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Abstract

Performance variability has been acknowledged as a problem
for over a decade by cloud practitioners and performance en-
gineers. Yet, our survey of top systems conferences reveals
that the research community regularly disregards variability
when running experiments in the cloud. Focusing on net-
works, we assess the impact of variability on cloud-based big-
data workloads by gathering traces from mainstream commer-
cial clouds and private research clouds. Our dataset consists
of millions of datapoints gathered while transferring over 9
petabytes on cloud providers’ networks. We characterize the
network variability present in our data and show that, even
though commercial cloud providers implement mechanisms
for quality-of-service enforcement, variability still occurs, and
is even exacerbated by such mechanisms and service provider
policies. We show how big-data workloads suffer from sig-
nificant slowdowns and lack predictability and replicability,
even when state-of-the-art experimentation techniques are
used. We provide guidelines to reduce the volatility of big
data performance, making experiments more repeatable.

1 Introduction

Performance variability [13,47] in the cloud is well-known,
and has been studied since the early days [7, 35, 55] of cloud
computing. Cloud performance variability impacts not only
operational concerns, such as cost and predictability [14,42],
but also reproducible experiment design [3, 10,31,47].

Big data is now highly embedded in the cloud: for example,
Hadoop [64] and Spark [65] processing engines have been
deployed for many years on on-demand resources. One key
issue when running big data workloads in the cloud is that,
due to the multi-tenant nature of clouds, applications see per-
formance effects from other tenants, and are thus susceptible
to performance variability, including on the network. Even
though recent evidence [50] suggests that there are limited po-
tential gains from speeding up the network, it is still the case
that variable network performance can slow down big data
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systems and introduce volatility that makes it more difficult
to draw reliable scientific conclusions.

Although cloud performance variability has been thor-
oughly studied, the resulting work has mostly been in the
context of optimizing tail latency [22], with the aim of pro-
viding more consistent application-level performance [15,
25,29,57]. This is subtly—but importantly—different from
understanding the ways that fine-grained, resource-level vari-
ability affects the performance evaluation of these systems.
Application-level effects are especially elusive for complex
applications, such as big data, which are not bottlenecked on
a specific resource for their entire runtime. As a result, it is
difficult for experimenters to understand how to design ex-
periments that lead to reliable conclusions about application
performance under variable network conditions.

Modern cloud data centers increasingly rely on software-
defined networking to offer flows between VMs with reliable
and predictable performance [48]. While modern cloud net-
works generally promise isolation and predictability [7,30],
in this paper we uncover that they rarely achieve stable perfor-
mance. Even the mechanisms and policies employed by cloud
providers for offering quality of service (QoS) and fairness
can result in non-trivial interactions with the user applications,
which leads to performance variability.

Although scientists are generally aware of the relationship
between repeated experiments and increased confidence in
results, the specific strength of these effects, their underlying
causes, and methods for improving experiment designs have
not been carefully studied in the context of performance exper-
iments run in clouds. Variability has a significant impact on
sound experiment design and result reporting [31]. In the pres-
ence of variability, large numbers of experiment repetitions
must be performed to achieve tight confidence intervals [47].
Although practitioners and performance engineers acknowl-
edge this phenomenon [7, 35, 55], in practice these effects are
frequently disregarded in performance studies.

Building on our vision [34], and recognizing the trend of
the academic community’s increasing use of the cloud for
computing resources [53], we challenge the current state-of-
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Figure 1: State-of-practice in big data articles with cloud
experiments: (a) Aspects reported about experiments. Bars
represent aspects that are not mutually exclusive, thus the
total can exceed 100%. (b) Number of experiment repetitions
performed for the properly specified articles.

practice in cloud-based systems experimentation and advo-
cate for sound experiment design and result reporting. We
show that, due to performance variability, flawed cloud-based
experimentation could lead to inaccurate or even wrong con-
clusions. We show, in-depth, the performance implications
of network variability when running big data workloads. The
interplay between underlying resources and applications is
complex, and leads to non-trivial performance behavior.

To characterize such interactions, we run state-of-the-art,
real-world applications using Apache Spark [4]. We run
big-data workloads either directly on real-world mainstream
clouds, or by emulating the network behavior of such clouds.
Our results show that variability highly impacts not only per-
formance, but also credible and reproducible experimentation.

Addressing cloud users, performance engineers, and system
designers, we examine the implications of network variability
on big data, and present our main findings and contributions:
1. Lack of sound experimentation: Many articles in the lit-
erature that present cloud-based experiments are either under-
specified (i.e., do not report statistical measures), or run in-
conclusive numbers of experiment repetitions (Section 2).

2. Variability in modern cloud networks: We conduct and
analyze measurements of public and private cloud providers,
characterize the level of variability, and identify specific
sources (Section 3).

3. Network variability impact on application perfor-
mance reproducibility: Low-level network variability can
have significant effects on application performance, and can
violate assumptions commonly used in performance modeling
(such as that experiment runs are independent and identically
distributed) (Section 4).

4. Strategies for running reproducible experiments:
Given our measurement and experience with application-level
benchmarks, we make recommendations for improving the
reliability and reproducibility of experiments (Section 5).

2 Is Cloud Variability Disregarded?

We perform a literature survey to uncover whether and how
researchers and practitioners take cloud performance variabil-
ity into account when running experiments. Our findings are

Table 1: Parameters for the performance variability literature
survey. We manually select only the articles with empirical
evaluations performed using clouds.

Venues Keywords Years
big data, streaming, Hadoop,
NSDI, OSDI
SOSP, SC MapReduce, Spark, data storage 2008 - 2018

graph processing, data analytics

Table 2: Survey process. Initial filtering done automatically by
keywords, then manually for cloud-based experiments. The
resulting subset is significant and highly-cited.

. Filtered e
. Filtered Citations for
Articles . Manually
Automatically selected
Total for Cloud .
by Keywords . 44 articles
Experiments
44 (15 NSDI, 7 OSDI,
1,867 138 7 SOSP, 15 SC) 11,203

depicted in Figure | and summarized as follows:

Finding 2.1 Cloud performance variability is largely disre-
garded when researchers evaluate and prototype distributed
systems, or compare established systems.

