
Multi-level Fitness Critics for Cooperative Coevolution
Golden Rockefeller

rockefeg@oregonstate.edu
Oregon State University

Corvallis, Oregon

Shauharda Khadka
shauharda.khadka@intel.com

Intel Corporation
San Diego, California

Kagan Tumer
kagan.tumer@oregonstate.edu

Oregon State University
Corvallis, Oregon

ABSTRACT
In many multiagent domains, and particularly in tightly coupled
domains, teasing an agent’s contribution to the system performance
based on a single episodic return is difficult. This well-known diffi-
culty hits state-to-action mapping approaches such as neural net-
works trained by evolutionary algorithms particularly hard. This
paper introduces fitness critics, which leverage the expected fitness
to evaluate an agent’s performance. This approach turns a sparse
performance metric (policy evaluation) into a dense performance
metric (state-action evaluation) by relating the episodic feedback
to the state-action pairs experienced during the execution of that
policy. In the tightly-coupled multi-rover domain (where multiple
rovers have to perform a particular task simultaneously), only teams
using fitness critics were able to demonstrate effective learning on
tasks with tight coupling while other coevolved teams were unable
to learn at all.

KEYWORDS
Fitness; Critics; Cooperative Coevolution; Multiagent Learning

ACM Reference Format:
Golden Rockefeller, Shauharda Khadka, and Kagan Tumer. 2020. Multi-level
Fitness Critics for Cooperative Coevolution. In Proc. of the 19th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2020),
Auckland, New Zealand, May 9–13, 2020, IFAAMAS, 9 pages.

1 INTRODUCTION
Evolutionary algorithms (EAs) have been successfully applied to
sequential problems, including games [14, 17], air traffic control
[2], and robot control [1, 19, 26]. In most single-agent domains,
the episodic feedback an agent receives from the environment is
sufficient to produce good policies using evolutionary algorithms.
However, in multiagent domains, the episodic immediate feedback
does not generally reflect the potential contribution of an individual
agent. This problem worsens in tightly coupled multiagent systems,
where agents need to take complementary actions simultaneously
to achieve a task.

To improve the quality of the selective pressure that the EA ap-
plies on the agent’s policies, the EA can use the individual agent’s
expected feedback (with respect to varied teams) as a policy’s fitness
value, rather than using the immediate feedback. Using the ex-
pected feedback prevents an agent from receiving bad feedback on
a potentially good action in cases where they were paired with poor
teammates. Fitness approximation and sampling-based methods

Proc. of the 19th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2020), B. An, N. Yorke-Smith, A. El Fallah Seghrouchni, G. Sukthankar (eds.), May
9–13, 2020, Auckland, New Zealand. © 2020 International Foundation for Autonomous
Agents and Multiagent Systems (www.ifaamas.org). All rights reserved.

are two broad methods for estimating expected feedback. Sampling-
based methods, such as averaging multiple evaluations, leniency
[22], or hall of fame [24] need large numbers of samples to properly
evaluate policies. Fitness approximation aims to capture a func-
tional model that relates policy parameters to the expected fitness
but does not reuse the information that is learned about one policy
when evaluating unrelated policies that exhibit similar behaviors.
Both methods suffer from the inefficient use of prior information,
particularly when sampling potentially good joint-actions is diffi-
cult.

This paper introduces fitness critics, which are functional models
for efficient estimation of the expected feedback. The fitness critics
not only provide expected feedback for policies, but push that
policy feedback down to the agent’s state-action pairs experienced
throughout the policy’s performance. The key insight into the
effectiveness of fitness critics is to maximize information reuse.
Fitness critics accomplish this by correlating the multiple instances
where similar actions were taken from similar states regardless of in
which policies they were used. In doing so, fitness critics generate
a dense, state-action pair "value" function from the sparse, episodic
policy evaluation.

The contributions of this paper are to:

• link the immediate policy feedback with the experienced
state-action pairs to obtain a unique expected feedback for
each state-action pair;
• obtain a policy-level fitness critic by aggregating the ex-
pected state-action feedback estimates;

These elements of fitness critics allow the EA to effectively train
policies for tightly coupled domains.

We apply fitness critics in the tightly coupled multi-rover domain
[23] to effectively train policies for the multiagent team. This paper
shows that teams trained with fitness critics achieve comparable
or increased mean performance scores compared to teams trained
without fitness critics. Furthermore, only teams trained with fitness
critics were able to demonstrate any amount of effective learning
on tasks with higher degrees of coupling.

2 BACKGROUND
Learning in tightly coupled domains is difficult due to the inabil-
ity to properly reinforce potentially contributing behaviors [23].
Potentially contributing behaviors that require coordination with
other agents will not be contributing when there is no coordination.
As a result, feedback from the environment, which is based on the
performance of the team as a whole, does not accurately score the
agent’s potentially contributing behaviors. As such, tight coupling
creates inconsistent feedback that makes it hard to reinforce poten-
tially contributing rewards. The expected feedback (with respect to
varied teams) is a more consistent value for evaluating an individual

agent’s behavior as this feedback corrects for varying multiagent
teams and performances.

Current methods that improve learning in multiagent systems
are not as good at improving learning in tightly coupled domains.
To better isolate an agent’s contribution, effective multiagent re-
ward shaping (Section 2.2) requires domain knowledge that may
not be available. Sample-based methods (Section 2.3) require large
amounts of samples in order to provide an acceptable expected feed-
back estimate. Regression methods (Section 2.3) map the expected
fitness to policy parameters, which results in large functional mod-
els to train that does not leverage the information learned about one
policy when evaluating other policies that exhibit similar behaviors.

