
Refactoring a Full Stack Web Application
to Remove Barriers for Student Developers
and to Add Customization for Instructors∗

Jack Cook1, Richard Weiss1, Jens Mache2

1The Evergreen State College
{coojac09, weissr}@evergreen.edu

2Lewis & Clark College
jmache@lclark.edu

Abstract

This paper describes our experience refactoring EDURange, a full-
stack Web application, in order to make it easier for students to do
undergraduate research and contribute. As a result, more students were
able to contribute to this open source project. In addition, as instructors
we wanted to have a simple interface to customize existing exercises and
parameterize them so that students could repeat an exercise without it
being identical. The main differences were: changing from Ruby on Rails
to Python Flask, changing from Virtual Machines to Docker containers,
and eliminating dependence on AWS through Terraform. These changes
reduced the number of lines of code from 28K to 12K.

1 Introduction

Refactoring [2] a large program is hard and time-consuming. So, why would we
do it? In our case, we wanted to make some significant changes to EDURange:

• Make it easy for undergraduates to contribute code,
• Make it easy for instructors to create and add their own exercises,
• Make it more efficient, and
• Make it more portable by removing dependence on AWS.

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

35



We made it easier for undergraduates to contribute code by switching to a
language they were more familiar with, switching to a simpler Web framework,
and reducing the size of the codebase. The original framework was Ruby on
Rails and we switched to Python Flask. Ruby is not taught in our curriculum,
but Python is. We made it easier for instructors to create exercises by adding a
level of automation, switching from Chef to Terraform, and creating a version
of the application that runs on a local server as opposed to a Cloud. Using
Terraform also increased the portability. Terraform is a more flexible tool and
supports several environments. We made it more efficient by switching from
using virtual machines (VMs) to Docker containers.

1.1 Background

EDURange [1, 5, 6, 4] is an NSF-funded project that is both a collection of
interactive, collaborative cybersecurity exercises and a framework for creat-
ing these exercises. It is designed to provide students with an active learning
environment focusing on analysis skills rather than the latest tools.1 EDU-
Range also allows the instructor to observe student interactions, which can
help instructors identify student problems. This environment has typically
been provided in the form of one or more Amazon Web Services (AWS) virtual
machines, which are launched on-demand with the proper configurations for
different exercises. For example, there is an exercise Total Recon where stu-
dents find hosts with specific ports open or services running. In our original
version, each host was a separate VM.

The original version of EDURange was developed using Ruby on Rails
for the front-end web application in connection with a Postgres database for
managing accounts, groups, and exercises. Additionally, the back-end of EDU-
Range is supported by a Redis server for issuing and scheduling commands,
such as starting and stopping VMs, or sending emails to users who request a
password reset.

One of the design goals for the original version was that it should be easy
to use in a demo. We were able to use either pre-made accounts or we could
have users sign up at the beginning of a workshop. The one problem that we
had was that if users arrived late, then we couldn’t add them to the scenario.
We have given over 20 demos at conferences and while in the beginning there
were some delays of up to 20 minutes, we never had to cancel a demo. It was
very successful, but sometimes it became expensive to use in the classroom.

EDURange was initially designed to allow instructors to create and cus-
tomize their own scenarios. The main feature that enabled this was that sce-
nario creation was scripted. There were template scripts with parameters that

1https://edurange.org/about.html

36



would control the complexity of the exercise. That turned out to be difficult to
create and maintain using the combination of Chef, YAML and Ruby on Rails.
Terraform is allowing us to reintroduce these customization features because
of its simplicity and flexibility.

Terraform works with multiple platforms, e.g. AWS, Docker, OpenStack,
VSphere, and it is more modular than other virtual infrastructure provision-
ing frameworks. To get started with Terraform, we create a basic template
for a configuration file that includes basic container image and network struc-
ture details. From this template, each individual exercise can then add its
own required packages, scripts, and the accounts needed for students to play
it. This allows complete configuration files to be easily written in a modu-
lar fashion with scripts, as opposed to manually writing the configuration for
every individual container required for an exercise. There are two layers of
automation: the configuration file automates creating the containers, and the
template automates creating the configuration file. The templates we need to
use are also very concise, Terraform can launch a single Docker container with
a configuration file as short as 20 lines.

