

‧
‧

‧
‧

Figure 1.2: In the 88Sr2 ground state potential, each state’s binding energy has different

sensitivity to µ̇. The sensitivity is weaker for shallow and deeply bound states than for

intermediately-bound states. In consequence, if the proton-electron mass ratio changes, the

relative binding energy from the middle of the potential will drift more than states from the

top and bottom. Therefore by comparing the drift rate of binding energies we can probe the

change rate of the mass ratio.
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Moreover, it is worth noting that Equation 1.3 relates the sensitivity to the fractional

change in the mass ratio to the fractional transition frequency uncertainty, δµ/µ ∼ δf/f .

Given that 88Sr2 ground state potential is 30 THz deep, assuming a power broadened linewidth

of 10 Hz and a signal to noise ratio of 100 would indicate a fractional uncertainty of ∼

5× 10−15/
√
τ for testing µ̇, where τ is the integration time in seconds.

1.1.3 Searching for a fifth force

Apart from testing fundamental constants, molecular lattice clock also opens up the possi-

bility for probing physics beyond the Standard Model. In the framework of the Standard

Model, the nature of physics is formed with four fundamental interactions: gravitational,

electromagnetic, strong nuclear and weak nuclear forces. Instead of these four interactions,

modern theories have proposed the existence of a mass-dependent fifth force since mysteries

such as dark energy and dark matter remain unsolved. With the molecular clock, precision

measurements of Sr2 ground state binding energies can serve as a platform for constraining

the fifth force.

A molecular potential can be described by Born-Oppenheimer approximation

Etotal ≈ Eele + Evib + Erot (1.4)

where the total energy is the sum of the electronic, vibrational, and rotational interactions.

Usually Equation 1.4 yields high enough precision but in order to search for the fifth force

all the other contributions from the Standard Model need to be included. Table 1.1 lists the

higher-order correction terms that are beyond the Born-Oppenheimer approximation.

How can we use a molecular clock to probe an unknown mass-dependent force? Of

course we can measure binding energies with a single clock extremely precisely and compare
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the results with ab initio calculations. On the experimental side this is not a problem.

However, this would cause a lot of hassles on theory calculations. At molecular scale, the

energy spectra are overwhelmed by mass-independent electromagnetic forces. It is therefore

very hard to reproduce the binding energies accurately by theory alone. Fortunately there is

another way to do it, which is to compare binding energies in molecules consisting of different

strontium isotopes. Because the electronic structure is identical among the isotope family,

mass-independent contributions can be canceled out by comparing different molecules so that

the model will only be sensitive to mass-dependent contributions. To refrain from cooling

fermion isotopes with nonzero nuclear spin, we focus on molecules based on bosonic isotopes.

Strontium has three stable bosonic isotopes, i.e. 84Sr, 86Sr and 88Sr, from which six different

molecular clocks can be constructed. With ground state binding energies precisely measured

for all six clocks, we can use part of the data to fit the quantum chemistry model and use

the other to test the model. Any inconsistency from the fitting could imply the existence of

a fifth force.

contribution magnitude effect on transi-

tion linewidth

adiabatic µ = me/mp < 108 Hz

nonadiabatic µ2 < 103 Hz

relativistic α2µ < 104 Hz

QED α3µ < 102 Hz

finite nuclear-size (rc/a0)2 < 106 Hz

higher order α4µ < 10 Hz

Table 1.1: By comparing binding energies of ground states from molecular clocks of differ-

ent isotopic mass we can preclude the effects from mass-independent contributions. Fitting

molecular clocks based on different isotopes could reveal the existence of a fifth force.
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1.1.4 Steps toward a molecular lattice clock

In this thesis the progress of constructing a molecular clock is presented in Chapters 2 to 7.

A brief overview on what’s covered in each chapter is provided below.

Molecular structure and experiment overview (Chapter 2) The structural features of

88Sr2 molecules are governed by electronic, vibrational and rotational dynamics. Moreover,

quantum statistics imposes certain restrictions on allowed quantum states. The experiments

described in this thesis heavily rely on the optical transitions between bound states in different

molecular potentials and therefore the knowledge in the molecular structure is crucial for

interpreting the experimental results.

Performing spectroscopy on ultracold molecules is the key for achieving high-precision

measurements. In our experiment ultracold 88Sr2 molecules are produced from laser cooled

Sr atoms via photoassociation. In order to achieve Doppler- and recoil-free spectroscopy the

molecules are confined in a one-dimensional optical lattice trap. I will give a summary of laser

cooling and trapping schemes used in our experiment as well as the methods for detecting

and imaging the molecules.

Finally, a summary of the metrological equipment will be provided. It includes a frequency

standard and a frequency comb. A stable frequency standard necessary for referencing the

frequency components in the experiment and a frequency comb is required in the molecular

clock to achieve a coherent clock transition. Because our comb is an older commercial model,

it has a problem with a loosely-locked carrier-envelope offset frequency. To cope with this,

special care has to be taken when performing phase locks with the comb. This knowledge is

important for maintaining a good clock coherence.
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Search for deeply bound molecular states (Chapter 3) The molecular clock operates

on a frequency difference between two ground states. Therefore, the first challenge in building

such a clock is to locate these states. Because of the sparsity of states, an efficient search

method has to be adopted. To facilitate the search, a method based on Autler-Townes

spectroscopy is applied. I will demonstrate that, with this method, we have precisely pinned

down the location of five deeply bound ground states. This is a universal method which can

be applied to the search for all the other ground states.

Implementation of a magic lattice trap (Chapter 4) To achieve long clock transition

coherence, the clock state trap depths need to be matched. Because the 88Sr2 ground state

potential is over 30 THz deep, the clock state polarizabilities difference is inherently large.

To compensate for this, the magic wavelength technique is developed. With the lattice laser

tuned close to a lattice-driven transition, the polarizability of one of the clock states can

be tuned to match the polarizability of the other clock state. When the polarizabilities are

matched, the clock coherence is enhanced by several thousandfold and a 30 Hz transition

linewidth is observed. Besides, direct one-photon spectroscopy on deeply bound excited

states is performed, which corroborates the binding energy measurements of lattice-driven

transition resonances.

Molecular clock stabilization and systematics (Chapter 5) To further increase the

clock coherence, noise in the experimental system needs to be reduced. This includes the

environmental noise in the lab, the noise in the master laser frequency, the noise in the laser

spectra, probe laser intensity fluctuations, etc. I will explain how these noise sources affect the

clock coherence and demonstrate the efforts to tackle them. With the noise greatly reduced,

the precise determination of ground state binding energy becomes tenable. An example with

a 25 THz deeply bound ground state will be provided.
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Unexpected limits on clock state lifetime (Chapter 6) Even with all the efforts in

reducing the experimental noise, the observed clock state lifetime is much shorter than what

is expected. To explain the anomalous lifetime, I will discuss several ideas, including un-

derestimation of lifetime from theory, accidental multi-photon scattering, and impurity of

the lattice light spectrum. Systematic tests of clock state lifetime based on these ideas will

be demonstrated. The most recent investigation has indicated that the culprit is likely the

lattice light noise, which will be discussed in detail.

Measurements of dipole moments squared (DMS) (Chapter 7) The techniques de-

veloped for the molecular clock can be extended to measure transition strengths. I will

demonstrate how these measurements are carried out. Knowledge in the transition strengths

is important for carrying our more precise clock measurements. Also, well-measured transi-

tion strengths can be adapted to calibrate the molecular model, which would help point us

toward the future directions of the molecular clock.

1.2 Ultracold photodissociation and quantum chemistry

In my first two and a half years at ZLab, I worked on another topic of ultracold strontium

molecules, which was involved mysteries of state-selected photodissociation. When I joined

ZLab in 2014, the Sr group was on an exciting journey of exploring ultracold strontium

molecule photodissociation. This is the first experiment in the world that could perform

dissociation of an arbitrary quantum state and reveal the molecular structure. The results

were published in Nature [4]. I am honored to be part of the work not only because it

improves the understanding of quantum-chemistry behavior but also because I had a chance

to investigate and understand phenomena that couldn’t be well explained by my predecessors.

In this thesis, I discuss the solutions to these mysteries which make the story of quantum-
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state-selected photodissociation complete.

Before describing the mysteries, here is a brief introduction to photodissociation. Pho-

todissociation is a tool developed by chemists in the 1960’s to study molecular structure by

breaking the molecules with photons. Since its early stage of development, the quasiclassi-

cal formula has been suggested to describe the angular distributions of the fragments from

diatomic molecule photodissociation [58–60]. In this approach the angular distribution is

constructed by multiplying the conventional dipolar distribution [61, 62] for molecules pre-

pared in spherically symmetric states or ensembles, I(θ) ∝ 1 + β20P
0
2 (cosχ), by a probability

density |Φi|2 of the initial molecular axis orientation, which gives

I(θ, φ) ∝ |Φi|2[1 + β20P
0
2 (cosχ)], (1.5)

where χ = (θ, φ) is the polar angle defined with respect to the orientation of linear polariza-

tion of the photodissociating light and (θ, φ) are the (polar angle, azimuthal angle) defined

according to the quantization axis that is fixed in the laboratory frame.

While the quasiclassical formula successfully predicted the results from several early ex-

periments [63,64], it failed at other experiments [65]. Under what condition the quasiclassical

formula holds or in what situation it fails hasn’t been crystal clear until we performed the

photodissociation on single quantum states at ZLab. In our experiment, the dissociation was

performed on ultracold molecules, which greatly reduced the complexity encountered by early

experiments with hot molecules. Besides, the capability of precisely populating molecules in

single quantum states allowed research on pure-state dissociation and made the comparison

of theory and experiment more feasible.

It is discovered that the quasiclassical model holds when there is only one dissociation

channel allowed by selection rules. In the presence of multiple output channels, quantum
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interference between these channels comes into play, which results in a failure of the quasi-

classical model. A library of photodissociation experiments on all feasible Sr excited states

is presented in Figure 4 of the Nature paper. By incorporating the quantum interference

into the photodissociation model a complete agreement between experiment and theory was

achieved.

So what’s left? Among the breakthroughs, there were two sets of experiments that

couldn’t have been explained previously.

1.2.1 Magnetic-field tuned photodissociation

The first photodissociation mystery is the one-photon dissociation of weakly bound ground

state molecules in the presence of a magnetic field. To demonstrate this puzzle, let’s assume

that the molecules are dissociated by a light with polarization that is parallel to the quanti-

zation axis. In this situation, the selection rules ensure that ∆m = 0 and ∆J = 0, 1 (note

that J = 0 is forbidden for the 1u and 0+
u potentials). There are two possible dissociation

channels: 1u(J = 1,m = 0) and 0+
u (J = 1,m = 0). The 1u(J = 1,m = 0) state wave function

is proportional to sin2(θ) and the 0+
u (J = 1,m = 0) state wave function is proportional to

cos2(θ). As a result, the shape of the dissociated fragments should be described by simple

trigonometric functions and the patterns should be independent of applied magnetic fields in

the weak-field regime. However, the experimental observations contradict this intuition, as

shown in Figure 1.3.

In Chapter 8 I discuss the solution to this puzzle and develop the theory that includes

the effect of applied magnetic fields.
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Figure 1.3: Photodissociation of weakly bound ground state molecules, denoted by X(-1,0),

shows strong dependence of applied magnetic fields, indicating that our understanding of

the photodissociation process was not complete. The theory which accommodates applied

magnetic fields will be discussed in this thesis. Adapted from [5].

1.2.2 Crossover from ultracold to quasiclassical chemistry

Another mystery we encountered was the frequency dependence of one-photon dissociation

of J = 1 molecules down to the 1S0 +1 S0 continuum when shape resonances are absent.

A shape resonance is the phenomenon of quantum interference between dissociation chan-

nels in case of a quasibound state trapped by the potential barrier. Figure 1.4, for example,

demonstrates a shape resonance observed for dissociation of 0+
u (v = −3, J = 3,mJ = 0)

molecules, where v is the vibrational quantum number, J is the total angular momentum,

and mJ is the projection of J onto the quantization axis.
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cylindrical symmetry, previously unreported for diatomic molecules. 
In particular, multiple cases are shown of a molecule fragmenting into 
up to eight distinct (θ, φ) regions. Second, the same final states (J = 4, 
M = ±1) are produced for |p| = 1, Mi = 0 and Ji = 4, 3 at the chosen 
continuum energies. Thus we could expect to observe identical frag-
ment patterns. However, a subtle point is that odd Ji and even Ji pro-
duce M = Mi ± 1 probability amplitudes with an opposite relative 
phase. This results in identical φ-dependent patterns rotated by 90° 
relative to each other. The same mapping of the relative phase onto the 
rotation angle occurs for |p| = 1, Mi = 0 and Ji = 2, 1. Third, the previ-
ous point roughly holds for the higher values of Mi as well, but non
identical populations of M = Mi ± 1 are produced due to asymmetrical 
coupling strengths. For example, the matter–wave interference pat-
terns for (Ji, Mi) = (4, 2) and (3, 2) are not only rotated relative to each 
other, but have slightly different shapes.

Over the past few decades a quasiclassical model has been  
advanced to predict the angular distributions for single-photon E1 
photodissociation of diatomic molecules prepared in arbitrary quan-
tum states6,7,19. This approach multiplies the conventional  
distribution4,5 for molecules prepared in spherically symmetric  
states or ensembles, θ β χ( ) ∝ + ( )I P1 cos20 2

0 , by a probability density 
|Φi|2 for the initial molecular axis orientation, which gives 
θ φ Φ θ φ β χ( ) ∝ ( ) + ( )I P, , [1 cos ]i

2
20 2

0     where χ = (θ, φ) is the polar 
angle defined with respect to the orientation of linear polarization of 
the photodissociating light and (θ, φ) are defined by the quantization 
axis, as before. This intuitive model suggests that photodissociation 
probes the ‘shape’ of the initial molecules, as detailed in Extended 
Data Fig. 2. Its validity, however, has been questioned over the years20.

To indicate the level of agreement with the quasiclassical model, we 
include coloured dots for each pattern in Fig. 4. A green dot indicates 
exact agreement between the quasiclassical and quantum mechanical 
calculations, a yellow dot indicates qualitative agreement that cannot 
be made exact by adjusting β20, an orange dot indicates disagreement 
that can become a qualitative agreement by adjusting β20 and a red dot 
indicates clear disagreement for all β20—usually because fragments 
are observed where |Φi|2 has a node. For all cases in Fig. 4 the quasi-
classical model fails to varying degrees. Although this could be 
expected for the 1u initial states19, surprisingly even photodissociation 
of the +0u  states (Extended Data Fig. 3) disagrees with the quasiclassical 
model in all cases where more than a single J is possible in the contin-
uum. This is because only the single-J cases allow the quasiclassical 
assumption of prompt axial recoil to be satisfied at such low continuum 
energies. Furthermore, our experiments demonstrate that initial mol-
ecules with different shapes (for example, +0u  versus 1u) can produce 
nearly identical distributions, highlighting that the fragment distribu-
tions are solely determined by the final (continuum) states.

Ultracold photodissociation readily reveals features of the  
continuum just above the threshold. The ability to freely explore a  
large range of continuum energies, together with strict optical selec-
tion rules and cleanly prepared quantum states, provides a versatile 
tool to isolate and study individual reaction channels. Whereas  
Fig. 2 explored tunnelling through an electronic barrier, Fig. 5  
shows the case when only rotational barriers are present. Here  
molecules prepared in the ( = − = = )+ v J M0 3, 3, 0u i i  state are photo
dissociated with p = 0, resulting in continuum states with M = 0  
and J = 2, 4. This mixture can be described by equation (1) with 
θ φ θ φ θ φ( ) = ( ) + − ( )δf R Y R Y, , e 1 ,i

20 40 . Figure 5a is a plot of  
the branching ratio R and the interference amplitude δ −( )R R2cos 1  
for the 0–15 mK range of continuum energies. The data show a good 
qualitative agreement with quantum chemistry calculations, and reveal 
a predicted but so far unobserved g-wave shape resonance (or quasi-
bound state) confined by the J = 4 centrifugal barrier. This long-lived 
(∼10 ns) resonance ~66 MHz above threshold could be used to control 
light-assisted molecule formation rates21. Shape resonances can also 
be mapped with magnetic Feshbach dissociation of ground-state mol-
ecules22–24. However, photodissociation is more widely applicable to 

molecules with any type of spin structure in any electronic state, and 
allows more control over the quantum numbers. In Fig. 5b an aniso-
tropic, energy-independent pattern is visible on all images with a 
radius close to that of the 62 MHz image. We have confirmed that this 
signal arises from spontaneous photodissociation of the molecules 
into the g-wave shape resonance (Extended Data Fig. 4).

This work explores light-induced molecular fragmentation in the 
fully quantum regime. Quasiclassical descriptions are not applicable 
and our observations are dominated by coherent superpositions of 
matter waves originating from monoenergetic continuum states with 
different quantum numbers. The results agree with a state-of-the-art 
quantum chemistry model8,9, but challenge the theory to describe 
more complicated phenomena. For example, preliminary observations 
of photodissociation to the doubly excited continuum (as in Fig. 3b) 
indicate rich structure near the threshold. This continuum is not well 
understood, while interactions near the 3P1 + 3P1 threshold play a key 
role in recent proposals and experiments in ultracold many-body sci-
ence25. Other excited continua with even longer lifetimes (for example, 
the subradiant 1g and +0g  manifolds) exist for Sr2 and similar molecules 
and should enable the exploration of entangled continuum states. 
Photodissociation can shed light on the ultracold chemistry of a rich 
array of molecular states, as well as on new reaction mechanisms—as 
was shown here with M1/E2 photodissociation. With improved con-
trol of the imaging and of the optical lattice effects, experiments can 
get even closer to the threshold. We expect to reach nanokelvin frag-
ment energies in the lattice, leading to high-precision measurements 
of binding energies for tests of fundamental physics and molecular 
quantum electrodynamics26,27. Ultralow fragment energies can also 
aid in the creation of novel ultracold atomic gases28. A promising 
future direction would be to enhance the quantum control achieved 
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Figure 5 | Energy-dependent photodissociation near a shape resonance. 
a, Molecules prepared in the ( = − = = )+ v J M0 3, 3, 0u i i i  state are 
photodissociated at the ground continuum. For p = 0, selection rules 
lead to a single M = 0 but a mixture of J = 2, 4. The branching ratio and 
interference amplitude of this mixture, as described in the text, evolve 
with energy and reveal a J = 4 (g-wave) shape resonance at ∼3 mK. The 
experimental data were analysed with pBasex and errors were estimated 
by varying the effective saturation intensity, used to process the absorption 
images, within its uncertainty. The theoretical curves were calculated 
with a quantum chemistry model. b, Images of fragments labelled by 
their continuum energies ε/h in MHz that show the evolution with energy. 
The faint anisotropic, energy-independent pattern with roughly the same 
radius as the 62 MHz image is from spontaneous decay into the shape 
resonance.

© 2016 Macmillan Publishers Limited. All rights reserved

Figure 1.4: (a) Shape resonance for dissociation of 0+
u (−3, 3, 0) molecules with a light field

with polarization along the quantization axis. In this case selection rules lead to a single

mJ = 0 but a mixture of J = 2, 4. The branching ratio and interference amplitude of

this mixture evolve with dissociation energy. The shape resonance occurs at energy ∼66

MHz, where J = 4 output channel dominates the photofragment angular distribution. (b)

Photofragment patterns at a few selected dissociation energies are presented. Energies labeled

in white are in the unit of MHz. Adapted from [4].

In Figure 1.4, dissociation is launched with light where the polarization is parallel to the

quantization axis. The selection rules for this case are ∆J = 0 1 and ∆mJ = 0. Because of

spin statistics, only even J ’s are allowed for the 88Sr2 ground state molecules. In consequence,

the molecules in the 0+
u (−3, 3, 0) state can be dissociated into two output channels: J =

2 and 4. The angular distribution of the photofragments is then described by

14



|f(θ, φ)|2 = |
√
RY20(θ, φ) + eiδ

√
1−RY40(θ, φ)|2, (1.6)

where YJmJ
is a spherical harmonic. As Figure 1.4 demonstrates, the amplitude R has an

obvious dip at ∼66 MHz, which indicates a shape resonance where the fragment distribution

is dominated by the J = 4 output channel.

Unlike this example, photodissociation from some states only has one allowed channel. For

example, spin statistics only allows one reaction channel for 1u(−2, 1, 0) molecules dissociation

with horizontally polarized light. The relevant selection rules are ∆J = 0, 1 and ∆mJ = 1,−1.

Because J = 0 ground state doesn’t have sublevels that meet this condition, only the J = 2

output channel is allowed and there is no shape resonance. In this case, it could be expected

that the photofragment angular distributions would be insensitive to the dissociation energy.

However, our experiments proved otherwise, and the shape resonance is absent, the fragment

patterns are still observed to be highly dependent on the dissociation energy.

In Chapter 9 I discuss the mechanisms that explain the evolution of photodissociation frag-

ment angular distributions with dissociation energy. In these investigations, a clear crossover

from the ultracold quantum mechanical to the quasiclassical regime of chemistry is observed.
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Chapter 2

Molecular structure and

experiment overview

2.1 Structure of 88Sr2 molecules

Additional vibrational and rotational degrees of freedom results in a richer and more compli-

cated molecular structure. The knowledge in the formation of molecular structure is crucial

in interpreting the molecular transitions. In this section, I discuss the contents that are the

most relevant to the experiments described in this thesis. More detailed discussions on the

molecular structure can be found in [11,16,66].

The Hamiltonian of a physical system can be decomposed as the sum of contributions

from different degrees of freedom. For molecules, the Hamiltonian can be written as

Ĥ = Ĥe + Ĥv + Ĥr, (2.1)

where Ĥe, Ĥv ,and Ĥr represent electronic, vibrational ,and rotational parts of Hamiltonian

,respectively.

The contributions in Equation 2.1 are decoupled in the Born-Oppenheimer approximation.
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For a weakly bound diatomic strontium molecule, the electronic energy can be approximated

as the sum of atomic electronic energies of two constituent atoms because the constituent

atom size is a lot smaller than the molecular bond length. As for the vibrational energy, the

energy level can be described by a quantum number v, which characterizes the molecular

vibration frequency. In this thesis, I adopt the convention that v = 0 and v = −1 denote

the deepest and shallowest state, respectively. Among all the energy degrees of freedoms, the

rotational energy structure is the most complicated because it involves the various coupling

of spin and orbital angular momenta of both electrons and nuclei. These angular momenta

are summarized below:

� electronic orbital angular momentum, L̂

� electronic spin angular momentum, Ŝ

� total electronic angular momentum, Ĵe = L̂+ Ŝ

� rotational nuclei angular momentum, R̂

� total molecular angular momentum, Ĵ = Ĵe + R̂

Based on the electronic angular momenta, the projections of L̂, Ŝ ,and Ĵe onto the internuclear

axis are defined to be Λ, Σ ,and Ω, respectively. Note that 88Sr2 molecule doesn’t have

hyperfine structure because of zero nuclear spin angular momentum. This is one of the

major benefits of conducting metrology experiments using this molecule.

In different situations, the coupling strengths can vary a lot and thus different good quan-

tum numbers are needed. In the following sections, the cases with electronic ground states

and excited states of 88Sr2 molecules will be discussed. More detailed and complete discus-

sions can be found in [67].
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2.1.1 Electronic ground state

The electronic ground state is best described by the quantum numbers Ĵe, Λ, Σ, Ω, S and J .

A widely-adopted notation for this case is denoted by

2S+1|Λ|±Ω,g/u, (2.2)

where ± represents the sign of Σ and g/u indicates symmetry of the wavefunction (g/u stands

for gerade/ungerade or even/odd).

There are several important features of electronic ground states. Since it is naturally the

lowest energy state, the electronic energy asymptotes to that of the 1S0 +1 S0 atomic state.

Moreover, the molecule has no orbital and spin angular momentum (L̂ = Ŝ = 0), therefore

the projections of electronic angular momenta are zero (Λ = Σ = Ω = 0). Furthermore,

because two comprising atoms are in the same state and that 88Sr is bosonic, it is naturally

required that the wave function for ground state molecules should be symmetric. These

lead to the notation for ground state molecules: 1Σ+
0,g. In this thesis, the ground state

potential is denoted by a simplified notation X and the ro-vibrational states are represented

by X(v, J,mJ), where v is the vibrational quantum number and mJ denotes the projection

onto the internuclear axis of J . It should be emphasized that because the 88Sr atom is bosonic,

the symmetry in wavefunction only allows even J for 88Sr2 electronic ground state [11,14].

2.1.2 Electronic excited state

Electronic excited states can be very complicated. In this thesis, we only consider the simplest

excited state that asymptotes to the 1S0+3P1 threshold. In this case the total electronic

angular momentum has Ĵe = 1 with contribution from the excited 3P1 atom. As a result, Ω,

the projection of Ĵe onto the internuclear axis, can be either 0 or 1. Furthermore, because
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the component atoms are in different states, the molecular wavefunction symmetry can be

either gerade or ungerade. With these features, the notation for the electronic excited states

are usually defined as [68,70,74]

|Ω|±g/u, (2.3)

where ± is only used for Ω = 0 and denotes the molecular wavefunction symmetry. Note

that ± here is different from the case of electronic ground state. Apparently two possible

symmetry (ungerade/gerade) and two possible Ω (0/1) give four possible combinations (i.e.

0+
u , 0+

g , 1u and 1g). Among them, only 1u and 0+
u are electric dipole allowed from the ground

state. In this thesis, we will focus on these two excited states.

The notation for excited states is the same as that for ground states. The ro-vibrational

levels in the 1u/0+
u potential is labeled as 1u(v′, J ′,m′J) and 0+

u (v′, J ′,m′J), where v′ is the

vibrational quantum number and m′J denotes the projection onto the internuclear axis of J ′.

The prime notation is adopted to distinguish excited states from ground states.

2.2 Experiment overview

At ZLab, the Sr2 experiment was initially constructed in 2009. A complete description of

how the experimental system was designed and setup can be found in [16]. Here I only make

some brief remarks on the preparation of ultracold 88Sr2 molecules. I will also describe the

metrology equipment that is of crucial importance for the clock experiment.

2.2.1 Atomic Sr source

In our experiment, molecules are produced from ultracold atoms. The atoms come from an

oven where two strontium cells are heated up to 600°C. The hot atomic vapor from the oven
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is collimated by ∼180 microtubes in a nozzle before pouring into the vacuum tube. Right

after the oven region is a mechanic valve (SG0063MCCF from Kurt J. Lesker). This valve

was installed in 2016 to protect the strontium cells from being oxidized when the vacuum

system is opened. Note that this valve can only hold up to 150°C so one has to be careful

when running the oven at high temperature. After the mechanic valve lies the atomic shutter

(L-0385 from Unibliz), which role is to block the hot atom beam during the lattice trapping

time. As of December 2019, the atomic shutter is the one installed in 2016 after the previous

shutter broke down after eight years of work. The shutter breakdown was a distressing

memory because it caused a five-month delay in data taking. However, after this accident,

a systematic shutter replacement procedure has been developed, which should make it a

lot easier for the future (hopefully it will never be needed!). The replacement procedure is

described in Appendix A. Right before the hot atom beam pours into the science chamber,

it passes through a second mechanic valve. This valve is installed to prevent the atom beam

from coating the Zeeman window when the experiment is off.

2.2.2 Atom cooling and trapping

In the following sections, I will briefly comment on how we cool and trap Sr atoms.

2.2.2.1 Zeeman slower

The Zeeman slower is constructed by a one-meter long tube and operates on the 1S0 ↔ 1P1

461 nm transition. The 461 nm blue light is generated by frequency doubling a 922 nm IR

laser provided by Sacher Lasertechnik. To generate sufficient power of blue light, the IR

light is amplified by a tapered amplifier (TA) and frequency doubled in a homemade bow-tie

cavity [16, 21, 22]. The laser is locked by saturated absorption spectroscopy in a strontium
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galvatron vapor cell [18–20].

2.2.2.2 Blue MOT

Two stages of magneto-optical trap (MOT)’s are applied to cool strontium atoms. The first

stage is the blue MOT, which operates on the 32 MHz broad 461 nm 1S0 ↔ 1P1 transition.

The light source is the same as described in the Zeeman slower section. To increase the blue

MOT loading efficiency, two repump lasers are applied to close loss channels. One repump

works on the 3S1 ↔ 3P2 679 nm transition and the other works on the 3S1 ↔ 3P0 707 nm

transition. In the blue MOT, there are usually 106 atom trapped at a temperature of 1 mK.

2.2.2.3 Narrow-line red MOT

After the first stage blue MOT cooling, the atoms are transferred to a red MOT. The red

MOT operates on a narrow-line transition 1S0 ↔ 3P1, which has natural linewidth of 7.5

kHz. Due to this narrow linewidth, the red MOT can cool the atoms further down to ∼1

µK. Usually, there are ∼ 105 atoms captured in the red MOT.

It is important to note that the red MOT laser also serves as the reference master laser

for the experiment. The red MOT laser light is generated from a homemade ECDL and a

fraction of the light is offset-locked to an ultra-low expansion (ULE) cavity. The stabilized

red MOT laser light possesses a linewidth of ∼150 Hz.

2.2.2.4 Optical lattice

To suppress the Doppler shifts and achieve the recoil-free spectroscopy, the cooled atoms

are loaded into an optical lattice trap. The lattice trap is constructed with a standing wave

formed by retro-reflecting a laser beam and focusing the counter-propagating beams at the

molecular cloud.
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In our experiment, the lattice light is created by a homemade ECDL of wavelength 915

nm or 1064 nm. The ECDL output is amplified to ∼1 W by a TA, which works with diodes

from Eagleyard Photonics. To achieve sufficient trapping, the lattice power usually runs at

∼200 mW and the beam waist is focused down to 29 µm at the molecular cloud. With

this setup, there are usually 104 atoms trapped in the lattice. Although the TA design is

an economic way to generate high power for trapping, it also incurs serious problems with

impure spectrum. In our clock experiment, we have observed a limitation on the clock state

lifetime imposed by the broad ASE noise from the TA. This issue will be discussed in depth

in Chapter 6.

In an optical lattice, the trap depth is proportional to the real part of the polarizabil-

ity. Moreover, to achieve recoil-free spectroscopy the lattice should work in the Lamb-Dicke

regime. These concepts are commented below.

Trap depth and polarizability

Assuming a monochromatic laser light with frequency ω, the electric field of an optical lattice

trap can be described by

E(r, t) = Eforward(r)e−iωt + Eretro(r)e+iωt

= ẑ
[
Eforward(r)e−iωt + Eretro(r)e+iωt

]
, (2.4)

where ẑ is the polarization of the electric field, and Eforward/Eretro are the complex amplitude

of the forward/retro-reflected electric fields. For atoms that are exposed to this oscillating

field, an atomic dipole moment d is induced

d = ẑ
[
α(ω)Eforward(r)e−iωt + α(ω)†Eretro(r)eiωt

]
, (2.5)
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where α(ω) is the frequency-dependent complex atomic polarizability. The interaction of the

dipole moment and the electric field generates a dipole potential

Udip(r) = −1

2
d(r) ·E(r). (2.6)

Plugging Equations 2.4 and 2.5 and applying rotating-wave approximation yields a time-

averaged dipole potential

Udipole = −1

2

[
α(ω)Eforward(r)Eretro(r) + α(ω)†Eforward(r)Eretro(r)

]
= −Re [α(ω)] |Eforward(r)|2

= − 1

2ε0c
Re [α(ω)] I(r), (2.7)

where the last equation adopts the definition of lattice field intensity

I(r) = 2ε0c|Eforward(r)|2, (2.8)

assuming the index of refraction equal to 1. As Equation 2.7 demonstrates, the trap depth is

proportional to the real part of the polarizability. Furthermore, the derivation doesn’t require

any atom-specific feature so this rule is also applicable to trapped molecules. Because the

bound states in the 88Sr2 molecular potentials have different polarizabilities, their trap depths

in the optical lattice are also different. This leads to an issue of thermal broadening that

limits the molecular clock coherence. A solution to this issue will be discussed in Chapter 4.