The difficulties we address in this paper are:
• decentralized multiagent teams;
• tightly-coupling in feedback signal;
• sparse and delayed feedback;
• the available knowledge of domain being too limited to apply
reward shaping.

2.1 Cooperative Coevolutionary Algorithms
Evolutionary algorithm (EAs) are optimization algorithms that up-
date a population of genomes using the evolutionary operators: se-
lection, recombination, mutation, and reinsertion [4]. For example,
the weights for neural network policies can be treated as genomes to
be evolved by the EA [8, 9]. Cooperative coevolutionary algorithms
(CCEAs) extend evolutionary algorithms to multiagent domains
by evolving agents’ policies independently [29]. For each agent,
CCEA evolves a separate population of policies. CCEAs can have
been augmented with sampling-based methods (Section 2.3) like
leniency [22] and hall of fame [24] to increase team performance
[6].

2.2 Multiagent Reward Shaping
Reward shaping methods use known knowledge about the domain
to augment the reward signal in order to make the reward signal
more informative and improve the quality of learning. However,
arbitrary reward shaping in the absence of domain knowledge
may not preserve the optimal policy for a Markov decision process
(MDP). Potential Based Reward Shaping (PBRS) [18] uses a poten-
tial function to shape rewards while preserving optima. However,
there is still a need for domain knowledge to produce potential
functions that have a positive effect on the quality of learning. For
these methods, the reward is often step-wise feedback from the
environment, but many of these approaches can be extended to
also handle episodic feedback.

Difference evaluations (D) shapes the feedback to produce a feed-
back signal that isolates other agents’ behaviors [3]. Difference
evaluations replace the immediate feedback with new feedback
that is the difference between what the original feedback is and an
estimate of what the feedback would be without the agent’s contri-
bution. This is performed to isolate a more appropriate evaluation
for the agent’s contribution:

Di = G(z) −G(z−i ∪ ci) (1)

where Di is the agent i’s difference evaluation; z is the collective
state-action or sequence of state-actions for all agents; G is the

team’s evaluation; z−i is the system state-action or sequence of
state-actions for all agents excluding the evaluated agent i; ci is
a counterfactual state-action or sequence of state-actions that re-
places those of agent i . Training with D has lead to higher perfor-
mance in large-scale multiagent domains [7, 20, 28]. Although D
may be used to measure the impact that an individual agent has on
team performance, its effectiveness tends to decrease in applications
where the tight coupling of agents’ actions is necessary.

2.3 Methods for Estimating Expected Feedback
While methods exist to estimate the expected feedback for EAs,
these methods become inefficient when dealing with the incon-
sistent feedback present in tightly coupled domains. Noisy fitness
evaluations impede the EA’s ability to optimize the expected fitness
value. Leniency (i.e. taking the maximum of multiple fitness eval-
uation samples) [22], hall of fame (i.e. optimizing the best team),
averaging multiple fitness evaluations [5], and increasing the evo-
lutionary algorithm’s population size [12], are among some of the
sampling-based methods for minimizing the negative effect of noise
in the fitness evaluation. These methods can be inefficient when
the sampling of good actions is difficult.

Fitness approximation methods will regress a functional model,
and use that functional model to provide informed estimates of
the expected feedback, thereby avoiding the need to perform then
average multiple performance evaluations for each new estimate.
These methods, such as the Memory-based Fitness Evaluation Ge-
netic Algorithm [25], or approximating the fitness function using
regression [21], estimates the expectation of the original fitness
function. In this way, information from previous fitness evaluations
is conserved in the functional model. Nevertheless, by mapping
expected feedback directly to policy parameters, these methods
miss out on the opportunity to leverage information surrounding
previously evaluated policies when evaluating differing policies
that exhibit similar behaviors.

2.4 Actor-Critic Methods
The inspiration for fitness critics comes from the critic in the Off-
policy Deterministic Actor-Critic (OPDAC) method [27]. The OP-
DAC method is an actor-critic method, which are methods that up-
date a policy (or actor) by using the gradient of a functional model
(or critic). The OPDACmethod allows for variance-reduced training
of deterministic policies in domains with continuous state-action
spaces. Actor-critic methods and related reinforcement learning
methods struggle with sparse and delayed rewards in continuous
state-action spaces [10].

The training of a critic in actor-critic methods allows for variance
reduction in the evaluations of state-action pairs. With this idea,
fitness critics also train an interior functional model, or intermediate
critic, but to provide sufficient expected feedback estimates. Thus,
the intermediate critic is comparable to the critic from actor-critic
methods in that they are both used to evaluate state-action pairs.

In contrast with the critics from actor-critic methods, fitness
critics perform an aggregation step to create a singular evaluation
for the policy, which is crucial, as the EA can only use a single
fitness evaluation per episode. Another difference is that, with

fitness critics, the actor (in this case, the EA) performs gradient-
free policy optimization by using the fitness critic’s evaluation as
opposed to performing gradient-based policy optimization using
the critic’s gradient.

3 FITNESS CRITICS
In a given episode, a multiagent team is executed in the environ-
ment and receives a score at the end of the episode based on their
performance. The score serves as the immediate feedback for the
evolutionary algorithm (EA). In multiagent domains, reward shap-
ing methods (Section 2.2), like difference evaluations, can be applied
to the immediate feedback to provide each agent with a unique, and
individualized shaped feedback. However, even then, this feedback
may not properly reflect the potential contribution of an individual
agent. Instead, the EA may use the individual agent’s expected feed-
back (with respect to varied teams) to better represent the agent’s
contribution and improve the quality of learning. However, the
expected feedback is not always accessible and must instead be
estimated. Efficient estimation of the expected feedback is not a
trivial task.