2 EDURange Structure

There are three main parts to the structure for EDURange: 1) the web frame-
work, 2) the control framework for provisioning the virtual environment and
collecting data while the exercises are running, and 3) the database for storing
information about scenarios and users.

2.1 Web Framework

In this refactor, we chose to use Python as our language for web development
instead of Ruby on Rails. The primary motivation for this choice was that
although Ruby on Rails may be a more popular enterprise platform, Python
is offered as part of our curriculum, so Python is much more likely to be
accessible by future developers. In fact, we have had summer research students
who worked on designing scenarios but never managed to learn Ruby on Rails.
Additionally, we wanted a more lightweight framework than Rails, allowing
developers to more easily stay organized and make small, modular changes to
the application.

To kickstart the development of the new Flask application, the cookiecutter-
flask2 tool was used to setup the directory structure of the project, as well as
provide basic initial configuration for several Flask extensions. WebPack is

2https://github.com/cookiecutter-flask/cookiecutter-flask

37



integrated to compress Javascript and CSS files, which significantly improves
the performance of the website.

At a high level, the refactor web application is a REST API that processes
user requests in three stages. First the application determines what page is
being requested and by what method, also known as the route. Then, browser
session variables are checked against the database to validate whether or not
a user is allowed to access that particular route. Lastly, if the check passes,
the data from any form submitted by the request is saved, and the page is
served. This design choice was motivated by the desire to create more explicit
separation between different utilities of the web application, and requiring the
ability to make modular and incremental changes. For example, if a developer
wanted to add a new page to the website, it would be a three step process:

1. Define the route to your page, edurange.org/new.html for example.
2. Create that HTML file, which only requires two lines to inherit the site-

wide navigation and style options.
3. Create any forms or tables as needed for the functions of the new page.

This workflow and separation of different utilities greatly simplifies adding
new features and pages to the website. Comparatively, adding a new page on
the Ruby on Rails EDURange platform would require the definition of the new
route from the Rails command line, followed by the creation and modification
of several Ruby and HAML files, as well as individual modals for all forms,
tables, and popup dialog boxes.

In summary, Flask is in a preferable framework because it is more lightweight
and more easily extensible. One of the most important extensions to our ap-
plication that Flask allows us to preserve is the Redis service, which is integral
to exercise management.

2.2 Control Framework: Scenario Management

One of the advantages of containers is that it would bring down cost if running
on AWS, and it would make it feasible to run scenarios on a local server.
Amazon also imposes limits on the number of virtual clouds and machines can
be in use in a given region, which can limit the number of exercises that can
be running simultaneously. Some scenarios require 10 virtual environments.
Lastly, we also wanted instructors to be able to run EDURange on a local
network not connected to the Internet. [3]

38



Using containers means:

1. Only one machine would be required; the same machine that hosts the
EDURange application would host the containers that encapsulate dif-
ferent scenario environments.

2. While this host machine would need significantly improved performance
over the current host machine, the EDURange application could be more
easily distributed and hosted anywhere, without dependence on AWS.

Because Terraform is capable of configuring virtual subnets to connect con-
tainers, there is no need to create virtual clouds and new IP addresses through
AWS, instead scenarios are hosted on an open port of the host server. This
does mean that everything is running on one machine, which would require
significant boosts to computational power and network bandwidth. However,
containers are lightweight enough that the capacity for running scenarios could
be nearly limitless, while the costs would remain static for only the price of
one machine. Alternatively, instructors could put EDURange on one of their
institution’s servers, and access it locally without concerning themselves with
AWS fees.

2.3 Database Schema Improvements

Another major improvement was refactoring the Postgresql Database, to re-
move obsolete tables and simplify the relationships between them. Here is a
comparison of the tables contained in the legacy system, versus the refactor:

Legacy Database
Answers Bash-histories Clouds Groups

Instance-groups Instance-roles Instances Players
Questions Recipes Role-recipes Roles
Scenarios Student-group-users Student-groups Subnets
Users

Refactor Database
Answers Bash-histories Group-users Groups
Questions Scenario-users Scenarios Users

Some tables that stored internal metadata in the legacy system have been
omitted for brevity, but overall we’ve managed to reduce the number of tables
required for the minimal operation of the platform from 24 to 8. Primarily,
all of the tables related to Roles and Recipes were only required for Chef,
and the monitoring of individual instances and subnets has been transferred
to Terraform rather than relying on the database. We’ve also simplified the

39



way groups and scenarios are managed, since having tables for "Users, Play-
ers, Student-Groups, Student-Group-Users and Instance-Groups" is needlessly
confusing for new developers. It is extremely difficult to determine the impor-
tance or roles of those tables in the legacy database, even when looking deeper
than just the table names.