Trapping frequency and Lamb-Dicke parameter

Assuming the laser wavelength is λ, the electric field can be expressed as Eforward = E0 cos(kx),

where k = 2π
λ and x̂ is the laser propagation direction. Under the approximation that kx� 1,

the time-averaged dipole potential in Equation 2.7 can be written as
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Udiople = −U0 cos2(kx) ∼ −U0(1− k2x2). (2.9)

This potential corresponds to a standard quantum simple harmonic oscillator with a longi-

tudinal trapping frequency

ωtrapping =
2π

λ

√
2U0

M
, (2.10)

where M is the mass of the molecule. Equation 2.10 has several critical implications. First,

it can be considered as an indicator of the tightness of the lattice trap. The Lamb-Dicke

parameter is defined as η =

√
ωrecoil
ωtrapping

[23,25], where the recoil frequency ωrecoil =
~k2

2M
. In

the Lamb-Dicke regime, η � 1, the trapping frequency is a lot larger than the recoil frequency,

which is a critical criterion for recoil-free spectroscopy. Second, from Equations 2.7 and 2.10,

the trap depth and thus the polarizability can be directly backed out. In our experiment, the

trapping frequency is obtained via sideband spectroscopy [13]. Given a lattice with a power

of ∼ 200 mW and beam waist ∼29 µm, the trapping frequency is around 2π× 70 kHz, which

corresponds to a U0/h ∼ 0.8 MHz trap depth, where h is the Planck constant.

2.2.3 Production of ultracold molecules

In our experiment, molecule production is realized via photoassociation [74], where a pair of

atoms absorb a photon and bound together into a molecule on an excited 0+
u state. Because

the excited state has excellent wave function overlap (i.e. large Franck-Condon factors) with

a few certain weakly bound ground states, the excited molecules quickly decay to those

ground states via spontaneous emission. An illustration of producing X(−2, 0) molecules

with photoassociaiton via the 0+
u (−5, 1) state is shown in Figure 2.1.
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The time duration of the photoassociation pulse is critical in molecule production. If

the pulse is too short, the number of molecules is too little, which would lead to a weak

signal. However, if the pulse is too long, the photoassociation process would incur excessive

heating on the molecules [13]. Typically, with a photoassociation laser intensity of 3 W/cm2,

a pulse duration of 2 ms is optimal for producing X(−1, 0) molecules and 500 µs for X(−2, 0)

molecules. With photoassociation, approximately 5,000 molecules are prepared at ∼5 µK at

the electronic ground states. The non-associated atoms are wiped away with the resonant

461 nm blue MOT light.

Huge wave function overlaps between excited states and ground states is crucial for pho-

toassociation. This benefit only exists for states near the asymptote of the potential. Wave

function overlaps drop significantly toward the bottom of the potential, therefore populating

molecules on a deeply bound ground state requires an alternative method. This topic is

discussed in Chapter 3.

2.2.4 Molecule detection and imaging

In our experiment, the molecules are detected with the recovery scheme [83]. To do this,

a bound-to-free laser is shined on ground state molecules to break them into atoms for

absorption imaging. Typically, the molecules are recovered into the 1S0 +3 P1 threshold and

the strong 1S0 ↔ 1P1 cycling transition is utilized for imaging. Note that this method only

works for weakly bound molecules because transitions from deeply bound ground states into

excited thresholds are inefficient. To detect molecules on a deeply bound state, the molecules

have to be transferred to a weakly bound state before being recovered.
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v0 �12. We have made the molecules in v ¼ �2 via PA
into v0 ¼ �5 (3:5h� GHz binding energy); furthermore,
the calculated and measured FCF is also near unity for
ðv; v0Þ ¼ ð�3;�6Þ, and our technique can be used for PA
into v0 ¼ �6 (8:4h� GHz binding energy) by attaining a
higher power output of the PA laser. The ability to make
deeply bound Sr2 can enable a new class of highly precise
molecular metrology tools [6].

Producing 88Sr2 in the electronic ground state required

performing precise two-photon PA spectroscopy. The
search for v ¼ �2 and v ¼ �3 was guided by the most
accurate ground and excited state potentials available from
Refs. [26,27]. Starting with 5� 105 1 �K 88Sr atoms
trapped in a 20 �K deep one-dimensional optical lattice

formed at the 25 �m waist of a retroreflected 914 nm [28]
laser beam (axial trap frequency 65 kHz; 95% of atoms in
the zero-point trap level), we carried out the spectroscopy
via intermediate electronically excited levels, with varying
detunings from v0. The polarizations of the copropagating
PA and detection lasers in this work are parallel to each
other and to the small residual magnetic field at the atom
trapping site and perpendicular to the lattice polarization;
the lasers are aligned along the tight-trapping axis. When
the bound-bound laser (LBB) is near resonance, and the
frequency of the free-bound laser (LFB, phase-locked to
LBB via a cavity-stabilized cooling laser) is scanned,
Autler-Townes splitting of the PA resonance is observed via
atom loss [Fig. 2(b), inset]. This splitting is equivalent to
the generalizedRabi frequency of the bound-bound transition

�0
vv0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð!�!0Þ2 þ�2

vv0

q
; (1)

where ! is the frequency of LBB, !0 corresponds to the
bound-bound resonance, and �vv0 is the Rabi frequency.
Near the dissociation limit, �vv0 is directly related to
the dimensionless FCF fvv0 ¼ jhvjv0ij2, since �vv0 ¼
�a

ffiffiffiffiffiffiffiffiffiffiffi
2fvv0

p
�, where �2 ¼ 1=3 is the rotational line strength

for ðJ; J0Þ ¼ ð0; 1Þ transitions, and the atomicRabi frequency

is �a ¼ �a

ffiffiffiffiffiffiffiffi
s=2

p
in terms of the atomic spontaneous decay

rate �a and saturation parameter s.
Different ðv; v0Þ pairs yield complementary FCFs; the

pairs relevant to this work are ð�2;�5Þ and ð�3;�6Þ. The
corresponding FCFs were calculated to be 0.8(1), indicat-
ing a particularly strong coupling between the levels.

FIG. 1. (a) Long-range 88Sr2 potential energies versus inter-
nuclear separation. The two curves relevant to this work are the
ground state potential X1�þ

g and the excited state potential ð1Þ0þu
that dissociate to the 1S0 þ 1S0 and

1S0 þ 3P1 (689 nm) atomic

limits, respectively. Several vibrational energy levels v; v0, with
the total molecular angular momenta ðJ; J0Þ ¼ ð0; 1Þ, are shown,
along with their binding energies; the primed values refer to the
excited potential. The negative v; v0 values refer to counting
from the dissociation limit, with �1 corresponding to the
highest-lying level. The natural line widths of the shown v0
levels are �20 kHz. The horizontal dashed line represents the
thermal continuum for the �K atoms. The vertical solid arrows
indicate one-photon optical pathways used for molecule creation
and atom recovery. The vertical dashed arrows indicate decay
pathways completing the molecule creation and recovery; these
rely on the unusually large FCF and optical length, respectively.
(b) The large value of the FCF fvv0 ¼ fð�2;�5Þ � 0:8 results

from an excellent agreement of the outer turning points, as
illustrated by the wave function plots for these vibrational levels.

FIG. 2. Autler-Townes doublets emerge when the LBB fre-
quency is fixed near a molecular resonance while LFB is scanned.
(a) Autler-Townes peak positions, along with their separation�0
fitted to Eq. (1), for ðv; v0Þ ¼ ð�2;�5Þ. The dashed line indi-
cates the on-resonance Rabi frequency � at the indicated LBB

power. (b) The same as (a), for ðv; v0Þ ¼ ð�3;�4Þ. The LBB

power is 60� larger, while � is 4:4� smaller, resulting in
fð�3;�4Þ=fð�2;�5Þ ¼ 0:9� 10�3. The inset shows a representative

atom loss curve with an Autler-Townes doublet corresponding to
the circled data points.
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Figure 2.1: Sr2 molecule production and detection. (a) (1) Ultracold atoms are bound into

molecules and excited onto specific 0+
u states by a photoassiciation pulse. (2) Due to a large

Franck-Condon factor, molecules on 0+
u (v′ = −4, 1) and 0+

u (v′ = −5, 1) efficiently decay to

X(v = −1, J = 0, 2) and X(v = −2, J = 0, 2) states, respectively. (3) To detect molecules, a

recovery pulse is applied to dissociate the molecules via the 1S0 +3 P1 threshold. (4) Excited

atoms decay down to the ground state and absorption images are created with the 461 nm

cycling laser. (b) Wave function overlap of 0+
u (v′ = 5) and X(v = −2) state. The large

Franck-Condon factor is the key for photoassociation. Adapted from [71].
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2.2.5 Frequency standard

In our experiment, the frequency standard is provided by a GPS-disciplined 10 MHz crystal

oscillator (Connor-Winfield, the FTS500 Xenith TBR), which offers a frequency inaccuracy

of tens parts per trillion. This frequency standard generates a 10 MHz sinusoidal wave output

from an intrinsically low jitter voltage-controlled crystal oscillator (VCXO) and all metrolog-

ically important components in the experiment are referenced to this frequency standard.

2.3 Frequency stabilization and optical frequency comb

In this section, a brief review of our frequency comb and a summary of essential operation

notes are provided. A frequency comb is a broad laser spectrum consisting of sim105 of dis-

crete and repetitive lines with well defined frequencies. The rapid development of frequency

combs has allowed linking radiofrequency standards to optical frequencies and hence has

tremendous impacts on the fields of frequency metrology and precision measurements [77].

Nowadays, frequency combs are commercially available at a wide range of spectra from mi-

crowave to ultraviolet with available repetition frequencies ranging from 10 MHz to over 1

THz [78]. These make the frequency comb a tool that is almost inevitable for metrology

experiments.

2.3.1 Frequency comb operation

The comb that we have been working with is the model of FC1500-250-WG provided by Menlo

Systems. This model operates with the femtosecond comb technique, where a pulse on the

fs level circulates in a laser cavity. This circulating pulse leads to an output of a sequence

of repetitive pulses which envelope travels at its group velocity and the carrier travels at its

phase velocity. In the frequency domain, this sequence of output pulses corresponds to a
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spectrum of equally spaced lines. Assuming the repetition time of the pulse train is T and

that the carrier wave oscillates at frequency ωc, the spacing between two adjacent lines, i.e.

repetition rate, is ωRR =
2π

T
and the electric field at time t of this sequence of pulses can be

described by

E(t) = Re [A(t) · exp(−iωct)] = Re

[∑
n

An · exp(−i(ωc + nωr)t)

]
, (2.11)

where A(t) is the periodic envelope function satisfying A(t + T ) = A(t) and An is its n-th

Fourier component.

In general, it is not required that the group velocity be equal to the phase velocity. In the

case where they differ, a newly generated pulse acquires an additional phase shift ∆φ. This

phase shift results in the so-called carrier-envelope offset (CEO) in the frequency domain

ωCEO = ωRR∆φ, (2.12)

which leads to the mathematical description of the frequency spectrum

ωn = ωCEO + nωRR (2.13)

Conventionally the expression with units of Hz is adapted

fn = fCEO + nfRR (2.14)

Equation 2.14 links two radio frequencies fCEO and fRR to an optical frequency fn. In our

comb, the CEO frequency fCEO = 20 MHz and repetition rate fFF ∼ 250 MHz. With these

radio frequencies well-stabilized, the frequency spectrum forms a series of stable references

to which an optical light source can be locked.
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2.3.2 Comb spectrum generation

In the model of our comb, the octave-spanning supercontinuum frequency band ranges from

1000 nm to 2100 nm. To convert this comb spectrum into the visible band, the part near 1560

nm is frequency-doubled through a second harmonic generation (SHG) to 780 nm. Then the

frequency-doubled light is coupled to a photonic crystal fiber (PCF) where the visible octave

spectrum is generated. One thing to note about SHG process is that the frequency doubling

process only works for the CEO frequency whereas the repetition rate remains unchanged.

This is because the sum frequency generation is the dominant process in SHG [79]. As a

result, the comb spectrum generated in the visible range can be written as

fm = 2fCEO +mfRR, (2.15)

where m is an non-negative integer.

2.3.3 Offset frequency detection and repetition rate stabilization

Frequency detection and stabilization are crucial for frequency combs. In Menlo combs, the

repetition rate is directly measured and the offset frequency is measured via the f−2f scheme.

The mode with mode number n is frequency doubled and beat with the mode with mode

number 2n. The beat note (2fCEO + 2nfRR)− (fCEO + 2nfRR) is then the offset frequency.

For stabilizing the frequencies, the offset frequency and repetition rate are locked sepa-

rately. The repetition rate can be stabilized to either an RF reference or an optical reference,

depending on experiment purpose. The lock is performed with a cavity piezo element along

with a fast intra-cavity electro-optic modulator feedback, which provides high bandwidth

locking. For the work described in this thesis, the repetition rate is optically locked to the

150 Hz master laser line. On the other hand, the offset frequency is always stabilized to RF
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reference and the lock is achieved with pump current feedback. This lock scheme doesn’t

allow high-bandwidth lock and thus the linewidth of the offset frequency is limited to ∼400

kHz. Even though the repetition rate lock is fast and tight, the low bandwidth lock for the

offset frequency leads to a shaky comb spectrum. Figure 2.2 illustrates the effect of a loosely

locked offset frequency. In this illustration, the repetition rate is stabilized by phase-locking

the nearest comb mode m to the reference laser frequency f0. The fast lock of repetition

rate indicates a constant beat note frequency fbeat between the m-th comb mode and the

reference laser

2fCEO +mfRR − f0 = fbeat. (2.16)

From Equation 2.16, we can see the instability in the offset frequency is translated to the

repetition rate

δfRR =
2δfCEO − δf0

m
≈ 2

m
δfCEO (2.17)

‧ ‧ ‧
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reference frequency
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࢓

Figure 2.2: Illustration of jittering comb spectrum caused by a broad offset frequency

30



To tackle the repetition rate uncertainty arising from the jittering offset frequency, Menlo

Systems provides an lock scheme with the so-called CEO subtraction method. The idea is

to use fbeat = fCEO for the repetition rate lock. In this scheme, the fCEO terms on both sides

of Equation 2.16 can be canceled out so that the repetition rate would be more stabilized.

However, there is an apparent flaw in the design. The frequency supplied for the beat note is

1× fCEO but what is actually needed is 2× fCEO. Because of this flaw the comb spectrum,

jittering can’t be fully removed. Very fortunately, it turns out that with this single CEO

subtraction the comb works fine (at least for now), a stability on the order of 10−14 has been

observed. Our Master student Christian Liedl performed a thorough diagnosis on this issue.

Readers can consult his thesis [17] for more details.

Besides adopting the fCEO subtraction method to stabilize the repetition rate, another

technical measure is necessary to cope with the jittering fCEO when locking spectroscopic

lasers to the frequency comb. Because the whole comb spectrum jitters with the offset

frequency, lasers locked to the comb inherits this instability, leading to notorious coherence

issues. To deal with this problem, the fCEO is utilized to lock the laser beat note, as illustrated

in Figure 2.3. Note that in this scheme, the sign of the beat note is opposite to that of

fCEO to correctly cancel the frequency instability. With a positive fCEO, for example, the

beat note for the laser lock is −fCEO. When fCEO increases, the comb spectrum moves to

higher frequencies. In this scenario, the beat note grows by the same amount but in the

opposite direction, which compensates the change in fCEO and stabilizes the spectroscopic

laser frequency.
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laser frequency

Figure 2.3: To eliminate the instability from the offset frequency, the fCEO was sent to lock

the laser frequency. Also, the sign of the beat note is chosen to be opposite of fCEO in order

to correctly cancel the frequency instability. (a) For fCEO > 0, the laser frequency is locked

on the red side of the comb reference. (b) For fCEO < 0, the laser frequency is locked on the

blue side of the comb reference.

Like the CEO subtraction scheme for locking the repetition rate, in principle the lasers

should be locked with the 2 × fCEO subtraction scheme. However, due to the design of the

comb we haven’t found a reliable way to do it. In this thesis, for a laser that is stabilized to

the frequency comb, it is locked with 1× fCEO if not suggested otherwise.

2.3.4 Comb mode number determination

The comb mode number is determined by comparing the frequency comb counter values and

the wavelength meter reading.

Assuming the laser of interested is locked to the n-th comb tooth with a beat note of fbeat,

the frequency of this laser is then 2fCEO +nfRR + fbeat. This frequency has to be consistent
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with that measured by the wavelength meter fw

fw = 2fCEO + nfRR + fbeat, (2.18)

from which the comb tooth number can be determined

n =
fw − 2fCEO − fbeat

fRR
(2.19)

One subtle thing to keep in mind is that our wavelength meter drifts from day to day.

Therefore the wavelength reading should be calibrated by a well-determined transition, for

instance the 3P1 intercombination transition or the 1P1 blue MOT transition. A real example

on determining the comb tooth number is provided in Section 4.2.3.
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Chapter 3

Search for deeply bound molecular

states

In this chapter, I describe an efficient way to search for the deeply bound ground states.

Searching for deeply bound states is not an easy task because of the sparsity of states. The

depth of the 88Sr2 ground state potential is >30 THz and, according to ab initio calculations,

the level spacing at the bottom of the potential is more than 1 THz. In other words, searching

for the deeply bound states is like looking for a needle in a haystack. The search would be

fruitless and time-wasting if a wrong method is adopted. So what is the more efficient way

to do it?

Before discussing the search method, let us review the simpler case when looking for ex-

cited states. In this situation, the search can be done simply by monitoring the depletion

from ground state molecules. With molecules populated on a certain ground state, a laser

connecting that ground state is scanned through the region where the excited state is sus-

pected to be. In the meantime, a recovery pulse is applied to count how many molecules stay

in the ground state. When the depletion laser hits the transition, the molecules are pumped

into the excited state so that a drop in the recovery signal can be observed. The process is
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illustrated in Figure 3.1.
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Figure 3.1: One-photon spectroscopy can be adapted to search for weakly bound excited

states. With molecules populated on a certain ground state, a laser connecting that ground

state (navy) is scanned through the region where the desire state is suspected to be. In the

meantime a recovery laser (red) is applied to count the molecule number in the ground state.

When the depletion laser hits the transition the molecules are pumped into the excited state

and a drop in the recovery signal will be observed.

In general, this direct depletion method works well for excited state search. However,

for searching deeply bound ground states, this method becomes unrealistic. The analogy

of direct depletion in the context of ground state search is the coherent two-photon Raman

spectroscopy. This is naturally a more difficult method of spectroscopy because it not only

involves more photons to drive the transition, but also requires a frequency comb to achieve

the coherence. Due to these complexities, the Raman transition is not an ideal tool for ground

state search. In the next section I will describe an alternative search method that is based

on the Autler-Townes spectroscopy.
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3.1 Autler-Townes spectroscopy

3.1.1 The principle of Autler-Townes spectroscopy

The Autler-Townes effect was discovered in the 1950s when a split in a molecular microwave

transition was observed when one of the involved states was coupled to a resonant field. The

fact that it does not require the involved laser fields act coherently makes the Autler-Townes

spectroscopy an excellent tool for ground state search.

Figure 3.2 demonstrates an illustration for the Autler-Townes spectroscopy. When the

coupling field is absent, the |e〉 state remains unperturbed, therefore the laser probing the

|g〉 → |e〉 transition resolves only one peak. In the presence of the coupling laser that couples

|r〉 and |e〉 states, the field interaction perturbs the molecular Hamiltonian. With the rotating

wave approximation the Hamiltonian can be written as

H = ~∆ |e〉 〈e|+ ~Ω

2
(|e〉 〈r|+ |r〉 〈e|), (3.1)

where ∆ is the detuning of the coupling laser from |r〉 → |e〉 transition and Ω is the Rabi

frequency of the coupling laser. The Hamiltonian described by Equation 3.1 has energy

eigenvalues

E± =
~∆

2
± ~
√

Ω2 + ∆2

2
(3.2)

The above derivation shows that the coupling field results in a split in both |e〉 and |r〉 states

(The splitting of |r〉 can be understood by symmetry). As a result of this split, the probe

laser connecting the |g〉 state scans through a doublet instead of a peak. This phenomenon

is the Autler-Townes effect. Before describing how this spectroscopy is applied to find deeply

bound ground states, let us discuss some observations of Equation 3.2.
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� The dependence of doublet energies on coupling laser detuning form a hyperbola.

� The state splitting only depends on coupling laser intensity and frequency detuning.

The fact that it is independent of pulse time duration makes the Autler-Townes spec-

troscopy a fantastic tool for the state searching.

� At resonance (∆ = 0) the state splitting is symmetric, i.e. |E+| = |E−| and the

energy gap between the doublets is equal to the coupling laser Rabi frequency, i.e.

E+ − E− = ~Ω.

� At large detuning, Autler-Townes spectroscopy asymptotes to the two-photon Raman

spectroscopy. At ∆→ ±∞, one of the doublets approaches to the original state while

the other is pushed further out. It is therefore expected that the transition strengths

to each of the doublets would be different.

(a) (b)

⟨ࢍ|⟨ࢍ| |࢘⟩

⟨ࢋ| ⟨ࢋ|ି⟨ࢋ|ା⟨ࢋ|
Δ

|࢘⟩ |࢘⟩ା|࢘⟩ି
Figure 3.2: (a) Without the coupling laser (blue) |e〉 state is unperturbed and thus only one

peak is observed when scanning the probe laser (red). (b) In the presence the coupling laser,

the molecule-light interaction is coupled into the Hamiltonian, resulting in state splittings of

|e〉 and |r〉 states. Consequently, a doublet is observed when scanning the probe laser.
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3.1.2 Search for deeply bound states

In this section, I discuss how we use the Autler-Townes spectroscopy to find deeply bound

ground states.

To find the states, the Autler-Townes effect is utilized in reversed order, as shown in Fig-

ure 3.3. Molecules are initially populated on a weakly bound ground state |v0〉 and a probe

laser is tuned on resonance of the transition to an excited state |v′〉. Due to the resonant
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Figure 3.3: Demonstration of state searching using Autler-Townes effect. Firstly, the probe

laser (red) is scanned through an excited state |v′〉 and parked on the transition resonance (the

grey cross). Then the coupling laser (orange) is scanned through to perturb the molecular

states. As the coupling laser comes close enough to the |v1〉 → |v′〉 resonance, because of

Autler-Townes effect, it will split the |v′〉 state. As a result, the probe laser will no longer be

resonant, therefore the molecule recovery signal will rise.
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probe laser, the recovery signal is depleted. Note that the probe laser intensity should be

just enough for a good signal depletion. A proper probe intensity is critical because reducing

power broadening on the probe transition results in a higher sensitivity to the signal from

new states. With the depletion spectroscopy set up, the coupling laser is scanned through the

|v1〉 → |v′〉 transition. As the coupling laser comes close enough to the resonance, its light

field starts perturbing the molecular Hamiltonian, leading to level splitting in the excited

state. As a result of the splitting, the probe laser will no longer be resonant, therefore an

increase molecule recovery signal will be observed.

The step size at which the coupling laser frequency is swept is critical here. As described,

the success of this method relies on the Hamiltonian perturbation from the coupling light

fields, so scanning the coupling laser with an exceedingly large step size would risk the missing

of the resonance. The optimal step is the one that is large enough to make an efficient search

but not too large that the sensitivity is compromised. An estimation on the optimal step is

provided below.

Given a linewidth γ for the |v0〉 → |v′〉 depletion transition, we want at least a minimum

shift of one full linewidth from the Autler-Townes effect to observe a noticeable signal change.

For a red-detuned coupling laser (∆ < 0), the E+ component is closer to the original level so

for the shift to be larger than γ it requires that

~∆

2
+

~
√

Ω2 + ∆2

2
> ~γ

which yields ∆ > −Ω2−4γ2

2γ . By symmetry, we have ∆ < Ω2−4γ2

2γ for blue-detuned region. This

suggests that the optimal scanning step be the joint interval of these two regions, which is
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optimal scan step =
Ω2 − 4γ2

2γ
≈ Ω2

2γ
, (3.3)

assuming a coupling Rabi frequency that is larger than the probe depletion linewidth. Given

a coupling laser intensity of ∼ 1W/cm2 and a 80 kHz depletion transition linewidth, the

optimal scan step is ∼ 2 MHz. This is a convenient searching step size which can be achieved

with a manually-controlled piezo.

Table 3.1 summarizes the binding energies of five deeply bound ground states that are

found with this method.

vibrational level v rotational level J binding energy (THz)

8 0 23.013,0(1)

7 0 24.031,1(1)

6 2 25.070,581(1)

6 0 25.073,538,149(2)

5 0 26.138,6(1)

4 0 27.228,2(1)

Table 3.1: Binding energy of a few deeply bound ground states found with Autler-Townes

spectroscopy

A few comments about these binding energy measurements:

� The binding energy here is counted from the 1S0 +1 S0 threshold.

� The vibrational levels v is assigned according to the comparison with theoretical calcu-

lations done by Prof. Robert Moszynski’s team at Warsaw University.

� To map out the whole ground state potential what we need to do is simply changing

the frequency of the coupling laser. Given that usual optical diodes can cover a range
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of ∼5 nm, it requires about seven diodes to probe all the ground states.

� The precision in the measurements is limited by the wavelength meter uncertainty

except for the two states with v = 6. For these two states, the binding energies are

determined with molecular clock metrology. Determination of the clock state binding

energy requires descriptions of critical experimental system stabilization schemes, which

will be discussed in Section 5.2.3.2. The same technique can be extended to all the other

ground states.

3.1.3 A test of Autler-Townes spectroscopy

In the previous section, ground state search via Autler-Townes spectroscopy applied in the

reversed order is demonstrated. With the success of precisely locating the deeply bound

ground state, the iconic avoided-crossing behavior in Autler-Townes spectroscopy can be

studied. Figure 3.4 demonstrates an example where the X(−2, 0) → 0+
u (−5, 1) transition is

probed while the coupling laser perturbs the molecular Hamiltonian through the X(6, 0) →

0+
u (−5, 1) transition. Throughout the experiment the coupling laser power is fixed at 330 µW

with a beam waist of 150 µm, which corresponds to an intensity of 0.47 W/cm2. The

avoided-crossing behavior is obtained by scanning the probe laser at a variety of coupling laser

frequencies. As expected from previous discussions, the doublet frequencies are well-captured

by the hyperbolic function form described by Equation 3.2. Moreover, the spectroscopy

collected with several selected coupling frequency shows how transition strengths can vary

for the doublet.
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Figure 3.4: Examination of Aulter-Townes effect with a deeply bound ground state. The

probe laser probes the X(−2, 0) → 0+
u (−5, 1) transition while the coupling laser perturbed

the molecular Hamiltonian through the X(6, 0) → 0+
u (−5, 1) transition. (a) When it is red-

detuned, a peak appears on the red side of the resonance. (b) When it is on resonance,

two doublets are symmetric about the resonance frequency. (c) When it is blue-detuned, a

peak appears on the blue side of the resonance. The dependency of doublet frequencies as a

function of coupling laser detuning is shown in the bottom.

42



3.2 Two-photon Raman spectroscopy

In our experiment, molecules are transferred to deeply bound ground states via two-photon

Raman transitions. As suggested in the Autler-Townes spectroscopy, when the coupling laser

detuning is large, one peak is pushed away from the one-photon probe resonance. At the

limit of ∆ � Ω the pushed away doublet is driven coherently by both involved lasers. In

this chapter I will discuss this two-photon process and demonstrate state transfers with this

technique.

3.2.1 The principle of Raman spectroscopy

A two-photon Raman transition involves two lasers with frequencies ω1 and ω2 where these

two beams act on molecules at the same time and drive a transition coherently. Here we

focus on the situation which applies to our experiment, the Λ-configuration, as depicted in

Figure 3.5. In a Λ-configuration, the Raman process drives a transition via a virtual state

Δ
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⟨૛ࢍ|⟨૚ࢍ|
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Figure 3.5: In a Λ-configuration, two lasers drive a two-photon transition via a virtual state

and the energy between the initial and final states is determined by the energy difference

between two involved lasers.
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(or an intermediate state) and the energy difference between the initial and final state is

~(ω2−ω1). It is important to note that the virtual state only serves as an auxiliary purpose.

No molecule is excited to that state.

The behavior of a Raman transition can be described by a straightforward method that

treats each leg of the transition as a one-photon process. In a two-level system which consists

of two states |g〉 and |e〉, a laser with frequency ω driving the molecules initially populated

on the |g〉 state will lead to a time-dependent population on |e〉 state [12]

ce(t) =
Ω

2

[
1− exp(i(ω0 + ω)t)

ω0 + ω
+

1− exp(i(ω0 − ω)t)

ω0 − ω

]
(3.4)

where ω0 is the transition frequency and Ω is the probe laser Rabi frequency. With rotating-

wave approximation, Equation 3.5 can be approximated to

ce(t) ∼
Ω

2

[
1− exp(i(ω0 − ω)t)

ω0 − ω

]
(3.5)

Now let us extend this to the two-photon Raman process. Consider the case in Figure 3.5,

the first laser that connects state |g1〉 to state |e〉 results in

ce(t) ∼
Ωg1, e

2

[
1− exp(i(ωe, g1 − ω1)t)

ωe, g1 − ω1

]
, (3.6)

where ωa, b denotes energy difference ωa−ωb between two states a and b and Ωg1, e represents

the Rabi frequency of the first laser beam. Substituting Equation 3.6 into the time-dependent

Schrödinger equation and applying the rotating-wave approximation yields

i
∂

∂t
c2(t) = Ωg2, ecos(ω2t)exp(−iωe, g2t)ce(t)

∼ Ωg1→eΩg2, e

4(ωe, g1 − ω1)
[exp(i(ω2 − ωe, g2)t)− exp(−i(ωg1, g2 + ω1 − ω2)t)] ,

(3.7)
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Note that ω1 − ωe, g1 , which will be denoted by ∆, is the difference between the first probe

laser frequency and the |g1〉 → |e〉 transition frequency. Similarly, ωg1, g2 + ω1 − ω2, which

will be denoted by δ, represents the frequency detuning from the Raman transition resonance

condition. With ∆ and δ, Equation 3.7 can be rewritten as

i
∂

∂t
c2(t) = −Ωg1, eΩe, g2

4∆
[exp(i(∆− δ)t)− exp(−iδt)] (3.8)

Integration of Equation 3.7 yields

c2(t) =
Ωg1, eΩe, g2

4∆

[
−1− exp(i(∆− δ)t)

∆− δ +
1− exp(−iδt)

δ

]
(3.9)

For a near-resonant Raman transition, the Raman laser frequencies are tuned close to

the frequency difference between the Raman states, under which condition it is reasonable

to assume ∆� δ. With this, Equation 3.9 can be approximated to

c2(t) ∼ Ωeff

2

[
1− exp(−iδt)

δ

]
, (3.10)

where Ωeff is the effective Rabi frequency defined by

Ωeff =
Ωg1, eΩe, g2

2∆
(3.11)

Comparing Equation 3.5 and 3.10 reveals the fact that the state population function

for a two-photon transition is identical to the one for a one-photon transition. In a two-

photon transition, the transition strength is described by the effective Rabi frequency, which

is proportional to the Rabi frequency of individual Raman legs and inversely proportional to

the common detuning.
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3.2.2 Raman spectroscopy with deeply bound ground states

In this section, a demonstration of ground state transfer via a two-photon Raman transition is

exhibited. In this example, the molecules are transferred from X(−2, 0) state to X(6, 0) state

and two lasers with wavelength 689 nm and 651 nm are used to drive the transition. To make

the Raman probe lasers coherent, the lasers have to be phase-locked to the same reference

frequency. To technically achieve this, a frequency comb is employed. As illustrated in Figure

3.6, the 689 nm probe laser is directly locked to the master laser. However, since the 651 nm

laser frequency is too far away from the master laser frequency, the only way to phase-lock it

Beat
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laser 

ULE cavity

PD
H 

lo
ck Raman laser 

689 nm 

Beat
note

servo

Raman laser 
651 nm

servo

repetition rate 
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Figure 3.6: Schematic configuration of frequency comb stabilization and Raman probe lasers

locking. The 689 nm probe is directly phase-locked to the master laser and the 651 nm probe

is stabilized with the frequency comb.
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is via the frequency comb. Because the frequency comb is stabilized by the master laser,

the coherence between 689 nm and 651 nm probes is achieved. With coherent probe lasers,

the two-photon Raman transition is obtained, shown in Figure 3.7. In this demonstration,

molecules are initially populated on the X(−2, 0) state and the two-photon transition to

X(6, 0) state is driven with Raman probe lasers blue-detuned from the 0+
u (−5, 1) state by 10

MHz.

