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Generative activities have been shown to support students to engage in space-creating play and
exercise their conceptual agency to generate a mathematical space (e.g. Stroup et al. 2004), yet
these studies implement generative activities only with their resonating counterpart, classroom
networks, technological infrastructures that connect multiple, co-present students into a shared,
digital representation. Because these technologies are in continuous redesign and still
inaccessible to many classrooms, we need to understand the crucial features their infrastructure
provides to the classroom system. By analyzing the strains on the classroom without classroom
networks and how they relieved that pressure and revive the system, we found that the collective
public displays provided students with a collective orientation and a sense of connection and
individualism.

Keywords: Design Experiments, Technology, Rational Numbers

Introduction

Generative activities are activities operating at the individual, small group, and whole class
within which students are actively constructing connections and relations of mathematical ideas
in both prepared and emergent participation structures that reflect and build on the mathematical
ideas that the group creates (Stroup, Kaput, and Ares 2002; Stroup et al. 2004; Stroup, Ares, and
Hurford 2005; Ares, Stroup, and Schademan 2009). In these types of activities, the class’s social
group functions to explore mathematical structures together and uses their social dynamics as a
purposeful resource to support their exploration. A common means for designing and developing
such activities take a standard, closed-form question as a starting point, and “inverts” it, making
the answer of the standard question into the prompt for the generative activity. For example,
instead of asking students to “simplify 4(x-3)+12” (a closed-form question, with correct answer
“4x”’), one might ask them each to create several expressions that are "the same as 4x" (Stroup,
Kaput, and Ares 2002). By inverting the traditional one-correct-answer task, generative activities
provide ways for students to construct or apply mathematical principles (e.g., exploring additive
inverses by repeatedly adding “+x-x” to an expression known to be equivalent to 4x. When this
kind of construction is occurring in parallel across the classroom, students are able to use the
diversity of their group and their ideas for experimentation to generate a mathematical space.

Stroup et al. (2002; Stroup, Ares, and Hurford 2005) describe the resonance of generative
activities with classroom network technologies to provoke new theoretical, methodological, and
design frameworks. They articulate two main principles in the flow of a generative activity: (a)
space-creating play and (b) dynamic structure. Space-creating play is the idea of students
generating a mathematical space via experimentation, exploration, and playfulness. Dynamic
structure refers to the emergent set of connections and meanings that appear as the students
produce mathematical creations and respond to each other’s work, both by commenting and by
imitating, expanding on, or combining work to make new creations. Dynamic structure makes
use of a functional sense of activity structure that is brought into being through students’ playful
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actions and characterizes the unfolding space students are generating. Stroup et al. use these two
ideas to argue that the relationship between mathematical/scientific structures and social
structures is dialectical, with each mutually building off of the other. Essential to this process is
the collective, public display of students’ mathematical space, either in some physical/digital
inscription or through social display.

As a complementary perspective of these public displays, we can consider them a space for
conocimiento (Anzaldua 1987 cited by Gutiérrez 2012), or sense of becoming familiar,
connecting, and receptive of others. Through students’ shared solidarity in generating the
mathematical space, they develop their conocimiento of both the unfolding mathematical
structures and the persons engaged in the display. Additionally, public displays of their work at
the whole-class level may support students’ sense of nos/otras (Anzaldta 1987 cited by
Gutiérrez 2012), or the juxtaposition of the collective and the individual. Further connections of
this perspective with generative activities and classroom networks is unexplored and possibly
very fruitful because of their differences in framing knowledge but similarities in positioning
participants as generators of that knowledge.

Though Stroup et al. further describe the resonance between generative activities and
classroom networks, arguing that the networked classroom is particularly suited to support a
dialectic relationship between space-creating play and dynamic structure, few studies have
explored these constructs in mathematics classrooms without the technology!. Substantial
research has shown the impact of these new networking technologies and their resonance with
generative activities (e.g. Ares, Stroup, and Schademan 2009; Ares 2013; Stroup, Carmona, &
Davis, 2011), but these technologies are both largely unattainable for most classrooms and still
going through continuous redesign. Thus, we need to understand the specific features of the
classroom network critical to fostering collective mathematics inquiry through space-creating
play and dynamic structure and which are optative. Furthermore, understanding which of the
features should be customizable and which are fairly generic to collaboration will both support
continued technology design and strengthen the underlying theory of collective mathematics. To
investigate these features of classroom networks, we investigate 1) Do generative activities and
collective mathematical exploration put strain on normal classroom infrastructure? (and, how?)
and 2) Which aspects of classroom networks alleviate that pressure? (and, how?).

