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Abstract
Storage has become a constrained resource on smart

phones. Gaming is a popular activity on mobile devices and
the explosive growth in the number of games coupled with
their growing size contributes to the storage crunch. Even
where storage is plentiful, it takes a long time to download
and install a heavy app before it can be launched. This pa-
per presents AppStreamer, a novel technique for reducing the
storage requirements or startup delay of mobile games, and
heavy mobile apps in general. AppStreamer is based on the
intuition that most apps do not need the entirety of its files
(images, audio and video clips, etc.) at any one time. App-
Streamer can therefore keep only a small part of the files on
the device, akin to a “cache”, and download the remainder
from a cloud storage server or a nearby edge server when it
predicts that the app will need them in the near future. App-
Streamer continuously predicts file blocks for the near future
as the user uses the app, and fetches them from the storage
server before the user sees a stall due to missing resources.
We implement AppStreamer at the Android file system layer.
This ensures that the apps require no source code or modifi-
cation, and the approach generalizes across apps. We evalu-
ate AppStreamer using two popular games: Dead Effect 2, a
3D first-person shooter, and Fire Emblem Heroes, a 2D turn-
based strategy role-playing game. Through a user study, 75%
and 87% of the users respectively find that AppStreamer pro-
vides the same quality of user experience as the baseline
where all files are stored on the device. AppStreamer cuts
down the storage requirement by 87% for Dead Effect 2 and
86% for Fire Emblem Heroes.

1 Introduction
The amount of content that users seem to want to store

on their mobile devices has been outstripping the growth of
storage available on the devices. For example, a survey con-

ducted in 2017 found that a full quarter of the respondents
said they deleted an app simply because their phone’s stor-
age space was full and they needed space [20]. In the de-
veloping world where less pricey smartphones are the norm,
users often complain about having to uninstall applications
or remove personal data. For example, the survey by San-
Disk of smartphone users in India in 2018 found that 62 per-
cent of smartphone users run out of storage space every three
months [18].

This growth is being spurred by two major factors. The
first is the flowering of the app stores for both Android
and iOS devices with a profusion of apps, and specifically,
content-rich apps. One quantitative manifestation of this is
that mobile accounts for approximately half of web traffic
worldwide [26]. One important class of heavy apps is mobile
games, especially those with highly realistic graphics and
videos. For example, at $70.3 B, the mobile gaming industry
accounts for more than half of all global gaming revenue in
2018 and mobile gaming apps accounted for 76% of all app
revenue [16]. These games take up large amounts of storage
on our smartphones with Pokemon Go taking about 200 MB
and more demanding games, like first person shooter (FPS)
games taking 2-3 GB [6]. The second factor is the increas-
ingly powerful processors and graphics cards, high resolu-
tion displays, and ubiquitous network connectivity, which
make it attractive to run these heavy apps and play these
heavy games on mobile devices. Contrast the above state
of affairs with the relatively slow growth in the amount of
storage available on our smartphones. Well endowed smart-
phones today have 64–128 GB of internal storage, while the
smartphones from 5 years ago had 16–32 GB standard, with
a big chunk of this used by the OS itself and built-in apps
that cannot be removed. Proposed replacements such as 3D
NAND technology are open to the vagaries of technology
development and adoption.

To sum up, the trends indicate that our desire to store
content on smartphones is going to continue to outstrip the
amount of inbuilt storage capacity available on these de-
vices.
Available solutions to storage crunch
There are two consumer-grade options available today for
alleviating the storage crunch. The first solution approach is
the expansion to microSD cards through an optional expan-
sion slot on the device. However, this is not always possible
(e.g., iPhones and Google Pixel do not have microSD card
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slot), incurs extra cost, and there are restrictions on putting
apps on SD card. Original manufacturers often prevent their
built-in apps and core functionality from being moved to
the expandable storage [25], as do many game vendors [8],
for copyright or performance reasons (internal storage read
speed can be as high as 11X speed of SD card read) [10, 2].
The second solution approach is the use of cloud storage.
The most popular use case is the storage of photos and static
content on cloud storage. For example, the Google Pixel
phone has a widely advertised feature that its photos will
be backed up to Google Cloud, at full resolution, with no
charge to the end user. This second solution approach how-
ever is less applicable for mobile applications. If an applica-
tion’s files and data are stored on the cloud rather than on the
phone, when the user wants to run the application, the entire
application must be downloaded before it can be used. This
adds unacceptable amount of delay to application startup (18
seconds for an average 40 MB application, based on average
worldwide LTE speed).

An alternative approach is running the application on a
cloud server, and streaming the processed contents to the
phone to display on its screen. This approach is widely in use
today for gaming and is referred to as cloud gaming [12, 15].
Expectedly, it has high bandwidth overhead, and incurs input
delay due to network latency and video encoding/decoding
overhead. These factors make this a challenging fit for highly
interactive applications such as games, especially on wireless
networks (WiFi or cellular) where bandwidth and latencies
can be quite variable. We quantify this overhead through ex-
periments on our two evaluation games run on a cloud gam-
ing platform in Section 6.5.
Our Solution Approach: AppStreamer
In this paper, we introduce the design of AppStreamer, which
alleviates the storage crunch on mobile devices for larger-
sized applications. It does this through extending the tradi-
tional microarchitectural notions of prefetching and caching
from local storage to cloud storage. In our context, the de-
vice’s local storage is analogous to the cache, while the cloud
storage is the farther-off storage which has high access la-
tency but contains all data. In contrast to prefetching tech-
niques used by modern operating systems, AppStreamer’s
prefetching has to be much more aggressive as cache misses
can easily ruin the user experience by introducing noticeable
delays. For example, delays of a few tens of milliseconds are
considered intolerable for the gamer [3]. Even when local
storage is not a constrained resource, AppStreamer can re-
duce the startup cost of an app when it is being executed for
the first time (a common enough occurrence as surveys point
out [19, 20]) Even if a user chooses cloud gaming, App-
Streamer can mitigate stalls by predicting and pre-fetching
the required blocks.

AppStreamer predicts the use of data blocks in the near
future, based on file usage patterns of the application. The
predicted blocks are then prefetched from the cloud storage
with the goal of ensuring each data block is present on the de-
vice’s storage before it is needed by the application. A high
level overview of AppStreamer is shown in Figure 1, which
depicts the client mobile device and the server infrastructure,
namely the cloud server which stores the application parts
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Figure 1. Overview diagram of AppStreamer, showing
the components on the mobile device and the cloud, as
well as the offline training and online phases.

to be streamed to the device and optionally, an application
server in the cloud (that we do not modify). In the figure,
we also show the offline training of our model and the online
processes of predicting and pre-fetching the required parts of
the application.