Figure 3.7: Two-photon Raman transition lineshapes between X(−2, 0) and X(6, 0) states

recorded at several lattice frequencies. The Raman transition is driven with Raman lasers

detuned by 10 MHz from the 0+
u (−5, 1) state. The mismatch in the Raman state polarizabil-

ities results in a clear feature of thermal broadening in the lineshape. Also, the transition

frequency varies with the lattice frequency because of lattice light shift. The horizontal axis

is the frequency offset of the first Raman laser.

A key feature in the lineshapes is the skewness resulted from thermal broadening. Since

the energy difference between the Raman states is over 20 THz, there is a huge mismatch

in the Raman states’ polarizabilities. Due to this polarizability mismatch, the optical lattice

causes severe inhomogeneous broadening. The lineshapes in Figure 3.7 are fit to a thermal

broadening model described in detail in [13, 14]. Eliminating this broadening mechanism is

crucial for getting a narrow transition line and a method called the magic-lattice technique

is adopted to accomplish this goal.
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Chapter 4

Implementation of a magic lattice

trap

4.1 AC Stark shift and magic trapping

The magic lattice trap is a key concept for lattice clocks. In a magic lattice trap, the

polarizabilities of the clock states are equal. This technique has led to a breakthrough in the

precision of optical atomic lattice clock [73]. In ZLab, ultra-narrow one-photon molecular

transitions have also been demonstrated with a magic trap [10], which opens a new regime of

molecular metrology. In this chapter I will discuss how to achieve this state-insensitive magic

lattice trap for the molecular clock.

Just like the DC Stark shift, an oscillating electric field induces light shifts on energy

levels. In an optical lattice trap, the dynamic AC Stark shift on the level |a〉 induced by a

laser trapping field is described by [72]

δEa = −αa(ωL)(
εL
2
)2 + higher-order terms, (4.1)

where ωL and εL denote the frequency and amplitude of the laser fields, respectively. The
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state-dependent factor αa is the dynamic polarizability, which is described by

αa(ω) =
∑
b

| 〈a|d · ε̂ |b〉 |2
Eb − Ea − ω

+
∑
b

| 〈a|d · ε̂ |b〉 |2
Eb − Ea + ω

, (4.2)

where d is the dipole operator, Ei denotes energy levels of all possible states and ε̂ represents

the laser field polarization. Equation 4.2 suggests that the dynamic polarizabilities can be

tuned with lattice laser frequency, which is the heart of the polarizability matching.

A mismatch in state polarizabilities hurts the performance of the molecular clock in two

aspects. First, as suggested in Equation 2.7, a polarizability mismatch means that trap depths

for the clock states are unequal. Because the lattice trap is not perfectly harmonic, unequal

trap depths result in carrier frequencies that are dependent on lattice motional states. This

varying carrier frequencies lead to the inhomogenous broadening [13, 14], which lineshape is

demonstrated in Chapter 3. Due to this broadening mechanism, the clock transition cannot be

narrowed below 50 kHz, which is far away from the sub-mHz fundamental limit. Second, the

unbalanced polarizability leads to a huge systematic error on the frequency measurements. As

a result, a nonzero differential light shift is generated. Equation 4.3 describes the differential

light shift for the |1〉 → |2〉 transition

δν12 = −α1(ωL)− α2(ωL)

h

(εL
2

)2
(4.3)

As α1(ωL) 6= α2(ωL), the differential light shift is lattice-power dependent. Recall the molec-

ular clock relies on the relative binding energy between ground states to probe minuscule

change in fundamental physical quantities; such a systematic error is not acceptable in the

clock measurements.

Regarding these concerns, the necessity for a magic lattice trap is clear. In the next
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section, I will discuss how to achieve a magic trap where the polarizabilities are equal for the

clock states.

4.1.1 Polarizability matching

The possibility of achieving the magic lattice lies in the fact that dynamic polarizabilites are

trap laser frequency dependent. As described in Equation 4.2, the frequency dependence is

particularly large when the trap laser is near resonances. Assume the lattice frequency is close

to the |g〉 → |k〉 transition. Then the dynamic polarizability behavior of |g〉 is dominated by

the near-resonance term

αg(ω) =
| 〈g|d · ε̂ |k〉 |2
Ek − Eg − ω

+

∑
b 6=k

| 〈g|d · ε̂ |b〉 |2
Eb − Eg − ω

+
∑
b

| 〈g|d · ε̂ |b〉 |2
Eb − Eg + ω


︸ ︷︷ ︸

background term

(4.4)

Since the lattice frequency is tuned near resonance, the |g〉 polarizability can be modified

in a huge range, as illustrated in Figure 4.1. Moreover, due to the large energy spacing

between molecular states, while the lattice frequency is being tuned, the background term

that consists of the contributions from the other resonances remains fairly constant. This

has a beneficial implication: for a clock transition consisting of two arbitrary ground state,

the point at which the polarizabilities for both states are matched can be determined by

tuning the lattice frequency around a lattice-driven transition resonance. This special lattice

wavelength is the so-called magic lattice wavelength.

However, not all lattice-driven transitions are suitable for polarizability tuning. For in-

stance, transitions from a weakly bound ground state to a weakly bound excited state ruin

the lattice trapping, which would lead to significant molecule scatterings. Also, transitions

from a deeply bound ground to a weakly bound excited state would suffer from insufficient
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transition strength. As stated in Equation 4.4, the tunability of polarizability is proportional

to the dipole transition moment, therefore the polarizability tunability would be very limited

with a weak lattice-driven transition. To avoid this limitation, the lattice-driven transitions

adopted in this thesis are transitions from deeply bound ground states to deeply bound ex-

cited states, as illustrated in Figure 4.2. In the following section, I will discuss the steps

toward realizing the magic lattice trap.

Figure 4.1: In this illustration, the polarizability X(27, 0) state is tuned with a 919 nm

lattice. The dynamic polarizability of the ground state can be modified in a huge range with

the lattice laser tuned close to a resonance. Because the energy difference between clock

states is huge, while the polarizability of one state is being tuned, the polarizabilities of the

other states remain fairly constant. At δ ∼ −3 GHz, the polarizability is tuned to match that

of X(−3, 0) state and at δ ∼ 1.5 GHz, the polarizability is tuned to match that of X(0, 0)

state. Adapted from [7].
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Figure 4.2: For the work described in this thesis, deeply bound 1u states are used for tuning

clock states polarizabilities. In this figure, a two-photon Raman transition is driven between

X(−1, 0) and X(6, 0) via 0+
u (−4, 1). To match the clock state polarizabilities, the lattice

is parked near the X(6, 0) → 1u(24, 1) resonance. Inset: (i) states involved in this clock

transition (ii) clock state energies are shifted down by different amounts in the lattice as

indicated with grey arrows (iii) but at a magic wavelength, X(6, 0) is additionally up-shifted

(yellow arrows) so that its trap depth U is equal to that of X(−1, 0). Adapted from [9].
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4.2 Search for deeply bound 1u states

To achieve a magic lattice trap, bound states with binding energies >10,000 cm−1 in the

1u potential are employed [9]. This is not a unique choice; any transition with sufficient

transition strength can do the job. A benefit of using deeply bound 1u states is their large

binding energies. According to the ab initio calculations [76], no other ungerade potential

asymptoting to 1S0 +3 P1 atomic level is as deep as ∼10,000 cm−1. This precludes the

possibility of accidental influence from states in another potential.

4.2.1 Search schemes

To search for the deeply bound 1u states, a method based on the lattice-induced light shifts is

employed. The concept is similar to the ground state search with Autler-Townes spectroscopy.

In this search scheme, the lattice laser connects the deeply bound clock state to a deeply

bound 1u state. As the lattice is close to the transition resonance, it induces a light shift δf

on the deeply bound ground state

δf =
1

4

∆Ω2
L

Ω2
L/2 + ∆2 + γ2/4

∼ Ω2
L

4∆
, (4.5)

where ΩL is the lattice-induced Rabi frequency, ∆ is the detuning from the nearest 1u level

which natural linewidth is γ.

Figure 4.3 illustrates the schematic for the deeply bound 1u state search. Initially, a

depletion is set up with the two-photon transition from a weakly bound to a deeply bound

ground state. As the lattice frequency is tuned close to a lattice-driven transition from the

bottom clock state to a 1u state, a light shift is induced on the bottom clock state so that an

increase in the depletion signal is observed.
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Figure 4.3: The method via lattice-induced light shift is employed to search for deeply bound

1u states. Initially a depletion is setup with the two-photon Raman transition (red and

orange) from weakly bound X(−1, 0) to deeply bound X(6, 0) (right). With the Raman

transition kept at resonance, the lattice frequency is tuned to look for the 1u states. As the

lattice laser is close to a lattice-driven transition (blue), a light shift is induced on the deeply

bound state. Due to this induced light shift, the original Raman transition is no longer on

resonance and thus a signal increase can be observed.

With this light shift method, several deeply bound 1u states have been located. Table

4.1 summarizes the binding energy for those states. Several months after these light shift

measurements were carried out, another lattice system was constructed. With the new lattice

system, the original lattice laser can be used as a spectroscopic laser, which allows an alter-

native way to measure binding energies with one-photon spectroscopy. The comparison of

binding energies measured with light shift method and one-photon spectroscopy is presented

in Section 4.2.3.
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vibrational level v′ rotational level J ′ binding energy (THz)

26 1 129.584,5(1)

25 1 131.757,4(1)

24 1 133.943,8(1)

23 1 136.143,2(1)

... ... ...

7 1 173.083,9(1)

6 1 175.499,2(1)

5 1 177.926,8(1)

Table 4.1: Binding energy of deeply bound 1u states measured with lattice-induced light

shifts. The binding energies are calculated with respect to the 1S0 +3 P1 threshold.

Several comments about these measurements:

� The precision for these measurements is limited by the wavelength meter uncertainty.

With direct one-photon spectroscopy, the binding energies can be determined with

higher precision. A detailed data analysis for backing out the binding energies will be

presented in Section 4.2.2.

� Assigning vibrational levels for deeply bound 1u states is not as straightforward as for

the deeply bound ground states. In the case with ground states, the assignments are

based on comparisons of measurements and ab initio calculations. The level numbers

quoted in the Nature Physics publication [9] are also based on these comparisons.

However, it has been realized that the complexities in the excited potentials make such

comparisons less reliable for assigning levels to deeply bound excited states. Recently,

a more accurate way for assigning deeply bound 1u states has been developed. This

topic will be discussed in Section 4.2.4.
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� The readers may be anticipating the avoided-crossing from Autler-Townes doublet like

what is demonstrated with ground states. However, observing such behavior is chal-

lenging in the case when the lattice light also serves as the probe laser. As the lattice

frequency approaches the lattice-driven transition resonance, a huge polarizability shift

is induced on the deeply bound ground state, which makes it impossible to collect spec-

troscopy. To resolve the Autler-Townes doublet, it requires the separation in the role

of the probe laser and the trapping laser, which will be examined in Section 4.2.5.

� Binding energy measurements are performed with deeply bound states in two different

regions in the 1u potential. Among the 1u states, we would like to find the one that

is the best in maintaining the clock transition coherence. Even though a lattice-driven

transition can help match the clock state polarizabilities, it could impose other limita-

tions on the clock coherence from the issues such as frequency instability and accidental

multi-photon loss. The criteria for selecting good lattice-driven transitions are explored

in Section 4.3.3.

4.2.2 Binding energies of deeply bound 1u states

In this section, the analysis on the binding energy of deeply bound 1u states is demonstrated.

As described in Equation 4.5, the light shift changes with lattice frequency detuning in an

anti-symmetric manner: a positive light shift is induced with a blue-detuned lattice and vice

versa. Therefore, by fitting the light shift, the resonance frequency can be obtained. Figure

4.4 illustrates the lattice-induced light shift on the X(−1, 0) → X(6, 0) Raman transition

with X(6, 0)→ 1u(24, 1) as the polarizability-tuning transition.

The fitting in Figure 4.4 yields a pretty tight error of ∼10 kHz on the transition resonance

frequency. However, the actual uncertainty is larger than this since the lattice frequencies in
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Figure 4.4: Dramatic light shift of the X(−1, 0) → X(6, 0) Raman transition occurs as the

optical lattice is tuned across the X(6, 0) → 1u(24, 1) transition. The binding energy of the

1u state can be obtained from fitting the dispersive curve. By fitting this data to Equation

4.5, a resonance frequency of 325.958,824,720(5) THz is yielded.

Figure 4.4 are obtained from the wavelength meter (WS6 200 MC from HighFinesse), which

is subject to an intrinsic uncertainty of 100 MHz.

Figure 4.5 illustrates the schematic for calculating the binding energy of the 1u state.

With the resonance frequency obtained from fitting the light shift curve, the 1u state binding

energy can be calculated with pre-determined X(6, 0) state binding energy and the 1S0 +3 P1

threshold energy. Here the X(6, 0) binding energy is adapted from Table 3.1 and the 1S0+3P1

intercombination line is assumed to be 434.829,121,313(10) THz according to reference [80].

With these numbers, the binding energy can be calculated as follows
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B.E. = intercombination line− (ground state B.E. + lattice frequency)

= 434.829, 121, 313(10) THz− [−25.073, 513, 155(5) THz + 325.958, 82(1) THz]

= 133.943, 8(1) THz
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Figure 4.5: The 1u state binding energy can be backed out by the light shift fitting result

together with the pre-determined deeply bound ground state binding energy.

Although the precision on 1u state binding energies is limited, the lattice frequency for

a magic trap can be determined much more precisely. In Section 4.3.2 I will demonstrate

how a 10 kHz uncertainty in determining magic frequency can be achieved with differential

light shift. Figures 4.6 and 4.7 summarize the light shift dispersive curves for all seven deeply

bound 1u states that have been found.
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Figure 4.6: Light shifts due to lattice-driven transitions from X(6, 0) to

1u(v′=23,24,25,26;J ′=1). The lattice frequency for these resonances is

vibrational level v′ lattice frequency (THz) lattice wavelength (nm)

26 330.318,104,041(5) 907.587,1(2)

25 328.145,206,020(5) 913.596,9(2)

24 325.958,824,720(5) 919.724,9(2)

23 323.759,417,264(5) 925.972,9(2)
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Figure 4.7: Light shifts due to lattice-driven transitions from X(6, 0) to 1u(v′=5,6,7;J ′ =1).

The lattice frequency for these resonances is

vibrational level v′ lattice frequency (THz) lattice wavelength (nm)

7 286.818,749,337(5) 1045.233,1(2)

6 284.403,412,893(5) 1054.109,9(2)

5 281.975,790,174(5) 1063.185,1(2)
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4.2.3 Direct one-photon spectroscopy

In this section, the 1u states binding energies measured with one-photon depletion spec-

troscopy are presented. To perform depletion spectroscopy, another infrared laser system

was constructed for lattice trapping and the original infrared light could serve as a spectro-

scopic laser. The binding energy measured with this method is not subject to the wavelength

meter uncertainty. As later demonstrated in this section, an uncertainty of ∼1 MHz on the

binding energies can be obtained with depletion spectroscopy.

The original motivation for performing one-photon spectroscopy on deeply bound 1u

states is to resolve the Autler-Townes doublet. This has the importance in constructing the

molecular clock because it provides an accurate way to measure the transition strength. The

topic on transition strength measurement is discussed in Chapter 7. As high precision for

excited state binding energies is not of crucial importance in the context of the molecular

clock, only a few states in Table 4.1 will be replicated in this section.

Figure 4.8 illustrates the scheme for a 1u state depletion spectroscopy. The molecules are

initially populated on the X(6, 2) state via a two-photon Raman transition. To collect the

spectroscopy, an infrared laser with wavelength ∼919 nm is scanned through the 1u(24, 1)

state. Because the spectroscopic laser is phase-locked to the comb, its frequency can be well

determined and controlled. One caveat about this measurement is that the lattice trap is not

magic for this transition and thus a nonzero differential light shift is present. To cope with

this systematic bias, the spectroscopy is performed with two different lattice power, from

which the actual transition frequency can be extrapolated.
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Figure 4.8: Probing the 1u state with one-photon depletion spectroscopy. (a) With the probe

laser phase-locked to the frequency comb, the 1u state binding energy can be determined more

precisely. (b) To cope with the systematic bias due to a non-magic lattice, the spectroscopy

is performed with two different lattice power, from which the actual transition frequency can

be extrapolated. In the fit the slope is −0.46(4) kHz/mW and the intercept is 121.06(1)

MHz.
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Note that the synthesizer frequency in Figure 4.8 doesn’t directly mean the actual spec-

troscopic laser frequency but it has to do with how the laser is scanned. Figure 4.9 illustrates

the setup of the infrared probe laser. Explanation of how the setup scheme is crucial for

binding energy calculations.

919nm 
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transmission grating tapered 
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wavemeter
PBS

AOM
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ࢌ
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૛ࡻࡱ࡯ࢌ ࡻࡱ࡯ࢌ

to experiment
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offset lock
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iris

Figure 4.9: Schematic configuration of the infrared probe light system. The laser is offset-

locked to the frequency comb, which is done with optics inside the grey area. To obtain

the depletion spectroscopy, an acousto-optic modulator (AOM) is scanned by a frequency

synthesizer which output goes through a frequency doubler. The other AOM before the

experiment fiber is in place to serve as a shutter and it is controlled by a constant RF

frequency. The transmission grating is irrelevant to the binding energy measurement. Its

purpose will be discussed in Chapter 5).
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The setup for this infrared laser system is of crucial importance for the molecular clock.

The laser light is initially generated from an ECDL and amplified by a TA. After the TA

a transmission grating is in place. The purpose of this grating is irrelevant to the binding

energy measurement but is crucial for tackling the issue with background noise in the TA

spectrum. Its operation principle is described in Section 5.1.2. Typically more than 90%

of the laser beam can be diffracted into the +1st order and be used for the experiment.

The small non-diffracted portion transmits the grating and is employed for the offset locking

scheme.

In the offset locking scheme, the laser beam goes through an acousto-optic modulator

(AOM) that is controlled by a frequency synthesizer. Note that the output of the synthesizer

is frequency-doubled to match the specification of the AOM. The modulated beam from the

AOM is coupled to the frequency comb and phase-locked to the nearest comb tooth. It is

important to note that in this experiment the fCEO was locked on the negative side, which

means case (b) in Figure 2.3 applies.

The steps for calculating the 1u(23, 1) state binding energy are described below. Firstly,

the laser frequency before the offset lock is read by the wavelength meter to be f0 = 925.9813 nm.

Note that the wavelength meter needs to be calibrated by the atomic transition. When the

spectroscopy was collected, the wavelength meter read the 1S0+1P1 transition as 1
2×921.9233

nm. The actual wavelength for this atomic transition is well-known, which should be 1
2 ×

921.9240 nm. According to this, the wavelength of the infrared probe laser should be cor-

rected to f corr
0 = 925.9820(3) nm. On the other hand, the frequency comb counter read the

fCEO and fRR as 20 MHz and 250,011,947.117,85(12) Hz, respectively. With these numbers,

the comb tooth number to which the spectroscopic laser is locked can be backed out. Since

the laser was locked on the blue side of the comb tooth, we have
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f corr
0 + 4fsynthesizer︸ ︷︷ ︸

raw frequency shifted by offset lock.

= −2fCEO +NfRR︸ ︷︷ ︸
frequency of the N-th comb tooth

+fCEO,

which indicates N = 1, 294, 964.96(42) ∼ 1, 294, 965.

With the comb tooth number backed out, the rest part is straightforward. In Figure

4.8(b), the transition resonance frequency is obtained to be fsynthsizer = 121.06(1) MHz,

therefore the laser frequency seen by the molecules is

−2fCEO + 1, 294, 965fRR︸ ︷︷ ︸
reference freq.

+ fCEO︸ ︷︷ ︸
b.n.

−4fsynthsizer + fshutter︸ ︷︷ ︸
80 MHz for this state

= 323.756, 296, 86(4) THz

With the X(6, 2) binding energy listed in Table 3.1, the 1u(23, 1) state binding can be calcu-

lated to be

434.829, 121, 311(10) THz− [−25.070, 581(1) THz + 323.756, 296, 86(4) THz]

= 136.143, 375(1) THz

With the depletion spectroscopy the uncertainty in determining 1u state binding energy is

reduced to ∼1 MHz, corresponding to Q ∼ 109. Note that this limit is not fundamental.

Even more precise measurements can be obtained by reducing the power broadening and

with a magic lattice trap.

The binding energy obtained in this way is consistent with that obtained through the

light shift measurements. Table 4.2 summarizes the comparison between these two methods

with three 1u states.
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v J light shift measurement one-photon spectroscopy

26 1 129.584,5(1) 129.584,620(1)

24 1 133.943,8(1) 133.943,644(1)

23 1 136.143,2(1) 136.143,405(1)

Table 4.2: Comparison of 1u state binding energies obtained with light shift measurement

and one-photon spectroscopy. Binding energies are in the unit of THz. The shutter AOM

frequency is 110 MHz for v′ = 24, 26.

4.2.4 Vibrational number assignment for deeply bound 1u states

In this section, I discuss the vibrational level assignments for deeply bound 1u states. In the

Nature Physics paper, the four 1u states with binding energy around 130 THz in Table 4.1

are assigned to v′ = 19, 20, 21 and 22. These assignments are given based on the comparison

of measured transition frequencies and ab initio calculations. However, it turns out that this

comparison method only works for ground states but not for excited states. With the previous

assignments, the binding energies of 1u states agreed well with the theoretical model but the

measured transition dipole moments squared (DMS) between X(6, 0) and 1u states were very

off from predictions. The discrepancies in binding energies were within 1 GHz whereas the

DMS’s could be off by orders of magnitude. This seemly contradictory observation is due to

the fact that the 1u potential depth was not characterized precisely enough.

The improved method for assigning deeply bound 1u states takes into account the DMS’s

more seriously. With carefully measured DMS’s for multiple lattice-driven transitions, the

molecular model has been calibrated. With this calibration, it turns out the 1u potential

depth is actually deeper and thus several very deeply bound ground states in the bottom of

the potential are found missing in the original model. According to the calibrated model,

the new assignments listed in Table 4.1 are obtained. Figure 4.10 illustrates the comparison
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of measured and predicted DMS’s. The fact that the trend in measured DMS’s agrees nicely

with theory indicates the new assignments are very likely the only possible choices. As shown

in Figure 4.10, the DMS’s exhibit an obvious oscillatory behavior with state levels. In other

words, a slight miss in the level assignment would lead to dramatic different DMS’s.
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Figure 4.10: Comparison of measured 1u states’ transition dipole moments squared (DMS)

and ab initio model. Calibrating the model with new found deeply 1u states helps charac-

terizing the potential better. According to the calibrated model, the new assignments listed

in Table 4.1 are obtained.
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4.2.5 Three-photon Autler-Townes spectroscopy

In this section, the Autler-Townes spectroscopy with the deeply bound 1u transitions is pre-

sented. This is one of the most difficult spectroscopy that’s been carried out in Sr experiment

at ZLab.

As previously described, Autler-Townes spectroscopy is created when depletion spec-

troscopy is perturbed by a coupling laser. In the case of deeply bound ground states, it takes

three photons to accomplish the spectroscopy: the depletion process is the two-photon Ra-

man transition from a weakly to a deeply bound ground state and the coupling is a transition

connecting the deeply bound ground state to a deeply bound 1u state. Figure 4.11 illustrates

a demonstration where the Raman transition between X(−1, 0) and X(6, 0) state is taken as

the probe transition and X(6, 0)→ 1u(24, 1) is adopted for the coupling transition.

There are several factors that make obtaining this spectroscopy challenging. First of

all, the coupling laser couldn’t be too strong, which means an additional laser is needed

for trapping. Including more lasers naturally adds complexity to the experiment. Secondly,

phase-locking the lattice is untenable because the lattice is in the 1064 nm region, which is

out of the comb supercontinuum range. In consequence, Raman transition can’t be run at

the magic wavelength and thus not only is the S/N ratio greatly sacrificed, but the signal

sensitivity is also reduced. Last but not least, to pin down the location of 1u state resonances,

direct one-photon spectroscopy is required. However, this is beyond the capability of the

experiment sequence controller so at the time when we took this data a person had to sit down

at a corner of the lab and very carefully tuned the laser frequency by hand. (This was not

easy and took us some efforts to get rid of human phase slips.) Considering these difficulties,

we are grateful in the success of achieving this three-photon Autler-Townes spectroscopy.
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Figure 4.11: Schematics for the three-photon Autler-Townes spectroscopy. The data shown

in this section is from the experiment where a two-photon Raman transition from X(−1, 0)

to X(6, 0) state is perturbed by an infrared transition from X(6, 0) to 1u(24, 1) state. When

the infrared probe approached the transition resonance, the laser field was coupled to the

molecular Hamiltonian and thus the bottom ground state is split.

Figure 4.12 demonstrates the results of the spectroscopy. To get this data, at each in-

frared laser frequency, the first Raman laser was scanned. We could have also scanned the

second Raman laser but we made our choice simply because the first Raman laser power

was more stable when being scanned. Note that scanning the first Raman laser implies the

common detuning of the Raman transition would be different as the infrared frequency is

altered. The experiment described now was not sensitive to this subtlety but one should be

careful in choosing the right laser to scan when a fixed common detuning is needed.
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Figure 4.12: A demonstration for three-photon Autler-Townes spectroscopy. Here the two-

photon Raman transition between X(−1, 0) and X(6, 0) state is taken as the probe transition

and X(6, 0) → 1u(24, 1) is adapted for the coupling transition. At each coupling laser fre-

quency, the first Raman laser frequency is scanned for the Autler-Townes doublets.

4.3 Characteristics of a magic lattice trap

With deeply bound 1u states found, a lattice that is magic for the clock transition can be

achieved. In this section, several characteristics of a magic trap are presented, including clock

transition lineshape and differential light shifts. At the end of this section, the criteria for

good lattice-driven transitions will also be explored.
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4.3.1 Clock lineshape with a magic trap

The polarizability of the deeply bound ground state is strongly modified as the lattice-driven

transition is close to resonance. When the lattice-driven transition is far from the resonance,

the clock transition suffers from inhomogeneous broadening. As the lattice is at the magic

wavelength, the inhomogeneous broadening is eliminated and thus the transition linewidth

becomes a lot narrower. If the lattice frequency is too close to resonance, the polarizability of

the bottom ground state is over tuned and an inhomogeneous broadened lineshape reoccurs.

Figure 4.13 exhibits the lineshape evolution of X(−1, 0) → X(6, 0) clock transition as

the lattice frequency is scanned through the lattice-driven transition resonance X(6, 0) →

1u(24, 1). The polarizability of X(6, 0) state is initially larger than that of X(−1, 0) state,

which implies the lower clock state is more deeply trapped. To have a homogeneous trap, it

is expected that the magic wavelength occurs on the blue side of the lattice-driven transition.

In Figure 4.13(a), the lattice is way blue-detuned, resulting in an inhomoegneous broadened

clock transition lineshape. As the lattice comes closer to the resonance, shown in (b), the

polarizability mismatch is alleviated so that the inhomogeneous effect is diminished, leading

to a narrower linewidth. In (c) the lattice reaches the magic wavelength, at which case the

inhomogeneous effect is completely eliminated and thus the lineshape becomes symmetric

and the linewidth is greatly reduced. As the lattice frequency keeps moving toward the

resonance, the lattice becomes non-magic again. Also, since the polarizability of the lower

state is over tuned, an inverted inhomogenous broadened lineshape occurs. When the lattice

frequency is tuned across the resonance, the relative polarizability is inverted back and the

original asymmetric lineshape reoccurs, as shown in (e) and (f).
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Figure 4.13: Two-photon Raman transition lineshapes at different lattice frequency. Since

the polarizability of the lower clock state is initially larger, the magic wavelength is expected

to appear on the blue side of the transition.
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Figure 4.14 demonstrates the dependence of the clock transition linewidth on the lattice

frequency. At the magic wavelength, the linewidth is reduced from over 100 kHz down to less

than 2 kHz. Note that this data is taken with a software-locked lattice. In Section 4.3.2 it will

be demonstrated that the linewidth can narrowed down to sub 100 Hz with a phase-locked

lattice.
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Figure 4.14: Two-photon Raman transition linewidth as a function of lattice frequency. At

the magic wavelength, the linewidth is greatly reduced from over 100 kHz down to < 2 kHz.

This data was taken with a software-locked lattice.
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4.3.2 Differential light shift

In the previous section, it has been proven that the mismatch in clock state polarizabilities

can be overcome by tuning the lattice frequency at the magic wavelength. Also, the more

precise the magic wavelength is determined, the more narrow the linewidth is. In this section,

a method to precisely pin down the magic wavelength using the differential light shift is

explored.

In Section 4.1, the AC Stark shift for a two-photon transition is derived. As Equation 4.3

suggests, the differential light shift induced by the optical lattice is proportional to lattice

power and clock state polarizability mismatch. This dependence of differential light is an

iconic feature that characterizes a magic trap and has been demonstrated in different clock

experiments [31–33]. Due to its high sensitivity to polarizability mismatch, measuring the

differential light shift offers a reliable way to determine the magic wavelength.

Figure 4.15 demonstrates the magic wavelength determination. In (a), the X(−1, 0) →

X(6, 0) clock transition frequency is measured with various lattice frequencies at high and

low lattice power. The lattice frequency is tuned near the X(6, 0) → 1u(23, 1) resonance

and the power is varied between 180 mW and 90 mW. Since the lattice frequency is tuned

near a resonance, the clock state polarizability mismatch is strongly modified according to

the lattice frequency. As a result, the difference in differential light shifts between high and

low lattice power would also be different. In (b), the light shift difference is plotted against

lattice frequency. In this figure, the magic wavelength is the x-intercept, where the difference

in light shifts between low and high lattice power vanishes.
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Figure 4.15: Determination of magic wavelength via differential light shift. (a) At each lattice

frequency, the light shifts are measured with 90 mW and 180 mW lattice power. Because

the polarizability mismatch is modified by the X(6, 0) → 1u(23, 1) resonance, the difference

in the light shifts varies with the lattice frequency. (b) The difference in the light shifts as a

function of lattice frequency is shown. The magic wavelength is the x-intercept, where the

polarizability difference is zero. The fitted line indicates the magic wavelength happens when

the lattice frequency offset is at 315.36(12) MHz.
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The accuracy of determining the magic wavelength this way depends on the Raman

transition linewidth. The data in Figure 4.15 is taken with a ∼ 800 Hz Raman linewidth,

which yields an uncertainty of 120 kHz, or a fractional error of 3 × 10−10, in the magic

wavelength. Using a narrower linewidth would increase the sensitivity to light shifts and thus

help determine the magic wavelength with even higher accuracy.

