
Predicting Student Success in
Cybersecurity Exercises With a Support

Vector Classifier∗

Quinn Vinlove1, Jens Mache1, Richard Weiss2
1Lewis & Clark College

{quinnvinlove, jmache}@lclark.edu
2The Evergreen State College

weissr@evergreen.edu

Abstract

In this paper we explore if we can detect whether students are strug-
gling to complete simple hands-on cybersecurity exercises based on their
command line history. These exercises are becoming more popular, es-
pecially with the increase in remote instruction. However, students may
struggle for many reasons, including lack of some skills, confusion by
what is being asked, or confusion about how the testbed works.

Using a small collection of annotated log files from a sample exercise
on DeterLab, we were able to generate three features and construct a
support vector classifier to predict with 80% accuracy if students would
complete the remaining parts of the exercise. Our work could be applied
to early detection of students who likely will have difficulty completing
the exercise, and offer them hints to boost engagement and learning.

1 Introduction

Capture the flag (CTF) exercises have been used in cybersecurity for fun and
for training and education for many years. In our own experience, students
often become frustrated when they do not make progress. This has also been
reported by others [2]. Even with instructor office hours and TA support,

∗Copyright ©2020 by the Consortium for Computing Sciences in Colleges. Permission to
copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the CCSC copyright notice and the title of
the publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires
a fee and/or specific permission.

26



many students have trouble and struggle with completing hands-on exercises.
It can be especially problematic with cybersecurity because it draws on many
aspects of computer science, and some of the concepts are difficult. Hands-on
exercises can be both more engaging than written homework and can also be
more frustrating. Yet, hands-on exercises are very useful for teaching critical
thinking and how to apply theory to practice. Our goal is to provide tools
to help students be more engaged by automatically detecting when they are
struggling, and to potentially offer a hint when that happens.

We used the ‘Introduction to DETER and Unix’, or ‘Intro’ exercise [6]
on DeterLab [4], completed by 25 students in a small cybersecurity class, and
developed features based on the resulting annotated bash history files produced
by ACSLE [3], an automated reporting and log file collection program for
testbeds. While the first class we tested our methods on was small, the data
collection and annotation system would scale to larger classes and potentially
give even more precise results with more data.

One of the important features of the ACSLE framework is the detection of
milestones. For each of the exercises we tested, we relied on a well-defined set
of milestones that measure student completion of different tasks in the exercise.
They are defined in terms of the student’s input, the command output, and
the context in which it was used, e.g. the host or directory. The state of
the student’s accomplishments at any given time is measured as the set of
milestones that have been completed.

We evaluated the classifier using primarily the number of milestones com-
pleted, but also the log files themselves with both student input and command
line output. We did not have ground truth information on each student as to
whether they struggled or not. By constructing three features from this data:
the number of related commands between each new milestone achieved, number
of repeated commands, and distance from a few ‘known good’ commands, and
using these features as inputs into a multi-dimensional support vector classifier,
we were able to predict exercise completion with 80% accuracy. Our work will
provide a good basis for a new model to suggest hints automatically.

2 Related Work

Our work provides a useful addition to the field of cybersecurity education
research. Švábenskỳ et al. [9] argued in their meta-analysis of all security
education papers that while there are many papers on education methods,
there are few new methods beyond surveying students directly. We hope that
this paper motivates the use of machine learning models to make evaluation
succinct and useful for both students and instructors.

For teaching introductory programming, Piech et al. [7] described a learner’s

27



path through an exercise as a Markov chain, and also sought to build effective
generalizations of the types of ways that new programmers completed a simple
assignment in Java. Their work featured more data, more robust statistical
analysis, and validation from midterm and final grades, which was difficult for
us because our research was mainly conducted after the school year. Rafferty
et al. [8] used a more complex hidden Markov model (HMM) for their cognitive
science paper, which has a broad focus on how to apply HMMs to model stu-
dent learning in a variety of contexts. In both cases, a HMM may prove to be
a compelling model, and while we looked into it, we were unable to generalize
our exercises as a model with a finite number of hidden states.

3 Methodology

To construct inputs for our classifier, we first created three features, computed
them for every student, and checked our work by evaluating each log file by
hand. These features are described below.