Fitness critics are functional models for efficiently estimating the
expected feedback. The key insight into the effectiveness of fitness
critics is to maximize information reuse. Fitness critics do this by
correlating the multiple instances where the agent took similar
actions in similar states regardless of which policy the agent used.
In the multiagent system, each agent has its own fitness critic.

To provide the expected feedback estimates, the fitness critic
updates, and makes use of an interior functional model called the
intermediate critic, which is trained simultaneously with the ex-
ecution of the EA. The fitness critic then uses the intermediate
critic to evaluate each state-action pairs in the agent’s trajectory (i.e.
the sequence of experienced state-action pairs for an episode). We
provided further details on fitness critic evaluations in Section 3.1.
The fitness critics aggregate these evaluations and use the result of
the aggregation as the estimation of the expected feedback.

The fitness critic uses feedback data to perform the aforemen-
tioned updates on the intermediate critic (Sections 3.2 and 3.3
provide the details about these updates). Throughout the train-
ing episodes, our method stores this feedback data in an experience
replay buffer [13] to build a mapping between the agent’s trajec-
tories and the immediate feedback associated with each trajectory.
With each update of the intermediate critic, the fitness critic, as a
whole, gradually learns this feedback data mapping.

Figure 1 shows a multi-step illustration of fitness critics in action.

3.1 Evaluating with Fitness Critics
For each step of an episode, every agent in the team receives an
input state from the environment and responds with an action to
interact with the environment. This process is repeated for many
steps until the end of the episode. In each step i , the intermediate
critic evaluates the state-action pair, and generates an evaluation
ci :

ci = C(si, ai;w) (2)
where the functionC is the intermediate critic that is parameterized
by the vector w; and si and ai are the state and action, respectively.
The fitness critic then aggregates the many intermediate critic

evaluations to provide an expected feedback estimate. In this paper,
we use the maximum or the mean functions for aggregation:

Fmax (T) = max
(s,a)∈T

C(s, a) (3)

Fmean(T) =

∑
(s,a)∈T

C(s, a)∑
(s,a)∈T

1
(4)

T = {(s1, a1), ..., (sn, an)} (5)
where (Fmax) is the fitness critic using the maximum function for
aggregation; (Fmean) is the fitness critic using the mean function
for aggregation; and T is the evaluated trajectory, which is the
sequence of state-action pairs (si , ai) experienced throughout an
episode with n steps.

3.2 Fitness Critics Update
Throughout an agent’s learning process, the intermediate critic is
periodically updated. These updates allow the fitness critic to learn
the stored mapping between agent trajectories and the immediate
feedback for these trajectories. The intermediate critic is updated
via the fitness critic using mini-batch gradient descent. These up-
dates are performed to minimize the expected mean squared error
between the fitness critic evaluation and the immediate feedback
for a trajectory:

w′ = w + ∆w (6)
where w′ is the post-update fitness critic parameter vector; and w
is the pre-update fitness critic parameter vector; ∆w is w’s update,
given by:

∆w = αw

ns∑
k=1

δk∇wF
w(Tk) (7)

δk = fk − F
w(Tk) (8)

where αw is the learning rate; ns is the number of samples for every
mini-batch; k is the sample index; the function Fw is the fitness
critic that is parameterized by w; and δk is the error between the
experienced immediate feedback fk for the sample trajectory Tk
and fitness critic’s evaluation for Tk .

3.3 Inexact Fitness Critics Updates
For the max fitness critic (Fmax), the only state-action pair in a tra-
jectory that contributes to the parameter update is the state-action
pair that receives the maximum intermediate critic evaluation for
that trajectory. All other state-action pairs do not affect the update,
as these state-action pairs provide zero derivatives due to the nature
of the maximum function. This limits how fast the fitness critic
learns. Instead, the fitness critic’s can be updated quickly (but at
the cost of accuracy) by associating every state-action pair in a
trajectory with the immediate feedback. Subsequently, the interme-
diate critic directly learns a new feedback data mapping between
state-action pair and immediate feedback:

∆w = αw

ns∑
K=1

δk∇wC
w(sk , ak) (9)

δk = fk −C
w(sk , ak) (10)

whereC is the intermediate critic parameterized byw; sk and ak are,
respectively, the sampled state and action that were experienced

Agent 1

π1,m

Agent n

πn,m

..
.

T1,m

Tn,m

Team m

(s,a)1,m,1

...
(s,a)1,m,o

(s,a)n,m,1

...
(s,a)n,m,o

fn,m

f1,m

fteam,m
results inTteam,m

use reward

shaping to compute

fteam,1

..
.

fteam,m-1

use re
ward

shaping t
o co

mpute

(a) A team m of n agents executes their policies
(π1,m , ..., πn,m). The team’s joint-trajectory Tteam,m
receives a score of fteam,m . Reward shaping can be ap-
plied to fteam,m to generate shaped feedback values
(f1,m , ..., fn,m). This process is repeated for all them
episodes in each evolutionary algorithm (EA) genera-
tion.

T1,1

T1,m-1

T1,m

f1,1

f1,m-1

f1,m

..
.

..
.

..
.

Team m

(b) Our method maps Agent 1’s trajectories
(T1,m , ...,T1,1) for each of m episodes to the shaped
feedback for that episode. Our method repeats this
process for all other agents.

used to update C1

T1,1

T1,m-1

T1,m

f1,1

f1,m-1

f1,m

..
.

..
.