Classroom Networks and the Group-based Cloud Computing System (GbCC).

Classroom networks have been an area active, but uneven, research and development for
over 20 years (or much longer, depending on one’s definition (see Abrahamson 2006;
Abrahamson and Brady 2014; Roschelle, Penuel, and Abrahamson 2004)), with a varied history
of research and commercialization efforts. For the purposes of this paper, a classroom network
(c.f. Brady et al. 2013) is a representation and communications infrastructure (Hegedus and
Moreno-Armella 2009) consisting of hardware, software, and curricular/activity components.
The hardware includes a set of devices (laptops, smartphones, or other custom communications-
enabled “computers”), with each student (or, less commonly, each small group), having a device.
These devices are networked to communicate directly or indirectly with each other and with a
teacher computer, which is connected to a public display (usually a digital projector). Software,
running on the classroom computers and/or on a networked server, provides aspects of
communications infrastructure by routing messages among the participating devices in
configurable, activity-specific ways. Software also provides a representation infrastructure,
offering students and teachers views of the activity and tools to contribute that are appropriate
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for the discipline, the activity, and the participants’ roles. Finally, at the curricular/activity level,
“documents” or other specifications of roles or goals can be sent to participants to configure their
devices and displays, and to facilitate the activity in real time.

GbCC (Brady et al. 2018) is a system of this kind, emphasizing flexible programmability and
rich discipline-specific representations for mathematics, science, and the social sciences. It
leverages browser-based open-source tools, building upon the NetLogo Web agent-based
modeling environment (Wilensky 2015), married with GeoGebra Web
(https://www.geogebra.org/) as a dynamic mathematics platform for geometry and algebra in
Euclidean and Cartesian representations; and several other extensions to support mapping
(Leaflet, https://leafletjs.com/) and 2d physics (Box2d, https://box2d.org/). As a platform for
design-based research environment, its programmability supports an open-ended array of activity
structures, and it can be run on any browser-enabled device (phones, tablets, or laptops). Its
flexibility, configurability, and programmability make it ideally suited to exploring our research
questions.

Data and Methods

The current study was a single four-week cycle from a larger design-based research (DBR)
project. The 20 participants came from a 5th grade classroom at a public middle school serving a
racially (39% Black, 6% Hispanic, 4% Asian) and economically (41% free or reduced lunch)
diverse population within a large metropolitan district in a midsize southern city in the USA. The
class period of the DBR study was not students’ normal mathematics class but a time when
students were tracked based on standardized tests in order to provide individualized attention
(called Personal Learning Time, PLT, in the school). The participants from the current study
were considered math tier 2 students (i.e., on target but needing some extra time for
mathematics). Because of the nature of standardized testing and the flexibility of this class
period, students moved from tier to tier or subject to subject depending on the most current
testing. Thus about half of the students in the current study had participated in a prior
implementation of a design cycle with generative activities without technology'. The first author
facilitated about 2 class sessions each week over a four week period totaling of 8 sessions, each
30-45 minutes in length, and the classroom teacher either co-facilitated or pulled specific
students for individual work.

The primary data source for the current study was design and field notes taken by the first
author. Audio and video recordings of each lesson were also collected and used to triangulate
findings. Analysis was ongoing and continuous throughout the design where the humble theories
of the class’s mathematical thinking and engagement were revised after each lesson (Cobb et al.
2003), in conversations among the researchers and with the teacher. Posterior analysis took the
form of reviewing the progression of the lessons contrasted with the predicted learning
trajectory. We paid special attention to anticipated and unanticipated challenges and strains on
the classroom system prior to introducing network technology and the nature of how those
challenges and strains changed when using it.