F2.2 Most cloud performance studies are under-specified.
Most studies: (i) do not specify which performance measures
are reported (i.e., mean, median); (ii) do not report minimal
statistical variation data (i.e., standard deviation, quartiles);
(iii) do not report the number of repetitions of an experiment.
F2.3 Most cloud performance evaluations are poorly de-
signed: a large majority of such studies only perform small
numbers of experiment repetitions (i.e., 3-10 trials), and do
not assess variability or confidence.

Over the last decade, big data platforms and applications
have been co-evolving with the cloud. This allowed re-
searchers and practitioners to develop, deploy, and evaluate
their applications and systems on various virtualized infras-
tructures. There is much evidence that clouds suffer from
performance variability [7, 13,35,47]. It is therefore intuitive
to ask if practitioners and system designers take variability
into account when designing experiments or building sys-
tems. To answer these questions, we performed a systematic
literature survey covering prominent conferences in the field:
NSDI [44], OSDI [5], SOSP [1], and SC [2].

Survey Methodology: Table | shows the parameters of
our survey, and Table 2 presents our survey process in-depth:
(1) we started with all articles published in the aforementioned
venues; (2) selected automatically a subset, based on string
matching our query on keywords, title, and abstract; (3) we
manually selected the articles in which the experiments were
performed on a public cloud. The 44 selected articles are
highly influential, having been cited 11,203 times so far'.

The criteria we looked for when analyzing such articles

laccording to Google Scholar on May 20, 2019
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Figure 2: Bandwidth distributions for eight real-world clouds.
Box-and-whiskers plots show the 1st, 25th, 50th, 75th, and
99th percentiles. (Distributions derived from the study [7]
conducted by Ballani et al.)

are the following: (i) reporting average or median metrics
over a number of experiments; (ii) reporting variability (such
as standard deviation or percentiles) or confidence (such as
confidence intervals); (iii) reporting the number of times an
experiment was repeated. These are all critical criteria for
determining whether a study’s conclusions may be irrepro-
ducible, or worse, not fully supported by the evidence (i.e.,
flawed). To check the reliability of our manual filtering, it
was performed by two separate reviewers, and we applied
Cohen’s Kappa coefficient [16] for each category presented
in Figure 1a: reporting average or median, statistics, and poor
specification. Our Kappa scores for each category, were 0.95,
0.81, and 0.85, respectively. Values larger than 0.8 are inter-
preted as near-perfect agreement between the reviewers [61].

Survey Results: The systems community centered around
cloud computing and big data disregards performance vari-
ability when performing empirical evaluations in the cloud.
Figure |1 shows the results of our survey. Out of the two re-
viewer’s scores, we plot the lower scores, i.e., ones that are
more favorable to the articles. We found that over 60% of
the surveyed articles are under-specified (i.e., the authors do
not mention how many times they repeated the experiments
or even whether they are reporting average, median, etc.);
a subset of the articles report averages or medians, but out
of those, only 37% report variance or confidence (i.e., error-
bars, percentiles). We further found that most articles that do
report repetitions perform only 3, 5 or 10 repetitions of the
experiments. The reason for such practices might be that ex-
perimenters are more used to evaluating software in controlled
environments—what is true in controlled environments often
does not hold in clouds.

Moreover, 76% of the properly specified studies use no
more than 15 repetitions. Coupled with the effects of cloud
variability, such experiment design practices could lead to
wrong or ambiguous conclusions, as we show next.

2.1 How credible are experiments with few
repetitions?
Experiments with few repetitions run the risk of reporting in-

accurate results; the higher the variability, the greater the risk
that a low-repetition experiment’s results are unreliable. We
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Figure 3: Medians and 90th percentiles for K-Means (a) and
TPC-DS Q68 (b). Estimates are shown along with their 95%
confidence intervals (CIs) for performance measurements un-
der the A-H distributions. ¢ depicts estimates 50-runs. Judged
by the 50-run Cls we consider gold standard, accurate esti-
mates (inside those Cls) are v'; inaccurate estimates (outside
those ClIs) are x for 3- and 10-run sets.

use application-level benchmarks to show how the bandwidth
distributions found by Ballani et al. [7] for eight real-world
clouds—shown in Figure 2—do affect findings in practice.

We emulate the behavior of the eight clouds presented in
Figure 2, which were contemporary with most articles found
in our survey. In a private Spark [4] cluster of 16 machines, we
limit the bandwidth achieved by machines according to distri-
butions A — H. We uniformly sample bandwidth values from
these distributions every x € {5,50} seconds. We used 50
experiment repetitions as our “gold standard” to demonstrate
the intuition that running more experiments yields more accu-
rate results, and compared them to the 3- and 10-repetitions
commonly found in our literature survey. (In Section 4 we
propose better methods for experiment design.)

Emulation Results: We found that experiments with few
repetitions often produced medians that are outside of the 95%
confidence intervals (CIs) for larger experiment sequences.
The 95% Cls for medians represent ranges in which we would
find true medians with 95% probability, if we were able to run
infinite repetitions. Thus, when the low-repetition medians lie
outside of the high-repetition ClIs, there is a 95% probability
that the former are inaccurate. This can be seen in Figure 3,
which plots estimates of 95% nonparametric (asymmetric)
ClIs [11] for experiments using bandwidth distributions A — H
from Figure 2. For each bandwidth distribution, we show the
medians and CIs for 3-, 5-, and 50-repetition experiments.2
The median for the “gold standard” experiment is marked
with a diamond; medians for lower-repetition experiments are
shown with an “X” if outside the gold-standard 95% CI, or a
check-mark if within it.

>Three repetitions are insufficient to calculate CIs; we plot medians
because this is representative of what is often found in the literature.



The top of Figure 3 (part (a)) shows our estimates of medi-
ans for the K-Means application from HiBench [32]. Of the
eight cloud bandwidth distributions, the 3-run median falls
outside of the gold-standard CI for six of them (75%), and the
10-run median for three (38%). The bottom half of Figure 3
(part (b)) shows the same type of analysis, but this time, for
tail performance [22] instead of the median. To obtain these
results, we used TPC-DS [49] Query-68 measurements and
the method from Le Boudec [11] to calculate nonparametric
estimates for the 90th percentile performance, as well as their
confidence bounds. As can be seen in this figure, it is even
more difficult to get robust tail performance estimates.