(c) Once per generation, ourmethod uses themapping
between the trajectories and shaped feedback to up-
date Agent 1’s intermediate critic (C1), which is a func-
tional model. Our method repeats this process for all
other agents.

Team m

C1
evaluates

(s,a)1,m,1

..
.

(s,a)1,m,o

..
.

..
.

C1((s,a)1,m,o)

to
 p

ro
du

ce

C1((s,a)1,m,1)

to produce

g1,m

ag
gr

eg
at

ed
 to

(d) Agent 1’s intermediate critic C1 evaluates experienced state-
action pairs in the T1,m trajectory ((s, a)1,m .1, ..., (s, a)1,m,o).
These evaluations are aggregated to give a fitness critic evalu-
ation of д1,m , which the EA uses as π1,m ’s fitness value. Our
method repeats this process for all other episodes and all other
agents.

Figure 1: Fitness critics in action.

together in a step of a past episode. Note that the fitness critic as a
whole F and the intermediate critic C share the parameters w as F
is just C with aggregation. With inexact fitness critic updates, (9)
replaces (7) and (10) replaces (8).

3.4 Implementation of Fitness Critics in
Cooperative Coevolutionary Algorithms

Our method "intercepts" the immediate feedback that the EA would
otherwise have used as the policy’s fitness value. Instead, our
method stores the immediate feedback with the trajectory in the
feedback data mapping. The fitness critic then evaluates the policy’s
trajectory with (3) for the max fitness critic, or (4) for the mean
fitness critic, to provide an expected feedback estimate. The EA
will use this value as the policy’s fitness value when performing
evolutionary operations. Figure 2 shows the interactions between
the EA, the fitness critic, and the agents. At the end of each genera-
tion, our method updates the fitness critic with (6), (7) and (8) for
regular updates; or (6), (9) and (10) for inexact updates. Algorithm 1

describes an application of fitness critics in the Cooperative Coevo-
lutionary Evolutionary Algorithm (CCEA). We highlight the fitness
critic additions to the base CCEA algorithm.

4 EXPERIMENTATION
We compare the performance of multiagent teams trained with and
without fitness critics on the tightly coupled multi-rover domain.
The policies for teammates are randomly selected so that there
is diversity in the feedback signal. To evaluate the comparative
advantage of using fitness critics, we also compare to the mean
performance scores for teams trained with the average of the feed-
back for 10 diverse episodes. The EA uses this average as a simple,
expected feedback estimate.

4.1 The Tightly Coupled Multi-Rover Domain
The tightly coupled multi-rover domain [23] is a domain where
a team of rovers with limited sensing capabilities has the task of
capturing various points of interest (POIs). In this domain, each
POI has a value that determines the reward for capturing it. The

Algorithm 1 Cooperative Coeveolutionary Evolutionary Algo-
rithm with Fitness Critics

Given n agents
Set k as the number of policies to generate per agent
for all Agents i do
Initialize a population of policies ρi ← {µi ,1, ..., µi ,k }

Initialize fitness critic Fwi
Initialize experience replay buffer Ei

end for
for all Generations do

for all Training Episodes do
for all Agents i do

Get (random) policy µi from ρi
end for
Assemble team µteam ← {µ1, ..., µn }
Execute µteam
Receive trajectories Tteam ← {T1, ...,Tn }
for all Agents i do
Receive immediate feedback fi for Ti given Tteam
Set µi ’s fitness value дi to Fwi (Ti)

Update Ei given Ti and fi
end for

end for
for all Agents i do
Update ρi with evolutionary operators
Update Fwi in batches with random samples from Ei

end for
end for

Evolutionary
Algorithm 1

Policy 1

Policy k

...

Policy 2

Evolutionary
Algorithm m

Policy 1

Policy k

...

Policy 2

...

Team

Environment...

Individual 1

Individual 2

Individual n

...

state

action

policy feedback

episodic interaction stepwise interaction

Fitness
Critic 1

fitness

Fitness
Critic n

Figure 2: Interactions between the agent, the environment
and the fitness critic in the cooperative coevolutionary al-
gorithm for a multiagent system with n agents. Each agent
evolves k policies. At the end of the episode, the fitness critic
intercepts the feedback from the environment. The fitness
critic then assigns a fitness evaluation to the agent’s policy
based on the agent’s trajectory.

performance score for the team increases with the number of POIs
captured. The number of rovers required for capturing a POI, nr eq ,
represents the degree of coupling for the task. With higher degrees
of coupling, the difficulty of the domain increases as untrained
agents are less likely to stumble upon and reinforce coordinated be-
haviors. For simplicity, we do not simulate collision in this domain.

4.1.1 Scoring Team Performance. The team scoreG is a cumula-
tive function of the POIs captured during the episode. At leastnreq
rovers must be simultaneously within a POI’s capture radius to
capture that POI. The domain reports the team score at the end of
the episode:

G =
∑
k ∈K

max
t

Ik ,tVk (11)

where Vk is the value of the POI k in the set of all POIs K ; and
Ik ,t is an indicator function for whether there was any successful
capture of k at some time step t :

Ik ,t =

{
1 if

∑
i ∈I Ji ,k ,t ≥ nreq

0 otherwise
(12)

Ji ,k ,t =

{
1 if δ2i ,k ,t ≤ d2cap
0 otherwise

(13)

where Ji ,k ,t is an indicator function that returns whether the rover
i was within the capture radius of POI k at some time step t ; I is
the the set of all rovers; and δi ,k ,t is a bounded euclidean distance
metric that is given by:

δa,b ,t = max(| |pa,t − pb,t | |,dmin) (14)

where a and b are two objects, with each object being either a rover
or a poi; pa,t and pb,t are, respectively, the positions of a and b at
time step t ; and dmin is the lower bound for this distance metric.

