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Abstract. Weight quantization for deep ConvNets has shown promising
results for applications such as image classification and semantic seg-
mentation and is especially important for applications where memory
storage is limited. However, when aiming for quantization without ac-
curacy degradation, different tasks may end up with different bitwidths.
This creates complexity for software and hardware support and the com-
plexity accumulates when one considers mixed-precision quantization, in
which case each layer’s weights use a different bitwidth. Our key insight is
that optimizing for the least bitwidth subject to no accuracy degradation
is not necessarily an optimal strategy. This is because one cannot decide
optimality between two bitwidths if one has smaller model size while the
other has better accuracy. In this work, we take the first step to under-
stand if some weight bitwidth is better than others by aligning all to the
same model size using a width-multiplier. Under this setting, somewhat
surprisingly, we show that using a single bitwidth for the whole network
can achieve better accuracy compared to mixed-precision quantization
targeting zero accuracy degradation when both have the same model
size. In particular, our results suggest that when the number of channels
becomes a target hyperparameter, a single weight bitwidth throughout
the network shows superior results for model compression.

Keywords: Model Compression, Deep Learning Architectures, Quanti-
zation, ConvNets, Image Classification

1 Introduction

Recent success of ConvNets in computer vision applications such as image
classification and semantic segmentation has fueled many important applications
in storage-constrained devices, e.g., virtual reality headsets, drones, and IoT
devices. As a result, improving the parameter-efficiency (the top-1 accuracy to the
parameter counts ratio) of ConvNets while maintaining their attractive features
(e.g., accuracy for a task) has gained tremendous research momentum recently.

Among the efforts of improving ConvNets’ efficiency, weight quantization was
shown to be an effective technique [39,38,10,5]. The majority of research efforts in
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quantization has targeted quantization algorithms for finding the lowest possible
weight bitwidth without compromising the figure-of-merit (i.e., accuracy). Mixed-
precision quantization methods, which allow different bitwidths to be selected for
different layers in the network, have recently been proposed to further compress
deep ConvNets [29,31,6]. Nevertheless, having different bitwidths for different
layers greatly increases the neural network implementation complexity from
both hardware and software perspectives. For example, hardware and software
implementations optimized for executing an 8 bits convolution are sub-optimal
for executing a 4 bits convolution, and vice versa.

To minimize the efforts of hardware and software support, it is natural to
wonder: “Is some weight bitwidth better than others?” However, this is an ill-
posed problem as one cannot decide optimality between two bitwidths if one has
smaller model size while the other has better accuracy. This work takes a first
step towards understanding if some bitwidth is better than other bitwidths under
a given model size constraint. Given the multi-objective nature of the problem,
we need to align different bitwidths to the same model size to further decide the
optimality for the bitwidth selection. To realize model size alignment for different
bitwidths, we use the width-multiplier4 [11] as a tool to compare the performance
of different weight bitwidths under the same model size.

With this setting, we find that there exists some weight bitwidth that consis-
tently outperforms others across different model sizes when both are considered
under a given model size constraint. This suggests that one can decide the optimal
bitwidth for small model sizes to save computing cost and the result generalizes
to large model sizes5. Additionally, we show that the optimal bitwidth of a
convolutional layer negatively correlates to the convolutional kernel fan-in. As an
example, depth-wise convolutional layers turn to have optimal bitwidth values
that are higher than that of all-to-all convolutions. We further provide a theo-
retical reasoning for this phenomenon. These findings suggest that architectures
such as VGG and ResNets are more parameter-efficient when they are wide and
use binarized weights. On the other hand, networks such as MobileNets [11]
might require different weight bitwidths for all-to-all convolutions and depth-wise
convolutions. Somewhat surprisingly, we find that on ImageNet, under a given
model size constraint, a single bitwidth for both ResNet-50 and MobileNetV2 can
outperform mixed-precision quantization using reinforcement learning [29] that
targets minimum total bitwidth without accuracy degradation. This suggests
that searching for the minimum bitwidth configuration that does not introduce
accuracy degradation without considering other hyperparameters affecting model
size is a sub-optimal strategy. Our results suggest that when the number of chan-
nels becomes one of the hyperparameters under consideration, a single weight
bitwidth throughout the network shows great potential for model compression.

4 Width-multiplier grows or shrinks the number of channels across the layers with
identical proportion for a certain network, e.g., grow the number of channels for all
the layers by 2×.