Emulation Methodology: The quartiles in Ballani’s study
(Figure 2) give us only a rough idea about the probability den-
sities and there is uncertainty about fluctuations, as there is
no data about sample-to-sample variability. Considering that
the referenced studies reveal no autocovariance information,
we are left with using the available information to sample
bandwidth uniformly. Regarding the sampling rate, we found
the following: (1) As shown in Section 3 two out of the three
clouds we measured exhibits significant sample-to-sample
variability on the order of tens of seconds; (2) The cases F-G
from Ballani’s study support fine sampling rates: variabil-
ity at sub-second scales [63] and at the 20s intervals [24] is
significant. Therefore, we sample at relatively fine-grained
intervals: 5s for Figure 3(a), and 50s for Figure 3(b). Fur-
thermore, sampling at these two different rates shows that
benchmark volatility is not dependent on the sampling rate,
but rather on the distribution itself.

3 How Variable Are Cloud Networks?

We now gather and analyze network variability data for three
different clouds: two large-scale commercial clouds, and a
smaller-scale private research cloud. Our main findings can
be summarized as follows:

F3.1 Commercial clouds implement various mechanisms and
policies for network performance QoS enforcement, and these
policies are opaque to users and vary over time. We found (i)
token-bucket approaches, where bandwidth is cut by an order
of magnitude after several minutes of transfer; (ii) a per-core
bandwidth QoS, prioritizing heavy flows; (iii) instance types
that, when created repeatedly, are given different bandwidth
policies unpredictably.

F3.2 Private clouds can exhibit more variability than public
commercial clouds. Such systems are orders of magnitude
smaller than public clouds (in both resources and clients),
meaning that when competing traffic does occur, there is less
statistical multiplexing to “smooth out” variation.

F3.3 Base latency levels can vary by a factor of almost 10x
between clouds, and implementation choices in the cloud’s
virtual network layer can cause latency variations over two or-
ders of magnitude depending on the details of the application.

Table 3: Experiment summary for determining performance
variability in modern cloud networks. Experiments marked
with a star (*) are presented in depth in this article. Due to
space limitations, we release the other data in our reposi-
tory [59]. All Amazon EC2 instance types are typical offer-
ings of a big data processing company [20].

Cloud Instance QoS Exp. Exhibits  Cost
Type (Gbps) Duration Variability  ($)
*Amazon c5.XL <10 3 weeks Yes 171
Amazon m5.XL <10 3 weeks Yes 193
Amazon c5.9XL 10 1day Yes 73
Amazon m4.16XL 20 1day Yes 153
Google 1 core 2 3 weeks Yes 34
Google 2 core 4 3 weeks Yes 67
Google 4 core 8 3 weeks Yes 135
*Google 8 core 16 3 weeks Yes 269
HPCCloud 2 core N/A 1 week Yes N/A
HPCCloud 4 core N/A 1 week Yes N/A
*HPCCloud 8 core N/A 1 week Yes N/A

3.1 Bandwidth

We run our bandwidth measurements in two prominent com-
mercial clouds, Amazon EC2 (us-east region) and Google
Cloud (us-east region), and one private research cloud, HPC-
Cloud”. Table 3 summarizes our experiments. In the interest
of space, in this paper we focus on three experiments; all
data we collected is available in our repository [59]. We col-
lected the data between October 2018 and February 2019. In
total, we have over 21 weeks of nearly-continuous data trans-
fers, which amount for over 1 million datapoints and over 9
petabytes of transferred data.

The Amazon instances we chose are typical instance
types that a cloud-based big data company offers to its cus-
tomers [20], and these instances have AWS’s “enhanced net-
working capabilities” [6]. On Google Cloud (GCE), we chose
the instance types that were as close as possible (though not
identical) to the Amazon EC2 offerings. HPCCloud offered a
more limited set of instance types. We limit our study to this
set of cloud resources and their network offerings, as big data
frameworks are not equipped to make use of more advanced
networking features (i.e., InfiniBand), as they are generally de-
signed for commodity hardware. Moreover, vanilla Spark de-
ployments, using typical data formats such as Parquet or Avro,
are not able to routinely exploit links faster than 10 Gbps, un-
less significant optimization is performed [58]. Therefore, the
results we present in this article are highly likely to occur in
real-world scenarios.

In the studied clouds, for each pair of VMs of similar in-
stance types, we measured bandwidth continuously for one
week. Since big data workloads have different network access
patterns, we tested multiple scenarios:

o full-speed - continuously transferring data, and sum-

marizing performability metrics (bandwidth, retransmis-

3nttps://userinfo.surfsara.nl/systems/hpc-cloud
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Figure 4: Variable network bandwidth performance in the
HPCCloud (left); the statistical performance distribution, plot-
ted as an IQR box; the whiskers represent 1st and 99th per-
centiles (right). Duration: a week of continuous experimenta-
tion; each point is average over 10 seconds.
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Figure 5: Variable network bandwidth performance in the
Google Cloud (left), and the statistical performance distribu-
tion, plotted as an IQR box, where the whiskers are 1st and
99th percentiles (right). The duration is a week of continuous
experimentation, each point is an average over 10 seconds.

sions, CPU load etc.) every 10 seconds;

e 10-30 - transfer data 10 seconds, wait 30 seconds;

e 5-30 - transfer data 5 seconds, wait 30 seconds.

The first transmission regime models highly network inten-
sive applications, such as long-running batch processing or
streaming. The last two modes mimic short-lived analytics
queries, such as TPC-H, or TPC-DS.

HPCCloud. Small-scale (i.e., up to 100 physical machines
and several hundred users) private (research) clouds often
do not use mechanisms to enforce network QoS. We mea-
sured the network performance variability between pairs of
VMs, each having 8 cores. Figure 4 plots the results. We
show our measurements only for "full-speed" (i.e., contin-
uous communication) because our other experiments show
similar behavior. We observe that the network bandwidth
shows high variability, ranging from 7.7 Gbps to 10.4 Gbps.