The multiagent system can further shape the team score G with
reward shaping to provide individual rovers with unique, and in-
formative feedback. In this paper, we shape the team score with
difference evaluations (see Section 2.2).

4.1.2 Rover Sensing and Motion. The policies that control the
rovers are decentralized (i.e. each rover’s policy is executed inde-
pendently, based on each individual rover’s local perception of the
world). Each policy receives an 8-dimension vector from the rover’s
sensors as its state input and returns a 2-dimension vector describ-
ing the rover’s motion. The rovers sense and move according to
their orientation. Figure 3 shows the rovers’ sensing and moving
capabilities.

Each component of the state vector encodes relational informa-
tion between the sensing rover and the POIs, or other rovers, in
one of four quadrants centered around the sensing rover. The rover
sensing function srover,q is:

srover,q =
∑
j ∈Jq

1
δ2i , j ,t

(15)

where q is quadrant for the sensing value; and δi , j ,t is the current
bounded distance between the sensing rover i and some other rover
j; Jq is the set of all rovers in q.

POI
Capture
Radius

Point of
Interest
(POI)

Rover

dx

dy

POI
Sensor

Rover
Sensor

Figure 3: Rovers in the multi-rover domain move and sense
according to their orientation. Rovers have a total of 8 sen-
sors: a set of four quadrant sensors for sensing point of in-
terests (POIs) and another four quadrant sensors for sensing
other rovers.

The POI sensing function is spoi,q :

spoi,q =
∑
k ∈Kq

Vk
δ2i ,k ,t

(16)

where δi ,k ,t is the current bounded distance between the sensing
rover i and some POI k ; Kq is the set of all POIs in q; and Vk is the
value of the POI k .

4.2 Experimental Parameters
There are 4 POIs in the experimental domain. Each POI has a dif-
ferent unique value in the range of [1,4]; thus, the maximum team
performance score for an episode is 10. We initialize the POIs on
the circumference of a circle with a radius of 15. We initialize the
rovers randomly in a concentric circle with a radius of 1.5. We set
the rovers’ initial orientation randomly. We perform this initializa-
tion scheme for the rovers and POIs to put the POIs far enough
from the rovers, preventing the rovers from easily capturing the
POI with untrained policies. However, rovers will still have enough
time to reach to the POIs and reinforce coordinated behaviors.

The agent receives the difference evaluation as the immediate
feedback for offline training. The difference evaluation is estimated
by removing the recorded trajectory of the evaluated agent and
calculating the resulting difference in G; dmin is set to 1; dcap is set
to 4.

The number of rovers required to capture a POI (nreq), which is
varied from 3 to 6, represents the degree of coupling for a domain is.
We also vary the number of rovers in total to investigate how well

fitness critics respond to different team sizes, There are 50 steps in
an episode.

Each agent has an evolving population of 50 neural network
policies that are trained by the CCEA for over 5000 generations,
which is enough to the team performance to convergence. Each
neural network is a feed-forward and fully connected network
with one hidden layer. Each network has 8 inputs for rover states,
32 hidden neurons, and 2 outputs for rover relative motion (Sec-
tion 4.1.2 defines the rover states and motion). The hidden neurons
use ramp activation over sigmoid activation for computational effi-
ciency. However, the output neurons use the hyperbolic tangent as
a sigmoid activation function to simulate motor saturation.

The CCEA uses binary tournament for selection to allow for
diversity in the evolving population. The CCEA duplicates the
selected neural networks to produce offsprings and thenmutates the
offsprings before putting them back into the population. Offspring
mutation occurs with a mutation rate of 0.01 per weight by adding
a sample from the standard Cauchy distribution to each mutated
neural network weight.

The intermediate critic is a feed-forward and fully connected
neural network with one hidden layer. Each critic has 10 inputs
(the sum of state and action dimension), 80 hidden neurons and 1
output (for the state-action pair evaluations). For computational
efficiency, the hidden neurons use leaky ramp activation [16] with
a leaky scale value of 0.01. The output neurons use linear activation.
To avoid vanishing gradients, the weights between the hidden layer
and the output layer were fixed to 1, not including the bias weights.
Fixing these weights do not negatively impact the representation
capacity of the neural network.

We compare the effects of max critics with inexact updates and
mean critics with regular updates on the multiagent team perfor-
mance. We set the mini-batch size for the fitness critic updates and
the number of mini-batches per generation to loosely match the
number of feedback data entries generated in every generation.
The replay buffer size is roughly 10 times the product of these two
numbers to preserve some information from prior generations. For
the max fitness critics with inexact updates, the replay buffer size
is 25000 and mini-batch size is 50, with 50 mini-batches per genera-
tion. For the mean critics with regular updates, the replay buffer
size is 500 and the mini-batch size is 7, with 7 mini-batches per
generation. The reason for the differences in these values between
the fitness critics is to compensate for the different update methods
(regular/inexact) and to have each critic consume similar amounts
of computing resources. The learning rate is 5 × 10−6.