5 Note that we use width-multiplier to scale model across different sizes.
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In summary, we systematically analyze the model size and accuracy trade-off
considering both weight bitwidths and the number of channels for various modern
networks architectures (variants of ResNet, VGG, and MobileNet) and datasets
(CIFAR and ImageNet) and have the following contributions:

– We empirically show that when allowing the network width to vary, lower
weight bitwidths outperform higher ones in a Pareto sense (accuracy vs. model
size) for networks with standard convolutions. This suggests that for such
ConvNets, further research on wide binary weight networks is likely to identify
better network configurations which will require further hardware/software
platform support.

– We empirically show that the optimal bitwidth of a convolutional layer
negatively correlates to the convolutional kernel fan-in and provide theoretical
reasoning for such a phenomenon. This suggests that one could potential
categorize ConvNets based on the convolutional kernel fan-in when designing
the corresponding bitwidth support from both software and hardware.

– We empirically show that one can achieve a more accurate model (under
a given model size) by using a single bitwidth when compared to mixed-
precision quantization that uses deep reinforcement learning to search for
layer-wise weight precision values. Moreover, the results are validated on a
large-scale dataset, i.e., ImageNet.

The remainder of the paper is organized as follows. Section 2 discusses related
work. Section 3 discusses the methodology used to discover our findings. Section 4
discusses our experiments for all our findings. In particular, Section 4.2 shows
that some bitwidth can outperform others consistently across model sizes when
both are compared under the same model size constraint using width-multipliers.
Section 4.3 discusses how fan-in channel count per convolutional kernel affects
the resilience of quantization for convolution layers, which further affects the
optimal bitwidth for a convolution layer. Section 4.4 scales up our experiments to
ImageNet and demonstrates that a single weight bitwidth manages to outperform
mixed-precision quantization given the same model size. Section 5 concludes the
paper.

2 Related Work

Several techniques for improving the efficiency of ConvNets have been recently
proposed. For instance, pruning removes the redundant connections of a trained
neural network [41,33,28,16,7,3,34], neural architecture search (NAS) tunes the
number of channels, size of kernels, and depth of a network [27,26,2,25], and
convolution operations can be made more efficient via depth-wise convolutions [11],
group convolutions [12,37], and shift-based convolutions [9,30]. In addition to the
aforementioned techniques, network quantization introduces an opportunity for
hardware-software co-design to achieve better efficiency for ConvNets.

There are in general two directions for weight quantization in prior liter-
ature, post-training quantization [20,18,36,23] and quantization-aware train-
ing [21,40,13,14,35,10,4]. The former assumes training data is not available when
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quantization is applied. While being fast and training-data-free, its performance
is worse compared to quantization-aware training. In contrast, our work falls
under the category of quantization-aware training.

In quantization-aware training, [21] introduces binary neural networks, which
lead to significant efficiency gain by replacing multiplications with XNOR op-
erations at the expense of significant accuracy degradation. Later, [40] propose
ternary quantization and [39,13] bridge the gap between floating-point and bi-
narized neural networks by introducing fixed-point quantization. Building upon
prior art, the vast majority of existing work focuses on reducing the accuracy
degradation by improving the training strategy [38,32,17,5] and developing better
quantization schemes [14,29,35]. However, prior art has studied quantization
by fixing the network architecture, which may lead to a sub-optimal bitwidth
selection in terms of parameter-efficiency (the top-1 accuracy to the parameter
counts ratio).

Related to our work, [19] have also considered the impact of channel count in
quantization. In contrast, our work has the following novel features. First, we
find that in ConvNets with standard convolutions, a lower bitwidth outperforms
higher ones under a given model size constraint. Second, we find that the Pareto
optimal bitwidth negatively correlates to the convolutional kernel fan-in and we
provide theoretical insights for it. Last, we show that a single weight bitwidth
can outperform mixed-precision quantization on ImageNet for ResNet50 and
MobileNetV2.

3 Methodology

In this work, we are interested in comparing different bitwidths under a given
model size. To do so, we make use of the width-multiplier to scale the models.
To be precise in the following discussion, we define an ordering relation across
bitwidths as follows:

Definition 1 (bitwidth ordering). We say bitwidth A is better than bitwidth
B for a network family F , if,

Acc(N(A, s)) > Acc(N(B, s)) ∀s,

where Acc(·) evaluates the validation accuracy of a network, N(A, s) produces a
network in F that has bitwidth A and model size of s by using width-multiplier.