Google Cloud. GCE states that it enforces network band-
width QoS by guaranteeing a “per-core” amount of bandwidth.
Our measurements, plotted in Figure 5, fall close to the QoS
reported by the provider, but access pattern affects variability
to a greater degree than in other clouds. Longer streams (full-
speed) exhibit low variability and better overall performance,
while 5-30 has a long tail. This could be due to the design of
the Google Cloud network, where idle flows use dedicated
gateways for routing through the virtual network [18]. We ob-
serve that network bandwidth varies significantly, depending
on access patterns, between 13 Gbps and 15.8 Gbps.

Amazon EC2. We discover the opposite behavior in EC2:
heavier streams achieve less performance and more variabil-
ity compared to lighter (shorter) streams, as shown in Fig-
ure 6. Considering the large performance differences between
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Figure 6: Variable network bandwidth performance in Ama-
zon EC2, plotted as an empirical cumulative distribution (left),
barplot of the coefficient of variation (right). The duration is
a week of continuous experimentation, each data point repre-
senting an average over 10 seconds.
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Figure 7: Example of observed Amazon EC2 latency for a
10-second TCP sample on c5.xlarge. Left: RTT latency for
TCP packets. Right: achieved iperf bandwidth. Top: regular
Amazon EC2 behavior. Bottom: latency behavior when a drop
in bandwidth occurs.

these experiments, we plot our measurements as a CDF and a
barplot of coefficient of variation to improve visibility. There
are approximately 3x and 7x slowdowns between /0-30 and 5-
30 and full-speed, respectively. The achieved bandwidth varies
between 1 Gbps and 10 Gbps. We investigate the causes of
this behavior in Section 3.3.

How rapidly does bandwidth vary? Our analysis shows
the level of measurement-to-measurement variability is signif-
icant: bandwidth in HPCCloud (full-speed) and Google Cloud
(5-30) varies between consecutive 10-second measurements
up to 33% and 114%, respectively. While a small sample may
exhibit only modest fluctuations, the long-tailed distributions
we observed here strongly suggest using the analysis tech-
niques we discuss in Section 4.1. Amazon EC2’s variability
is more particular and policy-dependent (Section 3.3).

3.2 Latency

Commercial clouds implement their virtual networks using
very different mechanisms and policies. We can see this in
more detail by looking at the round-trip lantencies seen in
Google Cloud and Amazon EC2. We measure the application-
observed TCP RTT, as this is what impacts the high-level
networking stacks of big data frameworks. For our experi-
ments, we run 10-second streams of iperf tests, capturing all
packet headers with fepdump. We perform an offline analysis
of the packet dumps using wireshark, which compares the
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Figure 8: Example of observed Google Cloud latency for a 10-
second TCP sample on a 4-core instance. Left: RTT latency
for TCP packets. Right: achieved iperf bandwidth.
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Figure 9: TCP retransmission analysis, summarized for all
experiments presented before, in all clouds. Left: retransmis-
sions as IQR boxplots, with the whiskers representing 1st
and 99th percentiles; Right: violin plot for retransmissions
in Google Cloud; thickness of the plot is proportional to the
probability density of the data.

time between when a TCP segment is sent to the (virtual)
network device and when it is acknowledged. Our data was
collected between August and September 2019. In total, it
contains over 50 million RTT datapoints.

The behavior we observe is inherently different: Google
Cloud exhibits latency in the order of milliseconds, with an
upper limit of 10ms. Amazon EC2 generally exhibits faster
sub-millisecond latency under typical conditions, but when
the traffic shaping mechanism (detailed in Section 3.3) takes
effect, the latency increases by two orders of magnitude, sug-
gesting large queues in the virtual device driver. Figure 7
shows representative patterns of latency in the Amazon EC2
cloud, while Figure 8 is representative of Google Cloud. Both
figures plot latency as RTT packet data obtained from a 10-
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Figure 10: The total amount of data transferred between the
pairs of virtual machines involved in the three types of exper-
iments performed. The total time is a week, while each point
on the horizontal axis represents 10 seconds.

second TCP stream obtained running an iperf benchmark.

The behavior observed in the top half of Figure 7 lasts for
approximately ten minutes of full-speed transfer on c5.xlarge
instances. After this time, the VMs’ bandwidth gets throttled
down to about 1 Gbps (bottom half of Figure 7), which also
significantly increases latency. On Google Cloud, there is no
throttling effect, but the bandwidth and latency vary more
from sample to sample.

3.3 Identifying Mechanisms and Policies

The behavior exhibited by the two commercial providers is
notably different. We uncover mechanisms and policies for
enforcing client QoS by performing extra analysis, depicted
in Figures 9 and 10. The former plots the number of retrans-
missions per experiment (part (a)) and a zoomed-in view of
Google Cloud (part (b)). Amazon EC2 and HPCCloud have a
negligible number of retransmissions, yet retransmission are
common in Google Cloud: roughly 2% per experiment.
Figure 10 plots the total amount of traffic for Amazon EC2
and Google Cloud over the entire duration of our experiments.
It is clear that in Google Cloud’s case the amount of traffic
generated by full-speed is orders of magnitude larger than for
the intermittent access patterns. In Amazon EC2’s case, the
total amount of data sent for all three kinds of experiments
is roughly equal. By corroborating this finding the more fine-
grained experiments we performed presented in Figure 7, and
other empirical studies [51, 62], we find that Amazon EC2
uses a token-bucket algorithm to allocate bandwidth to users.
Token-Bucket Analysis. The token-bucket algorithm op-
eration can be explained as follows. When a VM is provided
to the user, its associated bucket holds a certain amount of
tokens (i.e., a budget). This budget is allowed to be spent at
a high rate (i.e., 10 Gbps). When the budget is depleted (e.g.,
after about 10 minutes of continuous transfer on a c5.xlarge
instance, the QoS is limited to a low rate (e.g., 1 Gbps). The
bucket is also subject to a replenishing rate that we empiri-
cally found to be approximately 1 Gbit token per second, i.e.,
every second users receive the amount of tokens needed to
send 1 Gbit of data at the high (10 Gbps) rate. Once the token
bucket empties, transmission at the capped rate is sufficient to
keep it from filling back up. The user must rest the network,
and re-filling the bucket completely takes several minutes.
We analyze the behavior of multiple types of VMs from the
¢5.* family, and find that their token-bucket parameters difter.
More expensive machines benefit from larger initial budgets,
as well as higher bandwidths when their budget depletes. Fig-
ure 11 plots the token-bucket parameter analysis for four VMs
of the ¢5. * family. For each VM type, we ran an iperf test con-
tinuously until the achieved bandwidth dropped significantly
and stabilized at a lower value. For each instance type, we ran
15 tests. Figure 11 shows the time taken to empty the token
bucket, the high (non-empty bucket) bandwidth value, and the
low (empty bucket) bandwidth value. As the size (i.e., number
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Figure 12: Measured latency and bandwidth for Amazon EC2
(c5.xlarge) and GCE (4-core VM with advertised 8 Gbps)
instances as functions of the write () size.