4.3.3 A series of magic lattice traps

In Section 4.2, the search for lattice-driven transitions is presented. All of those resonances

can serve the purpose of equalizing the clock state polarizabilities. However, there are indeed

some lattice-driven transitions that possess unique characteristics, make them a better choice

for the purpose of the molecular clock. In general, a good lattice-driven transition should

possess two qualifications: (1) it maintains good frequency stability on the clock transition

and (2) it minimizes off-resonance scattering on the clock states. In this section, these criteria

for good lattice-driven transitions will be explored.

frequency stability transfer

First of all, a good lattice-driven transition should prevent transferring frequency insta-

bilities to the clock Raman transition. To match the polarizabilities, the lattice has to sit

on the side of the lattice-driven transitions. Due to the steep slope of the light shift curves,

the lattice frequency instability is encoded on the clock transition. This frequency instability

transfer can be quantified as

δf = sm × δflattice, (4.6)

where sm is the slope of polarizability curve at the point of magic wavelength. A good
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lattice-driven transition for the molecular clock is the one that is the least sensitive to lattice

instability. In other words, it should have the minimum curve slope at the magic wavelength.

Equivalently, this transition is also the one that has the largest lattice-driven Rabi frequency.

This is manifest from the light shift equation. In Equation 4.5, the light shift is approximated

as δf =
Ω2
L

4∆
, where Ω is the lattice-driven Rabi frequency and ∆ is the lattice detuning from

the transition resonance. For a given pair of clock states, the required light shift fm for

matching the polarizabilities is fixed and the magic lattice trap occurs at

∆m =
Ω2
L

4fm
. (4.7)

From Equation 4.7, the curve slope at the magic wavelength can be calculated

sm =
d

d∆
δf
∣∣∣
∆=∆m

=
4f2
m

Ω2
L

. (4.8)

Equation 4.8 implies that stronger transitions lead to smaller curve slopes and thus are better

choices for the molecular clock.

Figure 4.16 compares four different lattice-driven transitions. The lattice couples X(6, 0)

to 1u(v′ = {23 − 26}, J ′ = 1) and the clock transition is formed with X(−1, 0) and X(6, 0)

states. For each transition, the light shift on the X(6, 0) state is plotted against the lattice

detuning from resonance. The measurements are performed at lattice power of 200∼230

mW. From this demonstration, the 1u(23, 1) resonance implies the gentlest slope while the

1u(26, 1) implies the steepest slope. To compensate for the polarizabilities unbalance, the

bottom clock state should be up-shifted by fm ∼200 kHz. Because fm is state-independent,

the curve slope at the magic wavelength is inversely proportional to DMS, which is nicely

corroborated by Figure 4.10.
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Figure 4.16: Comparison of several lattice-driven transitions. (a) Measured light shifts on

the X(−1, 0)→ X(6, 0) clock transition versus lattice light detuning are demonstrated with

multiple lattice-driven transition from X(6, 0) to 1u(v′ = {23− 26}, J ′ = 1) resonances. The

vertical axis refers to the detuning of the first Raman laser. The measurements are performed

with lattice power of 200∼230 mW. (b) A zoom-in look at (a). Transitions that have larger

DMS’s results in larger magic lattice detuning and leads to gentler curve slope at magic

wavelength.

off-resonant scattering

Besides frequency stability transfer, the off-resonant scattering is another critical factor

for selecting a good lattice-driven transition. Lattice light is a strong and focused beam

with intensity typically > 3 kW/cm2. Although at the magic wavelength the lattice light is

off-resonant by ∼1 GHz, its strong intensity could still cause photon scatterings, leading to

limits on the clock state lifetime. Therefore good lattice-driven transitions are the ones that

induce the least scattering.
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For a laser light that is detuned from a transition |g〉 → |k〉 by frequency ∆, the off-

resonant scattering rate Γscatt can be written as

Γscatt =
γk
2

s

1 + s+ 4∆2

γ2
k

, (4.9)

where γk is the natural linewidth of the |k〉 state and s is the saturation parameter defined

by s =
2Ω2

kg

γ2
k

. According to the ab initio calculations performed by Prof. Robert Moszynski’s

team at the University of Warsaw [76], the natural linewidth of deeply bound 1u states is

on the order of 5 kHz, which is tiny compared to usual lattice frequency detuning at the

magic wavelength (∆m ∼ 1 GHz). Therefore the far detuned approximation is applicable for

a magic lattice trap, simplifying Equation 4.9 to be

Γscatt ≈
γkΩ

2
L

4∆2
= 4f2

m

γk
Ω2
k

, (4.10)

where ∆m is given by Equation 4.7.

The natural linewidth originates from the limited lifetime due to spontaneous emissions.

The |k〉 state can decay to many different states |i〉. The sum of the coupling between the

dipole moments dki and the vacuum determines the spontaneous decay rate [25]

γk =
∑
i

4α

3e2c2
ω3
ki|dki|2, (4.11)

where α ∼ 1/137 is the fine structure constant, c is the speed of light in vacuum and e is

the electron charge. With this expression for the natural linewidth, Equation 4.7 can be

rewritten as
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Γscatt =

(
32αε0~2f2

m

3e2cI

)
ω3
gk

∑
i ω

3
ki|dki|2

ω3
kg|dkg|2

(4.12)

Note that the Rabi frequency Ω2
gk ≡

|dgk|2I
2ε0c~2

is adopted, where I is the laser light intensity

and ε0 is the permittivity of free space. Equation 4.12 has a striking implication. The off-

resonant scattering rate is inversely-proportional to the frequency-weighted branching ratio

of dipole moment squared (DMS). In other words, good lattice-driven transitions are the ones

that have a large branching ratio of transition strength.

In conclusion, a good lattice-driven transition should satisfy two qualifications. It should

possess a strong transition strength so that the Raman transition could be insensitive to the

instability in the lattice frequency. Also, it should have a large frequency-weighted DMS

branching ratio for suppressing the one-photon lattice scattering.

4.4 Power of magic lattice trapping

In this section, the consequences of a magic lattice are exhibited. First, with a magic lattice,

the clock transition linewidth can be narrowed down to sub-100 Hz level. Second, due to the

enhanced coherence time, population flopping between clock states, or Rabi oscillations, can

be observed.

In the demonstrations illustrated in this section, the lattice-driven transition X(6, 0) →

1u(24, 1) is applied on the X(−1, 0)→ X(6, 0) clock transition driven with a common detun-

ing 25 MHz from 0+
u (−4, 1). As exhibited in Figure 4.16, this transition has a good dipole

transition moment, which yields the curve slope of 1.8× 10−4. Also, this transition induces a

mild one-photon scattering rate of ∼1 Hz, according to ab initio calculations on 1u lifetimes

and branching ratios. With this scattering rate, a Raman linewidth of 1 Hz and a clock
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lifetime of > 150 ms are expected.

4.4.1 Sub-100 Hz narrow line

According to the derivation in Section 3.2, the behavior of a two-photon Raman transition

is equivalent to that of a one-photon transition. In a Raman transition from |g1〉 → |g2〉 via

a virtual state |e〉, the first laser connects |g1〉 to |e〉 with detuning ∆ and the second laser

connects |g2〉 to |e〉 with detuning ∆. The transition strength of this Raman transition is

given by the effective Rabi frequency Ωeff

Ωeff =
Ω1Ω2

2∆
, (4.13)

where Ω1 and Ω2 are the one-photon Rabi frequency of the first and second laser, respectively.

Furthermore, the effective laser intensity is defined with first laser intensity I1 and second

laser intensity I2 as

Ieff =
√
I1I2 (4.14)

With this definition, the effective Rabi frequency is proportional to the effective lattice in-

tensity Ωeff ∝ Ieff . This is slightly different from its counterpart of one-photon transition,

where the Rabi frequency is proportional to the square root of laser intensity.

Due to the analogy to a one-photon transition, the lineshape of a two-photon Raman tran-

sition can be described by a Lorentzian profile with a full width at half maximum (FWHM)

of
√
γ2 + Ω2

eff , where γ here is the asymptotic linewidth probed with zero laser power. Note

that it is not strictly equivalent to the natural linewidth. Systematic loss mechanisms such

as lattice scattering, two-body collision, etc. are included in this parameter. As described in
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the previous section, the first-leading loss mechanism is expected to be the lattice scattering,

which would limit the asymptotic linewidth to be on the order of 1 Hz. When the effective

Rabi frequency is large compared to the asymptotic linewidth, it dominates the FWHM of

the two-photon transition, leading to the fact that the FWHM acts proportionally to the

effective power. This is the so-called power broadening regime.

Figure 4.17 demonstrates the dependence on effective intensity of a two-photon Raman

transition linewidth. In this measurement, the Raman probe laser beam waist is fixed to be

150 µm. The fact that the linewidth shows a linear dependence on effective power indicates

the asymptotic linewidth is narrower than what has been probed. Figure 4.18 exhibits a

narrow clock transition linewidth of 32 Hz taken with an effective power of ∼20 nW.

Figure 4.17: Examination of asymptotic linewidth of a two-photon Raman transition. The

fact that the linewidth shows a linear dependence on effective power indicates the asymptotic

linewidth is narrower than what has been probed.
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Figure 4.18: A narrow lineshape of a two-photon Raman transition. This trace exhibits a

32 Hz linewidth, which is the record of our lab as of 2019. The fact that the linewidth still

shows linear dependence on effective power indicates the asymptotic linewidth is narrower

than what we could have probed. At zero frequency offset, the actual detuning on the first

Raman laser frequency is -4.554,936(1) MHz.

There is an important technical note to mention for this measurement, which is the

method to crank down the probe powers. Since the usual power meters are not reliable at

the nW level, weak powers can’t be directly measured faithfully. A more precise alternative

method to control weak laser powers is to use calibrated neutral-density (ND) filters. To

do that, the ND filters are initially calibrated at high power. The exact attenuation can be

well-calibrated by measuring the powers with and without an ND filter. Since the attenuation

is fairly insensitive to power, the calibrated ND filters can be used to precisely control weak

laser powers.
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4.4.2 Rabi oscillation across the molecular potential

In this section I discuss the realization of Rabi oscillations in the molecular clock. In an ideal

two-level system with |1〉 and |2〉 states, there is no population loss. When this system is

driven on resonance, the optical Bloch equations that describe the system are

˙ρ11 = 2Ωρ12

˙ρ22 = −2Ωρ12

˙ρ12 = −iΩ
2

(ρ22 − ρ11),

where Ω is the Rabi frequency. Assuming ρ11 = 1 and ρ22 = 0, the optical Bloch equations

have analytic solution

ρ11(t) = cos2 Ωt

2

ρ22(t) = sin2 Ωt

2
(4.15)

Detailed discussions on the analytic description of Rabi oscillations can be found in references

[26,27]. Equations 4.15 indicates that the population oscillates with a frequency of Ω between

two states. This is the so-called Rabi oscillations. This phenomenon has been demonstrated

in a wide variety of systems [10,28–30].

With the technique of magic lattice, the coherence time of our molecular clock has been

dramatically enhanced. The enhanced coherence, together with the fact the lifetime of the

clock states is as long as a million years, makes the Raman transition between clock states

essentially a light-coupled two-level system, which enables the observation of Rabi oscillations.

The Rabi oscillation in the molecular clock is unique in the sense that it is quantum state

flopping across almost an entire ground potential well. The entire ground state potential is 30
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THz deep and the flopping between states that are over 20 THz apart has been achieved. The

same technique can be applied to achieve flopping between any pair of states and the Rabi

oscillation between the least and the most deeply bound states is undoubtedly achievable.

There are several important notes for realizing Rabi oscillations in the molecular clock.

� Firstly, the lattice trap has to be as magic as possible to maintain the coherence. To

achieve great coherence, one should use the narrowest possible lineshape to determine

the magic frequency.

� Secondly, low lattice power is strongly favored in order to observe high quality Rabi

oscillations. As Chapter 6 demonstrates, although a magic lattice drastically enhances

the coherence, an excessive population loss is still present. This is actually quite surpris-

ing and unexpected. Further researches have concluded that this loss originates from

the background noise of the lattice laser, therefore running the lattice at low power can

alleviate the loss effect. In addition to low lattice power, the background noise of the

lattice laser should be attenuated with a diffraction grating and a spectrum clean-up

cavity. These will be discussed in Chapter 5.

� Thirdly, the two-photon Rabi frequency should be chosen properly. If it is too small,

then the flopping rate is slow, which makes observing the Rabi oscillations difficult.

On the other hand, if the Rabi frequency is too large, the Raman lasers could result

in unwanted loss mechanisms. For instance, in the example that I will demonstrate,

the first Raman laser connects X(−1, 0) and 0+
u (−4, 1) with 25 MHz detuning. The

X(−1, 0) → 0+
u (−4, 1) transition has a large Franck-Condon factor. Therefore, if ex-

cessive power is dumped into this Raman leg, an unwanted heating on the X(−1, 0)

molecules is induced and thus the coherence time is limited. This point will be revised
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in Chapter 6.

� Fourthly, the Raman laser powers should be at the balanced power ratio. As I will

discuss in Sec 5.2, the balanced power ratio is the ratio between Raman laser powers

that eliminates the systematic light shift induced by the Raman lasers. Typically weak

Raman lasers are required to precisely determine the magic frequency. However, to

keep the Rabi frequency in the proper range, larger Raman laser powers are necessary.

Therefore, if the Raman powers don’t follow the balanced power ratio, the magic fre-

quency determined with low Raman power wouldn’t be accurate for high Raman power,

which leads to undesirable decoherence.

� Last but not least, all sources of decoherence should be properly taken care of. This

including stabilizing the Raman probe powers and maintaining the frequency stability

transfer. These technical issues will be detailed in Chapter 5.

Figure 4.19 demonstrates Rabi oscillations between X(−1, 0) and X(6, 0) states. The

clock transition is driven with a detuning of 25 MHz from 0+
u (−4, 1) and the effective Rabi

frequency is 500 Hz. To achieve the magic trap, the X(6, 0) polarizability is modified with

the lattice-driven transition to 1u(24, 1) state. In order to reduce the loss due to lattice

laser noise, the lattice was running with 110 mW. Also, a diffraction grating and a spectral

clean-up cavity are in place.

As demonstrated in Figure 4.19, a few cycles of population flopping have been achieved.

This is exciting but there are also some worrisome observations. First, even with a well-

determined magic lattice frequency, the molecular lifetime is only 30 ms, which is a lot

shorter than what was expected. Besides, the trace shows a limited coherence time of 10 ms.

The culprit to the coherence time issue has been to be the frequency comb locking quality.
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Figure 4.19: Rabi oscillations between X(−1, 0) and X(6, 0). The energy separa-

tion between these two states is ∼25 THz. The trace is fit to a function form

A exp(−t/Tl) [1 + exp(−t/Tc) cos(ωt+ φ)], which suggests an overall molecular lifetime of

26 ms and a coherence time of 12 ms. The fitted Rabi frequency is 410(1)Hz. Error bars are

not shown because each point is an average of only two experimental realizations.

By stabilizing the repetition rate with a stronger beat note, the issue with coherence time

is alleviated. However, the issue with limited clock state lifetime is a lot more puzzling.

Further investigations have suggested that the issue may arise from the background noise in

the lattice laser spectrum. This topic will be explored in Chapter 6.
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Discussion on the Rabi oscillation fit function

In the Rabi oscillations just presented, we have seen that, albeit with a magic lattice trap,

a non-negligible population loss and a limited coherence time are still present. To incorporate

these observations, the model of state flopping requires a slight adjustment. First, to reflect

the limited clock state lifetime, decay terms (labeled in red) need to be included in the optical

Bloch equations.

˙ρ11 = Ωρ12

˙ρ22 = −Ωρ12 − Γρ22

˙ρ12 = −iΩ
2

(ρ22 − ρ11)− Γ

2
ρ12,

where Γ is the population loss rate from the clock state that is connected by the lattice light.

This set of optical Bloch equations yields an analytic solution

ρ11(t) =
1

4Ω′2
e

−Γt
2

(
Γ sin

Ω′t

2
+ 2Ω′ cos

Ω′t

2

)2

(4.16)

ρ22(t) =
4Ω2

Ω′2
e

−Γt
2 sin2 Ω′t

2
(4.17)

where Ω′ =
√

Ω2 − Γ2/4. Assuming Γ � Ω, in which case a few flopping cycles could occur

before the molecules die out, the population that we detect, i.e. ρ11, approximates to

ρ11(t) ≈ 1

2
e

−Γt
2 [1 + cos(Ωt)] (4.18)

To model the decoherence, two approaches are provided below. The first method is the

heuristic model, which is adapted for the Nature Physics publication and the second method

is a newer model that explains decoherence from the aspect of spatial nonuniformity in Raman

lasers.
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1. Heuristic model

In this model, the decoherence is explained by spontaneous emission from the clock state.

Let’s consider an extreme situation where the population on |2〉 decays only to |1〉. In this

situation, the optical Bloch equations are described by

˙ρ11 = Ωρ12 + Γcρ22

˙ρ22 = −Ωρ12 − Γcρ22

˙ρ12 = −iΩ
2

(ρ22 − ρ11)− Γc
2
ρ12

This set of equations can be solved analytically with solutions

ρ11(t) =
1

2

[
1 + e−

3t
4Γc cos(Ωt)

]
(4.19)

ρ22(t) =
1

2

[
1− e−

3t
4Γc cos(Ωt)

]
(4.20)

Note that the above solutions are obtained with initial conditions ρ11(0) = 1 and ρ22(0) = 0.

Now, what about the situation where a population loss and decoherence are both present?

In this case the optical Bloch equations are

˙ρ11 = Ωρ12 + Γcρ22

˙ρ22 = −Ωρ12 − (Γl + Γc)ρ22

˙ρ12 = −iΩ
2

(ρ22 − ρ11)− Γl + Γc
2

ρ12,

where Γl represents the population loss and Γc reflects the decoherence. Unfortunately,

this set of equations cannot be solved analytically but close scrutiny on Equations 4.18

and 4.19 reveals a heuristic guess. In the situation where only population loss is present,

the exponential decay factor appears before the parenthesis. In the situation where only
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decoherence exists, however, the exponential decay factor appears before the oscillatory cosine

term. Based on this it is reasonable to guess the solution for ρ11(t) should have the following

form.

ρ11(t) = Ae
−Γlt

2

[
1 + e

−3Γct
4 cos(Ωt)

]
, (4.21)

where A is a proper coefficient. Note that this function form is the one that was used for the

Nature Physics publication and it is also the fitting function adopted in Figure 4.19.

2. Raman lasers’ spatial nonuniformity

Another approach is to consider decoherence from the aspect of the nonuniformity in Raman

laser intensities. A laser with a nonuniform intensity leads to a Rabi frequency gradient seen

by the molecules. Due to the geometry of the lattice trap, it is reasonable to model the Rabi

frequency as Ω(r) = Ω0 + δΩ(r), where r is the radial distance from the center of molecule

cloud. Since the Raman laser beam size is usually a few times larger than the cloud size, we

can only keep the first leading term of δΩ(r). In consequence, the cos(Ωt) term in Equation

4.18 approximates to

cos [(Ω0 + δΩ(r))t] ≈ cos(Ω0t) cos(δΩ(r)t) ≈ cos(Ω0t)

[
1− (δΩ(r)t)2

2

]
(4.22)

Since the Rabi frequency is now spatial dependent, the population on |1〉 is therefore the

ensemble average of molecules

ρ11(t) =

∫
D

1

2
e

−Γt
2 [1 + cos(Ωt)]n(r)d2r

≈ 1

2
e

−Γt
2

[
1 + cos(Ω0t)

[
1− t2

∫
D

(δΩ(r))2

2
n(r)d2r

]
︸ ︷︷ ︸

≈cos(Γct)

]
,
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where n(r) is the normalized spatial density of the molecules that satisfies
∫
D n(r)d2r = 1 and

Γc ≡
[∫
D(δΩ(r))2n(r)d2r

]0.5
is the coherence rate. In short, modeling the Rabi frequency

distribution the population we detect is

ρ11(t) =
1

2
e

−Γt
2 [1 + cos(Γct) cos(Ω0t)] (4.23)

To compare this model with the heuristic approach, one can apply the approximation cosx ∼

e−x
2/2 for small x to replace cos( t

Γc
) and obtain

ρ11(t) =
1

2
e

−Γt
2

[
1 + e

−(Γct)
2

2 cos(Ω0t)

]
(4.24)

Figure 4.20 demonstrates the fitting result with Equation 4.24.

Figure 4.20: Rabi oscillations that is fit to Equation 4.24. The fit suggests an overall molecule

lifetime of 18 ms, a coherence time of 15 ms and Rabi frequency of 410(1) Hz. The trace is

the same as in Figure 4.19.
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Figure 4.21 compares the fits with two models we just discussed. The fitted Rabi frequency

and coherence time are quite consistent in both models while the discrepancy in molecule

lifetime is larger than that in the coherence time. In the heuristic model the lifetime is 26 ms

whereas in the intensity model it is 18 ms. Simply by looking at the trace, the lifetime of 18

ms seems to be more reasonable. Indeed, the intensity model yields better fitting statistics

with the R square exceeding 0.99.

Figure 4.21: Comparison of two fitting models for Rabi oscillations
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Chapter 5

Molecular clock stabilization and

systematics

Great frequency stability and high controllability of the experimental system need to be

ensured to perform high-quality precision measurements and reduce systematics. In this

chapter I discuss the experiment upgrades that we have implemented in the past few years.

These upgrades have enhanced the stability of the experiments and enabled the measurements

of systematics. At the end of this chapter, I will also discuss some leading contributions for

systematics, from which binding energy of deeply bound ground states can be precisely-

determined.

5.1 Experimental system stability

The experiment upgrades that have implemented mainly fall into three categories. First, the

stability of the master laser has been greatly enhanced. This was achieved by improving the

temperature feedback system for the ULE cavity. Second, endeavors have been put to reduce

the background noise of the lattice laser spectrum. The attempts include implementing a

diffraction grating and a spectral clean-up cavity. Lastly, the stability of the probe lasers has
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been improved by reducing optical fiber noise and stabilizing the laser intensities.

5.1.1 Master laser temperature stabilization

As described in Chapter 2, the frequency reference in our experiment is provided by the master

laser which frequency is stabilized to a ULE cavity. Over the past decade, the stability of

the master laser has been sufficient for our purpose, but for molecular clock experiments it

turns out that this stability is not enough. The stability limit in the master laser frequency

comes from the temperature control of the ULE cavity. Ever since the cavity was built, the

temperature controller has only allowed for one way feedback; the cavity could only be heated

up whereas it could not be cooled down. To maintain the cavity at a stable (or semi-stable)

temperature, the set point was about three °C higher than the lab temperature. As the cavity

temperature dropped below the set point, the heaters attached to the cavity were engaged to

raise it up. However, when the cavity temperature was higher than the set point, no feedback

servo could bring it down so it had to rely on natural dissipation for the temperature to drop

down.

This temperature instability leads to the cavity frequency instability. For a ULE cavity,

the fractional stability of the resonant frequency f is related to the fractional cavity length

L stability by

δf

f
= −δL

L
(5.1)

Moreover, the fractional length stability is given by [34,35]

δL

L
= a/2(T − T0)2 + b/3(T − T0)3 (5.2)

where T0 is the zero-crossing temperature and a and b are parameters related to the cavity’s
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coefficient of thermal expansion (CTE) α.

α(T ) = a(T − T0) + b(T − T0)2, (5.3)

where the linear coefficient a is typically around 2× 10−9 K−2 and the quadratic coefficient

b is typically around −1× 10−11 K−3 [34].

Given the dependence of CTE on the temperature, the drawback of a one-way servo is

clear. First, the frequency stability is vulnerable to lab temperature fluctuations. The lab

temperature feedback is not always stable. When the lab temperature control breaks down,

the lab temperature spikes, which would push up the ULE cavity temperature. Due to the

lack of cooling function, the rise in cavity temperature cannot be compensated and would thus

lead to huge frequency drifts. Second, the cavity couldn’t be stabilized at the zero-crossing

temperature. Suggested by Equation 5.2, the fractional frequency stability is minimized

at the zero-crossing temperature T0. However, it has been realized that the zero-crossing

temperature of our ULE cavity is lower than the lab temperature set point by around 2 °C.

This means the cavity couldn’t be run at the zero-crossing temperature unless the cooling

function on the cavity temperature servo was implemented.

There are several ways to implement the cooling function. It can be as straightforward

as to open the vacuum chamber and attach a TEC element to the cavity. However, it is

a bit risky in that such intrusive movement could ruin the vacuum and damage the cavity.

Alternatively, we adopted a milder way, which was to place several TEC’s underneath the

vacuum system to cool the whole chamber. Figure 5.1 presents the implementation of TEC’s.

To sufficiently cool the vacuum system, eight TEC’s are arranged into a configuration where

four pairs of TEC’s in series are connected in parallel, as shown in (a). This configuration

makes the best use of the output power of the PTC10 controller, the temperature controller
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provided by Stanford Research Systems. The TEC system is servo-ed by a spare PTC10

output channel for PID feedback. To ensure even thermal distribution, the TEC’s are placed

symmetrically underneath the vacuum system, as demonstrated in (b).

Figure 5.1: Design of the TEC system for cooling the ULE cavity’s vacuum system. (a) Eight

TEC’s are placed in the configuration where four pairs of TEC’s in series are connected

in parallel. (b) To ensure even thermal distribution, the TEC’s are placed symmetrically

underneath the vacuum system. The dotted orange circle denotes the size of the vacuum

chamber. A black rubber plate is utilized to protect the TEC’s from being crashed by the

vacuum chamber.
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Besides adopting the optimal TEC layout, proper thermal sensors layout and efficient heat

dissipation are also critical for achieving efficient thermal control. To ensure correct temper-

ature reading, four TH10K thermistors from Thorlabs are placed equally spaced around

the bottom of the vacuum chamber, as shown in Figure 5.2(a). These four thermistors are

connected in parallel to perform average temperature reading. By doing this way, the local

thermal fluctuations can be averaged out so that the temperature reading can be more precise

and reliable.

Figure 5.2: (a) To correctly measure the temperature, four thermistors are equally-spaced

placed around the vacuum chamber (labeled in red, only two thermistors are plotted for sim-

plicity). The thermistors are connected in parallel to average out local thermal fluctuations.

Adapted and edited from [16] (b) For efficient heat dissipation, the TEC system is placed on

an aluminum plate on which a fan and a bunch of heat sinks are placed to speed up heat

dissipation.
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Due to the large thermal capacity of the vacuum chamber, it is necessary to have efficient

heat dissipation. We were not aware of this at our first attempt when we simply had the

TEC’s in direct contact with the optical table. However, it turned out that the optical

table is not efficient at dissipating heat as we expected. As a result of the inefficient heat

dissipation, a lot of heat was accumulated underneath the vacuum chamber, which prevented

the temperature from dropping down to the sweet spot. To resolve this issue, we applied

thermal paste on both sides of the TEC’s and have the TEC system sandwiched by two layers

of aluminum plates. Also, on a bottom layer of the aluminum plate a fan and a bunch of

heat sinks are placed to speed up heat dissipation, as shown in Figure 5.2(b).

With the cooling function implemented, the ULE cavity temperature can be stabilized

at the zero-crossing temperature. Figure 5.3 exhibits the fractional frequency stability of
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Figure 5.3: The frequency comb repetition rate is measured at each cavity temperature.

Fitting the curve to Equation 5.2 yields the zero-crossing temperature of 22.18(5)°C and

CTE coefficients a = 1.20(6)× 10−9 K−2 and b = −4(4)× 10−11 K−3.
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master laser as a function of cavity temperature. The frequency is measured with the fre-

quency comb. At each temperature, the frequency comb repetition rate is stabilized to the

master laser. Because the same comb tooth was used every time, the fractional stability of the

master laser is consistent with that of the repetition rate. By fitting the curve with Equa-

tion 5.2, it yields yields the zero-crossing temperature of 22.18(5)°C and CTE coefficients

a = 1.20(6)× 10−9 K−2 and b = −4(4)× 10−11 K−3.

Figure 5.4 compares the master laser stability with and without the cooling function. The

upper trace is the comb repetition rate recorded by the counter when the master laser cavity
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Figure 5.4: Stabilizing the ULE cavity at zero-crossing temperature greatly enhances the

frequency stability of the master laser. The frequency comb repetition rate is recorded by

the comb internal counter. Upper/bottom trace is taken without/with the cooling function.
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is not at the zero-crossing temperature and the bottom trace is taken with the zero-crossing

temperature. Stabilizing the ULE cavity at the zero-crossing temperature drastically en-

hances the average master laser frequency stability by an order of magnitude. However, due

to the thermal delay time, the issue with reference frequency instability is not fully resolved.

Figure 5.5 demonstrates a strong correlation between ULE cavity temperature servo output

and the clock transition frequency. To achieve even better reference laser stability, a ULE

cavity with faster temperature control feedback is necessary. In our experiment, the next

generation of frequency reference will be provided by a Fabry-Perot cavity by Stable Laser

Systems, which not only allows a well-designed temperature servo but also a linewidth of 1

Hz.
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Figure 5.5: Running the ULE cavity at the zero-crossing temperature has stabilized the

reference frequency by an order of magnitude. However, the issue with reference frequency

instability is still not fully solved due to the thermal delay time. Here a strong correlation

between (a) the cavity temperature servo output and (b) the clock transition frequency offset

is demonstrated. Here the frequency offset is relative to the transition frequency measured

at 0 s.
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5.1.2 Lattice transmission grating

Because the lattice light is a key factor for the molecular clock precision, its spectrum purity

is of critical importance. Actually, our recent investigations have suggested that the impurity

of the lattice light has attributed to the short lifetime of the clock states. In the following

two sections I will discuss our attempts to clean the lattice light spectrum.

As discussed in Chapter 2, our lattice laser is generated from an external-cavity diode

laser and is amplified by a tapered amplifier (TA). A TA is an economical way to gener-

ate high laser power but it has its own drawback. As the TA is pumped by a seed light,

the luminescence from spontaneous emission light can be optically amplified to high power

level, producing the amplified spontaneous emission (ASE) [36–39]. This unwanted noise is

problematic in our experiment. Usually, the spectrum of ASE spans over 10 THz, which

can potentially cover a few deeply bound excited states and thus contribute to unwanted

photon scatterings. As illustrated in Figure 5.6, as the lattice trap is tuned to magic via a

1u

≈
Figure 5.6: The wide spectrum of the ASE can cover a few deeply bound 1u states. This

leads to unwanted scatters and limitations on the clock state lifetime.
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lattice-driven transition, the nearby states would cause unwanted scatters on the clock states.

To clean up the ASE noise, our first attempt is to install a transmission grating. The

grating we chose is the model T-1850-915s-3210-93 provided by LightSmyth Technologies.