5 RESULTS
We compare the mean performance score of multiagent teams
trained with and without fitness critics on the tightly coupled multi-
rover domainwith 15 rovers, 4 POIs, and various degrees of coupling
(nreq). All teams were able to demonstrate effective learning on the
task with nreq = 3. However, using the immediate feedback, teams
achieved poor scores on the task with nreq = 4, and were ineffective
at learning on the tasks with nreq = [5, 6]. Use the average feedback
of 10 episodes as an estimate for the expected feedback, the teams’
scores on the task with nreq = [4, 5] improved, but the teams were
still ineffective at learning on tasks with nreq = 6. We also ran

Figure 4:Mean performance score curves for teams of agents
trained with and without fitness critics. Agents are trained
on the tightly-coupled multi-rover domain with 15 rovers, 4
points of interests (POIs), and the degree of coupling (nreq)
set to 3. All teams perform similarly. Error bars denote 95%
confidence interval.

Figure 5:Mean performance score curves for teams of agents
trained with and without fitness critics. Agents are trained
with CCEA on the tightly-coupled multi-rover domain with
15 rovers, 4 points of interests (POIs), and the degree of cou-
pling (nreq) set to 5. Teams trained with fitness critics outper-
formother teams. Error bars denote 95% confidence interval.

experiments with a comparable instance of multi-agent deep deter-
ministic policy gradient (MADDPG) [15], an actor-critic algorithm.
MADDPG was able to learn on the task with (nreq = 1) but failed
to learn for any of the aforementioned tasks with higher degrees of
coupling. MADDPG’s failure to learn on these tasks might be due
to its inability to handle the sparse reward signal in the domain as
a result of tight coupling.

Figure 6:Mean performance score curves for teams of agents
trained with and without fitness critics. Agents are trained
with CCEA on the tightly-coupled multi-rover domain with
15 rovers, 4 points of interests (POIs), and the degree of cou-
pling (nreq) set to 6. Teams trained with fitness critics outper-
form other teams, which are ineffective at learning. Error
bars denote 95% confidence interval.

Figure 7: Mean performance scores for teams of agents
trained with and without fitness critics. Agents are trained
with CCEA on the tightly-coupled multi-rover domain with
15 rovers, 4 points of interests (POIs), and various degrees of
coupling (nreq). Error bars denote 95% confidence interval.

Teams trainedwith fitness critics performed comparable or better
than other teams. These teams demonstrate effective learning on
all tasks, though teams trained with the max critic with inexact
updates outperformed teams trained with the mean critic with
regular update. We suspect that optimistic exploration provided by
the maximum aggregation function in the max critic contributes
to the success of the max critic as optimistic exploration allows

Figure 8: Mean performance scores for teams of agents
trained with and without fitness critics. Agents are trained
with CCEA on the tightly-coupled multi-rover domain with
a varying number of rovers, 4 points of interests (POIs), and
a degree of coupling (nreq) set to 4. All teams perform simi-
larly. Error bars denote 95% confidence interval.

Figure 9: Mean performance scores for teams of agents
trained with and without fitness critics. Agents are trained
with CCEA on the tightly-coupled multi-rover domain with
a varying number of rovers, 4 points of interests (POIs), and
a degree of coupling (nreq) set to 6. Teams trainedwith fitness
critics outperform teams trained with an average of feed-
back samples. Error bars denote 95% confidence interval.

for agents to stumble upon rare but highly-valued state-action
spaces more often. We illustrate these results on the performance
of teams trained with and without fitness critics on tasks with
various degrees of coupling in Figures 4 to 7.

We also compare the mean performance scores of teams trained
with fitness critics to teams trained with the average of 10 feedback
samples on the tightly coupled multi-rover domain with various
team sizes on the tasks with nreq = 4 and nreq = 6. Again, teams
trained with fitness critics performed comparable or better. We
also notice an increase in the achieved mean performance scores as
the number of rovers increases which may be due to having more

rovers to explore and find the POIs. Figures 8 and 9 present these
results.

Teams trained with fitness critics are able to outperform other
teams due to the fitness critics’ ability to store feedback informa-
tion of past generations and readily use that information for future
evaluations. Reusing feedback information in this way allows fit-
ness critics to be more efficient and accurate at providing expected
feedback estimates.

6 CONCLUSION
In tightly coupled domains, sparse immediate feedback can be unin-
formative and lead to ineffective learning. The expected feedback
estimate allows for more efficient training of decentralized multi-
agent teams with evolutionary algorithms (EAs) as the expected
feedback (with respect to varied teams) prevents an agent from
receiving bad feedback on a potentially good action in cases where
they have poorly performing teammates. However, the expected
feedback is not always accessible and must instead be estimated.
Efficient estimation of the expected feedback is not a trivial task.

This paper introduces fitness critics, a functional model for effi-
cient estimation of the expected feedback. Fitness critics can pro-
vide this estimate efficiently by leveraging the information that is
learned about one policy when evaluating other policies that ex-
hibit similar behaviors. To do so, fitness critics link the immediate
feedback policy with the state-action pairs that the agent experi-
ences during the execution of the policy. Fitness critics then create
expected feedback estimates for each of these state-action pairs and
aggregate these estimates to obtain a policy-level fitness critic.

We apply fitness critics in the tightly coupled multi-rover domain
to effectively train policies for the multiagent team. This paper
shows that teams trained with fitness critics achieve comparable
or increased mean performance scores compared to teams trained
without fitness critics. Furthermore, only teams trained with fitness
critics were able to demonstrate any amount of effective learning on
tasks with higher degrees of coupling. Fitness critics have a positive
effect on learning in tightly coupled domains due to their ability
to efficiently filter noise from the feedback signal by providing
expected feedback estimates.