2.3.1 Scheduling: Redis with Celery

As previously mentioned, Redis has been the primary service used for enabling
EDURange to run console commands. This includes the two core Terraform
commands "terraform apply" and "terraform destroy", which respectively al-
locate and free resources. For the purposes of security and organization, these
commands are handled by a scheduling worker that runs within the Redis bro-
ker. In the Rails version of EDURange this scheduler is Sidekiq, and for the
Python refactor the scheduler is a service called Celery. These services perform
the same utility, and that is to make sure that requested tasks (such as starting
a scenario, or collecting logs) are monitored, executed, and don’t cause con-
flicts. For example, it should prohibit the modification of a running scenario
or the collection of logs from a scenario that’s been deleted.

What makes Celery perfect for this piece of the project is the ease with
which developers can specify new tasks. Essentially, each task is just a single
python function that is defined in central "tasks.py" file. These tasks can range
from being extremely complex scripts that write out Terraform configuration
files for scenarios (a work in progress), or very simple like downloading logs
from a running container.

One simple task that we are able to re-use for many different utilities in
EDURange is our send_async_email task, which is only 7 lines long. Celery
simply packages email_data from a web form into a Flask Mail Message
object, and sends it off. Because of how generally this function is designed,
we can use it for things like password resetting, scenario duration warnings,
or any other utility that requires an email to be sent. These Celery tasks can
be written to support any arbitrary utilities, and the number of concurrent
running tasks can be scaled easily by running parallel workers, though that
shouldn’t ever be necessary.

2.4 Deployment

At this point it may seem that all of these services would take a great deal
of effort to install and configure to work properly, but a major priority of this
project has been to make the EDURange platform more easily accessible, and
even possible for instructors to easily run it on their own machines. In service of
this goal, we’ve implemented two options for running the EDURange platform.

40



The first is a wrapper using Node Package Manager which, after a one-
time installation of Node, can gather and update all the requirements of the
application, and run all the required services with a working out-of-the-box
configuration. This is how the EDURange server will run once all scenarios are
available in the refactor.

The second option is to run the platform through a pre-defined Docker-
compose file. The advantage of this option is that it requires no additional
installation of tools on the host server, once Docker is installed. Instead of
running the required services directly on the system, it will download a pre-
configured container for each micro-service. We have yet to do performance
testing on this approach, but it may be more costly due to running extra pos-
sibly nested containers. That wouldn’t matter for instructors that may only
be running one or two scenarios at a time, but it would be much more costly
in terms of performance if the central server were running this way.

3 Results

3.1 Website

The front-end web application has been fully implemented, excluding some
specific functionality related to scenarios such as the code responsible for mon-
itoring and logging student activity. Because some of these features are missing,
it’s not completely fair to compare the amount of code from the two web ap-
plications. However, the massive difference between them is still indicative of
the scale of the reorganization, yet this was accomplished in 6 months as a
two-quarter project course for three students.

The legacy application actually has more Python than the refactor, despite
being written primarily in Ruby. This is due to frequent redundancy in code,
whereby some very large Python files for logging student activity need to be
stored redundantly across all scenarios. The reduction in code was one part of
the reorganization. Simply cleaning up and removing redundant code would
not have simplified the structure and could have taken a comparable amount
of time.

41



Legacy Web App
Language Number of Lines

Bash 1204
C 359

CoffeeScript 49
CSS 418
HCL 3973

JavaScript 1917
Markdown 2133

Pan 1238
Perl 3680

Python 3770
Ruby 7635

Ruby HTML 840
YAML 1254

Total 28,290

Refactor Web App
Language Number of Lines
Assembly 394
Bash 745
C 1977

CSS 152
Dockerfile 46
HTML 2062

Javascript 391
JSON 1668
Python 3323
Shell 47
YAML 932

Total 11,737

3.2 Scenarios

At this point, six of the eight original EDURange scenarios have been converted
to work in the refactor, and the system is fully functional. Scenarios are being
dynamically created from Terraform templates, and the management system
ensures that network addresses do not overlap, and that all containers are
accessible.