This grating has a line density of d = 1850 lines/mm and allows diffraction efficiency of

> 90% in an incident light wavelength range of (865 nm, 965 nm). Figure 5.7 depicts the

schematics of how this grating works. As laser light incidents on the transmission grating,

all diffracted orders appear on the other side of the grating. For simplicity, only the 0th and

1st orders are shown.

Figure 5.7: Schematics for a transmission grating. As laser light incidents on the transmission

grating, all diffracted orders appear on the other side of the grating. The incidence angle θi

and diffracted angle of the 1st order beam θ1 is defined according to the norm vector of the

grating surface.
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As the transmission grating is blazed, the diffraction on a laser with wavelength λ is

described by

d(sin θi + sin θn) = nλ, (5.4)

where θi is the incidence angle and θn is the diffraction angle for the n-th order. The grating

is designed to work in the Littrow configuration where the +1st order is maximized. In other

words, when the diffraction efficiency is maximized, we have θi = θ1. Plugging this into

Equation 5.4 and using d = 1/1850 mm and λ = 919 nm, we obtain θ1 ≈ 58.2 degrees. Now

let’s estimate how much spread in wavelength the transmission grating can filter out. After

the beam is diffracted out, it takes a distance for the spectrum to spread out. Typically in

our experiment the diffracted beam travels by a distance of 80 cm before being coupled into

a single-mode optical fiber. Moreover, a pinhole is placed at the front of the fiber coupler to

block the unwanted spread-out spectrum. A conservative estimate assumes a spatial range of

1 mm that can go through the pinhole and the fiber coupler. These lead to a selective angle

range of ∆θ = 1 mm / 80 cm ≈ 1.3× 10−3 radians. By differentiating the grating equation,

this implies a selective wavelength range of

∆λ = d cos θ1∆θ1 ≈ 0.37 nm. (5.5)

Note that as the diffraction efficiency is maximized, the incidence angle is no longer changed

and therefore only sin θ1 term contributes when differentiating the grating equation. This

result implies that the transmission grating can filter out ±0.18 nm of ASE noise relative

to the carrier peak by spreading out the diffracted beam by a half meter. For λ = 919 nm,

this corresponds to ±64 GHz. Figure 5.8 shows the effects of the transmission grating on the
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lattice light spectrum.

Figure 5.8: With the transmission grating installed, the lattice light spectrum is greatly

cleaned up. In this demonstration, a lattice light of λ = 919 nm is diffracted by the grating.

After a beam travel distance of 80 cm the diffracted beam passes through a pin hole and

gets coupled into a single-mode optical fiber. The laser spectrum is measured with an optical

spectrum analyzer. In (a) the grating is not installed and a ASE noise that spans 50 nm

wide is observed. In (b) a recovered data from (a) is shown. This is a trace extracted

from the image because the original data is corrupted. (c) The spectrum measured with the

transmission grating installed. (d) zoom in of (c).
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Figure 5.9: A zoom-in look of the spectrum cleaned by the transmission grating. The sup-

pression threshold of the ASE noise is observed to be ∼ ±20 GHz.

As demonstrated in Figure 5.9, the suppression threshold of the ASE noise is observed

to be ∼ ±20 GHz. This is helpful in reducing the scattering rate. The vibrational level

spacing in the bottom region of 1u potential is ∼ 3 THz, which means, with the suppression

from the grating, only the scattering due to the lattice-driven transition state will remain. A

demonstration of how much installing the transmission grating could enhance the clock state

lifetime is presented in Chapter 6. Although installing a grating alleviates the scattering

issue, totally eliminating it requires a lot more effort. As we see from Chapter 4, the magic

frequency is typically ∼ 1.5 GHz away from the resonances, therefore using a grating to

completely suppress this scattering would require an impractically long beam travel distance.

This leads to the necessity of a spectral clean-up cavity.

105



5.1.3 Lattice spectral clean-up cavity

To suppress the scattering from the lattice-driven transition resonance, a Fabry-Perot cavity

is implemented to clean the lattice spectrum. The cavity is constructed with two spherical

mirrors from CVI Laser Optics and standard optics components from Thorlabs. The mirrors

used for the cavity are the model PR1-920-98-0537 which has a curvature radius of 0.2 m,

reflectivity of 98%, and clear face diameter of 0.5 inches. Due to the mirror geometry, the

cavity is designed in the confocal configuration, which schematic is shown in Figure 5.10.

Note that the cavity doesn’t have to be in the confocal design and actually the concentric

design should work even better. We chose these mirrors simply because not many choices

that allow high reflectivity were available in the market.

Figure 5.10: The clean-up cavity is designed in the confocal configuration where two identical

curved mirrors with large radius of curvature face each other.

To lock the cavity length, one of the mirror is glued to a ring piezoelectric actuator,

shown in Figure 5.11(a) and (b). The other mirror is placed in a half-inch tube which allows

adjustable cavity length, shown in Figure 5.11(c) and (d).
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Figure 5.11: The spectral clean-up cavity consists of two spherical mirrors. One is glued to

a ring piezo to lock the cavity length and the other one is placed in a tube, which allows

adjustable cavity length. (a) side view and (b) top view of the mirror with piezo. (c) The

overall setup of the cavity. (d) The cavity is usually covered with a piece of protective black

paper.

For the work described in this thesis, the cavity length is set to be L ∼ 5.7 cm, which

corresponds to a free-spectral range (FSR) of

FSR =
c

2L
= 2.6 GHz (5.6)

The finesse of the cavity is determined by the circulating power loss after one round trip. In

our cavity, the mirror reflectivity is 98%, which leads to a ρ ≈4% loss per round trip. As a

result, the finesse of the cavity can be determined as
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F =
π

1−√ρ ≈ 155 (5.7)

An FSR of 2.6 GHz and finesse of 155 indicate that the FWHM of the cavity resonance is

about 17 MHz. With this finesse and resonance linewidth, the cavity should suppress the

scatterings from all lattice-driven transitions. In Chapter 6, I will examine how much the

clean-up cavity would help with the lifetime issue.

Besides the design of the cavity itself, the locking system and beam mode-matching are

also important. The cavity is locked with the Pound-Drever-Hall (PDH) technique, which

schematic is depicted in Figure 5.12. The diffracted beam from the transmission grating

is phase modulated by a 30.3 MHz homemade electro-optic modulator (EOM) before being

Figure 5.12: Schematic of PDH lock for the clean-up cavity. Beam mode-matching optics is

omitted.
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coupled into the optical fiber. The cavity is placed after the fiber where the beam quality is

excellent and coupling into the TM00 Gaussian mode is easily achieved.

Last but not least important is the beam mode-matching. Good mode-matching is critical

for obtaining efficient cavity coupling. In the experiments described in this thesis, the mode-

matching optics is placed between the output optical fiber and the cavity. The beam coming

out from the fiber coupler is collimated and has a beam waist of 1.45 mm. Right after the fiber

coupler a convex lens with focal length 100 mm and a concave lens with focal length −50 mm

shrink the beam waist at the center of the clean-up cavity to 140 µm. The mode-matching

optics system is depicted in Figure 5.13.

Figure 5.13: Mode-matching lens system for the clean-up cavity. This lens system is placed

right after the fiber coupler and before the PHD lock system. The optics for PDH lock is

omitted for simplicity.

Note that the clean-up cavity can be placed before and after the fiber. It had been placed

after the fiber simply because of space consideration. Actually, in the latest version of the

experiment, the cavity has been relocated before the fiber, where the fiber coupling can help

suppress transverse modes generated from the cavity.
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5.1.4 Fiber noise cancellation

High stability of frequency reference is crucial in clock experiments. In our experiment, the

fundamental frequency stability limit is subject to the master laser, which resonance has an

intrinsic δf ∼ 150 Hz linewidth. A benefit of Λ-type Raman spectroscopy is its resistance to

reference frequency instability. Assume Raman laser wavelengths of λ1 and λ2, the effective

frequency instability Λ-type Raman spectroscopy is

∣∣λ1 − λ2

λ2

|δf (5.8)

In our usual two-photon spectroscopy, Raman laser wavelengths are 689 nm and 651 nm.

These correspond to a frequency drift of ∼ 10 Hz. Ideally, in the pursuit of high-precision

measurements, this reference instability is the leading order precision limitation.

A critical criterion that validates the above statement is that no phase noise is induced as

the light is distributed. In our experiment, the laser light production, the frequency comb,

and the science vacuum chamber are spread over different optical tables. To distribute the

frequency stability across the experiment, the frequency reference needs to be transferred

from one optical table to another. A polarization-maintaining single-mode optical fiber is an

ideal transmission medium for this task. However, this is also where the noise comes in. The

light phase in optical fibers is sensitive to environmental noise, such as mechanical pressure,

acoustic noise, local temperature gradient, etc. [40]. As laser light travels through an optical

fiber, these environmental noises causes fluctuations in the index of refraction of the fiber and

thus broaden the laser light spectrum. The resulting phase noise is typically on the order of

100 Hz to 1 kHz, therefore the noise on every metrologically important fiber must be actively

compensated with the fiber noise cancellation technique that was first demonstrated in [41].
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The environmental perturbation on the index of refraction of the fiber affects the optical

fiber length (OPL). These noises are local and time-dependent

OPL =

∫
S
n(r, t)dr, (5.9)

where n(r, t) is the index of refraction of the fiber and S denotes the fiber path [42]. Equation

5.9 leads to a phase shift on the laser that travels through the fiber

ϕ(t) = 2π
OPL

λ
, (5.10)

where λ is the laser wavelength.

In order to cancel the fiber noise, a fraction of the transmitted light is retro-reflected

back into the fiber and beat with a fraction of the non-transmitted light. Assuming the

back-reflected light experiences the same OPL, the fiber-induced phase noise written on the

laser after a round trip is then 2ϕ(t). Note that this assumption is valid only for short fibers.

In our experiment, all metrologically important fibers are shorter than 10 m, which implies

a travel time of (10m)× 1.5

c
≈ 50 ns, given a typical index of refraction 1.5 for optical fibers.

This travel time is a lot shorter than the time scale of lab noises, which is usually on the

order of ∼ 50 ms. Thus it is reasonable to assume the OPL stays constant as the light travels

through the fiber.

The beat note detection between the back-reflected and non-transmitted beams is per-

formed with the self heterodyne measurement [43]. A self heterodyne measurement is usually

utilized to measure single-frequency laser linewidth. It typically involves a long optical fiber

and an AOM. First the laser is split into two beams. One of the beams is sent through the

fiber and frequency modulated by an AOM. Both beams are combined onto a photodiode
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which records the beat note. Due to the time delay resulted from the long fiber, the trans-

mitted beam becomes independent from the non-transmitted beam, therefore the beat note

between these two beams reveals the linewidth of the laser. In the heterodyne measurement

performed for the fiber noise, however, the situation is a bit different. The optical fibers used

in the experiment are short so that the delay time is almost negligible compared to the laser

coherence time. As a result, the beat note observed doesn’t represent the laser linewidth but

reflects the fiber-induced noise.

Figure 5.14(a) depicts the optics for our fiber noise cancellation. The beams are split

from an AOM that is driven by a voltage-controlled oscillator (VCO) at fAOM = 80 MHz.

The +1st order light is coupled into an optical fiber and ∼ 10% of the transmitted light

is back-reflected into the fiber. On the other hand, the 0th order output from the AOM

forms the non-transmitted light and is fully reflected back to the AOM. From the second

pass through the AOM, the 0th order of the back-reflected transmitted beam and the -1st

order of the non-transmitted beam are beat with each other, which beat note is detected by

a fast photodiode. After the whole process, the transmitted beam acquires a frequency shift

of fAOM + 2ϕ(t) and the non-transmitted beam acquires a phase of −fAOM. Upon beating

these two beams, the beat note is 2fAOM + 2ϕ(t).

Figure 5.14(b) shows the locking scheme. To extract the fiber noise, the beat note is

mixed with a 2fAOM RF signal generated by a direct digital synthesizer (DDS). The DDS is

the 409B model by Novatech and it is referenced to a Rb atomic clock that has a frequency

instability of 10−12. Since the frequency variance in the DDS is negligible compared to the

scale of fiber noise, the mixed signal is simply 2ϕ(t). This DC error is then fed into a PI

circuit which output modulates the VCO frequency to compensate the fiber noise. Figure

5.15 illustrates the comparison of the power spectral density (PSD) with and without the
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fiber noise cancellation.
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Figure 5.14: The setup for fiber noise cancellation. In (a) the optics for fiber noise cancellation

is demonstrated. The fiber noise is probed with a self heterodyne measurement. The beat

note between the transmitted and non-transmitted beams recorded by the photodetector

(PD) is 2fAOM + 2ϕ(t). In (b) the lock design is shown. The beat note recorded by the PD

is mixed with a strict DDS frequency to extract the fiber noise 2ϕ(t). The nearly DC signal

is taken by the PI circuits which output modulates the VCO frequency to cancel the fiber

noise.
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4.2 Fiber Noise Cancellation and Intensity Stabilization

In order to integrate intensity stabilization into the same setup, the VCO output is
followed by a voltage controlled variable attenuator. The fiber output power is monitored
by branching off a small portion of the light using a beam sampler and detected with
a photodiode. To lock the intensity, we use a commercial servo box (Newport, Model
LB1005-S).

4.2.2 Evaluation of Cancellation Performance
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Figure 4.10: PSD of the out of loop beat note for FNC and the unlocked system. The
left figure is a high resolution scan of the peak. The servo bandwidth is
∼80 kHz, as indicated by the black line.

To evaluate the locking performance, we could simply use the in-loop photodiode
signal. However, a much cleaner test consists of directly comparing the light before and
after the fiber with an additional detector.
To do this, the fiber is simply wound in a circle and the output is recombined with the
light before the fiber on a beam splitter. This way, only a single fiber pass is probed and
the resulting beat note has a width determined exactly by the noise introduced in the
fiber.
Figure 4.10 shows the beat note for both the unlocked and locked system. For tests of
the unlocked system we use a DDS to drive the AOM, since the unlocked VCO output
has a width of several kHz. The PSD clearly shows a great reduction of the noise in the
kHz range and exhibits a servo bandwidth of 80 kHz. The central peak of the locked
system is limited by the resolution bandwidth of the spectrum analyzer (10 Hz).
To see how good the noise suppression works for a particular frequency, one can induce
excess acoustic noise on purpose and measure the response of the lock. To do that, a
simple sine tone is played on a speaker placed near the optical table. A sound pressure
level of 80 dB corresponds to a modulation depth of β∼0.2 and the response function of

29

Figure 5.15: Power spectral density (PSD) with and without the fiber noise cancellation.

It is important to note that, with the fiber noise cancellation installed in the system,

the probe beam shutter has to be arranged differently. Since AOM’s allow nanosecond rise

time, it is an ideal component for a shutter that precisely controls the laser pulse time. In

the situation without the fiber noise cancellation, the spectroscopy tuning AOM served the

role of the laser shutter. However, with the fiber noise cancellation implemented, the shutter

AOM needs to be relocated because continuously interrupting the laser would ruin the fiber

noise lock. To achieve this, an extra shutter AOM is placed after the output fiber coupler,

as shown in Figure 5.14. The AOM is driven by a constant 210 MHz RF and the +1st order

output beam goes into the experiment. Due to the additional AOM, the resulting frequency

shifts have to be carefully taken into account when calculating the binding energies. An

example will be demonstrated in Section 5.2.3.
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5.1.5 Probe power stabilization

Aside from frequency stability, probe laser intensity stability also plays a critical role in

achieving good coherence. For a two-photon Raman transition, the effective Rabi frequency

is given by Equation 4.13, which indicates the Rabi frequency is proportional to the square

root of the multiplication of laser intensity from each of the Raman beams. Straightforward

error propagation implies that the probe laser intensity instability contributes to the Rabi

frequency instability by

δΩeff

Ωeff
=

1√
2

δP

P
, (5.11)

where P is the Raman laser power and it is assumed that the intensity stability is identical

for both Raman lasers. For instance, a ∼10% fluctuation in the probe laser intensity leads

to ∼7% temporal fluctuation in the Rabi frequency.

The phase of Rabi oscillations comes from the time integral of the Rabi frequency so the

accumulative Rabi frequency fluctuation results in a phase noise that limits the coherence

time. With a fluctuating Rabi frequency Ω(t) = Ω0+δΩ(t), the corresponding Rabi oscillation

is

state population ∝ cos2(

∫ t

0
(Ω0 + δΩ(τ)) dτ) (5.12)

The dephasing caused by Rabi frequency fluctuation can be demonstrated with a toy model

where the fluctuation is treated as a Gaussian process. Assuming a fractional Rabi frequency

stability of κ, the dimensionless parameter η(t) ≡ δΩ(t)
Ω0

denotes the Gaussian process and is

expressed as
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η(t) = N (0, κ) (5.13)

In this model, the Rabi oscillation can be written as

state population ∝ cos2

[
Ω0

(
t+

∫ t

0
η(τ)dτ

)]
(5.14)

It can be shown that the accumulative phase noise term is a Gaussian random variable

∫ t

0
η(τ)dτ = N (0, κt) (5.15)

The dephasing time is defined by the time duration at which the standard deviation of the

accumulative phase noise reaches 2π. In other words,

Tdephasing ≡
2π

κΩ0
(5.16)

For Rabi oscillations with Ω0 = 1 kHz, a κ = 7% fractional stability leads to 90 ms dephasing

time.

Besides instantaneous stability, laser intensities also suffer from long-term drift. Along

the way from where laser light is generated to the science chamber, there are many things

that need to be maintained in high quality to prevent drifts in laser intensities. These include

laser mode, phase locking stability, fiber coupling efficiency, etc. Without active stabilization,

a 20% drift in laser intensity in the course of 2 hours is likely to happen. This amount of

intensity drift would shift the transition resonance and ruin the clock measurements. As I

will discuss in Section 5.2.1, the light shift induced by Raman probe lasers is
Ω2
p

4∆
, where Ωp

is the one-photon Rabi frequency and ∆ is the common detuning in the Raman spectroscopy.

So, how much resonance shift would the probe intensity drift lead to? Let’s assume a narrow
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Raman transition with a linewidth of 50 Hz that is driven with ∆ = 25 MHz. To achieve

Ωeff = 50 Hz, the Rabi frequency from each of the Raman lasers have to be

Ωp =
√

2∆Ωeff =
√

2× 25 MHz× 50 Hz = 50 kHz,

assuming equal Rabi frequency between Raman probe lasers. A 20% intensity drift in one of

the laser beams would lead to a 0.2× (50 kHz)2

4× 25 MHz
= 5 Hz systematic light shift. Therefore,

an uncontrolled Raman laser intensity would not only result in dephasing in Rabi oscillations,

but also contribute to a non-negligible systematic error in clock measurements.

Laser intensity stabilization is vital to avoid these scenarios. Figure 5.16 illustrates the

scheme for active intensity stabilization. Stable laser intensity is accomplished by engaging

feedback on the amplitude of the RF signal that drives the spectroscopy AOM. After the

optical fiber, a small fraction of probe laser is picked off and detected by a fast photodetec-

tor (PD). The intensity reading from the PD, IPD, is sent to a high-speed servo controller

(LB1005-S by Newport) where it is coupled to an adjustable internal reference, Iref, that de-

termines the intensity lock set point. To stabilize the intensity, the coupled signal Iref − IPD

is fed into a voltage variable attenuator (ZX73-2500-S+ by Mini-Circuits) which controls the

RF amplitude. When IPD = Iref a constant attenuation is applied on the RF amplitude

so that the intensity is stable. While IPD > Iref the attenuator reduces the RF amplitude

more to compensate for the intensity variance and vice versa. With this stabilization scheme,

the fractional instability of Raman probe laser intensities has been reduced to less than 1%.

Moreover, since the stabilized intensity is controlled by the servo box’s internal reference, the

long-term intensity drift has also been eliminated.
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Figure 5.16: Schematic of probe laser intensity stabilization. A small fraction of probe laser

is detected by a photodetector (PD). The intensity reading from the PD is coupled to an

adjustable reference in the servo box to generate an error signal. According to the error

signal, the variable attenuator adjusts the RF attenuation to compensate for the intensity

variance.

5.2 Clock systematic effects

With these stabilization schemes implemented, the experimental system has been much better

controlled, which has enabled the measurements of clock systematics. In this section, I mainly

discuss the systematic effect from Raman probe intensities and briefly touch the effect of

molecule collisions.

5.2.1 Probe laser intensities

The Stark shift due to Raman probe lasers is a major source of systematic bias [44,45]. In a

Λ-type Raman transition described in Figure 3.5, the light shifts induced by the probe beams

can be eliminated when the probe intensities are at the balanced ratio, at which the Rabi
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frequencies of both Raman beams are equal, i.e. Ω1 = Ω2.

This can be understood intuitively. Assume a Raman transition with probe lasers red-

detuned from the virtual state. In the measurements described in this section we keep the

second Raman laser frequency constant while tuning the first Raman laser frequency to probe

the light shifts. When the first Raman laser intensity increases, the induced light shift low-

ers the energy of the initial clock state |g1〉, shown in Figure 5.17(a). Therefore the first

Raman laser frequency needs to be larger in order to compensate for this light shift and

maintain the resonance. Similarly, when the second Raman laser intensity increases, the

induced light shift lowers the energy of the final clock state |g2〉, shown in Figure 5.17(b). To

compensate for the light shift, the first Raman laser frequency has to be smaller. Here comes

࣓૚࣓૛|ࢍ૚⟩|ࢍ૛⟩

⟨ࢋ|
࣓૚࣓૛|ࢍ૚⟩|ࢍ૛⟩

⟨ࢋ|
(b)(a)

Figure 5.17: Illustration of schematic bias due to probe beam AC Stark shift. If the second

Raman laser frequency ω2 remains fixed, (a) the laser frequency ω1 needs to be larger in

order to compensate for the light shift induced by a stronger first Raman laser. Similarly, (a)

the laser frequency ω1 needs to be smaller in order to compensate for the light shift induced

by a stronger second Raman laser.
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the interesting conclusion. Because the light shift direction is opposite and that the shift is

proportional to Rabi frequency square, the light shifts from both lasers are canceled out if

the Rabi frequencies are matched.

When the Rabi frequencies are matched, it indicates that the probe beam intensities

ratio is the inverse of the DMS ratio. This is because Rabi frequency, by definition, is

proportional to the multiplication of dipole moment and electric field amplitude. In other

words, Ω ∝ (d×E), where d is the dipole moment and E is electric field amplitude. Adopting

the definition of laser intensity from Equation 2.8, when Ω1 = Ω2, we have

d1

√
I1 = d2

√
I2, (5.17)

Hence,

I1

I2
=
d2

2

d2
1

(5.18)

Figure 5.18 demonstrates the probe beam light shift at different intensity ratios. In

this measurement, the Raman transition is formed by |g1〉 = X(−1, 0), |g2〉 = X(+6, 0)

and |e〉 = 0+
u (−4, 1), in which setup the DMS ratio is

d(|g1〉 , e)2

d(|g2〉 , e)2
= R0. The light shift

is measured with high and low probe intensities while fixing the probe intensity ratio at

0.5R0, R0 and 2R0. As demonstrated, the light shift is consistent with zero when the probe

intensity ratio is equal to R0.

Since the balanced probe intensity is directly linked to Raman transition DMS’s, precise

understanding in transition strengths is critical for eliminating the probe beam light shift.

In Chapter 7, methods for precisely measuring transition strengths will be explored.
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Figure 5.18: Demonstration of probe beam light shift at different intensity ratios. The light

shift is measured with high and low probe intensity while keeping the intensity ratio at several

regime. At the probe intensity ratio where the individual Rabi frequencies are equal, the light

shift is consistent with zero. Adapted from [9].

5.2.2 Collisional frequency shifts

Apart from Raman probe beam light shift, the collisional frequency shift is another systematic

uncertainty that we have investigated. It’s been demonstrated in many types of experiments

that collisions would lead to density dependent frequency shifts [46–50].

To probe the collisional shift, the narrow clock transition frequency is recorded with dif-

ferent molecular density, shown in Figure 5.19 and the molecular density is varied by tuning

the blue MOT loading time. In this measurement, the loading time is varied between 400

ms to 5,000 ms and the molecular density is represented by the recovery signal strength. As

demonstrated, the resolved resonance frequency doesn’t have obvious dependence on molec-

ular density, which indicates that the molecular clock accuracy is not limited by collisions

under current precision.
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Figure 5.19: Demonstration of collisional frequency shift in the molecular clock. The clock

transition frequency is measured with a variety of molecular density. In this measurement,

the molecular densities is controlled by the blue MOT loading time.

5.2.3 Determination of the X(6, 0) state binding energy

In this section, I demonstrate the calculation of binding energy of X(6, 0) state from the

X(−1, 0) → X(6, 0) clock transition. This analysis is based on the 30 Hz clock transition

lineshape shown in Section 4.4.1, where the Raman probe intensities are controlled at the

balanced ratio. The logic in this calculation is universal to all the other ground states. To

perform binding energy calculations, one must keep the following points in mind.

122



� The lattice-induced light shift must be eliminated. This can be accomplished either by

extrapolating the spectroscopic resonance frequency to zero lattice power or with the

magic lattice trap technique. Due to the enormous polarizability difference, a magic

lattice is strongly preferred when probing binding energies of deeply bound states via

two-photon spectroscopy.

� All the other systematics must be carefully coped with. In this section, the two-photon

spectroscopy is obtained with the balanced probe power intensities, which eliminates

the probe beam Stark effect.

� All frequency shifters must be included in the calculation. Along the beam paths, a lot of

frequency shifts take place for a variety of reasons, including spectroscopic tuning, laser

beam shutters, fiber noise cancellations, etc. Everything should be properly included

to achieve accurate calculations.

5.2.3.1 Metrology system

To carry out the calculations, the metrology system has to be explained in detail. As pre-

viously elaborated, the frequency stability is set by the master laser. All the probe lasers

are stabilized to the master laser in different ways. First, the first Raman laser (689 nm)

is directly phase-locked to the master laser, shown in Figure 5.20. When driving the clock

transition, the phase lock beat note is set to be fb1 = f1−fmaster = −712.4 MHz. To perform

spectroscopic sweep, the laser beam undergoes a double pass system which takes {-1st,-1st}

orders from an AOM driven by a (210 MHz + det1) frequency. According to Figure 4.18, an

overall frequency detuning det1 = −4.554, 936(1) MHz is applied at the transition resonance.

Moreover, the fiber noise cancellation and the laser beam shutter AOM’s lead to a shift of

+80 MHz and +210 MHz respectively on the laser frequency.
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Figure 5.20: Schematic of first Raman laser lock system.

To reference the frequency comb stability to the master laser, a fraction of the master

laser light is led to the frequency comb table via an optical fiber to stabilize the com repeti-

tion rate. Before the fiber coupler a fiber noise cancellation system is set up, which leads to

a +80 MHz frequency shift, shown in Figure 5.21.
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frequency comb

Figure 5.21: Schematic of frequency comb repetition rate stabilization with the master laser.
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The second Raman laser (651 nm) is stabilized to the frequency comb. The lock system

for the second Raman laser is pretty similar to that for the first Raman laser with only some

tiny differences. First, the sweeping AOM is centered at 80 MHz and the double pass scheme

takes {+1st,+1st} orders. Second, the fiber noise cancellation AOM is centered at 210 MHz.

Last, the wavelength meter measures the laser wavelength right before the fiber coupling.

A schematic for the second Raman laser lock is shown in Figure 5.22. Note that at the

resonance, an frequency detuning det2 = −13.4 MHz is applied on the spectroscopy AOM.

phase lock to
frequency comb

double-pass 
AOM

fiber noise
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shutter
AOM ଶ݂௠௢௟௘௖௨௟௘ଶ݂

+210 MHz +210 MHz+2 × 80 MHz
+ detଶ

wavelength meter

Figure 5.22: Schematic of second Raman laser lock system.

5.2.3.2 Binding energy relative to the X(−1, 0) state

With the metrology system elaborated, the binding energy calculation becomes straightfor-

ward. First, let’s back out the number of comb tooth Nmaster that is used for stabilizing

the repetition rate. The master laser frequency is determined by the 1S0 → 3P1 atomic

transition, which is λmaster = 689.449, 2 nm read by the wavelength meter. Also, when the

clock transition spectroscopy is taken, the repetition rate recorded by the frequency comb

internal counter is fRR = 250, 011, 945.69(2) Hz and the CEO frequency fCEO is locked on

the negative side, corresponding to the case in Figure 2.3(b). Note that to lock the repetition

rate, the locking scheme with 1×CEO frequency subtracted is adopted, which means the beat

note between the master laser and the Nmaster-th comb tooth is
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(fmaster + 80MHz)− fNmaster = fCEO + 40 MHz (5.19)

In other words,

(
c

λmaster
+ 80 MHz

)
− (NmasterfRR − 2fCEO) = 20 MHz + 40 MHz, (5.20)

which yields Nmaster = 1, 739, 233. Therefore we have the master laser frequency

fmaster = NmasterfRR − fCEO − 40 MHz (5.21)

The Raman laser frequencies seen by the molecules can also be determined in a straight-

forward manner. According to Figure 5.20, the first Raman laser frequency f1 is determined

by f1 − fmaster = −712.4 MHz. The frequency the molecules see is the one undergoes the

seris of frequency shifts

fmolecule1 = f1 − 2× 210 MHz + det1 + 80 MHz + 210MHz

= fmaster − 712.4 MHz− 2× 210 MHz + det1 + 80 MHz + 210MHz

= NmasterfRR − fCEO − 886.954, 936(1) MHz (5.22)

To determine the second Raman laser frequency, we need to back out the number of comb

tooth to which the second Raman laser is locked. The wavelength meter reads the second

Raman laser wavelength to be 651.8625 nm. According to Figure 5.22, we can set up the

equation for comb tooth number
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(
c

λsecond
− 210 MHz− 160 MHz− det2

)
− (NsecondfRR − 2fCEO) = +fCEO, (5.23)

which yields Nsecond = 1, 839, 516. Note that the positive sign on the right hand side of

Equation 5.23 comes from the fact that fCEO is locked on the negative side. Therefore, the

second Raman laser frequency f2 can be determined as

f2 = NsecondfRR − fCEO (5.24)

and the frequency that the molecules see is

fmolecule2 = NsecondfRR − fCEO + 160 MHz + 210 MHz + 210 MHz + det2

= NsecondfRR − fCEO + 566.6 MHz (5.25)

The relative binding energy between the clock states, namely X(−1, 0) and X(6, 0), can

then be calculated as

relative B.E. = fmolecule2 − fmolecule1

= (Nsecond −Nmaster) fRR + 566.6 MHz + 886.954, 936(1) MHz

= 25.073, 401, 504(2) THz (5.26)

5.2.3.3 Absolute binding energy

The absolute binding energy of X(6, 0) state can be backed out by adding the binding energy

of X(−1, 0) state to the relative energy. So far, the most accurate measurement of X(−1, 0)
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binding energy is 136.644,7(50) MHz [14], therefore the absolute binding energy of X(6, 0)

can be calculated to be

X(6,0) binding energy = 25.073, 401, 504(2) THz + 136.644, 7(5) MHz

= 25.073, 538, 149(2) THz (5.27)

Although eventually the precision on absolute binding energies will be constrained by the

benchmark state, precise relative binding energies are sufficient to serve the purpose of the

molecular clock.
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Chapter 6

Unexpected limits on clock state

lifetime

In Chapter 4 I demonstrate Rabi oscillations between a shallow and a deeply bound ground

state. With a magic lattice trap, the inhomogeneous effect is eliminated, which increases the

coherence time by three orders of magnitude. However, a unexpectedly short lifetime that

is only ∼10 ms is observed for the clock states. In this chapter I explore the reasons behind

this anomalous lifetime puzzle.