We develop the concepts in the context of interactive
games, because they are typically large in size and require
high interactivity and thus low latency, though the concepts
as well as the implementation also apply to other types of ap-
plications on mobile devices1. Empirically, we find that file
blocks are accessed in granularities of tens of MB for most
of the interactive games, as can be seen for the game Dead
Effect 2 in Figure 2. The jumps in the curves correspond to
chunks of application content that are needed for the game,
under different runs. Hence, AppStreamer has to perform
accurate prediction of which chunks will be needed and ini-
tiate the prefetching with significant lookahead, considering
that typical cellular network bandwidth is low, in the range
10-20 Mbps—the US average for LTE bandwidth is 13.95
Mbps [24].

Our solution works in a manner that is agnostic to the ac-
tual game and thus needs no semantic understanding of the
game or access to the source code of the game, either on
the client or the server side. The input parameters to App-
Streamer allow for an exploration of the two dimensions of
the tradeoff—the amount of storage used on the device and
the bandwidth used to bring data to the device versus the
pause time inflicted on the user.

We posit that AppStreamer presages the model of stream-
ing applications, paralleling the current ubiquitous trend of
streaming content for mobile devices. An analogy, though
imperfect, can be drawn to the change that happened in the
media streaming field where in the late 1990’s/early 2000’s,
there was a move toward streaming audio (remember Real
Networks) and then streaming video. At that time, the prac-
tice had been to download entire media first before listening
to it/viewing it (e.g., iTunes in its early incarnations only sup-
ported downloaded media). We hypothesize that similarly
we will have a trend in certain niches (such as, heavy duty
users) to stream required resources for the applications when
needed. This is because for games as well as for applications,

1Note that a streaming media application, like YouTube client, does not
fall within this scope because in it, the storage-intensive part is the content,
which is streamed to memory and removed when the session ends, and thus
does not consume storage on the device.



0

50

100

150

200

250

300

0 500 1000 1500 2000 2500 3000

C
u

m
u

la
ti

ve
 F

ile
 R

ea
d

 (
M

B
)

Time (second)

Cumulative File Read - Dead Effect 2

Level 1 starts

Level 2 starts

Figure 2. Cumulative file read in six playthroughs of the
first two levels of Dead Effect 2

most users only use a small fraction of the available scenes
(games) or functionality (applications) at any one time.
Evaluation
We evaluate the effectiveness of AppStreamer through two
distinct types of games customized for mobile devices—
Dead Effect 2, a FPS game and Fire Emblem Heroes, a turn-
based strategy role-playing game (RPG). We conduct user
studies for both of these games and find that in the majority
of the cases, the users do not find any significant degradation
in quality of experience—95% for Dead Effect 2 and 96%
for Fire Emblem Heroes. This is achieved while using re-
spectively 87% and 86% less storage than the baseline. We
also conduct microbenchmark studies to evaluate the effect
of various configuration parameters on the two dimensions
of the tradeoff, which guides choice of the values for the pa-
rameters.

In summary, we describe the following contributions in
this paper.

1. We create a middleware for mobile devices called App-
Streamer that reduces the amount of download needed
during installation as well as local storage space needed
while executing an application.

2. We show that it is possible to record data block accesses
and use them to predict what blocks will be needed in
the future and how far ahead in the future. We achieve
this in a way that is generalizable across players and
across games and does not require source code access.

3. We evaluate the effectiveness of AppStreamer through
two popular, closed-source games and microbench-
marks. We find that AppStreamer is effective in re-
ducing the storage requirement on the device, while not
degrading the user quality significantly for this highly
latency-sensitive workload.

2 Related Work
In this section we will discuss current solution approaches

for mobile gaming as well as related pieces of work.
Our work is complementary to two closely related classes

of work. One class of work [15, 5] makes modifications to
the game at both the client and the server side and collabo-
ratively gets the right frame to the device at the right time.
The second class of work [7, 23] offloads computationally
demanding parts of the local application to a cloud server.
AppStreamer can use solutions from the first class to assist

in the pre-caching decisions at the device, by using the re-
sources at the server. Thus the computational load at the
client can be reduced and close to optimal lookahead can
be used for pre-caching content. AppStreamer can leverage
solutions from the second class to offload some demanding
parts of the game computation, such as, computing the ren-
dering of some graphic-rich frame, to a nearby cloud server.
Since we predict some blocks that will be used in the near
future, this can help in making the appropriate offloading de-
cision at the appropriate time.

One approach to mobile gaming is the thin client model
of gaming, often called “Cloud Gaming” [12]. In this model,
the mobile application transmits user inputs to a server,
which performs the computations and graphics rendering.
The rendered frames are then streamed to the mobile device
as a video. This approach has the advantage of removing
the computational as well as storage limitations of mobile
hardware. However, the bandwidth usage is high and delays
in interactivity due to latency can make this approach unap-
pealing [4], as 100–200 ms of round-trip time is common in
mobile networks. We perform experiments to compare App-
Streamer with traditional cloud gaming approach and found
that our approach has 77% lower bandwidth usage and 98%
lower latency.

Lee et al. proposed reducing cloud gaming latency by
using Markov modeling and Kalman filtering to speculate
about future frames [15]; however, this approach requires
modifying the source code of the game, which can be un-
appealing to developers, and may not be an option for end
users since most popular games are closed source. Abe et
al. propose the idea of streaming virtual appliance (VA) on
mobile network by caching files predicted to be necessary
in the near future [1]. The overall idea is similar to App-
Streamer, however, we focus on highly interactive mobile
applications as opposed to all applications in general. Our
goal is to make the user experience indistinguishable from
storing all files locally while their approach results in long,
1–3 minutes start-up delay, and multiple interruptions during
each session. Further, their approach applies to Linux clients
(ours is for Android devices), relies also on temporal local-
ity across user sessions (for us only locality within a session
is useful), and the predictability of file access is higher (and
thus the problem is simpler).