Fitness critics is a new addition to a broader collection of work
on marrying evolutionary algorithms (EAs) with reinforcement
learning (RL) to address each others’ deficiencies. Related to this
work, memetic algorithms [11] extend EAs with local search tech-
niques for more efficient convergence to good solutions. Also, there
is Evolutionary Reinforcement Learning [10], which combines the
two learning methods to provide sample efficient learning. Future
work with fitness critics will investigate the potential in using the
fitness critic to perform a reinforcement-like policy gradient, as
done in actor-critic methods, in addition to EA, to further improve
learning efficiency.

7 ACKNOWLEDGEMENT
This work was partially supported by the Air Force Office of Scien-
tific Research under grant No. FA9550-19-1-0195 and the National
Science Foundation under grant No. IIS-1815886. The authors thank
Stephane Airiau for his thoughtful feedback on this paper.

REFERENCES
[1] Adrian Agogino, Chris HolmesParker, and Kagan Tumer. 2012. Evolving Large

Scale UAV Communication System. In Proceedings of the 14th Annual Conference
on Genetic and Evolutionary Computation (GECCO ’12). Association for Comput-
ing Machinery, New York, NY, USA, 1023–1030. https://doi.org/10.1145/2330163.
2330306

[2] Adrian Agogino and Kagan Tumer. 2007. Evolving Distributed Agents for Man-
aging Air Traffic. In Proceedings of the 9th Annual Conference on Genetic and
Evolutionary Computation (GECCO ’07). ACM, New York, NY, USA, 1888–1895.
https://doi.org/10.1145/1276958.1277339

[3] A. Agogino and K. Tumer. 2008. Efficient Evaluation Functions for Evolving
Coordination. Evol. Comput. 16, 2 (June 2008), 257–288. https://doi.org/10.1162/
evco.2008.16.2.257

[4] Thomas Back, David B. Fogel, and Zbigniew Michalewicz (Eds.). 1999. Basic
Algorithms and Operators (1st ed.). IOP Publishing Ltd., Bristol, UK, UK.

[5] Erick Cantú-Paz. 2004. Adaptive Sampling for Noisy Problems. In Genetic and
Evolutionary Computation – GECCO 2004, Kalyanmoy Deb (Ed.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 947–958.

[6] Mitchell Colby and Kagan Tumer. 2012. Shaping Fitness Functions for Coevolv-
ing Cooperative Multiagent Systems. In Proceedings of the 11th International
Conference on Autonomous Agents and Multiagent Systems - Volume 1 (AAMAS
’12). International Foundation for Autonomous Agents and Multiagent Systems,
Richland, SC, 425–432. http://dl.acm.org/citation.cfm?id=2343576.2343637

[7] Mitchell Colby, Logan Yliniemi, and Kagan Tumer. 2016. Autonomous Multiagent
Space Exploration with High-Level Human Feedback. Journal of Aerospace
Information Systems 13, 8 (2016), 301–315. https://doi.org/10.2514/1.I010379
arXiv:https://doi.org/10.2514/1.I010379

[8] Verena Heidrich-Meisner and Christian Igel. 2009. Neuroevolution Strategies
for Episodic Reinforcement Learning. J. Algorithms 64, 4 (Oct. 2009), 152–168.
https://doi.org/10.1016/j.jalgor.2009.04.002

[9] C. Igel. 2003. Neuroevolution for reinforcement learning using evolution strate-
gies. In The 2003 Congress on Evolutionary Computation, 2003. CEC ’03., Vol. 4.
2588–2595 Vol.4. https://doi.org/10.1109/CEC.2003.1299414

[10] Shauharda Khadka and Kagan Tumer. 2018. Evolution-guided Policy Gradient
in Reinforcement Learning. In Proceedings of the 32Nd International Conference
on Neural Information Processing Systems (NIPS’18). Curran Associates Inc., USA,
1196–1208. http://dl.acm.org/citation.cfm?id=3326943.3327053

[11] Natalio Krasnogor. 2008. An Unorthodox Introduction to Memetic Algorithms.
SIGEVOlution 3, 4 (Dec. 2008), 6–15. https://doi.org/10.1145/1621943.1621945

[12] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Sim-
ple and Scalable Predictive Uncertainty Estimation Using Deep Ensembles. In
Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS’17). Curran Associates Inc., USA, 6405–6416. http://dl.acm.org/
citation.cfm?id=3295222.3295387

[13] Long-Ji Lin. 1992. Self-Improving Reactive Agents Based on Reinforcement
Learning, Planning and Teaching. Mach. Learn. 8, 3-4 (May 1992), 293–321.
https://doi.org/10.1007/BF00992699

[14] Daniele Loiacono. 2012. Learning, Evolution and Adaptation in Racing Games.
In Proceedings of the 9th Conference on Computing Frontiers (CF ’12). ACM, New
York, NY, USA, 277–284. https://doi.org/10.1145/2212908.2212953

[15] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.
2017. Multi-agent Actor-critic for Mixed Cooperative-competitive Environments.
In Proceedings of the 31st International Conference on Neural Information Processing
Systems (NIPS’17). Curran Associates Inc., USA, 6382–6393. http://dl.acm.org/
citation.cfm?id=3295222.3295385

[16] Andrew LMaas, Awni Y Hannun, and Andrew Y Ng. 2013. Rectifier nonlinearities
improve neural network acoustic models. In Proc. icml, Vol. 30. 3.

[17] David E Moriarty and Risto Miikkulainen. 1995. Discovering Complex Othello
Strategies Through Evolutionary Neural Networks. Connection Science 7, 3 (1995),
195–209.

[18] Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance
Under Reward Transformations: Theory and Application to Reward Shaping.
In Proceedings of the Sixteenth International Conference on Machine Learning
(ICML ’99). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 278–287.
http://dl.acm.org/citation.cfm?id=645528.657613

[19] Stefano Nolfi and Dario Floreano. 2000. Evolutionary Robotics: The Biol-
ogy,Intelligence,and Technology. MIT Press, Cambridge, MA, USA.