Let’s first elaborate on how direct measurement of ground state lifetime is carried out.

For shallow ground states, the measurement is straightforward. After the molecules are pop-

ulated on a certain ground state, a duration of wait time is applied before the molecules

are recovered into atoms and counted. Therefore, the molecule lifetime can be backed out

by fitting the molecule recovery curve as a function of the wait time. The time sequence

of this measurement is demonstrated in Figure 6.1. For deeply bound ground states, the

scenario is more complicated. Because directly populating molecules on a deeply bound state

is difficult, transferring them from a shallow ground state is (so far) the only way to pro-

duce deeply bound molecules. Also, since the bound-to-free coupling is too weak for deeply
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bound ground states, direct recovery is not practical, therefore it requires transferring deeply

bound molecules back to a shallow state to count the molecule number. As a result of these

X
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lattice trapping
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wait time

Figure 6.1: Time sequence for shallow ground state lifetime measurements. The lifetime of a

shallow ground state can be backed out by varying the wait time inserted between molecule

production and recovery. Note that a wiping pulse is applied after the photoassociation (PA)

pulse to clean up leftover atoms. This pulse is not shown for simplicity.

limitations, several things have to be taken care of in order to perform accurate measurements

on deeply bound ground state lifetime. First, a good signal noise (S/N) ratio has to be

ensured. Due to the complexity of state transfer, the signal in this kind of experiment is

typically very weak. To compensate for the poor signal, an extra atom loading time is

usually required. A typical loading time used for carrying out ground state lifetime is 800 µs

for shallow states and 5 s for deeply bound states. Second, the molecules left on the initial

ground state have to be properly cleaned up. Due to the limited state transfer efficiency,

a small fraction of molecules are left on the initial state after the transfer. If the leftover
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molecules are not cleaned up, the lifetime measurements will be contaminated. A typical way

to accomplish the cleanup is to shine a pulse in which the recovery light and the strong cycling

461 nm 1P1 transition light are both on. The recovery pulse breaks the leftover molecules

into atoms and the 461 nm light wipes out the atoms. Usually, a wipe pulse of 800 µs is

sufficient for a complete wipe out but one should always confirm no residual molecules are

left before carrying out the measurement. The time sequence for deeply bound ground state

lifetime measurement is demonstrated in Figure 6.2.
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Figure 6.2: Time sequence for deeply bound ground state lifetime measurements. The situ-

ation is more complicated than measuring the shallow ground state lifetime. Population of

deeply bound molecules relies on a state transfer process. To prevent the leftover molecules

from disturbing the measurements, a wipe pulse consisting of the recovery light and the 461

nm 1P1 transition light is applied to clean them up. The wait time is defined from the end

of wipe pulse to the beginning of the second state transfer pulse. Note that another wiping

pulse is applied right after the photoassociation (PA) pulse to clean up leftover atoms. This

pulse is not shown for simplicity.
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6.1 Ground state decay models

In this section I discuss the ground state decay mechanisms. The loss mechanisms discussed

in this chapter are categorized into the one-body type and the two-body type.

6.1.1 One-body loss

In a 1D lattice trap, there are usually a few molecules trapped in one lattice site. Let’s first

consider the situation where multi-body interactions are weak and negligible. This approxi-

mation is usually enough to explain most of the ground state decays. Under this approxima-

tion, the molecule decay originates from one-body mechanisms, including molecule natural

decay, molecule-light interactions and background gas collisions. Note that the background

gas collision is categorized as an one-body mechanism because it doesn’t involve interactions

between molecules in the lattice [52]. The decay of molecules in the lattice trap can be

described by the differential equation

ρ̇ = −
(

Γ0 + Γc +
∑
k

Γ(ωk)

)
ρ, (6.1)

where ρ represents the local density of molecules in the lattice and Γ0,Γc, and Γ(ωk) denote

the decay rate due to natural lifetime, background collisions and molecule interaction with

laser k, respectively. Integrating Equation 6.1 yields

Ṅ = −
(

Γ0 + Γc +
∑
k

Γ(ωk)

)
N, (6.2)

where N is the total number of molecules in the lattice trap. Equation 6.2 has the solution

N(t) described by
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N(t) = exp

[
−
(

Γ0 + Γc +
∑
k

Γ(ωk)

)
t

]
N(0), (6.3)

Not all decay mechanisms considered in Equation 6.3 contribute equally. Let’s discuss

the contributions from each mechanism.

� First, the natural decay is so slow that it can be neglected in the work discussed in this

thesis. According to ab initio calculations, the natural lifetime of ground states is over

a million years and thus it is reasonable to neglect its contributions to the decay rate.

� Second, the decay due to molecule-light interaction depends on the laser frequency and

intensity. The light scattering rate is described by Equation 4.9

Γ(ωk) =
γkΩ

2
k

γ2
k + 2Ω2

k + 4(ωk − ω0)2
,

where γk is the natural lifetime of the excited state to which the laser k addresses

and ω0 is the resonant transition frequency. The contribution from the light scattering

dominates the molecular decay when the laser intensity is large or the laser frequency

is close to a transition resonance. In the context of the molecular clock, the two-photon

Raman clock transition is formed by two lasers that are detuned from the virtual state.

If the Raman lasers are too close to the virtual state, the one-photon scattering will

limit the clock state lifetime. However, if they are too far away from the virtual state,

the effective Rabi frequency would be too small, which makes it hard to observe high-

quality Rabi oscillations. Fortunately, the one-photon scattering rate decreases with

1
∆2 while the effective Rabi frequency scales with 1

∆ . It is therefore possible to find

a proper ∆ so that the effective Rabi frequency is not too small and also the Raman

probe laser scattering is well suppressed. In this thesis, the typical virtual state for the
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clock transition is 0+
u (−4, 1) state, which has natural linewidth γ ∼30 kHz. Assuming

driving Rabi oscillations with balanced probe Rabi frequency of 150 kHz and detuning

∆ = 25 MHz, the effective Rabi frequency is ∼ 230 Hz. Under these conditions the

Raman probe laser scattering is ∼ (30 kHz)×(150 kHz)2

4×(25 MHz)2 = 0.27 Hz, corresponding to a

lifetime of ∼0.6 s, which satisfies the requirement pretty well.

� Third, the molecule lifetime is capped by the background gas collisions [55]. The

optical lattice is implemented in a vacuum of 10−9 Torr, corresponding to a gas den-

sity of 107 cm−3. Because of the lattice trap depth is typically ∼50 µK, the elastic

collisions between trapped the ultra-cold molecules and the residual hot gas trans-

fer enough momentum to kick out the trapped molecules from the trap. In a vacuum
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Figure 6.3: The background limited lifetime is measured with the time-of-flight method.

The trace is fit to a double decay model, which suggests the hot atoms escape from the

trap in 6.5(9) ms ant that the cold atoms can stay trapped for 2.2(6) s.
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of 10−9 Torr, the background limited lifetime is on the order of a few seconds [53, 54].

In Figure 6.3, the background limited lifetime of our optical lattice is characterized.

Note that in this measurement, it is the decay of trapped atoms that is measured but

the loss mechanism and the decay timescale of atoms are similar to those of molecules.

In Figure 6.3, the data is fit to a double exponential decay model. It is because the

lattice initially traps a group of hot atoms which escapes from the trap quickly. For

the colder atoms that we care about, they can stay in the trap for as long as 2.2(6) s.

6.1.2 Two-body inelastic collisional loss

In the one-body loss model, it is assumed that no collision between trapped molecules is

present. However, in the situation where multiple molecules are trapped in the same lattice

sites, the collisional effect has to be taken into account. To model the decay rate, an additional

collisional term is added to the loss differential equation [52,54].

ρ̇ = −
(

Γ0 + Γc +
∑
k

Γ(ωk)

)
ρ− βρ2, (6.4)

where β is the collisional parameter. Integrating Equation 6.4 yields

Ṅ(t) = −
(

Γ0 + Γc +
∑
k

Γ(ωk)

)
N(t)− β

∫
V
ρ(r, t)2d3r, (6.5)

With the assumption of constant molecule temperature, Equation 6.5 can be solved by

N(t) =
N(0) exp(−Γt)

1 +
N(0)κ

Γ
[1− exp(−Γt)]

, (6.6)

where κ is a parameter depending on effective lattice site volume and Γ = Γ0 +Γc+
∑

k Γ(ωk)

is the one-body decay rate [56].
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6.2 Shallow ground state lifetime

In this section I discuss the lifetime measurements for the two shallowest ground states. These

measurements are well described by the two-body collisional loss mechanism and suggest a

molecular lifetime of ∼100 ms.

6.2.1 X(−1, 0) state lifetime measurement

Figure 6.4 demonstrates the lifetime measurement of X(−1, 0) state. In this measurement,

around 7000 X(−1, 0) molecules are produced and spread over ∼700 lattice sites. With this
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Figure 6.4: Measurement of X(−1, 0) state lifetime clearly suggests a two-body loss mecha-

nism which yields a 1/e lifetime of ∼100 ms. The lifetime can be longer if less molecules are

produced in the optical lattice.
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lattice density, a two-body collisional lifetime of ∼100 ms is observed. To reduce the shot-

to-shot noise, each point on the trace is obtained from averaging five consecutive shots. This

lifetime is a lot longer than that observed in the clock experiments so it can be concluded

that the collisional loss is not the culprit of the short lifetime issue.

6.2.2 X(−2, 0) state lifetime measurement

Figure 6.5 demonstrates the lifetime measurement of X(−2, 0) state. The lifetime of this

state is dominated by the two-body collisional loss and a very similar 1/e lifetime of ∼100

ms is observed. This trace is taken under the same condition as Figure 6.4.
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Figure 6.5: Measurement of X(−2, 0) state lifetime clearly suggests a two-body loss mecha-

nism which yields a 1/e lifetime of ∼100 ms. The lifetime can be longer if less molecules are

produced in the optical lattice.
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6.2.3 Scattering from Raman lasers

In this section I examine the scatterings due to Raman probe beams. From this discussion,

the natural linewidth of the Raman virtual state can be backed out. As previously elaborated,

recent theoretical calculations have suggested a natural linewidth for shallow 0u states be in

the range of 12 ∼ 30 kHz. Given linewidth on this level, in a Raman spectroscopy where the

common detuning ∆ ∼ 25 MHz the clock state lifetime limit due to probe scatterings is on

the order of 600 ms. To verify this estimation, an experimental test of linewidth is carried

out.

Figure 6.6 illustrated the measurement of X(−1, 0) state lifetime versus probe power.

In this measurement, a bound-to-bound laser is detuned from the X(−1, 0) → 0+
u (−4, 1)

transition by 25 MHz and the ground state lifetime is measured at a variety of bound-to-

bound laser power. The bound-to-bound laser has beam size of π(80.9 × 97.4) µm2 at the

molecular cloud. As demonstrated, the scattering exhibits a clear linear dependence on the

bound-to-bound power, which corroborates the scattering formula.

Under the conditions that ∆ � γ and ∆ � Ω, the scattering rate described by Equa-

tion 4.9 can be approximated to Γ ≈ γΩ2

4∆2
. The natural linewidth of the 0+

u (−4, 1) state

can be obtained from this relation because, by definition, the Rabi frequency squared is

Ω2 =
DMS × E2

h2
=
DMS × 2I

h2ε0c
, where the laser intensity I is related to the electric field by

I = 1
2ε0cE

2. With techniques discussed in Chapter 7, the DMS for X(−1, 0) → 0+
u (−4, 1)

transition is precisely measured to be 1.97 × 10−3 (ea0)2. Therefore the natural linewidth

can be directly deduced from the slope obtained from fitting the scattering as a function of

bound-to-bound power. In Figure 6.6 the fitted slope is 0.35(4) Hz/µW, which results in a

natural linewidth of 44(4) kHz. Note that this method of linewidth fitting can be improved
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Figure 6.6: Scattering rates on the X(−1, 0) molecules are measured with various bound-

to-bound laser power. In this measurement, the bound-to-bound laser is detuned from the

0+
u (−4, 1) state by 25 MHz, which is the usual setting for the Raman spectroscopy discussed

in this thesis. At each bound-to-bound laser power, the scattering rate is deduced from a

single exponential fit. The scattering rate has a clear linear dependence on bound-to-bound

power, which agrees with the scattering theory with large detuning. The fitted slope of the

dependency is 0.35(4) Hz/µW. Molecule decay traces are shown for two extreme case. In (a)

the bound-to-bound power is 27.8 µW and the trace is well described by the one-body loss

model. In (b) no bound-to-bound power is applied and the decay trace is characterized by

the two-body loss model.

139



by plotting the scattering rate as a function of Rabi frequency, in which way the uncertainties

in the DMS and the beam size measurements can be avoided. So far, the most accurate

linewidth measurement for this state was obtained with a direct depletion spectroscopy in a

magic trap, which yields 23(1) kHz [14]. The fact that the measured linewidth value has the

same order of magnitude as the theory prediction precludes the possibility that the Raman

probe scattering is the leading factor accounting for the short clock lifetime.

6.3 Deeply bound ground state lifetime

In the previous section, the possibility that the shallow clock state results in the lifetime

problem is precluded, therefore the bottom clock state must be the culprit to this puzzle.

The loss mechanism is a bit more complex for the bottom state because there is an additional

light, the lattice light, that connects the state. Since the lattice light is detuned closely to

a resonance, it could lead to unwanted scattering. In this section, it will be proved that

the lattice light is very likely to be the reason that causes the short clock lifetime but,

unfortunately, the actual loss mechanism has not been fully clear. Although the problem

hasn’t been fully resolved, I will discuss the investigations that have been carried out so far

and hopefully these clues will help elucidate the perplexing mystery.

6.3.1 Theoretical prediction

Let’s first estimate the scattering rate due to the magic lattice light. According to the

latest theoretical prediction by Prof. Robert Moszynski’s team, the natural linewidth for the

1u(v′ ∼ 23, J ′ = 1) states is typically on the order of 5 kHz. Assume a lattice Rabi frequency

of 30 MHz, the one-photon scattering rate due to the lattice is
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Γlat. =
γΩ2

4∆2
=

5 kHz× (30 MHz)2

4∆2
, (6.7)

where ∆ is the lattice detuning from the lattice-driven transition resonance. As demonstrated

in Chapter 4, for the lattice to be magic for the clock transition, the lattice laser is typically

detuned from the resonance by ∼ 1.3 GHz. This yields a scattering rate of ∼ 4.2 /s, which

corresponds to a lifetime of ∼ 240 ms. Surely this scattering is too weak to explain the

lifetime issue but this estimation is based on several assumptions.

� First, it assumes the natural linewidth prediction is correct. The scattering rate is

proportional to linewidth and therefore a wrong linewidth would lead to an incorrect

scattering estimation.

� Second, it assumes only one-photon scattering is present. If there is other higher-order

loss mechanisms, the scattering rate would be underestimated.

� Third, it treats the lattice light as an ideal laser with zero linewidth. However, from

Section 5.1.2 we have seen that the lattice light has a huge messy background noise due

to the tapered amplifier. This background noise could scatter molecules and lead to a

shortened clock state lifetime.

6.3.2 Surprising experimental observations

Let’s first examine some measurements of deeply bound state lifetime, from which we can

have some clues on what is happening. In Figure 6.7, X(6, 0) state lifetime is measured as a

function of the lattice frequency. The lattice is detuned from the 1u(23, 1) state by a variety

of amounts while the lattice Rabi frequency is kept constant at 24 MHz. There are two

surprising findings in this measurement.
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� When the lattice is far from resonances, the lattice scattering is negligible and thus

the molecular lifetime is expected to be in the regime where two-body loss dominates.

However, it is observed that the molecular lifetime is capped at ∼ 50 ms, which is

shorter by a factor of two than the typical collision-limited lifetime demonstrated in

Figure 6.4 and 6.5.

� Suggested by Equation 6.7, the lattice-limited lifetime should get longer as the lattice

detuning increases. This trend is observed but the rate at which the lifetime increases

is way lower than what is expected. For example, at ∆ = 10 GHz, the observed lifetime

is ∼23 ms whereas the one-photon model predicts almost zero scattering.

The discrepancy in the saturated lifetime has been explained. It is actually due to the

background noise of the lattice laser. Although the lattice is detuned by a few hundred GHz

from all nearby resonances, the lattice ASE background, which spans over a few THz, can

still scatter the molecules. In Section 6.3.3, a test the collision-limited lifetime for the deeply

bound ground state will be demonstrated with the background cleaned by the transmission

grating. The slow rising of the lifetime, however, is more perplexing and the reason behind

it still remains unclear. A hidden TA noise structure near the carrier could explain this

observation but proving this hypothesis is challenging. Directly detecting this spectrum

structure requires 1 GHz resolution, which is technically difficult for an optical spectrum

analyzer. An alternative way around this is to put in a spectral clean-up cavity to suppress

the noise level. In Section 6.4.3.2, I will discuss the effects of the cavity on the lifetime.

Besides TA noise, a more complex loss mechanism, for instance a two-photon process, could

also cause a short clock state lifetime and this topic will be discussed in Section 6.4.2.
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Figure 6.7: X(6, 0) state lifetime is measured with the lattice laser frequency detuned from

the 1u(23, 1) state resonance by a variety of amounts. Throughout the experiment the lattice

power is fixed at 175 mW, which corresponds to a Rabi frequency of 24 MHz. The lattice

frequency is software-locked to the wavelength meter except for the magic frequency where

the lattice is phase-locked to the frequency comb. In (a) the lattice frequency is tuned in a

range of ±200 GHz across the resonance. The lifetime levels off at 50 ms as the lattice is

far-detuned from the resonance. In (b) a zoom in look reveals a very slow increase rate of

lifetime that is surprisingly contradictory to Equation 6.7. Two examples of X(6, 0) molecule

decay with (i) ∆ = −344 GHz and (ii) ∆ = +1.5 GHz (magic lattice) are demonstrated. The

traces are fitted to single-exponential one-body model.
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6.3.3 Inelastic collisional loss

Figure 6.8 demonstrates the two-body collision loss for the deeply bound X(6, 0) state. To

suppress the ASE noise scattering, the background noise is cleaned up with the transmission

grating. Note that in this measurement the spectral clean-up cavity is not in place and thus

the ASE noise within ±20 GHz around the carrier is not cleaned up, according to Figure 5.9.

To suppress the excessive loss, the lattice is detuned from the nearest 1u state by ∆ = 1 THz.

Since the lattice is non-magic for the clock transition, an efficient π-pulse to populate X(6, 0)
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Figure 6.8: Two-body collisional loss for deeply bound X(6, 0) state. The tapered amplifier

ASE noise is cleaned by the transmission grating. In this measurement, the lattice is detuned

from the nearest 1u state by ∆ = 1 THz. The decay trace is fitted to the two-body loss model

described by Equation 6.6, which yields a 1/e lifetime of 140 ms. The lifetime is longer than

that of shallow ground states because of lower molecular density.
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molecules is not tenable. To cope with this, a long Raman pulse, or called a dephasing pulse,

is applied to transfer the molecular states. As a result of the less efficient state transfer,

the X(6, 0) molecule density is lower than the initial molecular cloud, therefore the collision-

limited lifetime is expected to be longer than that demonstrated with shallow ground states.

This is corroborated in Figure 6.8 where a 1/e lifetime of 140 ms is observed.

6.3.4 Scattering from Raman lasers

In Section 6.2.3, I discuss the Raman probe scattering rate on the shallow clock state and

examined that the measured natural linewidth of the 0+
u (−5, 1) state agrees with the theo-

retical prediction. A beauty of Λ-type Raman transition is the symmetry between Raman

legs. At balanced Raman intensity, the Raman probe scattering rate on the deeply bound

clock state is essentially the same as that on the shallow state because both Raman legs

share the same virtual state. Therefore, in the situation where the first Raman laser doesn’t

cause problematic scattering, it is automatically guaranteed that the second Raman laser is

safe unless one or both Raman beams talk to the wrong clock state, via accidental nearby

resonances.

6.4 Possible solutions to the puzzle

Previously I discuss several possible reasons that would lead to the clock lifetime issue. They

include (a) incorrect natural linewidth prediction, (b) complex scattering mechanism and (c)

the tapered amplifier ASE noise. In this section I will elaborate on these points in more detail

and discuss our attempts to tackle them.
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6.4.1 Incorrect natural linewidth prediction

The first and most intuitive guess is that the theoretical predictions on deeply bound 1u state

natural linewidth are incorrect. Most recent 88Sr2 molecular model predicts linewidth of ∼5

kHz for 1u(∼ 24, 1) states. If the actual linewidth is broader, it will directly lead to a higher

scattering rate. How can we know something about the linewidth from the experiment? In

this section I present two methods for measuring the linewidth of deeply bound 1u states.

The first one is a direct measurement via the depletion spectroscopy and the second one

employ the clock state scattering curve.

6.4.1.1 Direct measurement of 1u state natural linewidth

The direct measurement of deeply bound 1u state linewidth is performed with depletion

spectroscopy on X(6, 0) state. Figure 6.9 demonstrates the measurement of 1u(24, 1) state

lifetime. To avoid power broadening, the 919 nm X(6, 0) → 1u(24, 1) depletion transition is

driven by a probe intensity of 7.6 mW/cm2. Furthermore, the measurements are performed

with a high and a low lattice power so that the natural linewidth can be deduced by extrap-

olating to zero power. This is necessary because making a magic lattice for this depletion

transition was beyond the capability of the experiment. Because the frequency band of 1054

nm is outside the frequency comb supercontinuum, the lattice can’t be stabilized to the comb

and thus making a magic lattice for clock transition is untenable.

As demonstrated, extrapolating to zero lattice power suggests a natural linewidth of

∼83 kHz for the 1u state. Although the lattice is non-magic for the depletion transition

(as corroborated by the non-zero differential light shift), lattice power extrapolation should

take out the effect from the inhomogeneous broadening and yield the natural linewidth.

However, there are several factors that make drawing a conclusion from this measurement
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difficult. First, since a magic trap is not tenable for this transition, the ground state transfer

is inefficient, leading to the restriction of poor S/N ratio for the experiment. Second, the

tunability of the lattice power is limited. For the 1054 nm lattice, the lowest power to

maintain sufficient trapping is around 150 mW. Due to this limited tuning range, interpreting

the measurements is difficult.

In the following section, I will demonstrate an alternative method that is not subject to

these technical limitations.
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Figure 6.9: Direct extrapolating measurement of 1u(24, 1) state lifetime with depletion spec-

troscopy. In this measurement, the lattice laser wavelength is 1054 nm. To avoid power

broadening, the 919 nm X(6, 0) → 1u(24, 1) depletion transition is driven by a probe power

of 200 nW, corresponding to an intensity of 7.6 mW/cm2. The depletion transition linewidth

(top) and frequency offset (bottom) are measured with a high and a low lattice power. Ex-

trapolating to zero lattice power suggests a natural linewidth of ∼83 kHz for 1u(24, 1) state.

Obtaining a reliable error bar requires more data points. The depletion traces for both high

and low lattice power are shown as labeled.
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6.4.1.2 Detuning dependence of scattering rate

Let’s recall that the off-resonant scattering rate reads Γ =
γΩ2

4∆2
, where γ is in the unit of Hz.

Also, a lifetime τ is related to the scattering rate Γ by the relation τ =
1

2πΓ
. Thus, while

keeping the Rabi frequency constant, the natural linewidth can be backed out by fitting the

lifetime as a function of detuning.

In Figure 6.10, the X(6, 0) state lifetime is measured with a variety of lattice frequency

near the 1u(26, 1) state resonance. Throughout the experiment, the lattice power is fixed at

165 mW, which corresponds to a Rabi frequency of 8.3 MHz. Note that this transition has a

DMS of 2.22 × 10−6 (ea0)2, which is obtained with techniques discussed in Chapter 7. The

-800 -600 -400 -200 0 200 400 600 800 1000

0

10

20

30

40

50

60

70

lif
et

im
e 

(m
s)

Post-Corrected Detuning from Resonance (MHz)

Figure 6.10: Lifetime of X(6, 0) molecule is measured with different lattice frequency near

the 1u(26, 1) state resonance. In this measurement both transmission grating and spectral

clean-up cavity are in place. The lattice Rabi frequency is kept constant at 8.3 MHz. The

data is fitted to τ = κ(∆ − ∆0)2, which yields a natural linewidth of 94(6) kHz for the

1u(26, 1) state. Dotted curve is calculated with the theoretical linewidth.
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data is fitted to a function form of

τ = κ(∆−∆0)2, (6.8)

where κ ≡ 2

πγΩ2
and ∆0 denote the scattering factor and frequency offset for the resonance,

respectively. As expected, the lifetime fits well to the parabolic function where a scattering

factor κ = 9.8(6)×10−5 ms/(MHz)2 is yielded. This scattering factor indicates a surprisingly

large linewidth of 94(6) kHz compared to 5 kHz predicted by the theory. Before jumping into

a conclusion, let’s examine the same measurements performed with other 1u states.

In Figure 6.11, the same measurements performed with 1u(7, 1) and 1u(24, 1) state reso-

nances are presented. Similar to the 1u(26, 1) resonance, the backed out lifetimes for these

two states are also very large. The linewidth for 1u(7, 1) and 1u(24, 1) states is 100(38) kHz

and 239(60) kHz respectively whereas the theoretical predictions are both below 3 kHz. All

these measurements suggest consistent observations of broad lifetime for deeply bound 1u

state, which implies the theory is very messed up. However, it is very unlikely that the

theory is so wrong. Several reasons includes:

� First, the theory predictions for the binding energies and DMS’s are both excellent.

An uncertainty of 10−5 in binding energy has been achieved for all found deeply bound

ground states and excited states. Also, as shown in Chapter 7, the DMS’s prediction

error is typically on the order of 20%. These indicate that both the number of decay

channels and the decay strengths are well characterized. Under this circumstance, the

natural linewidth predictions are unlikely to be off by over two orders of magnitude.

� Second, the natural linewidth for a weakly bound excited state has been examined

in Section 6.2.3, where the experimental value corroborates the theoretical prediction

within an order of magnitude. Intuitively, the natural linewidth of deeply bound states
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Figure 6.11: Lifetime of X(6, 0) molecule is measured with different lattice frequency near

the 1u(7, 1) and 1u(24, 1) state resonances. Both transmission grating and spectral clean-up

cavity are in place in these measurements. The lifetime curves are fitted to τ = κ(∆−∆0)2.

In (a) the data is taken with 1u(7, 1) state and the lattice Rabi frequency is kept constant at

8.9 MHz. The fitted linewidth is 100(38) kHz, where the large error bar comes from the poor

laser mode at this wavelength. In (b) the data is taken with 1u(24, 1) state and the lattice

Rabi frequency is kept constant at 24.1 MHz. The fitted linewidth is 239(60) kHz. Dotted

curves are calculated with theoretical linewidth.

should be even narrower than that of weakly bound states because of less efficient decay

channels and weaker decay strength. Weakly bound excited molecules can decay to a

number of weakly bound ground states whereas the number of efficient decay channels

for deeply bound excited molecules is significantly lower. Moreover, the decay strength

from deeply bound states is weaker because the states are further away from the atomic

threshold. Therefore, the natural linewidth of deeply bound 1u states is unlikely to be

as wide as a few hundred kHz.
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6.4.2 Accidental two-photon transitions

Another hypothesis for the excessive loss is a two-photon scattering into higher excited po-

tentials. As illustrated in Figure 6.12, with the lattice laser connecting X(6, 0) to 1u(24, 1),

two-photon processes from the laser light can scatter the X(6, 0) molecules into the continuum

of 1D potential. In this section I explore the possibility of this scattering mechanism.

6.4.2.1 Power dependence of scattering rate

An important signature of a two-photon process is the lattice power dependence of the scat-

tering rate. The effective Rabi frequency for a two-photon process is

Ωeff ∼
ΩX−1uΩ1u−1D

δ
, (6.9)

where δ is the laser detuning from the intermediate 1u state. The two-photon scattering

rate is proportional to the effective Rabi frequency squared and the density of states above

dissociation continuum [57].

Γtwo−photon =
π

2
Ω2
effD(f), (6.10)

where D(f) is the density of states in the continuum with energy f . Since the effective Rabi

frequency is proportional to the lattice power, if the two-photon process dominates the loss,

a scattering rate exhibiting a quadratic dependence on power should be observed. Figure

6.13 demonstrates a measurement showing a quadratic dependence of clock state lifetime

with lattice power. Actually this is the reason we ascribed the excessive molecule loss to

the two-photon scattering in the Nature Physics publication [9]. In this measurement, the

X(6, 0) molecule lifetime is measured with various lattice powers while the lattice frequency

is fixed at 1u(24, 1) state magic wavelength. Although a quadratic dependence of lifetime on
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Figure 6.12: Illustration of a two-photon scattering into higher excited potentials. Construct-

ing a magic lattice with 1u(24, 1) state, for example, leads to a two-photon into 1D potential

continuum by a dissociation energy of 760 cm−1, or 23 THz.

power seems to be clear in Figure 6.13, the conclusion about the two-photon scattering has

become suspicious for the following reasons.
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Figure 6.13: A suspicious quadratic dependence of scattering rate on lattice power. This data

is the Figure 3(c) in the Nature Physics publication [9]. Here the X(6, 0) molecule lifetime

is measured with various lattice power while keeping the lattice frequency at the 1u(24, 1)

state magic wavelength. This data set is suspicious because it is taken without cleaning up

the lattice ASE noise.

First, the main reason for that the existence of two-photon losses becomes suspicious is the

reproducibility of the experiment. At the time when data in Figure 6.13 was taken, we didn’t

realize the issues with tapered amplifier ASE noise so the data was taken without neither the

transmission grating nor the clean-up cavity. After the lattice spectrum is cleaned up, the

quadratic dependence has no longer been observed. Figure 6.14 demonstrates a more careful

measurement of X(6, 0) state with both the grating and the clean-up cavity installed. In this

measurement, the lifetime is measured with various 919 nm probe laser powers while the laser

is tuned near the X(6, 0)→ 1u(24, 1) transition resonance. As shown, an obvious linear power

dependence is present. Second, if the picture of two-photon losses is correct, a substantially

153



longer clock lifetime should be observed in the situations where two-photon decay channels are

closed. However, the measurements described in the next section contradict this hypothesis,

which casts more doubts on the existence of two-photon losses.
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Figure 6.14: Lifetime measurements taken with the grating and the clean-up cavity disproves

the existence of two-photon loss by showing linear dependence on power. Here the X(6, 0)

state lifetime is measured with various power for the 919 nm probe laser that is tuned near

the X(6, 0)→ 1u(24, 1) transition resonance. Lifetime curves in this measurement are fitted

to the one-body loss model.
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6.4.2.2 More deeply bound 1u states for magic lattice

A critical examination of the existence of two-photon scatterings is to investigate the molec-

ular lifetime with different magic wavelengths. Table 6.1 lists the continuum energies of

1u(v′, 1) state transition frequency 3P 3D1
1D

26 11,018 6,696 3,041 1,050

25 10,946 6,552 2,897 906

24 10,873 6,406 2,751 760

23 10,799 6,258 2,603 612

7 9,567 3,794 139 -1,016

6 9,487 3,634 -21 -1,176

5 9,406 3,472 -183 -1,338

Table 6.1: Continuum energies of two-photon dissociation from X(6, 0) state into three lowest

lying excited potentials. All numbers are in the unit of wavenumber (cm−1). Negative

values mean that the dissociation is below the potential threshold. The transition frequency

indicates the one-photon frequency.

two-photon dissociation from X(6, 0) state via different 1u states into three lowest-lying ex-

cited potentials. As demonstrated, with 1u states that are very close to the bottom of the

potential, the two-photon process into some of the possible dissociation channels is sup-

pressed. A state which is particularly worth testing is the 1u(5, 1) state. With this state, the

two-photon dissociation energy is only higher than the 3P threshold. The 3P decay channel

is not worrisome because a detailed theory calculation has suggested a negligible decay rate

with dissociation energy larger than 3,000 cm−1. With these said, if two-photon scattering

is the culprit accounting for the short lifetime issue, the magic lattice achieved with 1u(5, 1)

state would significantly prolong the X(6, 0) molecule lifetime. However, the experiment
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contradicts this hope. In Figure 6.15, the lifetime is measured with a lattice detuned from

1u(5, 1) state by 8.4 GHz. The lattice power is fixed at 210 mW, corresponding to a Rabi

frequency of 27 MHz. Assuming a natural linewidth of 5 kHz, the scattering rate can be

calculated to be ∼ 2π × 0.01 /s. However the fit on the decay trace suggests a scattering

rate of 2π× 17(4) /s, which indicates that the two-photon processes is not the culprit to the

lifetime issue.
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Figure 6.15: X(6, 0) molecule lifetime is measured with a lattice detuned from the 1u(5, 1)

state by 8.4 GHz. In this situation, the two-photon processes is suppressed thus the scatter-

ing should be dominated by the one-photon process. In this measurement the lattice Rabi

frequency is 8.4 MHz. Assuming a natural linewidth of 5 kHz, the one-photon scattering

rate is calculated to be ∼ 2π × 0.01 /s. However, the decay fit suggests a scattering rate of

2π × 17(4) /s. The trace is fitted to the one-body loss model.
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Readers may wonder if bound-to-bound two-photon transitions could happen and lead to

scatterings. This was actually what we thought after the measurement with 1u(5, 1) state was

carried out. However, the most recent ab initio calculations suggest against this hypothesis.