Mathematical Context and Predicted Learning Trajectory
We chose to target 5th grade fractions standards involving equivalence, operations, and
comparison for this study. Fractions have been found to be a particularly difficult concept for
students, yet they can be readily used as the basis for generative activities because the
mathematical space of equivalent fractions is both core to the standards and very rich. We
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created a sequence of generative activities, to explore equivalence for the first two weeks and
then operations on fractions for the second two weeks. The activity for both topics followed a
similar rough structure. The first day of each of the two weeks focused on “space-creating play”
to generate the space of ways to make 4, either with equivalent fractions or with fraction
operations, depending on the topic. Students worked in small groups during these times, to foster
connections in their space-creating play and reflection on the dynamic structure they were
creating. Following this small group work to make 2, a whole-class discussion explored the
different kinds of objects in the space (to make 2) and the mathematical principles students used
to generate the space. Building off this the following class session (a week later), students
returned to small groups to generate ways to make a fraction of their group’s choice followed by
another whole-class discussion of the mathematical principles. This trajectory was supported by
research both on fractions (Lamon 2012) and generative activities (Stroup, Kaput, and Ares
2002; Stroup, Ares, and Hurford 2005), the key difference from the latter was the lack of
networking technology. Beyond the curricular goals, we predicted the generative activities would
support students to take conceptual agency (Boaler and Greeno 2000) in the classroom to create
mathematical principles of equivalence and operation and to voice their conceptual perceptions
even without technology. We remained open to the question of whether these technologies would
be needed, by observing the classroom system, students’ engagement in the tasks, and the degree
to which they exercised conceptual agency.

Results

Through our design and analysis of generative activities to support students’ conceptual
agency in exploring fractions without technology, we found that these activities put multiple
strains on the classroom system for students to engage and participate. Without the technological
infrastructure and additional ways to participate in the activity, the whole-class discussions led
by the first author were not able to support students to have a platform to show the work they did
in small groups, or to have much of a “voice” at the whole-class level. This central strain reduced
students’ engagement over time, and following the second whole-class discussion (week 2), the
necessity of additional infrastructural support was apparent, both to the authors and to the
classroom teacher. Upon the introduction of technology, students’ re-engagement in the
generative-activity process was visible, as usual with the introduction of any new technology.
Yet more meaningfully, students’ engagement was sustained through the last two weeks, and
their conceptual agency increased in that time. This process contrasted significantly with the time
without technology when their engagement and utilization of conceptual agency decreased over
the course of the same time period. By comparing the strains on the classroom system during
generative activities without technology and how the infrastructure provided by the technology
relieved those strains, we can begin to identify some of the crucial features of classroom
networks.
Generative Activities’ Strains on the Classroom System

Progressively throughout the first two weeks of equivalent-fraction generative activities, we
documented how students became less and less engaged and utilized their conceptual agency less
and less. This process came to a climax when the classroom teacher requested a change in the
activity in order to re-engage students at the end of week two. Upon analysis of the design,
students’ disengagement was progressive. Students engaged readily in the initial generative
activity convening the space-creating play in almost all the small groups. Some groups even
utilized their conceptual agency to recognize patterns and methods in their generation of
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equivalent fractions. Yet, during the whole-class discussion, students struggled to know how to
participate in productive ways and see their hard work validated. Multiple students made various
bids to read aloud their list of fractions in its entirety, but with upwards of over 30 fractions, this
was not logistically possible. Moreover, without a means to organize or represent these
contributions visibly, a reading would not have contributed to the dynamic structure. Instead, the
first author focused on having students share out their methods of generating fractions and
patterns they observed in their set of equivalences. While students did engage in the discussion
and built multiplicative conceptual resources for fractions, field notes capture a number of
students’ feelings of discontent.

The following week, the first author launched another generative activity to build on
students’ work with '2 by generating fractions the same as a fraction of their choice. Unlike the
start of the previous activity, the teacher and the first author struggled to support students to
begin the activity (even to choose a fraction), and to convene space-creating play in their small
groups. In the students’ eyes, the small group work had lost its importance and meaning after the
previous week’s whole-class discussion when they perceived their work was left unchecked,
ungraded, and unshared with the class. While either adult was present, students would work
together to generate equivalent fractions, but their motivation reflected a perceived lack of
importance of their work at the whole-class level. Thus, students’ patterns and methods were
much less robust during the whole-class discussion the following day, and fewer students
participated. Additionally, one of the students from the previous week made another bid to read
all of her fractions aloud, demonstrating a continued desire to showcase her work at the whole
class level, to hear her voice as part of the group, and receive validation for the effort she had put
in. Because of students’ steeply declining engagement, we decided to introduce technology to re-
engage students and support their sustained participation in generative activities. Our prediction
was that the introduction of technology would quickly re-engage students with the task of
generative activities, and that comparison in students’ sustained engagement would reveal the
some of the crucial features of classroom networks to support students’ collective mathematics in
generative activities.