[20] M. NoroozOliaee, B. Hamdaoui, and K. Tumer. 2013. Efficient Objective Func-
tions for Coordinated Learning in Large-Scale Distributed OSA Systems. IEEE
Transactions on Mobile Computing 12, 5 (May 2013), 931–944. https://doi.org/10.
1109/TMC.2012.67

[21] I. Paenke, J. Branke, and Yaochu Jin. 2006. Efficient Search for Robust Solutions
by Means of Evolutionary Algorithms and Fitness Approximation. Trans. Evol.
Comp 10, 4 (Aug. 2006), 405–420. https://doi.org/10.1109/TEVC.2005.859465

[22] Liviu Panait, Karl Tuyls, and Sean Luke. 2008. Theoretical Advantages of Lenient
Learners: An Evolutionary Game Theoretic Perspective. J. Mach. Learn. Res. 9
(June 2008), 423–457. http://dl.acm.org/citation.cfm?id=1390681.1390694

[23] A. Rahmattalabi, J. J. Chung, M. Colby, and K. Tumer. 2016. D++: Structural credit
assignment in tightly coupled multiagent domains. In 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 4424–4429. https://doi.org/
10.1109/IROS.2016.7759651

[24] Christopher D. Rosin and Richard K. Belew. 1997. New Methods for Competitive
Coevolution. Evol. Comput. 5, 1 (March 1997), 1–29. https://doi.org/10.1162/
evco.1997.5.1.1

[25] Y. Sano and H. Kita. 2002. Optimization of noisy fitness functions by means of
genetic algorithms using history of search with test of estimation. In Proceedings
of the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No.02TH8600),
Vol. 1. 360–365 vol.1. https://doi.org/10.1109/CEC.2002.1006261

[26] Jack F. Shepherd and Kagan Tumer. 2010. Robust Neuro-Control for a Micro
Quadrotor. In Proceedings of the 12th Annual Conference on Genetic and Evolu-
tionary Computation (GECCO ’10). Association for Computing Machinery, New
York, NY, USA, 1131–1138. https://doi.org/10.1145/1830483.1830693

[27] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Mar-
tin Riedmiller. 2014. Deterministic Policy Gradient Algorithms. In Proceedings of
the 31st International Conference on International Conference on Machine Learning
- Volume 32 (ICML’14). JMLR.org, I–387–I–395. http://dl.acm.org/citation.cfm?
id=3044805.3044850

[28] K. Tumer and A. Agogino. 2009. Improving Air Traffic Management with a
Learning Multiagent System. IEEE Intelligent Systems 24, 1 (Jan 2009), 18–21.
https://doi.org/10.1109/MIS.2009.10

[29] R Paul Wiegand. 2003. An Analysis of Cooperative Coevolutionary Algorithms.
Ph.D. Dissertation. George Mason University.

https://doi.org/10.1145/2330163.2330306
https://doi.org/10.1145/2330163.2330306
https://doi.org/10.1145/1276958.1277339
https://doi.org/10.1162/evco.2008.16.2.257
https://doi.org/10.1162/evco.2008.16.2.257
http://dl.acm.org/citation.cfm?id=2343576.2343637
https://doi.org/10.2514/1.I010379
http://arxiv.org/abs/https://doi.org/10.2514/1.I010379
https://doi.org/10.1016/j.jalgor.2009.04.002
https://doi.org/10.1109/CEC.2003.1299414
http://dl.acm.org/citation.cfm?id=3326943.3327053
https://doi.org/10.1145/1621943.1621945
http://dl.acm.org/citation.cfm?id=3295222.3295387
http://dl.acm.org/citation.cfm?id=3295222.3295387
https://doi.org/10.1007/BF00992699
https://doi.org/10.1145/2212908.2212953
http://dl.acm.org/citation.cfm?id=3295222.3295385
http://dl.acm.org/citation.cfm?id=3295222.3295385
http://dl.acm.org/citation.cfm?id=645528.657613
https://doi.org/10.1109/TMC.2012.67
https://doi.org/10.1109/TMC.2012.67
https://doi.org/10.1109/TEVC.2005.859465
http://dl.acm.org/citation.cfm?id=1390681.1390694
https://doi.org/10.1109/IROS.2016.7759651
https://doi.org/10.1109/IROS.2016.7759651
https://doi.org/10.1162/evco.1997.5.1.1
https://doi.org/10.1162/evco.1997.5.1.1
https://doi.org/10.1109/CEC.2002.1006261
https://doi.org/10.1145/1830483.1830693
http://dl.acm.org/citation.cfm?id=3044805.3044850
http://dl.acm.org/citation.cfm?id=3044805.3044850
https://doi.org/10.1109/MIS.2009.10

	Abstract
	1 Introduction
	2 Background
	2.1 Cooperative Coevolutionary Algorithms
	2.2 Multiagent Reward Shaping
	2.3 Methods for Estimating Expected Feedback
	2.4 Actor-Critic Methods

	3 Fitness Critics
	3.1 Evaluating with Fitness Critics
	3.2 Fitness Critics Update
	3.3 Inexact Fitness Critics Updates
	3.4 Implementation of Fitness Critics in Cooperative Coevolutionary Algorithms

	4 Experimentation
	4.1 The Tightly Coupled Multi-Rover Domain
	4.2 Experimental Parameters

	5 Results
	6 Conclusion
	7 Acknowledgement
	References