In the situation with the 1u(5, 1) state, the two-photon processes into bound states in the

three closest potentials, i.e. 3D, 1D and 1P, all have scattering rates below 10−5 Hz unless

an accidental resonance is driven. Therefore, the conclusion about the hypothesis of the

two-photon scattering can be made more clearly now: even though such a loss mechanism

could exist, it is not the leading factor that limits the clock lifetime now.

6.4.3 Spectral noise in the lattice laser light

The background noise in the lattice light could also cause unwanted molecule scattering. In

Chapter 5, I discuss the ASE noise generated from the tapered amplifier. I also show that

this broad noise does exist in our lattice laser light. In this section I will demonstrate how

this noise can be (partially) cleaned up by the transmission grating and the spectral clean-up

cavity and how a cleaner lattice light spectrum directly leads to a longer molecule lifetime.

Indeed, the ASE noise is the only suspect that has concrete evidence to show its relation

with the short lifetime. However, what makes the lifetime issue so perplexing is that there

are still some measurements that the ASE noise can’t explain.

6.4.3.1 Transmission grating

First, let’s see the effect of the transmission grating. Figure 6.16 compares the lifetime mea-

sured with and without the grating. As demonstrated in Section 5.1.2, the transmission

grating truncates the ASE noise, allowing only a small window near the carrier to be coupled

into the lattice fiber. As a result, only the resonance that is the closest to the lattice frequency
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Figure 6.16: X(6, 0) molecule lifetime is measured with and without the transmission grating.

The lifetime is measured with the lattice laser frequency near the 1u(23, 1) state resonance.

With the ASE noise truncated by the transmission grating, the molecule lifetime is greatly

improved except in the region near the carrier where the grating response doesn’t cover.

scatters the molecules and the contributions from the nearby 1u states are well suppressed.

This is corroborated in Figure 6.16, where the lifetime measured with the grating is sub-

stantially longer than that measured without the grating. Furthermore, with the grating

implemented, the lifetime saturates at 140 ms, which nicely agrees with the conclusion in

Section 6.3.3 about the collision-limited lifetime of deeply bound ground state molecules.

6.4.3.2 Spectral clean-up cavity

To suppress the ASE noise near the carrier, a spectral clean-up cavity is implemented.

Figure 6.17 compares the molecule lifetime measured with and without the clean-up cav-

ity. Without the cavity the molecule lifetime is typically around 5 ms. With the cav-

ity implemented the molecule lifetime is consistently observed to be ∼20 ms. The fact
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Figure 6.17: X(6, 0) molecule lifetime is measured with and without the spectral clean-up

cavity. Without the cavity the molecule lifetime is typically around 5 ms. With the cavity

implemented the molecule lifetime is consistently observed to be ∼20 ms. Both traces are

fitted to the one-body loss model.

that implementing the clean-up cavity enhances the molecule lifetime again implies that

the ASE noise plays an important role in the lifetime issue. However, scrutiny into these

measurements throws some new puzzles.

6.4.3.3 Measurements that cannot be explained by lattice laser noise

It’s great that several pieces of clues support that the TA ASE noise is a major reason for the

lifetime problem. However, there are still several measurement that can not be explained (so

far) by the TA background noise. First, with the clean-up cavity implemented, the amount

of increase in the molecule lifetime is not enough. As elaborated in Section 5.1.3, the FWHM
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of the cavity resonance is 17 MHz and the cavity finesse is about 155. This means that the

lifetime should increase by at least two orders of magnitude after the cavity is implemented,

but only an increase of a factor of ∼5 is observed. Second, the dependence of molecule lifetime

on the lattice frequency, depicted in Figure 6.10 and 6.11, can’t be intuitively explained by

ASE noise. The parabolic dependence of lifetime on lattice frequency has a width of almost

±1 GHz, which is a lot broader than the cavity linewidth. Even if the cavity linewidth is

underestimated, the mechanism of how a tapered amplifier broadens a ∼1 kHz wide laser

mode into a broad peak is obscure.

Fully resolving the lifetime puzzle requires understanding the ASE structure near the

carrier better. This is not an easy task since directly resolving the laser spectrum down to

sub-GHz level is technically difficult for common optical spectrum analyzers. If it were to be

proven that the lattice spectrum is the culprit, a fine laser system with low background noise

would be necessary for the next generation lattice trap.
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Chapter 7

Measurements of dipole moments

squared (DMS)

In this chapter I discuss the measurements of transition DMS. Precise knowledge in DMS is

crucial for building the molecular clock from several aspects.

� First, it helps with determining the balanced ratio between Raman probe intensities.

As elaborated in Section 5.2.1, the balanced probe intensity ratio is equal to the inverse

ratio between transition DMS’s, therefore the better the DMS’s are known, the more

precisely the balanced intensity ratio can be determined.

� Second, knowing the DMS values helps to design the magic wavelength. In Section

4.3.3, I demonstrate that a good lattice-driven resonance for the magic wavelength is

the one that minimizes the lattice frequency instability transfer and causes the least

lattice scattering. Therefore, the criteria for a good lattice-driven resonance include a

strong transition strength and large decay branching ratio, which both indicates the

importance of precise measurements of DMS’s.

161



� Third, the measurements of DMS’s can be employed to calibrate the theoretical molec-

ular model. Having an accurate model is crucial for efficient progress in building the

clock. For example, as demonstrated in Chapter 3 and 4, accurate binding energy pre-

dictions have saved us a lot of effort in the searches for deeply bound states. Also,

the measurements of DMS’s help characterize the 1u potential with better precision, as

discussed in Section 4.2.4.

� Forth, precisely knowing the DMS’s enables convenient Rabi frequency calculations.

The Rabi frequency is determined by two parameters, the transition DMS and the

driving laser light intensity. Measuring the laser intensity is straightforward so having

DMS’s precisely pre-determined would make determining Rabi frequencies a lot easier.

In the following sections, I will discuss how to measure the transition DMS’s using the

techniques developed in previous chapters. The two main workhorses for the DMS mea-

surements are the Autler-Townes spectroscopy and the light shift measurements. These two

kinds of experiments allow precise measurements of Rabi frequencies, from which the transi-

tion DMS’s can be backed out as follows.

For a transition with dipole moment d that is driven by a laser with electric field amplitude

E, the Rabi frequency Ω is described by

Ω =
d · E
h

, (7.1)

where h is the Planck constant. Note that the Rabi frequency in 7.1 is in the unit of Hz.

In the version where the Planck constant is replaced by the reduced Planck constant ~, the

Rabi frequency unit becomes rad/s. From Equation 7.1, the transition DMS d2 is related to

the Rabi frequency by
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d2 =
h2Ω2

E2
(7.2)

For a monochromatic propagating wave, the field intensity is related to the electric field

amplitude E by

I =
1

2
ε0cE

2, (7.3)

where ε0 is the vacuum permittivity and c is the speed of light in vacuum. In our experiment,

the probe laser light is a Gaussian beam with a size that is typically larger than the molecule

cloud size by an order of magnitude. This means that the light intensity seen by the molecules

can be approximated to the peak intensity of the laser beam.

Given a Gaussian beam, the power P (r, z) passing through a circle with radius r at

position z can be written as

P (r, z) = P0

[
1− exp(−2r2/w(z)2)

]
, (7.4)

where P0 is the total power transmitted by the beam and w(z) is the beam radius at position

z. By definition, the peak intensity I(0, z) is

I(0, z) = lim
r→0

P (r, z)

πr2
=

2P0

πw(z)2
(7.5)

In the DMS measurements, the w(z) is the beam size measured at the position of molecule

cloud. Together with Equations 7.3 and 7.5, the DMS can be rewritten as

d2 =

(
πh2ε0c

4

)(
Ω2

P0

)
w2 (7.6)

In Equation 7.6, the Rabi frequency is measured via spectroscopy and the total probe laser

power P0 can be easily measured with a power meter. The remaining challenging part is to
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measure the beam size w, which will be discussed in Appendix B.

7.1 Autler-Townes spectroscopy

In Section 3.1, I derive the doublet frequencies in Autler-Townes spectroscopy. For a coupling

laser that is detuned from a transition |r〉 → |e〉 by a frequency of ∆, it splits the |g〉 → |e〉

transition into a doublet which frequencies are described by Equation 3.2. The frequency

difference δ± between the doublet satisfies

δ2
± = Ω2 + ∆2, (7.7)

where Ω is the coupling laser Rabi frequency. Thus, the Rabi frequency squared can be

obtained by fitting δ2
± as a function of ∆. In the following sections, a few examples of DMS

measurements via Autler-Townes spectroscopy are demonstrated.

7.1.1 Transitions from a ground state to a shallow excited state

For a transition that involves a ground state and a shallow excited state, the spectroscopy

setup is straightforward. Shallow excited states have large Franck-Condon factors with shal-

low ground states and the 1S0 atom so in this situation the depletion transition for the

Autler-Townes spectroscopy can be a bound-to-bound transition, depicted in Figure 7.1(a),

or a free-to-bound transition, depicted in Figure 7.1(b)

7.1.1.1 X(−1, 0)→ 0+
u (−4, 1) transition

Figure 7.2 demonstrates an example of measurement pertaining to Figure 7.1(a). In this

example, the DMS of X(−1, 0) → 0+
u (−4, 1) transition is measured. The Autler-Townes
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Figure 7.1: Spectroscopy scheme for DMS measurements for transitions from a ground state

to a shallow excited state (blue). In this situation, the depletion transition (red) for the

Autler-Townes spectroscopy can be (a) a free-to-bound transition or (b) a bound-to-bound

transition.

spectroscopy is formed with the photoassociation transition from 1S0 atom to 0+
u (−4, 1) state

as the depletion laser. The coupling laser power is fixed at 57.4 µW and its beam waist is

(wx, wy) = (79.0(8) µm, 102(1) µm) at the molecules. A Rabi frequency of 1.046(8) MHz

is obtained from fitting the doublet frequency difference squared, depicted in Figure 7.2(b).

Substituting these numbers into Equation 7.6 yields a DMS of

d2 =

(
πh2ε0c

4

)(
Ω2

P0

)
w2

=

(
πh2ε0c

4

)(
(1.046 MHz)2

57.4 µW

)
(79.0 µm× 102.5 µm) = 1.97(4)× 10−3 (ea0)2

This measured transition DMS is close to 3.13× 10−3 (ea0)2 predicted by theoretical cal-

culations. Note that the uncertainty in this DMS measurement is mostly contributed by the

error in the beam waist estimation. Although a Gaussian distribution is a good approxima-

tion of the probe beam profile, a slight impurity could lead to an inaccurate estimation of
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Figure 7.2: Demonstration of DMS measurement for the X(−1, 0) → 0+
u (−4, 1) transition.

The Autler-Townes doublet frequencies (a) and the doublet frequency difference squared (b)

are plotted against the coupling laser frequency. The trace in (b) is fitted to Equation 7.7,

which yields a Rabi frequency of 1.046(8) MHz.

beam waist and hence the laser beam peak intensity. An alternative method based on pixel

intensity normalization can be applied to back out the peak intensity. With this method, it

no longer requires the laser intensity profile to follow a certain distribution, which would lead

to an even more precise measurement.

7.1.1.2 X(6, 0)→ 0+
u (−4, 1) transition

Figure 7.3 demonstrates another example that pertains to Figure 7.1(b). In this example,

the DMS of X(6, 0) → 0+
u (−4, 1) transition is measured. The Autler-Townes spectroscopy

is formed with bound-to-bound X(−1, 0)→ 0+
u (−4, 1) as depletion transition. The coupling

laser power is fixed at 92 µW and its beam waist is (wx, wy) = (67.9(7) µm, 46.4(4) µm) at the

molecules. A Rabi frequency of 0.476(5) MHz is obtained from fitting the doublet frequency

difference squared, depicted in Figure 7.3(b). Substituting these numbers into Equation 7.6

yields a DMS of
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d2 =

(
πh2ε0c

4

)(
Ω2

P0

)
w2

=

(
πh2ε0c

4

)(
(0.476 MHz)2

92 µW

)
(67.9 µm× 46.4 µm) = 9.88(9)× 10−5 (ea0)2,

which is comparable to 5.27× 10−5(ea0)2 predicted by theory calculations.
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Figure 7.3: Demonstration of DMS measurement for the X(6, 0)→ 0+
u (−4, 1) transition. The

Autler-Townes doublet frequencies (a) and the doublet frequency difference squared (b) are

plotted against the coupling laser frequency. The trace in (b) is fitted to Equation 7.7, which

yields a Rabi frequency of 0.476(5) MHz.

7.1.2 Transitions from a ground state to a deeply bound excited state

The Autler-Townes spectroscopy is more challenging for transitions from a ground state

X(v, J) to a deeply bound excited states, say 1u(v′, 1) with v′ ∼ 24. In this situation, the

Franck-Condon factor between the excited state and shallow ground states/1S0 continuum

is small, making both depletion schemes depicted in Figure 7.1 unrealistic. Instead, the

depletion transition in this case is formed by a two-photon transition between a weakly

bound ground state and the ground state involved in the coupling transition, as shown in

Figure 7.4.
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Due to the complexity in this measurement, it is worth a few words to clarify the procedure

for the spectroscopy. In this experiment, the molecules are prepared at a weakly bound ground

state and the molecule number is detected with the recovery scheme. When the two-photon

transition between ground states is tuned on resonance, a depletion signal is obtained. As

the X(v, J) state is addressed by the coupling laser, it is split into a doublet and scanning the

depletion laser, the Raman transition in this case, resolves the Autler-Townes spectroscopy.

0u
+

X

1u
s

X(-1,0)

X(࢜, ࡶ)
1u(࢜′, ࡶ′)

Figure 7.4: Spectroscopy scheme for DMS measurements for transitions from a ground state

to a deeply bound excited state. In this case, a two-photon transition between ground states

is adapted to be the depletion transition. The rovibrational quantum numbers v, J and J ′

are determined by the probe laser frequency and selection rules.

7.1.2.1 X(6, 0)→ 1u(24, 1) transition

An example of measurement on the DMS of X(6, 0) → 1u(24, 1) is demonstrated in Figure

7.5. In this measurement, the coupling laser power is fixed at 1.2 mW and its beam waist
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is (wx, wy) = (81.2(8) µm, 86.6(8) µm) at the molecules. A Rabi frequency of 0.49(4) MHz

is obtained from fitting the doublet frequency difference squared, depicted in Figure 7.5(b).

Substituting these numbers into Equation 7.6 yields a DMS of

d2 =

(
πh2ε0c

4

)(
Ω2

P0

)
w2

=

(
πh2ε0c

4

)(
(0.49 MHz)2

1.2 mW

)
(81.2 µm× 86.6 µm) = 1.8(2)× 10−5 (ea0)2

This value is comparable to the theory calculation which predicts 1.53×10−5(ea0)2. Note

that the DMS of a lattice-driven transition can be measured more precisely with the light

shift, which is elaborated in the next section.
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Figure 7.5: Demonstration of DMS measurement for the X(6, 0)→ 1u(24, 1) transition. The

Autler-Townes doublet frequencies (a) and the doublet frequency difference squared (b) are

plotted against the coupling laser frequency. The trace in (b) is fitted to Equation 7.7, which

yields a Rabi frequency of 0.49(4) MHz.
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7.2 Light shift measurements

In Section 4.2.2, the polarizability curves obtained with lattice-driven transitions are pre-

sented. As the lattice laser frequency is close to a vibronic transition resonance, a light shift

is induced on the bottom clock state. The light shift δf , as described by Equation 4.5, is

proportional to the Rabi frequency square,

δf =
Ω2

4∆

Therefore, by fitting the light shift as a function of lattice detuning ∆, the Rabi frequency

and the transition DMS can be backed out.

7.2.1 Lattice-driven transitions

In this section, the DMS measurement of the lattice-driven transition with 1u(24, 1) state

is demonstrated and the DMS values obtained via the Autler-Townes spectroscopy and the

light shift measurement will be compared.

7.2.1.1 X(6, 0)→ 1u(24, 1) transition

Figure 7.6 demonstrates the DMS measurement for the X(6, 0) → 1u(24, 1) transition. In

this measurement, the lattice laser power is fixed at 200 mW and the lattice beam waist is

34.3 µm. A Rabi frequency of 29.0(2) MHz is obtained by fitting the dispersive curve to the

light shift formula.
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Figure 7.6: Demonstration of DMS measurement for the X(6, 0) → 1u(24, 1) transition via

light shift measurement. The light shift on X(6,0) state is fitted to Equation 4.5, which yields

a Rabi frequency of 29.0(2) MHz. In this measurement, the lattice power is fixed at 200 mW

and the lattice beam waist is 34.3 µm.

The DMS can be deduced from the Rabi frequency squared.

d2 =

(
πh2ε0c

4

)(
Ω2

4P0

)
w2

=

(
πh2ε0c

4

)(
(29.0 MHz)2

4× 200 mW

)
(34.3 µm× 34.3 µm) = 1.57(2)× 10−5 (ea0)2

Note that an additional factor of 4 appears before the laser power because the lattice is

formed with two counter-propagating laser beams.

The DMS value for the lattice-driven transition obtained with light shift nicely agrees

with theory calculations, which predict 1.53× 10−5(ea0)2. The value obtained with the light

shift is comparable to that obtained with the Autler-Townes spectroscopy. Actually, the

measurement via light shift should be more reliable because the spectroscopic laser also serves

as the trapping laser, which naturally guarantees the precision in laser intensity estimation.
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Chapter 8

Control of ultracold

photodissociation with magnetic

fields

8.1 Experiment overview

In this experiment we directly observe and record the photofragment angular distributions

(PADs) in the millikelvin energy regime. The molecules are prepared at microkelvin temper-

atures in an optical lattice, as described in Chapter 2, and are subsequently fragmented with

laser light. The one-dimension lattice is a standing wave of far-off-resonant light at 910 nm

and is approximately 1 MHz (or 50 µK) deep. The geometry of the setup is defined in Fig-

ure 8.1. Photodissociation results in two counterpropagating photofragments, an atom in the

ground state 1S0, and an atom in the electronically excited state 3P1 which decays to 1S0 with

a 22 µs lifetime. These atoms are absorption imaged using a charge-coupled device camera

on the strong Sr transition at 461 nm. The imaging light is turned on for a short duration of

∼ 10 µs, at a time τ (between 250 and 600 µs) after the 20–50 µs photodissociation pulse at

172



689 nm. During this time τ , the photofragments freely expand and effectively form spherical

shells with radii determined by the frequency of the photodissociation light and the Zeeman

shifts of the atomic continua. The camera is nearly on axis with the lattice, thus capturing a

two-dimensional projection of the spherical shells since the atoms effectively originate from

a point source. The laboratory quantum axis points along the applied magnetic field ~B,

which has a vertical orientation that defines the polar angle θ and azimuthal angle φ. The

dependence of the photofragment density on these angles is our key observable and encodes

the quantum mechanics of the reaction. The photodissociation light polarization is set to be

either vertical or horizontal.

Figure 8.1: The molecules are trapped in an optical lattice at the origin, while the photodis-

sociation (PD) laser propagates along the x-axis. The polar angle θ and azimuthal angle

φ are defined as shown to describe the photofragment angular distributions. The radii of

the spherical shells containing the fragments after a fixed expansion time are given by the

frequency of the PD laser and the Zeeman shifts of different atomic continua. The largest

shell corresponds to a negative shift (yellow), the medium shell to an absence of shift (red),

and the smallest shell to a positive shift (blue). A camera points in the −x direction and

images a two-dimension projection of the nested shells.

173



8.2 Photodissociation with applied magnetic field

So how does an applied magnetic field influence photodissociation? Figure 8.2(a) illustrates

the Sr2 molecular structure relevant to this work. The molecules are created from ultracold

atoms via photoassociation [71] in the least-bound vibrational level, denoted by v = −1, of

the electronic ground state X (correlating to the 1S0 +1 S0 atomic threshold). Initially, the

molecules occupy two rotational states with the total angular-momentum quantum numbers

Ji = 0 and 2, but the Ji = 2 population is mostly removed prior to fragmentation by a laser

pulse resonant with an excited molecular state. The Ji = 0 molecules (with a projection

quantum number Mi = 0) are coupled by the photodissociation laser to the singly excited

continuum above the 0u and 1u ungerade potentials (correlating to the 1S0 +3 P1 atomic

threshold), where the numbers refer to the total atomic angular momentum projections onto

the molecular axis. Under an applied field B > 0, the atomic energy levels split by the

Zeeman interaction into the m = −1, 0, and 1 sublevels, where the energy separation between

the neighboring sublevels is h∆Z = 1.5µBB and µB is the Bohr magneton. The radius

of each photofragment shell is vτ where v =
√
h(∆−m∆Z)/mSr is the velocity, h is the

Planck constant, ∆ is the frequency detuning of the photodissociation light from the m = 0

component of the continuum, and mSr is the atomic mass of Sr.

If the photodissociation laser detuning is large and negative, ∆ < −∆Z , no photofrag-

ments should be detectable because the target energy is below the lowest threshold. If the

detuning is small and negative, −∆Z < ∆ < 0, then only one fragment shell should be visible,

corresponding to m = −1. If the detuning is small and positive, 0 < ∆ < ∆Z , we expect to

observe two fragment shells, with m = 1 and 0. Finally, if the detuning is large and positive,

∆Z < ∆, we expect three fragment shells with all possible values of m. This is the case in
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the example of Figure 8.2(b) that shows a strong alteration of the PAD for B = 10.15 G

compared to 0.5 G.

Figure 8.2: (a) Molecular potentials and quantum states relevant to the experiment. The

photodissociation process is designated by the double arrow. The detuning of the PD light

from the m = 0 Zeeman component of the continuum is ∆, and the symmetric Zeeman

splitting has a magnitude ∆Z. The barrier of the 1u potential has a height of ∼ 30 MHz.

The numbers in parentheses are v and Ji. (b) An example of calculated and measured PAD

images for a process where a small applied magnetic field drastically alters the outcome of the

reaction. The two pairs of images differ only by the magnitude of the applied field: B = 0.5

G on the left and 10.15 G on the right.
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When a Ji = 0 diatomic molecule is photodissociated via a one-photon E1 process with-

out an applied field, we expect and observe a dipolar-shaped PAD with an axis set by the

laser polarization [12], as in the nearly field-free case of Figure 8.2(b). This can be under-

stood either by visualizing a spherically symmetric molecule absorbing light with a dipolar

probability distribution or by applying angular momentum selection rules that require J = 1

for the outgoing channel, which has a dipolar angular distribution with a single spatial node.

We find that with a nonzero B this is no longer the case, and instead observe complicated

structures with multiple nodes.

The main results of the experiment and theory are summarized in Figures 8.3 and 8.4. The

two-dimensional projections of the PADs onto the imaging plane, with the detuning ∆ = 29.2

MHz, are shown in Figure 8.3 for a progression of magnetic fields B from 0.5 to 10.15 G. The

removal of the Ji = 2 molecules is imperfect which results in the very faint outermost shell

that can be ignored. The top pair of rows corresponds to parallel light polarization and the

bottom pair to perpendicular polarization. We observe a transformation from simple dipolar

patterns at B = 0 to more complex patterns that exhibit a multiple-node structure at 10.15

G. Figure 8.4 shows PADs that are observed when B is kept fixed at 10.15 G while ∆ is

varied from −13.8 to 50.0 MHz, again for both cases of linear light polarization. For the

entire range of continuum energies, we observe PADs that exhibit a multinode structure. As

∆ and B are varied, the angular dependence, or anisotropy, of the outgoing PAD is strongly

affected. The zero-field evolution of the PADs with energy for this continuum is discussed

in [4]. All additional features observed here are due to the continuum partial waves J being

strongly mixed by the applied field.

176



Figure 8.3: Tuning of the photodissociation reaction with small magnetic fields, across a

range of energies. The color coding for the continuum Zeeman components is the same as

in Figure 8.2. In this figure, theoretical and experimental images of PADs are shown as the

magnetic field B is increased from 0.5 to 10.15 G, for the detuning ∆ = 29.2 MHz.
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Figure 8.4: Tuning of the photodissociation reaction with small magnetic fields, across a range

of energies. The color coding for the continuum Zeeman components is the same as in Figure

8.2. Here, theoretical and experimental PAD images at B = 10.15 G are shown, covering a

range of ∆ from −13.8 to 50.0 MHz. As indicated in Figure 8.2, additional channels (m = −1,

0, and 1) become available in the continuum as ∆ increases, leading to extra photofragment

shells. In some of the experimental images, the faint outermost shell is the result of incidental

photodissociation of residual J = 2 molecules and can be ignored.
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The top and bottom pairs of rows in both Figures 8.3 and 8.4 correspond to the light

polarization parallel and perpendicular to ~B, respectively. Typically, 300 experiments with

atoms and 300 without atoms (for background subtraction) are averaged to obtain each

experimental PAD image. The experimental images use an arbitrary brightness scale, and

the relative transition strengths for different images can be inferred from this data only

qualitatively. Within each PAD, however, relative transition strengths to different m’s are

more accurately reflected in the relative brightness of the rings.

As Figures 8.3 and 8.4 demonstrate, our theoretical results are in excellent agreement with

the experimental data. The theory involves extending the standard treatment of diatomic

photodissociation to the case of mixed angular momenta in the presence of a magnetic field

and applying it to the quantum-chemistry model of the 88Sr2 molecule [76,81].

The PADs can be described by the expansion

I(θ, φ) ∝ β0

1 +
∞∑
µ=1

µ∑
ν=0

βµνP
ν
µ (cos θ) cos(νφ)

 (8.1)

where P νµ (cos(θ) are the associated Legendre polynomials and the βµµ coefficients are called

anisotropy parameters. In the case of parallel light polarization, the PADs are cylindrically

symmetric and we set βµ ≡ βµ0 while all other βµν vanish. The µ are even for homonuclear

dimers. The anisotropy parameters in Equation 8.1 can be evaluated from Fermi’s golden rule

after properly representing the initial (bound-state) and final (continuum) wave functions,

including mixing of the angular momenta Ji and J by the magnetic field.

8.3 Summary

We have shown that the reaction of photodissociation can be strongly altered in the ultracold

regime by small applied magnetic fields. In this work, the fragmentation of 88Sr2 molecules
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was explored for a range of fields from 0 to 10 G, and for a variety of energies above thresh-

old in the 0–2 mK range. The near-threshold continuum has a high density of partial waves

that are readily mixed by the field, resulting in pronounced changes of the photofragment

angular distributions. The theory of photodissociation, after explicit accounting for field-

induced mixing of angular momenta in the bound and continuum states, and combined with

an accurate quantum-chemistry molecular model, has yielded excellent agreement with ex-

perimental data. The experiment and its clear interpretation are made possible by preparing

the molecules in well-defined quantum states. We have shown that ultracold molecule tech-

niques allow a high level of control over basic chemical reactions with weak applied fields.

Moreover, this work serves as a test of ab initio molecular theory in the continuum.
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Chapter 9

State-selected photodissociation

pattern evolution with energy

9.1 Experiment description and overview

Collisions and reactions between molecules can be described by the quasiclassical model when

the samples are at high energy. However, in the ultracold regime the quasiclassical model

fails and we need a full quantum-mechanical approach to precisely understand the reaction.

In Chapter 8, I discuss photodissociation of ultracold Sr2 molecules in the near-threshold

quantum regime and control of reactions by magnetic fields. Not surprisingly, the measured

photofragment angular distributions disagreed with quasiclassical intuition to varying de-

grees. It remained an open question whether a crossover into quasiclassical behavior could

be observed and explained from first principles. In this chapter, we observe the crossover

from the ultracold, quantum mechanical to the quasiclassical regime of photodissociation.

We show that photofragment angular distributions exhibit strong variations with the con-

tinuum energy near threshold, but stabilize to energy independent quasiclassical patterns at

energies that exceed reaction barrier heights. This study includes an electronically excited
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multichannel continuum in addition to the ground-state continuum. Furthermore, we find

that quantum statistics of the photofragments can prevent the photodissociation outcome

from reaching the quasiclassical limit even at high energies. Moreover, we also show that

photodissociation of very weakly bound molecules can exhibit quantum mechanical behavior

to higher energies, and we explicitly compare different levels of approximation for predicting

the photofragment angular distributions.

In this experiment, 88Sr atoms are laser-cooled and photoassociated in a one-dimensional

optical lattice, yielding ∼7000 Sr2 molecules trapped at a few microkelvin. The lattice trap

at the wavelength of 910 nm has 30 µm radius and 730 µm length. The molecules predomi-

nantly occupy the most weakly bound vibrational level v = −1 in the electronic ground state

that correlates to the atomic 1S + 1S threshold. They are distributed between two angular

momenta Ji = 0, 2, either of which can be chosen as the initial state for photodissociation,

with the selectivity of the projection quantum number mi. Alternatively, weakly bound levels

that correlate to the excited 1S + 3P1 continuum can be populated prior to photodissociation

by 689 nm light that copropagates with the lattice, in which case the (Ji,mi) notation would

refer to these initial bound states. The photodissociation light pulses are 10−20 µs long, the

photofragment time of flight varies from 800 µs near threshold to 20 µs at higher energies,

and the imaging pulse is 10 − 20 µs. The absorption imaging beam is resonant with the

strong 461 nm Sr transition, nearly coaligned with the lattice, and expanded to 300 µm in

order to intercept the outgoing photofragments. The (vertical) quantization axis is set by the

lattice polarization, or by a 3 G magnetic field when required for state selection, while the

photodissociation light has polarization that is parallel (P = 0) or perpendicular (|P | = 1)

to this axis. The continuum energy is determined by the frequency of the photodissociation

light. Reaching high energies can be challenging because of diminishing bound-continuum
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transition strengths and rapid expansion of the photofragments.