of cores, amount of memory etc,) of the VM increases, we
notice that the bucket size and the low bandwidth increase
proportionally. However, as the magnitude of the boxplots
suggests, as well as the error bars we plotted for the high
bandwidth, these parameters are not always consistent for
multiple incarnations of the same instance type.

Virtual NIC Implementations. We found that differences
in EC2 and GCE’s implementations of virtual NICs can lead
to significantly different observed behavior. EC2’s virtual
NICs advertise an MTU of 9000 bytes, a standard “jumbo
frame” size. GCE’s only advertise an MTU of 1500 bytes
(standard Ethernet frame size), but instead enable TCP Seg-
mentation Offloading (TSO), in which the NIC accepts larger
“packets” from the device driver, but then breaks them down
into smaller Ethernet frames before transmission (we do not
know whether this occurs at the virtual or physical NIC in
GCE’s implementation). Both of these techniques serve the
same basic function—reducing overhead by sending fewer,
larger packets on the virtual NIC, but result in different ob-
servable behavior on the host, and the details of this behavior
depend heavily on the application and workload.

The most striking effect is the way that the size of the
write () s done by the application affects latency and packet
retransmission. Figure 12 plots the effects of the write ()
size on latency and bandwidth. On EC2, the size of a single
“packet” tops out at the MTU of 9K, whereas on GCE, TSO
can result in single “packet” at the virtual NIC being as large
as 64K in our experiments. With such large “packets,” per-

ceived latency increases greatly due to the higher perceived
“transmission time” for these large packets. The number of
retransmissions also goes up greatly, presumably due to lim-
ited buffer space in the bottom half of the virtual NIC driver
or tighter bursts on the physical NIC. In practice, the size
of the “packets” passed to the virtual NIC in Linux tends to
equal to the write on the socket (up to the cap noted above).
This makes the observed behavior—and thus repeatability
and the ability to generalize results between clouds—highly
application-dependent. It is also worth noting that all streams
are affected when one stream sends large “packets”, since
they share a queue in the virtual device driver. On GCE, when
we limited our benchmarks to writes of 9K, we got near-zero
packet retransmission and an average RTT of about 2.3ms.
When the benchmark used its default write () size of 128K,
we saw the hundreds of thousands of retransmission shown
in Figure 9 and latencies as high as 10ms.

4 Performance Reproducibility For Big Data
Applications

Having looked at low-level variability in bandwidth and la-
tency, we now move “up” a level to applications and work-
loads. Our main findings are:
F4.1 Under variability resembling Google Cloud and HPC-
Cloud, which can be modeled as stochastic noise, reproducible
experiments can be obtained using sufficient repetitions and
sound statistical analyses.
F4.2 Application transfer patterns exhibit non-trivial interac-
tions with token-bucket network traffic shapers. Depending on
the bucket budget and the application, significant application
performance variability is incurred.
F4.3 Token-bucket traffic shapers in conjunction with (im-
balanced) big data applications can create stragglers.
F4.4 In long-running cloud deployments that have incurred
large amounts of varied network traffic, it is highly difficult
to predict application performance, as it is dependent on the
state of the individual nodes’ remaining token-bucket budgets.
Big Data Workloads. In this section, we run the Hi-
Bench [32] and TPC-DS [49] benchmarks on Spark 2.4.0 (see
Table 4) to showcase our main findings on network variability
and big data workloads reproducibility. In 2015, Ousterhout
et al. [50] found that big data workloads are mostly CPU
bound. The workloads we chose here are no exception. How-
ever, they are sensitive to oscillations in the network transfer
performance. Moreover, most of the CPU load in [50] is at-
tributed to the framework’s inefficiencies [19], which have
been solved in later releases. As a consequence, modern Spark
implementations are more sensitive to network variations.

4.1 Experiments and Stochastic Noise

As detailed in Section 3, the behavior of network performance
variability for Google Cloud and HPCCloud is closer in na-
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Figure 13: CONFIRM analysis for K-Means and TPC-DS
Q65 on Google Cloud and HPCCloud. Median estimates (blue
thick curve), 95% nonparametric confidence intervals (light
blue filled space), and 1% error bounds (red dotted curves).
Vertical axis not starting at O for visibility.

Table 4: Big data experiments on modern cloud networks.

Workload Size Network Software #Nodes
. . Token-bucket,  Spark 2.4.0,
HiBench [32] BigData Figure 14 Hadoop 2.7.3 12
Token-bucket,  Spark 2.4.0,
TPC-DS [49]  SF-2000 Figure 14 Hadoop 2.7.3 12

ture to stochastic variability given by transient conditions in
the underlying resources, such as noisy neighbors. To achieve
reproducible experiments under such conditions, system de-
signers and experimenters need to carefully craft and plan
their tests, using multiple repetitions, and must perform sound
statistical analyses.

We ran several HiBench [32] and TPC-DS [49] benchmarks
directly on the Google Cloud and HPCCloud clouds and re-
port how many repetitions an experimenter needs to perform
in order to achieve trustworthy experiments. While it is true
that running experiments directly on these clouds we can-
not differentiate the effects of network variability from other
sources of variability, the main take-away message of this
type of experiment is that this kind of stochastic variability
can be accounted for with proper experimentation techniques.