We take inspiration from the broad base of work on file
prefetching since at a high level, the problem of efficient
caching is the same as in AppStreamer, except that we are
working at a different layer in the memory hierarchy. That is,
we use the device’s local storage as the cache for the cloud
storage. The first approach to file prefetching, application-
directed prefetching requires non-portable special directives
from the application developer, and thus cannot be applied
to existing applications [17]. In many cases, the developer
needs to predict user behavior for such systems to work well,
and this can be difficult. History-based approaches use file
access history to predict file accesses. These works share a
similar workflow with AppStreamer, but are either very lim-
ited in scope (SuperFetch optimizes application launch, and
Hot Files feature in HFS Plus moves small frequently-used
files closer to metadata) [22, 11], work at too coarse a gran-



ularity (whole file instead of block) [29, 9], have unrealistic
assumptions (between any two user requests, there is enough
time to prefetch as many pages as wanted), or require exten-
sive user input (Coda, the distributed file system, required
user listing of all files required offline) [14] and were not
evaluated in real systems [30]. Thus, AppStreamer has a dif-
ferent context and requirements and does not have as strong
assumptions.

3 Design Overview
The goal of AppStreamer is to reduce storage require-

ments of large mobile applications. This is done by storing
file blocks that are needed by the application on the mobile
device, and speculatively fetching more blocks from a cloud
storage server as the application runs. We focus on files that
are part of the application package. This includes required
files that some applications (especially games) download on
the first run. The key characteristic of these files is that they
are read-only and are needed across all users and across dif-
ferent executions. Files written by the application are small
and contain user-specific contents which cannot be shared
across users, so we always store these files on the device.

We would like the system to work for all applications
without any modifications or access to the source code.
Thus, AppStreamer is implemented at the operating system
level. As long as the blocks the application reads are already
on the device, the application will operate normally with-
out any user-perceptible stall, even when the entirety of the
application blocks is not present on the device. Intuitively,
past file reads should be a good predictor of future file reads,
so this is what we use for our prediction model. It is pos-
sible to include other sources of the application’s behavior
from the perspective of the operating system, such as CPU
usage, memory usage, network usage, and past file writes,
but we have found that past file reads alone already provide
good prediction accuracy. There is also a desire to minimize
the monitoring overhead which contributes to possible slow-
down of the application.

AppStreamer’s operation can be divided into two phases:
offline phase and online phase, as shown in Figure 1. The
figure shows the cloud storage server, which is a component
introduced due to AppStreamer. The server is expected to
have all of the content needed by the application, prior to the
execution of the application on the mobile device. This can
also be an edge server or a hybrid as proposed in [28]. In the
offline phase, the file access prediction model (Continuous-
time Markov Chain in this case) is trained using a collection
of file access traces from multiple users using a specific ap-
plication. Note this does not need to include the specific user
who will use the device in the online phase. As long as the
runtime path is a combination of one or more paths from
training, the model will be able to combine the patterns so
that it has knowledge about all paths. In the online phase,
as the user opens up and uses the application, the model pre-
dicts blocks that are needed in the near future, and fetches
them from the cloud storage server in real time.

While AppStreamer is agnostic to the type of application
whose storage requirement is to be reduced, most of the large
mobile applications today are games, due to their rich media

content and large number of control paths. Therefore, from
this point onward, we will focus on mobile games running
on smartphones and tablets as our target application domain.
With AppStreamer, only the initial portion of an application
is downloaded at installation, while the rest is downloaded as
the user uses the application. This means that AppStreamer
is more likely to use precious cellular data budget than the
current state of practice. To avoid this issue, whenever the
device is on an unmetered connection (e.g., Wi-Fi), App-
Streamer downloads the remaining portion of the applica-
tion or till a user-specified storage threshold is reached. Re-
gardless of the availability and types of connections, App-
Streamer will never use more cellular data than the current
state-of-practice where the entire application is downloaded
at installation time.

4 Components of AppStreamer
AppStreamer is composed of three main components: a

component for capturing file blocks accessed by the applica-
tion, file access prediction model, and data block fetcher that
downloads data blocks from the cloud storage server. In this
section, we describe the design of each component and how
they interact among themselves.

4.1 File Access Capture
AppStreamer reduces storage requirement of applications

by storing the file blocks that will be read by the application
on the mobile device. As long as we can predict the applica-
tion’s file reads and fetch the required blocks before a request
from the application, the application will work normally as
if all files are present on the device. We use past file reads
to predict an application’s file accesses. To capture the file
read information, we create a wrapper function for the file
read function at the virtual file system layer of the Android
operating system. Information captured includes file path,
file name, file pointer position, number of bytes to be read,
and timestamp. From the file pointer position and the num-
ber of bytes read, we can determine which blocks are being
read. In the offline (training) phase, the file reads are logged
and written to a file, which will be used to train the predic-
tion model. In the online phase, the file reads are given to
the prediction model as input, in order to make predictions
in real time.

4.2 File Access Prediction Model
The file access prediction model is trained using file ac-

cess traces collected from multiple users playing a specific
game. The raw input to the prediction model is the file read
system calls the game makes. The input features associated
with each call are file path, file name, file pointer position,
number of bytes to be read, and timestamp. Because An-
droid’s file system operates at the block level, where each
block is 4 KB, we convert each record of file read system
call into individual 4 KB blocks.

A model is needed to capture the file access patterns as
well as predict future file accesses. We believe an appropri-
ate model for these challenges is Continuous-Time Markov
Chain (CTMC). CTMC captures the possible transitions be-
tween states as well as the duration spent at each state in a
probabilistic manner. The duration information allows us to



limit the lookahead when making predictions Markov mod-
els are probabilistic in nature and the predictions give us the
probability associated with each predicted block. This gives
us the ability to adjust the tradeoff between delay (due to
a necessary block not being present) and potential waste of
bandwidth and energy. The computational and memory over-
head, as well as the accuracy of the prediction, depend on
what we define as the states for the model.

The straightforward way to define the state of the CTMC
is to use individual blocks read as the states. However,
the memory, storage, and computational requirements be-
come too high. Consider that a 1 GB game has 250,000
4 KB blocks. In the worst case, we need to store close
to 250,0002 = 62.5 Billion transition probabilities. Making
predictions with the CTMC requires a depth-first-search, and
having a branching factor of 250,000 makes the computation
infeasible even at low depth limit, and the necessary depth
limit can be quite high in this case. We empirically show
that a model that uses individual blocks as states is infeasi-
ble in Section 6.5.

