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Abstract

Performance variability has been acknowledged as a problem

for over a decade by cloud practitioners and performance en-

gineers. Yet, our survey of top systems conferences reveals

that the research community regularly disregards variability

when running experiments in the cloud. Focusing on net-

works, we assess the impact of variability on cloud-based big-

data workloads by gathering traces from mainstream commer-

cial clouds and private research clouds. Our dataset consists

of millions of datapoints gathered while transferring over 9

petabytes on cloud providers’ networks. We characterize the

network variability present in our data and show that, even

though commercial cloud providers implement mechanisms

for quality-of-service enforcement, variability still occurs, and

is even exacerbated by such mechanisms and service provider

policies. We show how big-data workloads suffer from sig-

nificant slowdowns and lack predictability and replicability,

even when state-of-the-art experimentation techniques are

used. We provide guidelines to reduce the volatility of big

data performance, making experiments more repeatable.

1 Introduction

Performance variability [13, 47] in the cloud is well-known,

and has been studied since the early days [7, 35, 55] of cloud

computing. Cloud performance variability impacts not only

operational concerns, such as cost and predictability [14, 42],

but also reproducible experiment design [3, 10, 31, 47].

Big data is now highly embedded in the cloud: for example,

Hadoop [64] and Spark [65] processing engines have been

deployed for many years on on-demand resources. One key

issue when running big data workloads in the cloud is that,

due to the multi-tenant nature of clouds, applications see per-

formance effects from other tenants, and are thus susceptible

to performance variability, including on the network. Even

though recent evidence [50] suggests that there are limited po-

tential gains from speeding up the network, it is still the case

that variable network performance can slow down big data

systems and introduce volatility that makes it more difficult

to draw reliable scientific conclusions.

Although cloud performance variability has been thor-

oughly studied, the resulting work has mostly been in the

context of optimizing tail latency [22], with the aim of pro-

viding more consistent application-level performance [15,

25, 29, 57]. This is subtly—but importantly—different from

understanding the ways that fine-grained, resource-level vari-

ability affects the performance evaluation of these systems.

Application-level effects are especially elusive for complex

applications, such as big data, which are not bottlenecked on

a specific resource for their entire runtime. As a result, it is

difficult for experimenters to understand how to design ex-

periments that lead to reliable conclusions about application

performance under variable network conditions.

Modern cloud data centers increasingly rely on software-

defined networking to offer flows between VMs with reliable

and predictable performance [48]. While modern cloud net-

works generally promise isolation and predictability [7, 30],

in this paper we uncover that they rarely achieve stable perfor-

mance. Even the mechanisms and policies employed by cloud

providers for offering quality of service (QoS) and fairness

can result in non-trivial interactions with the user applications,

which leads to performance variability.

Although scientists are generally aware of the relationship

between repeated experiments and increased confidence in

results, the specific strength of these effects, their underlying

causes, and methods for improving experiment designs have

not been carefully studied in the context of performance exper-

iments run in clouds. Variability has a significant impact on

sound experiment design and result reporting [31]. In the pres-

ence of variability, large numbers of experiment repetitions

must be performed to achieve tight confidence intervals [47].

Although practitioners and performance engineers acknowl-

edge this phenomenon [7, 35, 55], in practice these effects are

frequently disregarded in performance studies.

Building on our vision [34], and recognizing the trend of

the academic community’s increasing use of the cloud for

computing resources [53], we challenge the current state-of-







The top of Figure 3 (part (a)) shows our estimates of medi-

ans for the K-Means application from HiBench [32]. Of the

eight cloud bandwidth distributions, the 3-run median falls

outside of the gold-standard CI for six of them (75%), and the

10-run median for three (38%). The bottom half of Figure 3

(part (b)) shows the same type of analysis, but this time, for

tail performance [22] instead of the median. To obtain these

results, we used TPC-DS [49] Query-68 measurements and

the method from Le Boudec [11] to calculate nonparametric

estimates for the 90th percentile performance, as well as their

confidence bounds. As can be seen in this figure, it is even

more difficult to get robust tail performance estimates.