On the performance data we obtained, we performed a
CONFIRM [47] analysis to predict how many repetitions
an experiment will require to achieve a desired confidence
interval. Figure 13 presents our findings, showing that for
these two common benchmarks, it can take 70 repetitions or
more to achieve 95% confidence intervals within 1% of the
measured median. As we saw in Section 2, this is far more
repetitions than are commonly found in the literature: most
papers are on the extreme left side of this figure, where the
confidence intervals are quite wide. This points to the need for
stronger experiment design and analysis in our community.
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Figure 14: Validation of the emulation of the token-bucket
policy of Amazon EC2. The similar aspect of the two curves
indicates that emulation is high-quality.
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Figure 15: Link capacity allocated when running Terasort on a
token bucket. Left vertical axis shows the link capacity; right
vertical axis shows the token bucket budget. Budget depletes
due to application network transfers.

4.2 Experiments and Token-Buckets

In contrast to Google Cloud and HPCCloud, the foken-bucket
shaping policy of Amazon EC2 is not stochastic noise, and
needs in-depth analysis. Because token-bucket behavior is
dependent on past network access patterns, an application in-
Sfluences not only its own runtime, but also future applications’
runtimes.

Token-bucket Emulator. We decided to emulate the be-
havior of Amazon EC2 token-bucket instead of directly run-
ning applications in this cloud. We believe this type of ex-
perimentation is superior to the other two alternatives: (i)
simulation, or (ii) directly running applications on the cloud.
For the former, we believe the behavior of big data applica-
tions under network performance variability is far too subtle
and complex to properly simulate while modeling and cap-
turing all possible variables. For the latter, we perform the
emulation in an isolated setup, i.e., a private cluster, that does
not share resources. This allows us to test in isolation the
effects of network performance variability, excluding as much
as possible all other sources of variability one could encounter
in a cloud (e.g., CPU, memory bandwidth, I/O etc.). If we
were to directly run applications in a cloud, it would have
been difficult to separate the effects of network variability
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Figure 16: HiBench average runtime (left) and performance
variability (right), plotted as IQR box (whiskers represent 1st
and 99th percentiles), induced by token bucket budget vari-
ability. The more network-dependent applications are affected
more by lower budgets.

from, for example, the effects of CPU variability.

We built a network emulator based on the Linux tc [33] fa-
cility. Figure 14 plots the real-world behavior encountered in
Amazon EC2 in comparison with our emulation. This experi-
ment is a zoomed-in view of the experiment in Section 3.1,
where our servers were communicating for either five or ten
seconds, then slept for 30 seconds. At the beginning of each
experiment, we made sure that the token-bucket budget is
nearly empty. During the first few seconds of the experiment
the token-bucket budget gets completely exhausted. For each
sending phase of 5 or 10 seconds, the system starts at a high
QoS (10 Gbps bandwidth), after a few seconds the budget is
emptied, and the system drops to a low QoS (1 Gbps).

Experiment Setup. We perform the experiments described
in Table 4 on a 12-node cluster. Each node has 16 cores,
64GB memory, a 256GB SSD, and FDR InfiniBand network.
Using the emulator presented in Figure 14, we run on the
emulated Amazon EC2 token-bucket policy all applications
and queries in the HiBench [32] and TPC-DS [49] benchmark
suites. The emulated setup is that of the c¢5.xlarge instance
type, which typically sees a high bandwidth of 10 Gbps and
a low bandwidth of 1 Gbps. Throughout our experiments we
vary the token bucket budget to assess its impact on big data
applications. We run each workload a minimum of 10 times
for each token-bucket configuration and report full statistical
distributions of our experiments.

Token-bucket-induced Performance Variability. One
important parameter for the token-bucket is its budget: the
number of tokens available at a certain moment in time. This
is highly dependent on the previous state of the virtual ma-
chine (i.e., how much network traffic has it sent recently), and
has a large impact on the performance of future deployed
applications. Note that it is difficult to estimate the currently-
available budget for anything other than a “fresh” set of VMs:
each VM has its own token bucket, the remaining budget is
a function of previous runs, and, as we saw in Figure 11 the
constants controlling the bucket are not always identical.

Application performance is highly dependent on the budget,
and deployments with smaller budgets create more network
performance variability. Figure 15 shows the network traf-

fic behavior of the Terasort application with different initial
budgets. For each budget, the subfigures show the application
network profile for 5 consecutive runs. We notice a strong
correlation between small budgets and network performance
variability: there is much more variability for budgets €
{10,100} Gbits, than for budgets € {1000,5000} Gbits.

Figure 16 shows how this effect manifests in the runtimes
of HiBench: it plots the average application runtime (left)
over 10 runs for budgets € {10, 100, 1000, 5000} Gbits, and
the performance variability over the same budgets (right). For
the more network-intensive applications (i.e., TS, WC), the
initial state of the budget can have a 25%-50% impact on
performance.

A similar behavior is observed for the TPC-DS benchmark
suite. Figure 17 shows the query sensitivity to the token bud-
get and the variability induced by different budget levels. Fig-
ure 17(a) plots average runtime slowdown for 10-run sets of
TPC-DS queries for budgets € {10,100, 1000} Gbits, com-
pared to the 5000 Gbit budget. For all queries, larger budgets
lead to better performance. Figure 17(b) plots the perfor-
mance variability over all tested budgets. Queries with higher
network demands exhibit more sensitivity to the budget and
hence higher performance variability.

These results clearly show that if the system is left in an un-
known state (e.g., a partially-full token bucket, left over from
previous experiments), the result is likely to be an inaccurate
performance estimate. Evidence from Figures 16(b) and 17(b)
strongly supports this, as performance varies widely for the
network-intensive queries and applications depending on the
token-bucket budget.

Token-bucket-induced Stragglers. Non-trivial combina-
tions of token-bucket budgets, application scheduling imbal-
ances, and network access patterns lead to straggler nodes.
Figure 18 shows that for budget = 2500 Gbits and application
TPC-DS, the application gets slowed down by a straggler: all
nodes but one in the deployment do not deplete their bud-
gets completely, thus remaining at a high bandwidth QoS
of 10 Gbps. However, there is one node on which the token-
bucket budget is depleted, causing its bandwidth to get limited
to 1 Gbps. Exacerbating the variability, the behavior is not
consistent: this node oscillates between high and low band-
widths in short periods of time. Such unpredictable behavior
leads to both performance variability of the entire setup and
also poor experiment reproducibility. This behavior will be
prevalent in many unbalanced networked applications, where
certain servers might perform more transfers than others. Es-
pecially in long-running clusters, the state of the individual
servers’ token-buckets will be highly different. As a direct
consequence, the overall system will suffer from stragglers.