Instead of using individual blocks read as the states, we
use groups of blocks as the states. From the file access traces
in Figure 2, we notice that data blocks tend to be accessed
in groups, and these groups are similar across different users
and different runs. Therefore, we design an algorithm for
grouping blocks together, as well as extracting common pat-
terns from different runs. We find that this significantly re-
duces the memory, storage, and computational requirements
of the model.

4.3 Block Grouping
As mentioned above, grouping blocks is an important step

for state space reduction for the CTMC. A group of blocks is
simply blocks that are frequently accessed together in mul-
tiple different runs. We want each group to be as large as
possible (to reduce the state space), while keeping the prop-
erty that most blocks in the group are accessed together for at
least a few runs. Our specific algorithm, shown in Algorithm
1 creates such groups when the number of blocks in a group
times the number of runs accessing all the blocks in the group
is sufficiently large. Note that there can be overlap between
groups. We propose a method for grouping blocks that meets
these requirements and essentially summarizes the raw block
accesses into essential information that the CTMC can easily
process.

Our block grouping method can be divided into three
steps as shown in Figure 3. In the first step, we group block
reads in one trace that are close together in time into parti-
tions. In the second step, we generate equivalent partitions
from the partitions by merging partitions that are sufficiently
similar. In the third step, we extract overlaps in equivalent
partitions from different trace runs to create groups of blocks
which we call superblocks. Superblocks represent groups
of blocks that are frequently accessed together, and they are
used as input to the CTMC.

4.3.1 Partitions
In this step, each trace run in the training data is pro-

cessed separately to produce partitions. Each partition con-
tains blocks that are accessed close together in time, with the
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Figure 3. Grouping of blocks during training. Concepts
of Partition and Equivalent Partition within a single trace
and Superblock across multiple traces.

threshold of maximum time between successive block reads
specified by a parameter δ.
4.3.2 Equivalent partitions

Empirically, we found that some partitions within the
same trace run are very similar to each other. In order to
remove redundant information, we merge near-identical par-
titions from the same trace into one equivalent partition. We
use Jaccard index as the similarity metric with each parti-
tion considered as a set of data blocks. A Jaccard index of 1
means that both sets are identical, while a Jaccard index of
0 means there is no overlap between both sets. All pairs of
partitions with Jaccard index higher or equal to a parameter
denoted by τ are merged into one. No changes are made to
partitions that are not sufficiently similar to any other parti-
tions. After these steps, we have the equivalent partitions,
which are used as input to the superblock step. The value
for the parameter δ should be chosen to separate block reads
in different “batches.” Empirically, the value should be be-
tween 1–1000 milliseconds. We discuss choosing δ and τ

further in the microbenchmark section (Section 6.6).
4.3.3 Superblock

Equivalent partitions generated in the previous step repre-
sents groups of blocks that are frequently accessed together
within a single run. At this point, we essentially have one
model per run. In order to utilize information about differ-
ent playing styles and different execution paths, we need to
combine information from different runs into a single model,
while removing redundant information. Due to different tim-
ings and execution paths, equivalent partitions in multiple
trace runs are not exactly identical. For example, an equiva-
lent partition in one trace run can be made up of three equiv-
alent partitions from another trace run, or may not show up at
all in yet another trace run. Intuitively, we want to find large
intersections of equivalent partitions across trace runs, con-
sider the intersection as a single unit of blocks, and remove
the intersection from the equivalent partitions that contribute
to the intersection. We then repeat the process until no large
intersection can be found. We call each large intersection
a superblock. The challenge comes from the fact that the
blocks in some equivalent partitions may not be present in
all trace runs.



Function createSuperBlocks(equivPartitions, numTraces,
minSuperblockSize)

superBlocks← [ ];
while true do

overlap← findLargestOverlap(equivPartitions,
numTraces, 1, null);

if overlap.size < minSuperblockSize then
break;

end
remove blocks in overlap from the equivalent partitions

it originated from;
superBlocks.append(overlap);

end
/* Merge each remaining equivalent partitions

into the closest superblock */
for i← 1 to numTraces do

for j← 1 to length(equivPartitions[i]) do
if equivPartitions[i][j].size > 0 then

merge equivPartitions[i][j] into the closest
superblock, based on timestamp of original
equivalent partition from trace i;

end
end

end
return superBlocks;

Algorithm 1: Create superblocks from equivalent parti-
tions

The pseudocode for creating superblocks is shown in Al-
gorithm 1. First, we find the largest overlap between any n
equivalent partitions where each belongs to a different trace
and n can be lower than the number of traces. The intuition
behind not requiring n to be exactly the number of traces is
that the playing style, and thus the file access patterns can be
very different across traces, so a certain common pattern may
not be present on all traces. For the purpose of this algorithm,
the size of an overlap is defined as the number of blocks in
the overlap multiplied by the number of contributing traces
n. The blocks in this overlap are then removed from all of
the contributing equivalent partitions, and put aside as a new
superblock. The process repeats until the size of the overlap
is lower than a threshold minSuperblockSize. At this point,
the remaining equivalent partitions are merged into the su-
perblocks that are closest in time. Recall that a superblock
is the intersection of multiple equivalent partitions from dif-
ferent runs. For each contributing equivalent partition, the
superblock takes the timestamp from it. For example, a su-
perblock that comes from three runs will have three times-
tamps, each corresponding to a run. To determine which su-
perblocks are closest in time to each remaining equivalent
partition, the timestamp corresponding to the equivalent par-
tition’s run is used. At the end, each trace is transformed into
a sequence of superblocks, which are then used as input to
the Markov model.

4.4 Markov Chain
A Markov chain is specified by a number of states, the

transitions among the states, and initial observation distribu-
tion. To capture the time duration spent in a state, we add
duration which is associated with each possible state transi-
tion to the model. However, unlike the usual CTMC where
the duration follows an exponential distribution, we use the

arithmetic mean and standard deviation of the duration seen
from the training data. Each superblock corresponds to a
state in the CTMC. Time spent in a duration is independent
of other parameters of Markov chain, which can be learned
through the usual method. Although our model’s formula-
tion is slightly different from the original CTMC, for sim-
plicity we will continue to refer to our model as CTMC.