Figures 9.1(a) and 9.1(b) show two photodissociation processes studied in this chapter.

In case (a), a single molecular quantum state (v, Ji,mi) of the 0+
u , 1u electronic manifold

is resonantly populated and immediately photodissociated to the ground continuum, while

process (b) samples the electronically excited continuum from a single ground quantum state.

The upper continuum has contributions from the barrierless 0+
u potential and the 1u poten-

tial with a ∼1 mK electronic barrier, where the potentials are labeled by Ωi, the atomic

angular momentum projection onto the internuclear axis. Rotational barriers present for all

continuum states with angular momentum J 6= 0 are not shown.

Figure 9.1: (a) Schematic of Sr2 molecule photodissociation to the ground continuum. Weakly

bound molecules are fragmented with a resonant two-photon process via the excited electronic

state, which effectively serves as the initial molecular state. The photofragments have total

energy ε that is determined by the bound-continuum laser frequency, and are detected with

absorption imaging. (b) One-photon photodissociation to the excited continuum that corre-

sponds to a pair of interatomic potentials, 0+
u and 1u, where 1u has an electronic barrier. The

excited atomic fragments radiatively decay to the ground state, and the angular distributions

can be imaged as in (a). Adapted from [6].
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An image of a photofragment angular distribution and the data analysis procedure are

illustrated in Figure 9.2. Panels (i)–(iv) show a time-of-flight image, a schematic three-

dimensional distribution that results in this image via line-of-sight integration, the cross

section of the distribution obtained with the inverse Abel transform of the data, and the

radial average of the cross section showing the measured angular photofragment density.

Figure 9.2: Data analysis for azimuthally symmetric photofragment distributions. A time-of-

flight absorption image of photofragments, typically 0.3−0.5 mm in diameter (i) where some

asymmetry is introduced by inhomogeneities in the imaging beam profile, is a line-of-sight

integral of the three-dimensional distribution [(ii), shown as a schematic surface of constant

density]. A cross section of this distribution, shown in red, is retrieved from the data as in

(iii) by slightly rotating the image and assuming symmetry about the horizontal axis, and

radially averaged to yield an angular density profile (iv). Adapted from [6].

9.2 Key questions

We explore experimentally and theoretically the crossover from ultracold to quasiclassical

chemistry. On the theory side, we explicitly compare the applicability of a range of approxi-

mations, including the Wentzel-Kramers-Brillouin (WKB) approximation and a semiclassical

model that considers classical rotation of the molecule during photodissociation, to the full

quantum mechanical treatment. This fully quantum treatment uses Fermi’s golden rule with

the bound and continuum wave functions to calculate the photodissociation cross sections. It
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is in agreement with data across all sampled energies and for molecules in all initial quantum

states, with further improvement possible only by introducing small corrections to the ab

initio molecular potentials [76,81]. It is necessary to use the quantum mechanical method to

model our observations near threshold. At high energy, the axial recoil limit is reached, where

photodissociation is much faster than molecular rotation and the photofragments emerge

along the molecular axis. The questions we address in this chapter are:

� At what energy scale do the angular distributions approach the axial recoil limit?

� How does this scale depend on the quantum numbers and binding energy of the molecule?

� How can quantum state selection prevent the axial recoil limit from agreeing with

quasiclassical intuition?

9.2.1 Axial recoil limit

In this section we will find out at what energy scale the angular distributions approach the ax-

ial recoil limit and how this scale depends on the initial molecular state. Well, what does axial

recoil actually mean? When molecules are dissociated at high energies, the photodissociation

process is a lot faster than the speed at which molecules rotate so that the molecules can

be approximated by classical rotors. In other words, the photodissociation outcome should

have quasiclassical behavior if the photofragment energy in the continuum exceeds the height

of any potential barriers. This regime is referred to as axial recoil, where the molecule has

insufficient time to rotate during photodissociation and the photofragments emerge along the

instantaneous direction of the bond axis.

Firstly let’s look at a real example of dissociation pattern evolution. Figure 9.3 illustrates

the evolution of an angular distribution as a function of the continuum energy ε for 0+
u (v′ =
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−4, J ′i = 1,M ′i = 0) molecules and P = 0. This energy dependence is characteristic of near-

threshold photodissociation where there is a strong sensitivity to individual partial wave

components of the outgoing photofragments. The molecules are photodissociated over ∼2

orders of magnitude of energy, with Figure 9.3(a) displaying the angular photofragment

densities as a function of ε/kB where kB is the Boltzmann constant. Quantum chemistry

calculations of the expected density curves, based on ab initio Sr2 potentials, are overlayed

with the data. The measured images for ε/kB = 1.6 and 14 mK are shown in the leftmost

panels of Figure 9.3(b) and 9.3(c), followed by theoretical images. Figure 9.3(c) also shows

an image calculated for the axial recoil limit, which is already approached at 14 mK. The

angular distribution in the axial recoil limit, IAR(θ, φ), agrees with the quasiclassical model:

IAR(θ, φ) = IQC(θ, φ), where the quassiclassical model is described by Equation 1.5. Note

that the anisotropy parameter β2 = 2 for a parallel photodissociation transition (∆Ω = 0)

resulting in a photofragment distribution mostly along the quantization axis and β2 = −1 for

a perpendicular transition (∆Ω = 1) with a photofragment distribution mostly transverse to

the axis.

For molecules composed of identical constituents such as bosonic 88Sr atoms, spin statis-

tics imposes selection rules on allowed angular momenta through the required symmetry

under nuclear exchange. In the electronic ground state of 88Sr2 only even J values are

allowed, while in the 0+
u excited state only odd J values are possible. Since odd J are for-

bidden in the ground state, the quantum state of photofragments in this continuum [Figure

9.1(a)] can be described by only two parameters R, δ such that the amplitudes of finding the

photofragments in J = Ji − 1 and J = Ji + 1 are
√
R and

√
1−R, respectively, with the

phase difference δ. The energy evolution of R and δ is plotted in Figure 9.3(d). In the axial

recoil limit, R ∼ 1/2 and cos δ = 1. More detailed theoretical discussions can be found in [8].
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While the angular distributions in Figure 9.3(a)–(c) and R, δ in Figure 9.3(d) show a strong

dependence on ε/kB up to ∼5 mK, at higher energies significantly exceeding the rotational

barrier heights the distributions become quasiclassical, with R showing faster convergence

than δ.

Figure 9.3: (a) Angular distribution of photofragment density from dissociation of the 0+
u (v =

−4, Ji = 1,Mi = 0) state as a function of energy ε. Thick curves: inverse Abel data.

Thin curves: quantum theory prediction. The labeled curves correspond to panels (b),(c),

where curve (c) nearly matches the quasiclassical expectation. (b) Absorption image and the

corresponding quantum theory for the ε = 1.6kB mK = 33h MHz dissociation ring, where h is

the Planck constant. (c) Absorption image, quantum theory, and axial recoil approximation

for the ε = 14kB mK = 300h MHz dissociation ring. (d) Calculated energy evolution of R

(thick line) and cos δ (thin solid line) for the process in (a)–(c). The thin dashed line shows

the WKB approximation and indicates its agreement with the quantum theory at ε/kB & 1

mK. Adapted from [6].
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The experiments of dissociating molecules in different precisely prepared quantum states

have also been carried out. In Figure 9.4, molecules in vibrational states v′ = {−2,−3,−4,−5}

of the 0+
u potential are photodissociated with P = 0 at a continuum energies ε/h = {13, 33, 53,

100, 300}MHz (ε/kB = 0.6−14 mK). The photofragment angular distributions show a strong

energy dependence and agree well with quantum-mechanical calculations regardless of ini-

tial states and continuum energies. Images calculated with the WKB approximation are

also shown for comparison. At low energies the WKB approximation fails in predicting the

photofragment angular distributions whereas the approximations are a lot better at high

energies. Similarly, in Figure 9.5 molecules in vibrational states v′ = {−1,−2} of the 1u

potential are photodissociated with a variety of continuum energies. For 1u molecules, due to

the perpendicular nature of the |∆Ω| = 1 transition to the ground state, at high energies the

fragments emerge mostly horizontally (at 90° to the light polarization) rather than vertically

as for 0+
u in Figure 9.4.

As implied by Figure 9.4 and 9.5, at very high continuum energies the quantum-mechanical

calculations should converge to the WKB approximations. Figure 9.6 examines this specu-

lation by comparing quantum theory and the WKB approximation at the continuum energy

ε/h = 1000 MHz (ε/kB = 48 mK). At this high energy, both methods approach the axial-

recoil limit, which is also shown. Unfortunately, we couldn’t directly compare experiments

with theory at this extreme energy since the strength of dissociation processes decays rapidly

with continuum energy. Anyway the experiments taken with ε/h = 300 MHz have shown

decent qualitative agreements with the high energy situations. In the future if dissociation

images at high continuum energies are really needed, one can try making more strontium

molecules by increasing the oven temperature. When doing this, it is crucial to keep the oven

valve temperature below 150°C to prevent it from breaking down.
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Figure 9.4: Measured and calculated photofragment angular distributions from 0+
u molecule

dissociation in the ultracold quantum-mechanical regime. For each initial state, the upper and

lower rows correspond to measurements and quantum-mechanical theory, respectively. The

bottom row shows calculations obtained with the WKB approximation. Adapted from [8].
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Figure 9.5: Measured and calculated photofragment angular distributions from 1u molecule

dissociation in the ultracold quantum-mechanical regime. For each initial state, the upper

and lower rows correspond to measurements and quantum-mechanical theory, respectively.

Adapted from [8].
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Figure 9.6: Angular distributions calculated for a pair of 0+
u and 1u weakly bound states using

both quantum theory and the WKB approximation at a high energy ε/h = 1000 MHz (ε/kB

= 48 mK), to show their close agreement with the appropriate axial-recoil limit. Adapted

from [8].

In summary of this section, we find that the quantum-mechanical calculations precisely

capture the observed photofragment angular distributions and their dependence on contin-

uum energy. Moreover, the axial-recoil limit is reached at energies that exceed any potential

barriers in the continuum and for the cases shown in this section the quasiclassical picture cor-

rectly describes the axial-recoil limit. However, it is not certain that the quasiclassical picture

would always depict the axial-recoil limit. In the next section we will examine exceptional

situations where the quasiclassical model fails to approach the axial recoil limit.
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9.2.2 Quasiclassical model failure caused by quantum selection rules

In the previous section we saw a number of cases where the quasiclassical model is equivalent

to the axial-recoil limit. However, there are cases where the quasiclassical approximation

doesn’t asymptote to the axial-recoil limit. We find that these two approaches are equivalent

only when the reaction channels are well-defined. For molecules composed of distinguishable

bosons or fermions, the reaction channels are always well-defined. However, as elaborated

earlier, spin statistics imposes selection rules on allowed reaction channels for molecules com-

posed of identical constituents such as bosonic 88Sr atoms. As a result, in cases where

dissociation partial waves are precluded by selection rules, the quasiclassical model would fail

to describe the axial-recoil limit, no matter how large the continuum energy is.

We find that the photofragment angular distributions are insensitive to quantum spin

statistics only when the dissociation laser polarization is parallel to the quantization axis

and Ωinital = Ωfinal = 0 and minitial = mfinal = 0. In other cases the angular distribu-

tions depend on quantum statistics, leading to failure of the quasiclassical picture. In 88Sr2

molecules photodissociation from the 1u molecules with |P | = 1 fall into the latter cate-

gory. Figure 9.7(a) shows the angular distributions of photodissociation from 1u(−1, 1, 0)

molecules. Because of the nature of dissociating light polarization, the output channel must

have mJ = 1,−1. Because of the δmJ = 1 selection rule for |P | = 1 photodissociation

of this initial state, only J = 2 is possible for the ground-state continuum (odd J are not

allowed), and therefore no partial-wave interference or energy dependence is expected. The

observations confirm an unchanging angular distribution that matches the quantum mechan-

ical prediction and clearly fails to match the quasiclassical model. Figure 9.7(b) illustrates

energy-dependent photodissociation of 1u(−1, 3, 0) molecules. For 1u(−1, 3, 0) molecules, the
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near-threshold energy dependence arises from interference of the J = 2 and J = 4 continuum

states. The right-hand panels show the calculated quantum mechanical angular distribu-

tion in the axial recoil limit that disagrees with the quasiclassical model. To demonstrate

experimental agreement with the quantum mechanical treatment, the left-hand side shows

angular distributions at 3.4 and 6.3 mK (70 and 130 MHz) above threshold that matches

the calculated distributions in the insets. While the axial recoil regime (>50 mK) was not

Figure 9.7: Quantum statistics of identical particles prevents agreement with quasiclassical

predictions at large photofragment energies. Here |P | = 1. (a) Photofragment angular

distributions for 1u(−1, 1, 0) molecules at ε/kB = {0.63, 2.5} mK (ε/h = {13, 53} MHz) on

the left along with quantum mechanical and quasiclassical predictions on the right. This case

is energy-independent. The quasiclassical picture fails to describe the process due to quantum

statistics that leads to the missing J = 1 partial wave in the ground-state continuum. (b)

Energy-dependent angular distributions for 1u(−1, 3, 0) molecules at ε/kB = {3.4, 6.3} mK

(ε/h = {70, 130} MHz) are on the left, where the insets show the corresponding calculations.

High energy quantum mechanical and quasiclassical predictions are on the right. While the

highest energy regime could not be reached experimentally, at lower energies the experiment

fully agrees with quantum mechanical calculations in the insets. Adapted from [6].
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reached in this case due to weak bound-continuum transition strengths and insufficient pho-

todissociation laser power, this limitation is not fundamental. Note that if optical selection

rules (rather than spin-statistics restrictions) allow only a single partial wave J in the con-

tinuum, then quantum mechanical and quasiclassical angular distributions strictly agree [4].

9.2.3 Characterization of the molecular potential model

A key feature of photodissociation is the ability to select one of many possible continua. In

Figure 9.8 we photodissociate ground state X(−1, 0, 0) molecules to the {0+
u , 1u} continuum,

and sample energies in the range of 0.07–260 mK (1.5–5500 MHz). Here, the electronic

potential barrier height is only ∼1 mK, being proportional to the very small C3 dispersion

coefficient that is determined by the inverse of the metastable 3P1 atomic lifetime. The

photofragments have angular momentum J = 1 and two possible Ω = {0, 1} that are mixed

via nonadiabatic Coriolis coupling, especially at the lower energies [82]. This mixing has

a strong and nontrivial effect on photofragment angular distributions. For the spherically

symmetrical initial molecular state, the angular distributions can be described as IQC(θ) for

all continuum energies, but with a varying β2(ε) that becomes constant at the axial recoil

limit.

Figure 9.8 shows the plot of β2(ε) across a wide energy range that is limited only by

the photodissociation laser power, where the smaller error bars arise from the image quality

and the larger ones conservatively estimate possible contamination by molecules initially in

Ji = 2. In the case of mixed Ω in the continuum, the quasiclassical picture does not predict

which Ω dominates at high energy and whether the observed pattern tends to a perpendicular

dipole (for Ω = 1) or a parallel dipole (for Ω = 0). In this experiment, the ab initio pat-

tern tends to a parallel dipole (β2 = 2) in the axial recoil limit, but for the very weakly bound
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Figure 9.8: Anisotropy parameter β2 measured for photodissociation of ground-state X(-

1,0,0) molecules to the excited {0+
u , 1u} continuum. Red capped error bars are determined

from a bootstrap analysis of up to 1000 experimental realizations, and blue capless error

bars result from possible contamination by molecules initially in Ji = 2. The dotted red line

corresponds to the ab initio molecular potential [76], the solid green line to the potential

that is optimized to reproduce long-range properties [81], and the dashed yellow line to the

ab initio potential that was manually fitted for better agreement with measured spectra [83].

Photodissociation of these very weakly bound molecules does not yet reach the high-energy

limit of β2 = 2 at the accessible continuum energies up to 260 mK (5.5 GHz). The inset

shows the high-energy data in the context of previous measurements [4] with improved ab

initio theory. Adapted from [6].
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molecules this regime is expected to be reached only at > 0.5 K above threshold. In the

energy regime that is currently accessible, photofragment angular distributions vary steeply

with energy in the region of the ∼1 mK electronic barrier, then stabilize at β2 ≈ 1. The

energy interval where β2 ≈ 1 is sensitive to long-range molecular potentials, as we have

confirmed by adjusting the C6 coefficients. The measurements in this energy regime allow us

to distinguish between the ab initio [76], long-range [81], and fitted ab initio [83] potentials

to which the angular distributions are sensitive, as shown in Figure 9.8.

9.3 Summary

In conclusion, we have explored how ultracold, quantum mechanical state-selected photodis-

sociation crosses over into the classical regime at increasing photofragment energies. The

question of applicability of quasiclassical descriptions to photodissociation reactions has lin-

gered in the literature for several decades [4, 60–62, 84], and in this work we experimentally

access and probe the range of energies where the onset of the quasiclassical regime is expected.

Besides, we find that the high-energy axial recoil limit is reached when the continuum en-

ergy exceeds any electronic and rotational barriers, although quantum effects can dominate

to larger energies for very weakly bound molecules. We experimentally confirm with Sr2

molecules that the commonly used quasiclassical formula for photofragment angular distri-

butions [58, 59, 84] correctly describes the axial recoil limit for a variety of initial molecular

states, while in the ultracold regime there is a strong nonclassical variation of the angular

distributions with energy. We demonstrate that the effects of spin statistics for identical

photofragments can persist to indefinitely large photodissociation energies and prevent the

angular distributions from approaching the quasiclassical picture. We probe a molecular con-

tinuum with a mixture of Ω quantum numbers in an energy range of over three orders of
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magnitude, distinguishing between the ab initio potentials and those that have been adjusted

using molecular spectroscopy. Photodissociation of ultracold molecules with isolated quan-

tum states uniquely enables studies of molecular continua, and for relatively simple molecules

such as Sr2, state-of-the-art quantum chemistry theory yields excellent agreement with mea-

surements. These features allow us to directly observe and accurately model the crossover

from ultracold to quasiclassical chemistry.
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Chapter 10

Conclusions and outlook

In this thesis, I present the progress toward building a molecular lattice clock. Due to the long

natural lifetime of the ground states, a two-photon Raman transition between two ground

states forms an ideal clock transition that has metrological importance in testing fundamental

physics. With Autler-Townes spectroscopy, we have successfully found several deeply bound

ground states. Driving Raman transitions between ground states coherently requires elimi-

nating the unbalance in clock states’ polarizabilities, which is the heart of lattice clocks. In

this thesis, the magic wavelength technique, which was developed for the atomic lattice clock,

has been extended to molecules. With the lattice laser frequency tuned near a lattice-driven

transition resonance, the polarizability of the bottom clock state can be strongly modified.

By measuring the differential light shifts, the magic wavelength has been determined with a

precision of ∼100 kHz for a couple of lattice-driven transitions. Implementation of a magic

lattice trap has enhanced clock coherence by a factor over a thousand and narrowed the clock

transition linewidth to 30 Hz, corresponding to a quality factor Q = 8 × 1011. To achieve a

more stable environment for the molecular clock, several experimental upgrades have been

carried out, which includes master laser frequency stability enhancement, lattice laser light
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spectrum cleanup, fiber noise cancellation, and probe laser intensity stabilization.

A question that has remained perplexing is the issue with a short clock state lifetime.

When the clock transition is driven with a magic lattice trap, the deeply bound clock state

lifetime is observed to be 20 ms, a lot shorter than the collision-imposed lifetime of 140 ms.

In this thesis, several hypotheses have been brought up to explain this mystery. Among

them, we have initially precluded the possibilities of broad 1u lattice-driven resonances and

multi-photon excitation from the lattice light. So far, the scattering due to the ASE noise

in the lattice laser spectrum is the only mechanism that is supported by solid evidence

to be a culprit. The most concrete evidence is the lifetime measurement taken with the

transmission grating. With the grating implemented to suppress the ASE noise, the clock

state lifetime measured with non-magic lattice has increased to the collision-limited level.

However, there are also two measurements that cannot be explained by the ASE noise.

First, with the spectral clean-up implemented in an attempt to narrow the ASE window

even further, the enhancement in clock state lifetime is lower than what was expected by

orders of magnitude. Another piece of data that can’t be described by ASE scattering is

the quadratic dependence on lattice detuning of the clock state lifetime. To explain these

observations, detailed modeling of the ASE structure needs to be performed. If the lattice

spectrum is confirmed to be the culprit to the lifetime issue, a better high power source with

clean spectral background would be necessary for the next generation lattice trapping.

The improvement in the frequency comb is another critical upgrade for achieving a better

metrology system. The model of comb that we have been working with has issues with

frequency instability. The fCEO lock bandwidth is not high enough so that the entire comb

spectrum suffers from a jittering of ∼400 kHz. Moreover, the repetition rate lock takes

only 1 × fCEO subtraction instead of 2 × fCEO, leading to an uncertainty of ∼10 mHz in
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the repetition rate. This instability can be transferred to spectroscopic lasers and cause an

overall uncertainty of ∼2 kHz on the clock transition frequency. To tackle the issues with

the jittering fCEO, Menlo System provides an upgrade scheme which allows ultra-low noise

fCEO lock. In the near future, this upgrade would be integrated to our comb to help achieve

higher spectroscopic laser frequency control.

Apart from upgrading the comb, the future metrology improvement also includes a new

ULE cavity which is ready to serve the next generation master laser reference. This new

ULE cavity is coated for 780 nm light and allows a narrow laser linewidth of 1 Hz. In the

future, the frequency comb will be stabilized to this new frequency reference and the 689

nm laser system will be used only for the red MOT cooling. It is worth mentioning that the

new 780 nm light system will also serve as the first Raman laser for future clock transitions.

Due to the weak transition strengths from the absolute ground state to weakly bound excited

states, driving clock transition to X(0, 0) state via a weakly bound intermediate state implies

an extremely unbalanced probe laser intensity ratio, which would add difficulties to the

experiment. Instead, an intermediately bound excited state will be employed for the Raman

transition, as illustrated in Figure 10.1.

For the future metrology experiments, the design of the magic lattice trap would need

a slight adjustment. In this thesis, the lattice laser modifies the polarizability of the bot-

tom clock state. However, in order to map out all the molecular states in the ground state

potential, this is inconvenient because each ground state requires its own lattice-driven tran-

sition. Therefore, if the polarizability of an initial clock state can be tuned with a proper

lattice-driven transition, the binding energy measurements would be much more convenient.

After the metrology system is fully developed with 88Sr2 molecules, the techniques will

be extended to other isotopes. To perform experiments with different isotopes, enhanced Sr
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Figure 10.1: Clock transition between the least bound and the deepest bound ground state.

samples may be required. In the current oven, the isotopic abundance is low except for 88Sr.

Laser cooling and spectroscopy with other isotopes are pretty close to that with 88Sr2 and

have been demonstrated in a variety of experiments [85–87], which can be a guide to future

measurements with the molecular clock.
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Appendix A

Atomic shutter replacement

The atomic shutter is installed after the Sr oven to prevent hot atoms from disturbing the

optical lattice loading. For a typical data-taking month, the shutter usually opens and closes

over 40,000 times and therefore there is no guarantee that the shutter can last forever. The

last time it broke down was in July 2016, which caused a five-month delay on the experiment.

Thankfully no permanent damage was incurred on the experimental system. Since that

event, some preventative steps have been developed to make fixing the future shutter failure

(hopefully never!) easier.

Figure A.1 includes the critical components around the atomic shutter area.

� The oven is heated by four heating elements and wrapped by a couple layers of aluminum

foils. The heating elements are powered by variacs.

� The oven valve (SG0063MCCF from Kurt J. Lesker) is installed right after the micro-

tubule array. The purpose of this valve is to prevent the Sr oven from being contami-

nated by air when the vacuum is open. It is left open at normal time. Note that the

highest bakeable temperature for this valve is 150°C.

� The triple flange is where the atomic shutter is. The shutter (L-0385 from Uniblitz)
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sits in the middle flange, which design is shown in Figure A.2. This model of shutter

is normally closed, which means it takes current to make it open. The drawing for the

atomic shutter is shown in Figure A.3.

� The chamber valve is installed before the Zeeman slower tube. During the time when

the experiment is off, this valve is closed to prevent the Zeeman slower window from

being coated by Sr atoms.

� There are three ion pumps in place to maintain the vacuum. The one circled in Figure

A.4 takes care of the region before the chamber valve.

oven valve
triple flange chamber valve

shutter 
cable

oven

Figure A.1: Critical components near the atomic shutter area.
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side flangemiddle flange

Figure A.2: Design drawing of the triple flange
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Figure A.4: The ion pump circled in dashed red line takes care of the region before the

chamber valve. On the left side of this figure is another ion pump, which takes care of the

Zeeman slower tube area.

A.1 Diagnosis of shutter performance

When the atomic shutter misbehaves, its consequence is very obvious. It could occasionally

skip few cycles or it could fail to open fully. In the former situation, it’s most likely the shutter

is stuck by Sr atoms. Gently hitting the triple flange with a wrench could help making it

work again. However, if the situation appears to be worse, several checkpoints could help

diagnosing the shutter condition.

If the shutter is alive,

� a click sound should be clearly heard when clicking the ”Sr shutter” button in the
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sequencer.

� the blue fluorescence should be observed when a resonant 461 nm light goes through

the Zeeman slower window.

� a resistance of 50 Ohm should be measured across the shutter cables.

If it fails all these tests, the shutter needs to be replaced.

A.2 Shutter replacement procedure

The following is the suggested procedure to replace the shutter along with some lessons

learned from the last shutter event.

� First things first, close the chamber valve and keep it closed until whole the replacement

procedure is finished. Also, set up a vacuum monitor for the downstream areas. During

the shutter replacing process, some gas and dust may leak into the downstream vacuum

so it is important to have a vacuum monitor telling what’s going on. The vacuum status

sFigure A.5: The vacuum status can be monitored with high sensitivity from the ion pump

voltage output reading. The vacuum level is indicated by the offset of the voltage output.

217



can be monitored with high sensitivity from the voltage output of the ion pump con-

troller. Figure A.5 shows the ion pump reading for a well-maintained vacuum.

� Before opening the vacuum, the Sr oven has to be cooled down to room temperature. To

prevent detrimental microtube clogging, it is suggested to crank down the temperature

very slowly (over ∼5 hours). Also, during the cooling process, it has to be ensured that

the nozzle temperature remains the highest among all the other parts of the oven.

� After the oven is completely cooled down, turn off the ion pump that is in charge of

the shutter area.

� Then, close the oven valve and slowly remove the oven from the vacuum system. In this

process, the vacuum reading in the downstream area may increase a little bit. Keep a

close eye on that and make sure no serious leaking develops.

� Loosen the triple flange and take out the shutter. Then loosen the side feedthrough

where the shutter cables come out and then disconnect the cables from the feedthrough,

see Figure A.6. The shutter cables may need to be cut out because they are tightly

glued on the vacuum wall.

Figure A.6: The side feedthrough (left) and shutter cables (right) viewed from the transverse

viewport.
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� Replace the shutter and prepare vacuum compatible glue which will be used to attach

the new shutter cables to the vacuum wall. Then connect the new shutter cables to the

feedthrough. The polarity matters so be careful.

� Tighten the feedthrough and glue the shutter cables to the vacuum wall, then tighten

up the triple flange.

� Put the Sr oven back and place the thermal sensors properly underneath the heating

elements. It is crucial to confirm that the sensors are in good contact with the oven

otherwise the inaccurate reading may cause harmful effect on the oven and Sr cells.

� Set up the vacuum gauge and turbo/scroll pumps through the connection underneath

the feedthrough.

� Now the vacuum system is ready to be baked. To achieve better vacuum, the ion pump

should also be baked. To do this, take out the ion pump magnets and cover the pump

with heating elements and aluminum foils.

� A vacuum of 10−7 Torr is sufficiently good for this region. To reach this vacuum level, a

continuous baking over a week is usually required. As the baking proceeds, the vacuum

reading in both the shutter and the downstream areas should gradually drop.

� When the baking finishes, confirm the vacuum is stable and that there is no leaking. If

everything is in good condition, it’s done!
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Appendix B

Measurements of laser beam size

To discuss the measurement of beam size let’s first summarize the optics that directs the

laser beams into the science vacuum chamber. A schematic for the optics layout is shown

in Figure B.1. In our experiment the infrared lattice light and visible red probe laser beams

are merged at a dichroic mirror. After being merged, the combined beams pass through a

viewport lens that focuses the lattice beam at the molecule cloud. The lattice beam waist

is tightly focused to 30 µm at the cloud while the probe laser beam waist is typically ∼150

µm. At the back of the chamber a second viewport lens is placed to reinstate the lattice beam

lattice beam
combined probe beams

dichroic mirror
dichroic mirrorviewport lens

viewport lens

Figure B.1: A schematic for the optics layout.
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collimation and another dichroic mirror separates the lattice and probe beams so that only

the lattice beam is retro-reflected back into the chamber.

To measure the laser beam size, a mirror is placed between the first viewport lens and

the chamber to detour the laser beam into a CMOS camera, shown in Figure B.2. The

camera records the intensity profile of the laser beam from which the beam waist can then

be obtained. In order to faithfully measure the beam waist that trapped molecules see, the

camera needs to be placed at the position where the distance from the lens to the camera

is equal to that from the lens to the trapped molecules. This is achieved by calibrating the

camera position with the lattice beam. Because lattice trapping takes place where the laser

intensity is maximized, the proper camera position can be determined by moving the camera

back and forth until reaching the point where the lattice is focused.

lattice beam
combined probe beams

CMOS camera
Figure B.2: Schematic for the measuring the laser beam waist. A mirror is placed between the

first viewport lens and the chamber to detour the laser beam of interest into a CMOS camera,

which records the laser beam intensity profile. The proper camera position is determined by

finding the lattice laser focus point on the camera.
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With the camera position calibrated the laser beam waist can be faithfully measured.

Figure B.3 demonstrates an example where the intensity profile of a probe laser is recorded

by the camera. When recording the intensity profile, it must be assured that the laser intensity

is an optimal range. Too little power in the laser light would lead to a large uncertainty in

the beam waist estimation whereas too much power would saturate the camera and lead to

an incorrect estimation.

Figure B.3: An example where the intensity profile from a 689 nm laser beam is recorded by

the camera. The figure dimensions are in the unit of pixel.

By fitting the intensity profile to the standard Gaussian formula, Equation B.1, the in-

tensity distribution width can be backed out,

I(r) = I0e
−r2/2σ2

(B.1)
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Note that the width σ in Equation B.1 is not the beam waist. By definition the beam waist

w is defined with electric field via

E(r) = E0e
−r2/w2

(B.2)

Comparing these and recalling Equation 7.3 which says I ∝ E2, we get

w = 2σ (B.3)

Lastly, the beam waist in the unit of pixel can be converted into the unit of µm by adapting

the Thorlabs CMOS pixel size conversion 1 px = 5.2 µm.

In short, the laser beam waist measurement can be summarized into the following proce-

dure, assuming the lattice and probe beams are collinear:

1. Turn down the laser powers, especially the lattice light, to protect the CMOS camera

and researchers’ eyes.

2. Place a mirror after the viewport lens to detour the beams onto the CMOS camera.

3. Block the probe laser beams and put the camera at the focus of the lattice light.

4. Record the intensity profile of the laser beam of interest and fit it to a Gaussian formula

to get the intensity distribution width σ(px).

5. Obtain the beam waist via w(µm) = 2× 5.2(µm/px)×σ(px).
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