Repeatable experiments and token-buckets. Token-
bucket policies for enforcing network QoS can have unex-
pected and detrimental impacts on sound cloud-based exper-
imentation. To explore this, we compute medians and their
nonparametric confidence intervals (CIs), similar to the work
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Figure 18: Link capacity allocation for TPC-DS on a token-
bucket network, with initial budget = 2500 Gbit. Regular node
network utilization (left); straggler node (right).

by Maricq et al. [47], across a number of initial token budgets.
Figure 19 plots median estimates for two TPC-DS queries,
along with 95% CIs and 10% error bounds around medians.
Repetitions of the experiments are independent: each one
runs on fresh machines with flushed caches, and at the the
beginning of each repetition, we reset the token budget. We
reduce this initial budget over time to emulate the effects
that previous experiments can have on subsequent ones: what
this models is an environment in which many different ex-
periments (or repetitions of the same experiment) are run in
quick succession. This is likely to happen when running many
experiments back-to-back in the same VM instances.

Query 82 (in the top of Figure 19) is agnostic to the token
budget. Running more repetitions of this experiment tight-
ens the confidence intervals, as is expected in CI analysis.
In contrast, query 65 (in the bottom of the figure) depends
heavily on the bucket budget; as a result, as we run more ex-
periments, depleting the bucket budget, the query slows down
significantly, and the initial CI estimates turn out to be inac-
curate. In fact, the CIs widen with more repetitions, which is
unexpected for this type of analysis. This is because the token
bucket breaks the assumption that experiments are indepen-
dent: in this model, more repetitions deplete the bucket that
the next experiment begins with. These two queries represent
extremes, but, as shown in the bar graph at the bottom of the
figure, 80% of all queries we ran from TPC-DS suffer effects

like Query 65: most produce median estimates that are more
than 10% incorrect by the time we fully deplete the budget.

This demonstrates that, when designing experiments, we
cannot simply rely on the intuition that more repetitions lead
to more accurate results: we must ensure that factors hidden in
the cloud infrastructure are reset to known conditions so that
each run is truly independent. Others have shown that cloud
providers use token buckets for other resources such as CPU
scheduling [62]. This affects cloud-based experimentation, as
the state of these token buckets is not directly visible to users,
nor are their budgets or refill policies.

5 Summary: Is Big Data Performance Repro-
ducible in Modern Cloud Networks?

We return to our two basic questions: (1) How reproducible
are big data experiments in the cloud?; and (2) What can
experimenters do to make make sure their experiments are
meaningful and robust? Our findings are:

F5.1: Network-heavy experiments run on different
clouds cannot be directly compared. Building a cloud in-
volves trade-offs and implementation decisions, especially
at the virtualization layer. Some of these decisions are well-
documented by the platforms [6,28], but others, including the
ones we have examined in this paper, are not. Unfortunately,
these differences can cause behaviors that result in different
application performance, such as the bandwidth differences
seen in Figure 10 or the latency effects seen in Figure 12.

Both of these effects are rather large, and are dependent on
factors such as the size of the application’s write buffer and
specific patterns of communication. While these decisions
presumably serve the clouds’ commercial customers well,
they complicate things for those who are trying to draw sci-
entific conclusions; when comparing to previously-published
performance numbers, it is important to use the same cloud
to ensure that differences measured are that of the systems
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under test, and not artifacts of the cloud platform. Running
on multiple clouds, can, however, be a good way to perform
sensitivity analysis [36]: by running the same system with
the same input data and same parameters on multiple clouds,
experimenters can reveal how sensitive the results are to the
choices made by each provider.

F5.2: Even within a single cloud, it is important to es-
tablish baselines for expected network behavior. These
baselines should be published along with results, and
need to be verified before beginning new experiments. Be-
cause cloud providers’ policies can be opaque, and implemen-
tation details can change over time, it is possible for changes
to invalidate over time experiments within the same cloud.
For example, after several months of running experiments in
Amazon EC2, we began encountering new behavior: prior
to August 2019, all c¢5.x1large instances we allocated were
given virtual NICs that could transmit at 10 Gbps. Starting
in August, we started getting virtual NICs that were capped
to 5 Gbps, though not consistently (this behavior is part of
the underlying cause of the distributions in Figure 11). The
reasons for this are not clear, and we have no way to know
whether the “new” behavior is a transient effect in response to
increased congestion that month or a new, permanent policy.

If one can establish baseline expectations for how the plat-
form will perform, and incorporate checks for them into
the experimental process [37], one can at least detect when
changes have occurred. Experimenters should check, through
micro-benchmarks, whether specific cloud resources (e.g.,
CPU, network) are subject to provider QoS policies.

As opposed to contention-related variability, this type of
variability is deterministic under carefully selected micro-
benchmarks. In the network, these microbenchmarks should
at a minimum include base latency, base bandwidth, how la-

tency changes with foreground traffic, and the parameters to
bandwidth token-buckets, if they are present. Furthermore,
when reporting experiments, always include these perfor-
mance fingerprints together with the actual data, as possi-
ble changes in results in the future could be explained by
analyzing the micro-benchmark logs.

F5.3: Some cloud network variability (in particular, in-
terference from neighbors) can be modeled as stochastic
noise, and classic techniques from statistics and experi-
ment design are sufficient for producing robust results;
however, this often takes more repetitions than are typi-
cally found in the literature. Standard statistical tools such
as ANOVA and confidence intervals [11,36,47] are effective
ways of achieving robust results in the face of random vari-
ations, such as those caused by transient “noisy neighbors”;
however, in order to be effective, they require many repeti-
tions of an experiment, and, as we saw in Section 2, this bar
is often not met in the literature. The more variance, the more
repetitions are required, and as we saw in Figures 4, 5, and 0,
network variance in the cloud can be rather high, even under
‘ideal’ conditions. An effective way to determine whether
enough repetitions have been run is to calculate confidence
intervals for the median and tail, and to test whether they fall
within some acceptable error bound (e.g., 5% of value they
are measuring).