To determine the current state, recent file reads are par-
titioned in the same way partitioning is done for training.
With the most recent partition, we find the superblock(s)
that are a subset of this partition. If there are multiple su-
perblocks, any arbitrary choice works well in practice be-
cause the lookahead is long enough that small differences in
the starting state do not lead to widely divergent paths. The
chosen superblock becomes the current state of the CTMC.
In order to make predictions, from the current state, we per-
form a depth-first search to compute the probability of each
possible following sequence of future states. However, the
number of possible sequences grows exponentially with the
length of the sequence. To keep this computation feasible,
we prune the search in two ways: by stopping when the prob-
ability of reaching that particular state through a specific path
is lower than a threshold pstop or when the cumulative dura-
tion exceeds the lookahead time L. At the end, we have the
probability of each superblock being read within the looka-
head time. If this probability is higher than the block fetch-
ing threshold, denoted by pdownload , then the blocks in the
superblock that are not already on the device are added to
the download queue. This parameter controls the tradeoff
between downloading unnecessary blocks and the likelihood
and amount of delay experienced by the user.

Since gamers with different skill levels often play games
at different speeds, while the sequence of file block accesses
may be the same, we take into account the user’s playing
speed when making prediction. As the user plays the game,
we observe time duration spent at each state, and compare it
to the average duration learned by the model. Because play-
ing speed only affects the duration between state transition,
the effect of shorter duration can be simulated by increasing
the lookahead time L. Therefore, when we make predictions,
the lookahead time is adjusted, with a faster player getting
higher lookahead, proportional to how fast she plays com-
pared to the average.

Similarly, different players may play in different ways,
and this can result in different control paths being taken.
Such information can also be captured by a single Markov
model, by learning the probability of transitioning to state
j given that the current state is i for all pairs of (i, j). This
lets us utilize a single model for everyone, instead of having
multiple models for each class of users, which would then
require a classifier that determines the class of current user,
as well as more training data.
4.5 Data Block Fetcher

The data block fetcher is responsible for downloading
data blocks from the cloud storage server. There are two
types of data blocks that need to be downloaded—predicted
data blocks for future needs and application-requested data
blocks for current needs. The predicted blocks are stored
in a download queue in first-in, first-out (FIFO) order. The



speculative block fetcher runs as a kernel thread and down-
loads predicted blocks in the download queue, using low-
est network priority in order to not affect the responsiveness
of other processes. Application-requested blocks need to be
fetched urgently because the application, and by extension
the user, is waiting for its response and so a request is sent
immediately to the cloud storage server. The original read
system call will block until the data is obtained.
4.6 Initial Files Cached

On Android, an application’s APK (Android Package Kit)
is always immediately read in its entirety when the applica-
tion is launched, so we always store the entire APK on the
device. Some other resource files may also be accessed at
launch, or soon after. Since we do not have enough time to
fetch these files during the short duration between applica-
tion launch and when they are accessed, they must also be
stored on the device. We denote the amount of file blocks
that are stored on the device at all times (excluding the APK)
by Binitial . This parameter controls the tradeoff between de-
lay and amount of storage used.
4.7 Temporary Storage Limit

In the current state of practice, all of a game’s files are
always stored on the device. With AppStreamer, only the
APK and a small portion of the game’s files (specified by
Binitial) are always stored on the device. These files that are
always stored on the device take up permanent storage (un-
til the game is uninstalled). With AppStreamer, predicted
blocks that are fetched speculatively are also stored on the
device. However, they are deleted when the game’s process
terminates. Thus, we can say that these fetched blocks take
up temporary storage on the device. As long as the user does
not play multiple games at the same time (which is uncom-
mon), this temporary storage can be shared among all games
that uses AppStreamer.

In the case where available free space is extremely lim-
ited, a hard limit on the temporary storage is imposed. In
this case, when the limit is reached, we evict old blocks us-
ing the least recently used (LRU) eviction policy. Blocks that
are predicted (by AppStreamer) to be read in the near fu-
ture are never evicted. This hard limit can have an effect on
bandwidth usage and may introduce extra delays compared
to when there is no limit. Such effects are quantified in our
microbenchmarks (Figure 9 “Temporary storage limit”).
5 Implementation

In this section, we describe how different components of
AppStreamer are implemented in the Android system. Al-
though different OSes may use different file systems, App-
Streamer only requires that files be organized in blocks, so it
can be implemented in most OSes.
5.1 Capturing File Accesses

File read is the input to AppStreamer’s file access pre-
diction model. To collect the file reads, used in both offline
training and online prediction phases, we create a wrapper
function for the file read system call vfs read at the virtual
file system layer of the Android kernel. In the offline phase,
the wrapper function records the file read if it is a relevant file
(i.e., a file used by that game that is common across users),
in a log file, before doing the actual file read and returning

the requested data as usual. Information recorded includes
file name and path, current file pointer, number of bytes re-
quested, and timestamp. Empirically, we found that the over-
head of logging is not noticeable to the user.From our exper-
iments, the average size of uncompressed log is 2.93 MB
for 30 minutes of gameplay. It can be easily compressed if
necessary due to repeated path and file names. In the online
phase, the wrapper function passes on the information about
the file read to the prediction model. If the requested blocks
are already on the device, they are returned immediately to
the caller. If the requested blocks are not on the device (i.e., a
“cache miss”), the urgent block fetcher immediately requests
the data from the cloud storage server.
5.2 Block Storage

Most file systems organize files as a collection of blocks.
It is therefore natural for AppStreamer to also operate at the
granularity of blocks. In Android, each block is 4 KB in
size. To simplify organization of blocks, we first create a
file which acts as a container for all blocks and AppStreamer
creates a mapping from the game’s accessed file name and
block offset to the location in this file. A hash table in mem-
ory stores the mapping and since a game uses a limited num-
ber of blocks in its working set, the size of this hash table is
small–with a 1 GB game and a liberal 25% of its blocks in
the working set, the hash table is only 1 MB in size.

6 Experimental evaluation
We evaluate AppStreamer in two ways: with user studies

and with microbenchmarks. The goal of the user studies is to
evaluate AppStreamer in a realistic setting, and measure the
effect of delays introduced by AppStreamer by having users
rate the user experience. The goal of the microbenchmarks
is to evaluate how different parameters of the model affect
the overall performance of AppStreamer. Due to the large
number of parameter values explored, the microbenchmarks
are done using trace-based simulation.
6.1 Games Used for Evaluation

We use two Android games in our evaluation: Dead Ef-
fect 2 and Fire Emblem Heroes. Dead Effect 2 is a 3D single-
player first-person shooter game. Gameplay is divided into
multiple levels, where the blocks needed for each level are
loaded at the beginning of the level. The levels are linear
(level 1, 2, 3, and so on), but different collected traces show
diversity among users of the blocks accessed during game-
play. Its APK is 22.91 MB and all of its resources are stored
in a single OBB (opaque binary blob) file which is 1.09 GB.