With Definition 1, we can now compare weight bitwidths for their parameter-
efficiency.

3.1 Quantization

This work focuses on weight quantization and we use a straight-through estima-
tor [1] to conduct quantization-aware training. Specifically, for bitwidth values



One Weight Bitwidth to Rule Them All 5

larger than 2 bit (b > 2), we use the following quantization function for weights
during the forward pass:

Q(Wi,:) = bclamp(Wi,:,−ai, ai)
ri

e × ri, ri =
ai

2b−1 − 1
(1)

where

clamp(w,min,max) =


w, if min ≤ w ≤ max
min, if w < min

max if w > max

and b·e denotes the round-to-nearest-neighbor function, W ∈ RCout×d, d =
CinKwKh denotes the real-value weights for the ith output filter of a convolutional
layer that has Cin channels and Kw × Kh kernel size. a ∈ RCout denotes the
vector of clipping factors which are selected to minimize ‖Q(Wi,:)−Wi,:‖22 by
assuming Wi,: ∼ N (0, σ2I). More details about the determination of ai is in
Appendix A.

For special cases such as 2 bits and 1 bit, we use schemes proposed in prior
literature. Specifically, let us first define:

¯|Wi,:| =
1

d

d∑
j=1

|Wi,j |. (2)

For 2 bit, we follow trained ternary networks [40] and define the quantization
function as follows:

Q(Wi,:) = (sign(Wi,:)�Mi,j)×
( ¯|Wi,:|

)
Mi,j =

{
0, Wi,j < 0.7 ¯|Wi,:|.
1, otherwise.

(3)

For 1 bit, we follow DoReFaNets [39] and define the quantization function as
follows:

Q(Wi,:) = sign(Wi,:)×
( ¯|Wi,:|

)
. (4)

For the backward pass for all the bitwidths, we use a straight-through estimator
as in prior literature to make the training differentiable. That is,

∂Q(Wi,:)

∂Wi,:
= I. (5)

In the sequel, we quantize the first and last layers to 8 bits. They are fixed
throughout the experiments. We note that it is a common practice to leave the
first and the last layer un-quantized [39], however, we find that using 8 bits can
achieve comparable results to the floating-point baselines.

As for activation, we use the technique proposed in [13] and use 4 bits
for CIFAR-100 and 8 bits for ImageNet experiments. The activation bitwidths
are chosen such that the quantized network has comparable accuracy to the
floating-point baselines.
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3.2 Model size

The size of the model (Csize) is defined as:

Csize =
O∑
i=1

b(i)Cin(i)Kw(i)Kh(i) (6)

where O denotes the total number of filters, b(i) is the bitwidth for filter i, Cin(i)
denotes the number of channels for filter i, and Kw(i) and Kh(i) are the kernel
height and width for filter i.

4 Experiments

We conduct all our experiments on image classification datasets including CIFAR-
100 [15] and ImageNet. All experiments are trained from scratch to ensure
different weight bitwidths are trained equally long. While we do not start from a
pre-trained model, we note that our baseline fixed-point models (i.e., 4 bits for
CIFAR and 8 bits for ImageNet) have accuracy comparable to their floating-point
counterparts. For all the experiments on CIFAR, we run the experiments three
times and report the mean and standard deviation.

4.1 Training hyper-parameters

For CIFAR, we use a learning rate of 0.05, cosine learning rate decay, linear
learning rate warmup (from 0 to 0.05) with 5 epochs, batch size of 128, total
training epoch of 300, weight decay of 5e−4, SGD optimizer with Nesterov
acceleration and 0.9 momentum.

For ImageNet, we have identical hyper-parameters as CIFAR except for the
following hyper-parameters batch size of 256, 120 total epochs for MobileNetV2
and 90 for ResNets, weight decay 4e−5, and 0.1 label smoothing.

4.2 bitwidth comparisons

In this subsection, we are primarily interested in the following question:

When taking network width into account, does one bitwidth
consistently outperform others across model sizes?

To our best knowledge, this is an open question and we take a first step to
answer this question empirically. If the answer is affirmative, it may be helpful
to focus the software/hardware support on the better bitwidth when it comes to
parameter-efficiency. We consider three kinds of commonly adopted ConvNets,
namely, ResNets with basic block [8], VGG [24], and MobileNetV2 [22]. These
networks differ in the convolution operations, connections, and filter counts. For
ResNets, we explored networks from 20 to 56 layers in six layer increments.
For VGG, we investigate the case of eleven layers. Additionally, we also study
MobileNetV2, which is a mobile-friendly network. We note that we modify the
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stride count in of the original MobileNetV2 to match the number of strides
of ResNet for CIFAR. The architectures that we introduce for the controlled
experiments are discussed in detail in Appendix B.