F5.4: Other sources of variability cause behavior that
breaks standard assumptions for statistical analysis, re-
quiring more careful experiment design. Some of the vari-
ability we have seen (e.g., Figures 12, 18, and 19) causes be-
havior that breaks standard assumptions for statistical analysis
(such as iid properties and stationarity). As an integral part
of the experimentation procedure, samples collected should
be tested for normality [56], independence [46], and station-
arity [23]. When results are not normally-distributed, non-
parametric statistics can be used [26]. When performance is
not stationary, results can be limited to time periods when
stationarity holds, or repetitions can be run over longer time
frames, different diurnal or calendar cycles, etc. Techniques
like CONFIRM [47] can be used to test whether confidence
intervals converge as expected.

Discretizing performance evaluation into units of time, e.g.,
one hour is helpful. Gathering median performance for each
interval, and applying techniques such as CONFIRM over
large-numbers of gathered medians results in significant and
realistic performance data. Large intervals can smooth out
noise, helping to reduce unrepresentative measurements.

We also find it helpful to ‘rest’ the infrastructure and ran-
domize [3] experiment order. Because it is hard to tell what
performance-relevant state may build up in the hidden parts
of the underlying cloud infrastructure, experimenters must
ensure that the infrastructure is in as ‘neutral’ a state as possi-
ble at the beginning of every experiment. The most reliable
way to do this is to create a fresh set of VMs for every ex-
periment. When running many small experiments, this can



be cost- or time-prohibitive: in these cases, adding delays
between experiments run in the same VMs can help. Data
used while gathering baseline runs can be used to determine
the appropriate length (e.g., seconds or minutes) of these rests.
Randomized experiment order is a useful technique for avoid-
ing self-interference.

F5.5: Network performance on clouds is largely a func-
tion of provider implementation and policies, which can
change at any time. Experimenters cannot treat “the cloud”
as an opaque entity; results are significantly impacted by
platform details that may or may not be public, and that are
subject to change. (Indeed, much of the behavior that we doc-
ument in Sections 3 and 4 is unlikely to be static over time.)
Experimenters can safeguard against this by publishing as
much detail as possible about experiment setup (e.g., instance
type, region, date of experiment), establishing baseline per-
formance numbers for the cloud itself, and only comparing
results to future experiments when these baselines match.

Applicability to other domains. In this paper, we focused
on big data applications and therefore our findings are most
applicable in this domain. The cloud-network related findings
we present in Section 3 are general, so practitioners from other
domains (e.g., HPC) should take them in to account when
designing systems and experiments. However, focusing in
depth on other domains might reveal interactions between net-
work variability and experiments that are not applicable to big
data due to the intrinsic application characteristics. Therefore,
while our findings in Section 4 apply to most other networked
applications, they need not be complete. We also believe that
a community-wide effort for gathering cloud variability data
will help us automate reproducible experiment design that
achieves robust and meaningful performance results.

6 Related Work

We have showed the extent of network performance variabil-
ity in modern clouds, as well as how practitioners disregard
cloud performance variability when designing and running
experiments. Moreover, we have showed what the impact of
network performance variability is on experiment design and
on the performance of big data applications. We discuss our
contributions in contrast to several categories of related work.
Sound Experimentation (in the Cloud). Several articles
already discuss pitfalls of systems experiment design and pre-
sentation. Such work fits two categories: guidelines for better
experiment design [3,17,38,47] and avoiding logical fallacies
in reasoning and presentation of empirical results [10,21,31].
Adding to this type of work, we survey how practitioners ap-
ply such knowledge, and assess the impact of poor experiment
design on the reliability of the achieved results. We investi-
gate the impact of variability on performance reproducibility,
and uncover variability behavior on modern clouds.
Network Variability and Guarantees. Network variabil-
ity has been studied throughout the years in multiple contexts,

such as HPC [8, 9], experimental testbeds [47] and virtual-
ized environments [35, 40, 55]. In the latter scenario, many
studies have already assessed the performance variability of
cloud datacenter networks [43, 51, 63]. To counteract this
behavior, cloud providers tackle the variability problem at
the infrastructure level [12,52]. In general, these approaches
introduce network virtualization [30, 54], or traffic shaping
mechanisms [18], such as the token buckets we identified, at
the networking layer (per VM or network device), as well as
a scheduling (and placement) policy framework [41]. In this
work, we considered both types of variability: the one given
by resource sharing and the one introduced by the interaction
between applications and cloud QoS policies.

Variability-aware Network Modeling, Simulation, and
Emulation. Modeling variable networks [27,45] is a topic of
interest. Kanev et al. [39] profiled and measured more than
20,000 Google machines to understand the impact of perfor-
mance variability on commonly used workloads in clouds.
Uta et al. emulate gigabit real-world cloud networks to study
their impact on the performance of batch-processing applica-
tions [60]. Casale and Tribastone [14] model the exogenous
variability of cloud workloads as continuous-time Markov
chains. Such work cannot isolate the behavior of network-
level variability compared to other types of resources.

7 Conclusion

We studied the impact of cloud network performance vari-
ability, characterizing its impact on big data experiment re-
producibility. We found that many articles disregard network
variability in the cloud and perform a limited number of rep-
etitions, which poses a serious threat to the validity of con-
clusions drawn from such experiment designs. We uncovered
and characterized the network variability of modern cloud net-
works and showed that network performance variability leads
to variable slowdowns and poor performance predictability,
resulting in non-reproducible performance evaluations. To
counter such behavior, we proposed protocols to achieve reli-
able cloud-based experimentation. As future work, we hope
to extend this analysis to application domains other than big
data and develop software tools to automate the design of
reproducible experiments in the cloud.
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Appendix — Code and Data Artifacts

Raw Cloud Data:
DOI:10.5281/zenodo.3576604

Bandwidth Emulator:
github.com/alexandru-uta/bandwidth_emulator

Cloud Benchmarking:
github.com/alexandru-uta/measure-tcp-latency
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