Fire Emblem Heroes is a 2D strategy role-playing game.
Gameplay is divided into multiple small levels in several
game modes. At first, only the main story mode can be
played. As the player completes a few levels, paralogue
mode, training mode, special maps mode, and player-versus-
player mode are unlocked. These modes can be switched to
and from at any time and in any order. The players choos-
ing levels affects which blocks are needed, and also makes
prediction in Fire Emblem Heroes nontrivial. The game has
roughly 5,200 data files, whose sizes sum up to 577 MB,
including the 41.01 MB APK. We chose these two games
as they represent two dominant classes of games on mobile
devices, with differing characteristics in terms of themes,



player interaction, and control flow. Both have the com-
mon characteristics of heavy graphics and low latency in-
teractions.

6.2 Training Data
For Dead Effect 2, the trace data for the user study con-

sists of 6 runs collected from two players. For the mi-
crobenchmarks, the trace data consists of 12 runs collected
from four players. Each run is from start of the game to the
end of level 2, which takes roughly 30 minutes.

The file read pattern of Dead Effect 2 is shown in Figure 2.
As soon as the game is launched, the entire APK is read and a
small part of the OBB file is read. When each level starts, the
resources needed for that level are loaded at the beginning,
resulting in a jump in the cumulative file read. During each
level, there are several small jumps dispersed without any
easily perceptible pattern. For Fire Emblem Heroes, the trace
data for the user study consists of 7 runs collected from one
player. For the microbenchmarks, the trace data consists of
14 runs collected from four players. For this game, each
run consists of 20 minutes of gameplay from the beginning
where the player is free to choose which level to play.

6.3 User Study - Dead Effect 2
Performance of AppStreamer depends on the network

speed. For the user study, we set up the storage server on a lo-
cal machine with network speed limited to 17.4 Mbps, which
is the average worldwide LTE speed reported by Open Sig-
nal as of November 2016 [24]. The phones used are Nexus
6P running Android 6.0.1. Each participant plays the first
two levels of the game, once on a phone with AppStreamer,
and once on an unmodified phone. Each user then filled a
questionnaire with four questions: 1) user’s skill level (in
that category of games, such as FPS), 2) quality of user ex-
perience, 3) delays during menu and loading screens, and 4)
delays during gameplay inside a level.

The first user study is done with Dead Effect 2, with 23
users participating in the study. The amount of storage used
by Dead Effect 2 is shown in Figure 4. Baseline refers to
the current state of practice which is storing the whole game
on the phone. The amount shown for AppStreamer corre-
sponds to the permanent storage used by files that are always
stored on the phone. As the user plays the game, more blocks
are downloaded on the fly. These blocks are stored in the
temporary space and not shown in the figure. Overall, App-
Streamer uses 146.22 MB of permanent storage, compared
to 1,139.07 MB for baseline. This represents a 87% storage
saving.

The summarized responses to each question on the ques-
tionnaire are shown in Figure 5. 70% of the participants rate
the overall user experience of playing with AppStreamer the
same as playing on an unmodified phone. The remaining
30% rate the run with AppStreamer as marginally worse than
baseline. There were no disruptions other than pauses, such
as, crashes, hangs, or visual glitches, during gameplay with
our technique in place.

On average, there were 336.2 KB of “cache miss”, blocks
that the game tries to read but are not present on the phone,
during each run with AppStreamer. This translates to 0.15
second of delay, for 28 minutes of gameplay, giving a
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Figure 4. Storage requirements for Dead Effect 2

0.009% delay. The cache hit rate is 99.87%. The run that has
highest amount of cache misses is affected by 1.52 seconds
of delay. Compared to each level’s loading time of roughly
20 seconds, this extra delay is barely noticeable. This shows
that AppStreamer is able to predict and cache most of the
necessary blocks before they are accessed for Dead Effect 2.
6.4 User Study - Fire Emblem Heroes

The second user study is done using Fire Emblem Heroes,
with 26 users participating in the study. The study’s setup
is the same as the first user study with Dead Effect 2, ex-
cept that the user is free to play any level for 20 minutes on
each phone. The game has several different modes which
are unlocked as the first few levels are completed, and some
of these modes have multiple levels which the player can
choose to play. Before playing, the participants are informed
of these modes, and are instructed that they can switch to any
mode and play any level as desired.

The amount of storage used by Fire Emblem Heroes is
shown in Figure 6. Baseline refers to the current state of
practice which is storing the whole game on the phone. The
amount shown for AppStreamer corresponds to the perma-
nent storage used by files that are always stored on the phone.
As the user plays the game, more blocks are downloaded on
the fly. These blocks are stored in the temporary space and
not shown in the figure. Overall, AppStreamer uses 79.69
MB of permanent storage, compared to 577 MB for base-
line. This represents a 86% saving of storage space.

The summarized responses to each question on the ques-
tionnaire is shown in Figure 7. 88% of the participants rate
the overall user experience of playing with AppStreamer the
same as playing on an unmodified phone. Again, there were
no disruptions other than longer loading time and delays dur-
ing gameplay. Interestingly, two users comment that the run
with AppStreamer was actually smoother. This might be ex-
plained by the fact that the delays before and after each level
are dominated by network communication with the game
server, rather than file reads, and the delay may depend on
the current load of the game server.

On average, there were 1.63 MB of cache miss during
each run with AppStreamer, which translates to 0.75 second
of delay in 20 minutes of gameplay, giving a 0.0625% de-
lay. The cache hit rate is 97.65%. The run that has highest
amount of cache misses is affected by 5.12 seconds of de-
lay. Nevertheless, the user still rated the overall user expe-
rience as no difference from the unmodified version. One
user rates the run with AppStreamer as significantly worse
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due to significant delays. However, the communication log
on the cloud storage server indicates that only 0.97 MB of
blocks were missed and needed to be fetched urgently. This
translates to 0.45 second of delay, which should be barely
noticeable. Overall, the results of this user study show that
AppStreamer is able to predict and cache most of the nec-
essary blocks before they are accessed, even when there are
different branches for different users in the gameplay.