The first release demonstrated some performance and efficiency improve-
ments. Most notably, the minimum amount of time required to boot up a
scenario has gone from two minutes, to less than ten seconds. This is because
Terraform can simply start up containers from pre-downloaded images, rather
than having to communicate with AWS and waiting for virtual machines to
start. The refactor also improves the performance of the scenarios themselves,
because containers can evenly divide up the hardware resources of the host
machine rather than being restricted by preset AWS instance sizes.

4 Conclusions and Future Work

At this point, the refactor has been a success in terms of making the platform
easier to approach for new developers, as well as more easily expandable. This
can be demonstrated through the vastly simplified database schema, the re-
duction of the amount of code used to initialize the web application, and the
better organized workflow for adding new pages and features to the platform.
The best evidence for the success of the refactor, however, comes from the
active participation and rapid progress made by the new development team.

42



Previously, after attempting to train 10 new developers to work on the Rails
platform over the Summer of 2019, only 1 developer was able to become confi-
dent with Ruby on Rails development. By comparison, the 3 students trained
during this refactor were all able to feel equipped to begin contributing within
a few weeks of learning how to use Flask.

The next task in this refactor will be expanding the scenario management
functionality. The platform should facilitate instructors creating their own
fully customized scenarios with relative ease, by automating the generation
of Terraform configurations from templates through the instructor interface.
Since Terraform configurations are modular, we can easily implement a form on
the web application where instructors can input information about the changes
they’d like to make to a scenario. Student researchers can contribute early on
in their learning process by writing bash scripts that accomplish small tasks,
such as installing packages or changing ssh port numbers. As our library of
small bash scripts grows, instructors will more easily be able to customize and
create new scenarios.

The scenario scoring system must be re-implemented. In order to assess
student understanding we don’t just rely on their completing the tasks, instead
we have questions that they answer in the student interface. In general, the
correct answers are supplied by the database. This was never fully implemented
in the original system, where ad hoc methods were used. However, using
the database allows the creation of queries to filter and project tables to give
instructors customized views of the scoring results.

Another feature that will be integral to research work related to the plat-
form is student activity logging. This activity includes everything a student
types and sees, and everywhere a student goes within a scenario. On the Rails
EDURange platform this is implemented through custom TTYLog scripts and
a data pipeline using an AWS S3 bucket from the scenarios to the central
server [4] Log management will hopefully be simplified since the scenario con-
tainers will be more easily accessible than VM’s, but the logging software is
fragile since it must handle anything the student can type.

Research Artifacts

If you would like to find out more about EDURange, and maybe even use it
yourself, see our GitHub repository for more details and setup instructions:
https://github.com/edurange/edurange-flask

Acknowledgements

This work was partially supported by National Science Foundation grants
1723705 and 1723714.

43



References

[1] Stefan Boesen, Richard Weiss, James Sullivan, Michael E Locasto, Jens
Mache, and Erik Nilsen. EDURange: meeting the pedagogical challenges
of student participation in cybertraining environments. In 7th Workshop
on Cyber Security Experimentation and Test (CSET), 2014.

[2] Martin Fowler. Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Boston, MA, USA, 1999.

[3] Cynthia E. Irvine, Michael F. Thompson, Michael McCarrin, and Jean
Khosalim. Live lesson: Labtainers: A docker-based framework for cyberse-
curity labs. In 2017 USENIX Workshop on Advances in Security Education
(ASE 17), Vancouver, BC, aug 2017. USENIX Association.

[4] Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens
Mache, and Richard Weiss. Using terminal histories to monitor student
progress on hands-on exercises. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 866–872, 2020.

[5] Richard Weiss, Michael E. Locasto, and Jens Mache. A reflective approach
to assessing student performance in cybersecurity exercises. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, page 597–602, New York, NY, USA, 2016. Association for
Computing Machinery.

[6] Richard Weiss, Franklyn Turbak, Jens Mache, and Michael E. Locasto.
Cybersecurity education and assessment in EDURange. IEEE Security &
Privacy, 15(03):90–95, May 2017.

44