Adjusted Learning Trajectory and Use of Classroom Networks

Because of the strains of the classroom system for students to see their work as meaningful at
the whole-class level, we adjusted the research plan to incorporate GbCC support for the
activities in the final two weeks. Since the activities designed with the technology did not strictly
align with the original learning plans, we adjusted the curricular goals to target fraction
comparison instead of fraction operations. We planned to use GbCC’s public display to create a
joint representation for students to see a reflection of themselves and their classmates as they
engage with mathematics. The classroom network assembled students’ fraction input as a
character moving on a vertical line between a teacher-defined maximum and minimum value,
with its y-coordinate corresponding to the fraction value. The class appeared as a collection of
these characters moving between the max and min values. If a student’s fraction input was
outside of this range, their character was shown into a gray area above or below. The goal of the
first week was for students to make connections from their work with equivalence within the
technology as a way to begin to understand the representational forms it used and then for the
class to quickly transition into comparing ‘easy’ fractions. We wanted students to have the
chance to explore within a technologically enhanced representational world and for the class to
see each other’s explorations to discuss our methods and strategies. In this way, the classroom
network would provide additional communicative pathways for students to feel their work and
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their classmates’ work were meaningful at the whole-class level. We planned to end the activity
sequence with supporting students to see the density of fractions (i.e. that between any two
fractions there is another fraction). We conceptualized this as a ‘zooming in’ effect with the
technology where the teacher could make the range a subset of the previous defined range and
fractions could still be found.

The first two days of implementing GbCC went as predicted. The technology served to
revive students’ engagement and enthusiasm while also providing additional tools and
representations to the work they were doing as a whole class. The public, anonymous display
provoked a collective responsibility to fill it, positioning students to hold each other accountable
during the activity, and during whole-class discussions, this public representation was a
collective object for us to reference. During this space-creating play, students exercised their
conceptual agency by choosing personally relevant numbers (not something seen the previous
week). For example, one student found the fraction equivalent to 1/7th where the numerator was
her birthday (mmddyy). Students patterns and methods extended the ideas from previous weeks
using multiplicative relationships to generate equivalent fractions.

The final week of the study focused on comparing fractions, with the goal of students’ having
insight into the density of fractions. We started with a whole-class discussion of the previous
weeks’” work and asking if students had ways to know if one fraction is bigger than another (no
technology). Even without technology, the class sustained a meaningful discussion, leveraging
the collective perspective provided by the classroom network activities the previous week. In the
following two days of activities, students sustained engagement and motivation, unlike the
second week without classroom networks. Furthermore, students’ utilization of conceptual
agency grew as their fluency with the technology grew, compared to declining as their
engagement declined, in the first two weeks. As students interacted with and in the mathematical
space, a few began to use the public display as a dynamic representation - moving their
characters across the screen by manipulating their fraction input successively. This type of play
showcased how the classroom network became an embedded infrastructure for students to
represent movement and communicate their actions to me and to others. Additionally, while
these playful actions were unexpected and in fact went against the underlying goal of the activity
for students to develop insight into the density of fractions, students were developing individual
and share-able fluency with manipulating and comparing fractions in service of the personally-
meaningful goal to predict the movement of their character up, down, and into the middle. Such
spontaneous, and unpredicted, utilization of conceptual agency was not present without the
classroom network’s representational and communication infrastructure.

Crucial Features of the Classroom Network

The above analysis explored how generative activities strained a classroom system without
adequate representational and communicational infrastructure and identified features of
classroom networks that were crucial to relieving those strains and supporting students in
utilizing their conceptual agency. The collective, public representation of students’ work with
fractions was the focal point of two such crucial features that supported collective mathematics
and that were very difficult to provide without technological support. First, as demonstrated in
the first week and the follow-up discussion without technology, the public display of an
aggregate representation of students’ contributions provided an essential means of discussing
the activity, referring to students’ work in context, facilitating activity flow, and sustaining
students’ attention. Leveraging this feature, we were able to facilitate whole-class discussions
where students engaged in illuminating the underlying multiplicative structure of equivalent
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fractions and continue the conversation even when the technology was temporarily removed.
These types of whole-class discussions were very different prior to implementing the technology
when students did not have such a collective orientation, and they made multiple bids to reorient
the discussion towards what they felt was important (e.g., their personal lists of equivalent
fractions).