6.5 Comparison with Prior Work
Here we compare the bandwidth consumption and latency

of AppStreamer to state-of-the art cloud gaming systems.
One challenge in thin client gaming is that users are dis-
turbed by latencies higher than 60 ms [21]. Lee et al. ad-
dresses this problem by using speculative execution, which
can mask up to 128ms of latency, at the cost of using between
1.51 and 4.54 times as much bandwidth as standard cloud
gaming [15]. Using speculative execution requires access to
and modification of the source code of the game, so we could
not directly compare AppStreamer to speculative execution.
However, we tested the performance of a thin client, Gamin-
gAnywhere, an open source cloud gaming system [12].
Cloud gaming
In order to determine the bandwidth usage of a thin client
model, we ran Nox, an Android emulator, and GamingAny-
where on a server and the GamingAnywhere client on a
smartphone. We tested both Dead Effect 2 and Fire Emblem
Heroes, and recorded the download bandwidth usage of the
GamingAnywhere application on the smartphone. Data up-
loaded from the smartphone consists of encoded input events
(such as swipes and taps), and data downloaded consists of
audio and video of the game being streamed. The bandwidth
usage of cloud gaming and AppStreamer are shown in Fig-
ure 8. We found that for Dead Effect 2, cloud gaming uses
3.01 Mb/s while AppStreamer only uses 706 Kb/s on aver-
age. For Fire Emblem Heroes, cloud gaming uses 3.20 Mb/s
while AppStreamer only uses 745 Kb/s on average. This

shows that traditional cloud gaming is a lot more bandwidth
intensive than our file block streaming approach, with 4.3X
higher bandwidth requirement for our two target games.

Compared to the baseline where the entire application is
downloaded before it can be used, AppStreamer likely uses
more bandwidth through the more costly cellular connection.
This can be alleviated in two ways. First, as long as the nec-
essary blocks are never evicted after they are downloaded,
the total bandwidth usage cannot exceed the total size of the
application. Even when space runs out, LRU eviction policy
helps prioritize keeping blocks that are more likely to be ac-
cessed. Second, AppStreamer can be extended so that block
prefetching is done more aggressively when the device is on
a Wi-Fi connection, so that less fetching is needed when the
device is on a cellular connection.

As mentioned earlier, latency is a key measure of usabil-
ity of cloud gaming tools. Latency can be very visible and
annoying to users, as the time between every user input (e.g.,
a screen tap) and the frame that shows the effect of that input
is the network round-trip time, plus video/audio encoding
and decoding delay. The network round-trip time depends
largely on the distance between the cloud gaming server and
the client. Based on typical placement of gaming servers, a
typical round-trip time is 100 ms [27]. On the other hand,
AppStreamer is not as heavily affected by latency as much
as cloud gaming approaches, since speculative block fetches
are mostly in batches and can be easily pipelined. The urgent
block fetches are affected by the latency, but the amount of
urgent block fetches is typically small. As a back-of-the-
envelope calculation, for Dead Effect 2, on average 84.05
out of 64,858 blocks accessed are fetched urgently. Fetching
each block requires 100 ms + 4 KB / 17.4 Mbps = 101.8 ms.
Thus, the overall delay is 84.05

64858 ×101.8 = 0.13 ms, which is
much smaller than the constant 100 ms in the cloud gaming
approach. For Fire Emblem Heroes, AppStreamer’s overall
delay is 416.96

17731 ×101.8 = 2.39 ms.
Block-wise predictor
In addition to the cloud gaming approach, we also compare
AppStreamer to a simple file access prediction algorithm that
operates at the block granularity, which we call BlockPair-
Lookup. In the training phase, it stores all pairs of blocks
(Bi,B j) such that B j is read within the lookahead time L after
Bi is read. In the online phase, when a block Bi is accessed,
it predicts all B j’s where (Bi,B j) is in its memory.

We run the BlockPairLookup algorithm for both games
and compute the delay and amount of unnecessary blocks
downloaded using our simulator. We find that it has exces-
sive memory utilization—20.5 GB with 30 seconds looka-
head with Dead Effect 2 and 4.6 GB with 60 seconds looka-
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Figure 8. Comparison of bandwidth consumption be-
tween cloud gaming (left) and AppStreamer (right) for
both games

head with Fire Emblem Heroes. Both would be infeasible on
today’s mobile devices. For Dead Effect 2, with BlockPair-
Lookup, average delay per run is 6.32 seconds (8.4X of App-
Streamer), and 74.39 MB of unnecessary blocks are down-
loaded (1.1X of AppStreamer). For Fire Emblem Heroes, av-
erage delay per run is 7.32 seconds (18.8X), and 64.10 MB of
unnecessary blocks downloaded (1.1X). Because BlockPair-
Lookup’s predictions are always a superset of AppStreamer’s
predictions, the higher delay is likely due to the unnecessary
blocks that are put in the download queue delaying the down-
load of necessary blocks and the inefficiency of requesting a
single block at a time. This shows that models that oper-
ate on single block granularity incur too much memory and
delay and are thus impractical.

6.6 Microbenchmarks
In this section, we evaluate how different parameters af-

fect the results. The parameters studied are δ, τ, pstop, L,
minSuperblockSize, pdownload , and Binitial , described in Sec-
tion 3, as well as buffer size and network connection speed.
The results are generated based on trace-based simulation.
In the simulation, first training data is used to train a Markov
model. Then, file reads from the test data is replayed and
given as input to the Markov model. Blocks predicted by the
model that are not already present on the phone are logically
fetched from the storage server, with network speed fixed to
a certain value to simulate real network conditions. In the
case where buffer size is limited, we employ the LRU policy
to evict blocks from the limited storage available.

Since there are many parameters, we conduct the mi-
crobenchmarks by varying one parameter at a time, and fix-
ing the rest of the parameters to the optimal value. Optimal
values are chosen by carefully weighing the tradeoff between
delay and false positives, with higher weight given to delay,
as it has a direct impact on the user experience. The values
are δ = 0.1 second, τ = 0.9, minSuperblockSize = 17, Binitial =
122 MB (excluding APK), pstop = 0.01, L = 60 seconds, and
connection speed = 17.4 Mbps. By default, we do not set a
limit on temporary storage used to store fetched blocks. The
average length of each run is 1,653 seconds. Due to limited
space and the fact that the results show the same trends, we
omit the microbenchmark results for Fire Emblem Heroes,
and show only results for Dead Effect 2. The output metrics
are delay and false positives, defined as predicted blocks that
are not read by the game within 8 minutes of being predicted.
Delays that are long or frequent enough can ruin the user
experience, while false positives incur extra network band-
width and energy cost.