Emulation Methodology: The quartiles in Ballani’s study

(Figure 2) give us only a rough idea about the probability den-

sities and there is uncertainty about fluctuations, as there is

no data about sample-to-sample variability. Considering that

the referenced studies reveal no autocovariance information,

we are left with using the available information to sample

bandwidth uniformly. Regarding the sampling rate, we found

the following: (1) As shown in Section 3 two out of the three

clouds we measured exhibits significant sample-to-sample

variability on the order of tens of seconds; (2) The cases F-G

from Ballani’s study support fine sampling rates: variabil-

ity at sub-second scales [63] and at the 20s intervals [24] is

significant. Therefore, we sample at relatively fine-grained

intervals: 5s for Figure 3(a), and 50s for Figure 3(b). Fur-

thermore, sampling at these two different rates shows that

benchmark volatility is not dependent on the sampling rate,

but rather on the distribution itself.

3 How Variable Are Cloud Networks?

We now gather and analyze network variability data for three

different clouds: two large-scale commercial clouds, and a

smaller-scale private research cloud. Our main findings can

be summarized as follows:

F3.1 Commercial clouds implement various mechanisms and

policies for network performance QoS enforcement, and these

policies are opaque to users and vary over time. We found (i)

token-bucket approaches, where bandwidth is cut by an order

of magnitude after several minutes of transfer; (ii) a per-core

bandwidth QoS, prioritizing heavy flows; (iii) instance types

that, when created repeatedly, are given different bandwidth

policies unpredictably.

F3.2 Private clouds can exhibit more variability than public

commercial clouds. Such systems are orders of magnitude

smaller than public clouds (in both resources and clients),

meaning that when competing traffic does occur, there is less

statistical multiplexing to “smooth out” variation.

F3.3 Base latency levels can vary by a factor of almost 10x

between clouds, and implementation choices in the cloud’s

virtual network layer can cause latency variations over two or-

ders of magnitude depending on the details of the application.

Table 3: Experiment summary for determining performance

variability in modern cloud networks. Experiments marked

with a star (*) are presented in depth in this article. Due to

space limitations, we release the other data in our reposi-

tory [59]. All Amazon EC2 instance types are typical offer-

ings of a big data processing company [20].

Cloud
Instance

Type

QoS

(Gbps)

Exp.

Duration

Exhibits

Variability

Cost

($)

*Amazon c5.XL ≤ 10 3 weeks Yes 171

Amazon m5.XL ≤ 10 3 weeks Yes 193

Amazon c5.9XL 10 1 day Yes 73

Amazon m4.16XL 20 1 day Yes 153

Google 1 core 2 3 weeks Yes 34

Google 2 core 4 3 weeks Yes 67

Google 4 core 8 3 weeks Yes 135

*Google 8 core 16 3 weeks Yes 269

HPCCloud 2 core N/A 1 week Yes N/A

HPCCloud 4 core N/A 1 week Yes N/A

*HPCCloud 8 core N/A 1 week Yes N/A

3.1 Bandwidth

We run our bandwidth measurements in two prominent com-

mercial clouds, Amazon EC2 (us-east region) and Google

Cloud (us-east region), and one private research cloud, HPC-

Cloud3. Table 3 summarizes our experiments. In the interest

of space, in this paper we focus on three experiments; all

data we collected is available in our repository [59]. We col-

lected the data between October 2018 and February 2019. In

total, we have over 21 weeks of nearly-continuous data trans-

fers, which amount for over 1 million datapoints and over 9

petabytes of transferred data.

The Amazon instances we chose are typical instance

types that a cloud-based big data company offers to its cus-

tomers [20], and these instances have AWS’s “enhanced net-

working capabilities” [6]. On Google Cloud (GCE), we chose

the instance types that were as close as possible (though not

identical) to the Amazon EC2 offerings. HPCCloud offered a

more limited set of instance types. We limit our study to this

set of cloud resources and their network offerings, as big data

frameworks are not equipped to make use of more advanced

networking features (i.e., InfiniBand), as they are generally de-

signed for commodity hardware. Moreover, vanilla Spark de-

ployments, using typical data formats such as Parquet or Avro,

are not able to routinely exploit links faster than 10 Gbps, un-

less significant optimization is performed [58]. Therefore, the

results we present in this article are highly likely to occur in

real-world scenarios.

In the studied clouds, for each pair of VMs of similar in-

stance types, we measured bandwidth continuously for one

week. Since big data workloads have different network access

patterns, we tested multiple scenarios:

• full-speed - continuously transferring data, and sum-

marizing performability metrics (bandwidth, retransmis-

3https://userinfo.surfsara.nl/systems/hpc-cloud

















be cost- or time-prohibitive: in these cases, adding delays

between experiments run in the same VMs can help. Data

used while gathering baseline runs can be used to determine

the appropriate length (e.g., seconds or minutes) of these rests.