The first metric was the average number of commands between new mile-
stones reached. This could possibly describe how much effort was spent for each
learning objective met. Initial analysis showed that students who completed
more milestones either entered relatively few commands for each milestone
that they reached, or took their time and entered more, possibly indicating
that they didn’t know the answer at first, but worked hard to complete the
exercise.

The second metric was the longest string of repeats of any single command.
To count commands that were close, but not identical, we would compute the
edit distance (or Levenshtein distance) from each new command to the last.
With long periods of time where the edit distance was low (≤ 3 characters),
we could determine that a similar command with few variations was tried a
lot, with little variation. We anticipated that users who achieved more mile-
stones, and subsequently understood the exercise better, would have repeated
commands less, but the opposite was true: users who did better generally had
a wider variation in the length of their longest repeat sequence than users who
didn’t do as well, showing that frustration may not entirely be indicated by
students trying the same thing over and over again.

The last metric we used was the smallest edit distance between a list of
‘known good’ commands and bash history. This operated on the initial assump-
tion that while the REGEX search method of seeing if a command matches a
milestone may be good, it is binary, and sometimes a continuous metric can
produce better results. In some cases, like find, a command can be missing an
option and not work, but still be close enough to indicate that a student knows
what they’re doing. We computed this minimum edit distance for each com-

28



Figure 1: Confusion matrix for the evaluation dataset after training our SVC.
Note here that 0.0 represents a ‘will not complete’ prediction and 1.0 represents
a ‘will complete’ prediction. Each point in the matrix represents a measured
state and its outcome.

mand, and summed them. We found that most high-achieving students had a
sum that was small, indicating that what they did was pretty close to a known
good solution, while students who got few milestones had bash commands with
a large edit distance between these predefined commands.

The exercise log data from two classes at USC and one at LC were loaded
into a Jupyter notebook with Pandas, processed with the help of numpy, then
normalized with a min-max scalar, shuffled, and split 80-20 between the testing
set and validation set. For desired tags, we assigned a true to each student if
they got 6 or 7 milestones (all of them) and a false if they didn’t. Then, we
placed this data into a scikit-learn support vector classifier [5].

4 Results

After training a support vector classifier with the training set, we evaluated
our work with the validation set and found that the classifier was able to
accurately predict true or false values for 80% of the data. The confusion

29



matrix is shown in Figure 1. Note that the classifier is pessimistic, which is
good, since we want to minimize false negatives. There were no false negatives
with the sample data. There were some false positives, i.e. it predicted that 4
out of 20 students would not finish but they did.

5 Discussion

Drawing conclusions based on this data set was limited by not having a direct
measure of which students actually struggled; nevertheless, we were able to
infer this in many cases by reading the bash history logs and counting the
milestones achieved. For a machine learning project, we had relatively little
data: the ‘biggest’ exercise was the ‘intro’ exercise, with only around 75 samples
between all schools involved in the study. Inferring any pattern from this data
wasn’t exactly straightforward.

One of the simplest trends we observed was that more persistent students
would score higher on the exercises. Encouraging persistence may increase ex-
ercise completion rate. In the future, we plan to interview students afterwards
to see what they struggled with and correlate that with their command line
history. It’s important to note that because our model does not account for
overall clock time to completion, persistence simply means trying many new
things repeatedly. If a student started the exercise and walked away from the
keyboard, our model wouldn’t consider that to be persistent.

Some preliminary work explored how well this model applies when students
are just beginning the exercise, not just at the end of it. A variation of this
model trained only on the snippets of bash history between new milestones
achieved still maintains 80% accuracy (Fig. 3), and points toward increasing
completion rates as students persist longer (Fig. 2). To construct this dataset
and generate more data, we sliced the data for each student several times
progressively, so that a single student who, for example, achieved three new
milestones, had three data points, each representing what their bash history
data would look like if they stopped working at that point.

ACSLE can be used with EDURange [1, 10, 11], and we plan to integrate an
improved version of ASCLE that uses string-edit distance, so that instructors
can receive feedback about students in real time. We hypothesize that the
string-edit distance can distinguish trial and error guessing from knowledge-
based exploration.

30



Figure 2: This figure shows the percentage of students who achieved one or
more new milestones, then went on to complete the exercise. As students
progress and continue to reach new milestones, more stop working. As fewer
continue, the ones who do end up with a higher likelihood of completing. The
blue dots represent the actual value, and the black dots represent the predicted
value.