The second crucial feature relating to the public display was the communal, real-time
dynamic nature of the public representation. Students displayed a sense of both collective effort
and individual publicity, or nos/otras (Gutiérrez 2012). Simultaneously feeling both connected to
the community and represented as an individual was essential for collective mathematics. The
importance of this feature was demonstrated first when the classroom network was first
introduced as students began to hold each other accountable to participate in the activity, and it
grew further when students began utilizing their conceptual agency and publicizing their new
skill of predicting the movement of their character, showing their abilities to others and sharing
how they did it.

Discussion: Students Utilizing Conceptual Agency with the Technology

Understanding how the representational and communicational infrastructure of classroom
networks support students’ space-creating play and utilization of their conceptual agency can
provide insight into these technologies’ functionality and support their ongoing design. At the
same time, it also can inform efforts to enact generative activities without classroom networks,
identifying needs and resources for alternative supports in such classrooms. Based on our
comparison here of a classroom with and without technology, two crucial features of the
dynamic infrastructure emerged, in the collective orientation provided by the public
representation and the simultaneous communicative avenues of collective and individual voice
developing a sense of nos/otras. These aspects are vital to keep in mind as we continue to design
classroom networks, infrastructure, and activities to further support students exercising their
conceptual agency.

Additionally, generative activities need to be flexible enough to support students’ adaptation
of the task as they exercise their conceptual agency. Similar to work in microworlds (Edwards
1998), generative activities supported by classroom networks are not capsules of disciplinary
learning and conceptual agency. Rather, we need to design for and encourage students to make
expressive and unpredicted conceptual moves as they interact with the representations and
concepts of the activities. On the other hand when the classroom system does not have the
infrastructure of classroom networks, traditional infrastructures must be adjusted to foster
collective orientation and nos/otras. Specifically, students need some form of collective
representation of the concept to orient their individual or small-group work towards each other.
Furthermore, social infrastructure must support students as they make their work public to both
hear their own voice and, metaphorically, hear the voice of the choir. Over time, classroom
systems can develop these types of social infrastructures through socio-mathematical norms, but
classroom networks may foster more rapid development of them or a lower threshold of effort
for sustaining them over time.

Implications for Further Research
Classroom networks provide a flexible space for students to interact, both with mathematical
ideas and with each other, and a dynamic, public display of their work as it unfolds. This space
quickly creates infrastructure in the class to foster students’ prolonged engagement and

Otten, S., Candela, A. G., de Araujo, Z., Haines, C., & Munter, C. (2019). Proceedings of the forty-first annual
meeting of the North American Chapter of the International Group for the Psychology of Mathematics
Education. St Louis, MO: University of Missouri.



Proceedings of the 41st Annual Meeting of PME-NA 79

utilization of their conceptual agency. Yet pragmatically, teachers, administrators, and
researchers may question the necessity of this technology when compared to its cost and
disruption. By observing and documenting first how a classroom group experienced strain
without the technology and then was supported by it, we understand better the value of the
technology, what types of additional activities may supplement it, and ideas on how we might
support the classrooms without it. Additional work should compare other types of
representational and communication infrastructures (Hegedus and Moreno-Armella 2009) and
curriculum activity systems (Roschelle, Knudsen, & Hegedus, 2010) to better understand how
students participate in collective inquiry and the necessary of these infrastructures to support
students in exercising their conceptual agency. Specifically, previous studies have shown
collective inquiry is possible without technology (e.g. Ball 1993; Lehrer, Kobiela, and Weinberg
2013; Fiori and Selling 2016), and exploring the infrastructure imbedded in these types of
classrooms will provide insight into both the dynamics of group mathematics learning and into
the design of networking technology.

Endnotes
Stroup’s introduction of the construct of generative activities clarifies that their roots lie
outside of mathematics, connecting to work in reading comprehension by Wittrock and in shared
identity building by Freire (the identification of a community’s “generative words”).
2 A disruption of losing half the participants and gaining the same number of new students
caused analysis of the two design cycles to lose much of its meaning, but the class during the
analyzed cycle remained intact.
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