Randomized experiment order is a useful technique for avoid-

ing self-interference.

F5.5: Network performance on clouds is largely a func-

tion of provider implementation and policies, which can

change at any time. Experimenters cannot treat “the cloud”

as an opaque entity; results are significantly impacted by

platform details that may or may not be public, and that are

subject to change. (Indeed, much of the behavior that we doc-

ument in Sections 3 and 4 is unlikely to be static over time.)

Experimenters can safeguard against this by publishing as

much detail as possible about experiment setup (e.g., instance

type, region, date of experiment), establishing baseline per-

formance numbers for the cloud itself, and only comparing

results to future experiments when these baselines match.

Applicability to other domains. In this paper, we focused

on big data applications and therefore our findings are most

applicable in this domain. The cloud-network related findings

we present in Section 3 are general, so practitioners from other

domains (e.g., HPC) should take them in to account when

designing systems and experiments. However, focusing in

depth on other domains might reveal interactions between net-

work variability and experiments that are not applicable to big

data due to the intrinsic application characteristics. Therefore,

while our findings in Section 4 apply to most other networked

applications, they need not be complete. We also believe that

a community-wide effort for gathering cloud variability data

will help us automate reproducible experiment design that

achieves robust and meaningful performance results.

6 Related Work

We have showed the extent of network performance variabil-

ity in modern clouds, as well as how practitioners disregard

cloud performance variability when designing and running

experiments. Moreover, we have showed what the impact of

network performance variability is on experiment design and

on the performance of big data applications. We discuss our

contributions in contrast to several categories of related work.

Sound Experimentation (in the Cloud). Several articles

already discuss pitfalls of systems experiment design and pre-

sentation. Such work fits two categories: guidelines for better

experiment design [3,17,38,47] and avoiding logical fallacies

in reasoning and presentation of empirical results [10, 21, 31].

Adding to this type of work, we survey how practitioners ap-

ply such knowledge, and assess the impact of poor experiment

design on the reliability of the achieved results. We investi-

gate the impact of variability on performance reproducibility,

and uncover variability behavior on modern clouds.

Network Variability and Guarantees. Network variabil-

ity has been studied throughout the years in multiple contexts,

such as HPC [8, 9], experimental testbeds [47] and virtual-

ized environments [35, 40, 55]. In the latter scenario, many

studies have already assessed the performance variability of

cloud datacenter networks [43, 51, 63]. To counteract this

behavior, cloud providers tackle the variability problem at

the infrastructure level [12, 52]. In general, these approaches

introduce network virtualization [30, 54], or traffic shaping

mechanisms [18], such as the token buckets we identified, at

the networking layer (per VM or network device), as well as

a scheduling (and placement) policy framework [41]. In this

work, we considered both types of variability: the one given

by resource sharing and the one introduced by the interaction

between applications and cloud QoS policies.

Variability-aware Network Modeling, Simulation, and

Emulation. Modeling variable networks [27, 45] is a topic of

interest. Kanev et al. [39] profiled and measured more than

20,000 Google machines to understand the impact of perfor-

mance variability on commonly used workloads in clouds.

Uta et al. emulate gigabit real-world cloud networks to study

their impact on the performance of batch-processing applica-

tions [60]. Casale and Tribastone [14] model the exogenous

variability of cloud workloads as continuous-time Markov

chains. Such work cannot isolate the behavior of network-

level variability compared to other types of resources.

7 Conclusion

We studied the impact of cloud network performance vari-

ability, characterizing its impact on big data experiment re-

producibility. We found that many articles disregard network

variability in the cloud and perform a limited number of rep-

etitions, which poses a serious threat to the validity of con-

clusions drawn from such experiment designs. We uncovered

and characterized the network variability of modern cloud net-

works and showed that network performance variability leads

to variable slowdowns and poor performance predictability,

resulting in non-reproducible performance evaluations. To

counter such behavior, we proposed protocols to achieve reli-

able cloud-based experimentation. As future work, we hope

to extend this analysis to application domains other than big

data and develop software tools to automate the design of

reproducible experiments in the cloud.
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Appendix – Code and Data Artifacts

Raw Cloud Data:

DOI:10.5281/zenodo.3576604

Bandwidth Emulator:

github.com/alexandru-uta/bandwidth_emulator

Cloud Benchmarking:

github.com/alexandru-uta/measure-tcp-latency
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