The results are shown in Figure 9. First, with the optimal
parameter values, the amount of false positives is 66 MB.
However, if the playing session were longer, the amount of
false positives will not necessarily increase proportionately,
because there is a limit to how much data is downloaded,
namely the total size of the application.

Now, we look at how each parameter affects the results.
In addition to average worldwide LTE speed of 17.4 Mbps,
we also include average U.S. LTE speed of 13.95 Mbps and
average worldwide WiFi speed of 10.8 Mbps. As expected,
higher connection speed leads to lower delay. Even the lower
WiFi speed of 10.8 Mbps is enough to keep the delay small,
but speed lower than that will result in large delay. Connec-
tion speed has a negligible effect on the false positives. Next,
we look at the amount of initial files cached on the phone,
denoted Binitial . Higher value gives lower delay and false
positives, at the cost of higher storage requirements. Delays
are virtually eliminated at Binitial ≥ 175 MB. This represents
a storage savings of 84%. At the higher end of 200 MB, the
amount of false positives is also reduced.

Recall that when making predictions, our Markov model
relies on two stopping criteria to keep the computation
tractable: lookahead time, denoted by L, and probability stop
threshold, denoted by pstop. From the results, as long as the
lookahead time is at least 30 seconds, the delay remains con-
stantly low and the amount false positives is largely constant.
When the lookahead time is too low, delay increases signif-
icantly. Probability stop threshold is somewhat similar. As
long as the value is 0.02 or lower, delay remains relatively
constant. Higher value leads to higher delay. The amount
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Figure 9. Microbenchmarks for Dead Effect 2

of false positives is lower when pstop is higher, as early
stop means fewer blocks get predicted. The block fetching
threshold, denoted by pdownload , affects the final decision of
whether or not to download blocks in the predicted merged
cluster, based on predicted probability. It directly influences
the amount of false positives, with higher threshold resulting
in lower false positives. However, the delays are kept at an
acceptable level only when pdownload is 0.02 or lower.

Time between partitions threshold, denoted δ, controls
how consecutive blocks are merged into the same partition.
Lower value leads to more partitions that are smaller. The
results clearly show that 0.12 is the optimal value with re-
spect to delay. This amount represents the upper limit of the
amount of computation (e.g., image decoding) the applica-
tion does between chunks of data in the same batch of read.
Partition similarity threshold, denoted τ, controls merging
of two similar partitions within the same trace. A value of 1
means the two clusters need to contain the exact same blocks
in order to be merged. The results show that values between
0.8 and 0.9 produce similarly low delay, while higher values
result in higher delay.

Temporary storage limit sets a hard storage limit for stor-
ing blocks fetched speculatively. This does not include the
APK and files that are always stored on the phone. In real-
ity, this buffer can be shared by all applications as long as
they do not run at the same time. The results show that a
small 75 MB buffer is already as good as an infinitely large
buffer. Thus, the amount of temporary space required by
AppStreamer is very small.

The minimium superblock size serves as the stopping
criterion of the first step of the process of generating su-
perblocks. Lower value leads to more precise model and
predictions, but incur longer training time. The results con-
firm that lower values are always better than higher values in
terms of delay. However, we could not complete the bench-
mark using values lower than 17, as the training time sud-
denly jumps from a few minutes to several hours.

7 Discussion
Cloud Gaming. Cloud gaming is an alternative to App-

Streamer, since the game runs on the cloud and only the
video and audio are streamed to the mobile device. As men-
tioned in Section 6.5, the main drawbacks of cloud gaming
are high latency and high bandwidth usage. Within the fore-

seeable future, the amount of bandwidth cloud gaming uses
makes it prohibitively expensive for most users. Latency can
be reduced by moving the cloud closer to the users, but oc-
casional packet losses (common in wireless communication)
still degrades user experience.

Our solution performs all computation on the mobile de-
vice, relying on the cloud storage server only for storage.
Cloud gaming, on the other hand, performs all computation
on the server, at the expense of bandwidth usage and latency.
There is likely a middle ground whereby computation can be
divided between the device and the cloud server. This can
benefit from the long line of prior work in computation of-
floading from resource-constrained devices [7, 23, 13] but
will have to be repurposed due to some domain-specific re-
quirements, including stringent low latency and high degree
of dynamism in gameplay.

Trace Collection and Model Training. Although App-
Streamer will work for all mobile applications without any
modification to the applications themselves, it is necessary
to collect file access traces from a large number of users to
cover most file access patterns. The trace collection system
can be built into the operating system itself, and the user can
decide whether to contribute to trace collection. For the first
version of the application or when the application is updated,
the developer may decide to ship it without AppStreamer, or
collect the traces privately (e.g., from testers) beforehand.
Model training is done by the developer and takes place of-
fline. Parameter optimization can easily be parallelized. We
envision that the developer is responsible for trace collection
and model training because they should be in control of the
user experience of their own application, and the computa-
tion is distributed, compared to relying on a single entity.

Technological Advancements. AppStreamer would be
relevant even in the face of constantly improving storage ca-
pacity on smartphones. As more storage becomes available
on smartphones, developers also take advantage of it more
resulting in a larger size of the games. With higher screen
resolution, artists tend to use more detailed texture and 3D
models to improve their games’ visuals.

In addition to reducing storage requirements, App-
Streamer also helps reduce application installation time,
since only a small part of the application needs to be down-
loaded before the user can use it, and the rest is downloaded
only as needed, just like video streaming.



8 Conclusion
We set out to see how to reduce the storage pressure

caused by resource-hungry applications on mobile devices.
We found that mobile games were a significant contributor
to the problem. We had the insight that mobile games do not
need all the resources all the time. So if it were possible to
predict which resources would be needed with enough of a
lookahead, then they can be prefetched from a cloud storage
server and cached at the device and thus not cause any stall
for the user. We achieve this goal through the design of App-
Streamer, which uses a Markov Chain to predict which file
blocks will be needed in the near future and parametrizes it
such that the model can be personalized to different speeds
and gameplay styles. We show that for two popular third-
party games, AppStreamer reduces the storage requirement
significantly (more than 85%) without significantly impact-
ing the end user experience. This approach can also help to
reduce the startup delay when an app is being downloaded
and installed as well as to reduce stalls with cloud gaming
by pre-fetching the required resources.
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