31



Figure 3: Classifier accuracy for the scale on the x axis described by Fig. 2.
Our classifier is able to accurately predict exercise completion with 80 percent
accuracy or better for the first five occurrences of new milestones. Accuracy
goes down near the end because we had few students who made it that far,
but the model is not needed at this point because students who did ended up
completing the exercise anyway.

32



6 Conclusion and Future Work

Given a small set of log files with limited information, the system was able to
construct a model that estimates whether a student will complete the exercise.
This was run using information taken at different times during the exercise,
and could potentially indicate when a student was struggling and should be
offered a hint. Our work will be useful in extending EDURange, and might be
useful in application to other areas where generalized models of student success
could be built with very little data.

Since the ACSLE system shows the failed attempts at a milestone, it makes
it easier for exercise authors to identify common misconceptions and then pro-
duce hints for each of them. One way to use this would be to alert the instruc-
tor when a student is struggling, and the instructor could choose one of the
pre-recorded hints based on a digest of the student’s failed attempts.

In the future, instructors will be able to write a single file that describes
commands that students could use in a solution. The string-edit distance be-
tween what they typed and those commands would be used to assess progress.
Potentially, ‘snippets’ of them could be used as a hint to assist stuck students
after our system detects that they may not finish. After implementing this
system, we also plan on evaluating its effect on exercise scores.

Acknowledgments

We would like to thank Jelena Mirkovic from USC. This work was partially
supported by National Science Foundation grants 1723714 and 1723705.

Research Artifacts

Datasets, along with the accompanying Jupyter Notebook, can be found on
GitHub at https://github.com/edurange/predicting-student-success.

References

[1] Stefan Boesen, Richard Weiss, James Sullivan, Michael E Locasto, Jens
Mache, and Erik Nilsen. EDURange: meeting the pedagogical challenges
of student participation in cybertraining environments. In 7th Workshop
on Cyber Security Experimentation and Test (CSET), 2014.

[2] Kevin Chung and Julian Cohen. Learning obstacles in the capture the flag
model. In 2014 {USENIX} Summit on Gaming, Games, and Gamification
in Security Education (3GSE 14), 2014.

33



[3] Jelena Mirkovic, Aashray Aggarwal, David Weinman, Paul Lepe, Jens
Mache, and Richard Weiss. Using terminal histories to monitor student
progress on hands-on exercises. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education, pages 866–872, 2020.

[4] Jelena Mirkovic and Terry Benzel. Teaching cybersecurity with DeterLab.
IEEE Security & Privacy, 10(1):73–76, 2012.

[5] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer,
Ron Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830, 2011.

[6] Peter A. H. Peterson and Peter Reiher. Introduction to DETER and Unix,
(accessed August 27, 2020). https://www.isi.deterlab.net/file.php?
file=/share/shared/LinuxandDeterLabintro.

[7] Chris Piech, Mehran Sahami, Daphne Koller, Steve Cooper, and Paulo
Blikstein. Modeling how students learn to program. In Proceedings of the
43rd ACM technical symposium on Computer Science Education, pages
153–160, 2012.

[8] Anna N Rafferty, Michelle M LaMar, and Thomas L Griffiths. Inferring
learners’ knowledge from their actions. Cognitive Science, 39(3):584–618,
2015.

[9] Valdemar Švábenskỳ, Jan Vykopal, and Pavel Čeleda. What are cyberse-
curity education papers about? a systematic literature review of sigcse and
iticse conferences. In Proceedings of the 51st ACM Technical Symposium
on Computer Science Education, pages 2–8, 2020.

[10] Richard Weiss, Michael E. Locasto, and Jens Mache. A reflective approach
to assessing student performance in cybersecurity exercises. In Proceedings
of the 47th ACM Technical Symposium on Computing Science Education,
SIGCSE ’16, page 597–602, New York, NY, USA, 2016. Association for
Computing Machinery.

[11] Richard Weiss, Franklyn Turbak, Jens Mache, and Michael E. Locasto.
Cybersecurity education and assessment in EDURange. IEEE Security &
Privacy, 15(03):90–95, May 2017.

34