For CIFAR-100, we only study weight bitwidths below 4 since it achieves
performance comparable to its floating-point counterpart. Specifically, we consider
4 bits, 2 bits, and 1 bit weights. To compare different weight bitwidths using
Definition 1, we use the width-multiplier to align the model size among them.
For example, one can make a 1-bit ConvNet twice as wide to match the model
size of a 4-bit ConvNet 6. For each of the networks we study, we sweep the width-
multiplier to consider points at multiple model sizes. Specifically, for ResNets,
we investigate seven depths, four model sizes for each depth, and three bitwidths,
which results in 7× 4× 3× 3 experiments. For both VGG11 and MobileNetV2,
we consider eight model sizes and three bitwidths, which results in 2 × 8× 3× 3
experiments.

As shown in Fig. 1, across the three types of networks we study, there exists
some bitwidth that is better than others. That is, the answer to the question we
raised earlier in this subsection is affirmative. For ResNets and VGG, this value
is 1 bit. In contrast, for MobileNetV2, it is 4 bits. The results for ResNets and
VGG are particularly interesting since lower weight bitwidths are better than
higher ones. In other words, binary weights in these cases can achieve the best
accuracy and model size trade-off. On the other hand, MobileNetV2 exhibits
a different trend where higher bitwidths are better than lower bitwidths up to
4 bits7.

4.3 ConvNet architectures and quantization

While there exists an ordering among different bitwidths as shown in Fig. 1, it is
not clear what determines the optimal weight bitwidth. To further uncover the
relationship between ConvNet’s architectural parameters and its optimal weight
bitwidth, we ask the following questions.

What architectural components determine the MobileNetV2
optimal weight bitwidth of 4 bits as opposed to 1 bit?

As it can be observed in Fig. 1, MobileNetV2 is a special case where the
higher bitwidth is better than lower ones. When comparing MobileNetV2 to the
other two networks, there are many differences, including how convolutions are
connected, how many convolutional layers are there, how many filters in each
of them, and how many channels for each convolution. To narrow down which
of these aspects result in the reversed trend compared to the trend exhibits
in ResNets and VGG, we first consider the inverted residual blocks, i.e., the
basic component in MobileNetV2. To do so, we replace all basic blocks (two

6 Increase the width of a layer increases the number of output filters for that layer as well
as the number of channels for the subsequent layer. Thus, number of parameters and
number of operations grow approximately quadratically with the width-multiplier.

7 However, not higher than 4 bits since the 4-bit model has accuracy comparable to
the floating-point model.
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(a) ResNets (20 to 56 layers
in increments of 6)

(b) VGG11 (c) MobileNetV2

Fig. 1: Some bitwidth is consistently better than other bitwidths across model
sizes. Csize denotes model size. xWyA denotes x-bit weight quantization and y-bit
activation quantization. The experiments are done on the CIFAR-100 dataset.
For each network, we sweep the width-multiplier to cover points at multiple
model sizes. For each dot, we plot the mean and standard deviation of three
random seeds. The standard deviation might not be visible due to little variances.

(a) ResNet26 (b) Inv-ResNet26 (c) Basic block (d) Inverted residual
block

Fig. 2: The optimal bitwidth for ResNet26 changes from 1 bit (a) to 4 bit (b)
when the building blocks change from basic blocks (c) to inverted residual blocks
(d). Csize in (a) and (b) denotes model size. (Cout, Cin, K, K) in (c) and (d)
indicate output channel count, input channel count, kernel width, and kernel
height of a convolution.

consecutive convolutions) of ResNet26 with the inverted residual blocks as shown
in Fig. 2c and 2d. We refer to this new network as Inv-ResNet26. As shown in
Fig. 2a and 2b, the optimal bitwidth shifts from 1 bit to 4 bit once the basic
blocks are replaced with inverted residual blocks. Thus, we can infer that the
inverted residual block itself or its components are responsible for such a reversed
trend.

Since an inverted residual block is composed of a point-wise convolution and
a depth-wise separable convolution, we further consider the case of depth-wise
separable convolution (DWSConv). To identify whether DWSConv can cause the
inverted trend, we use VGG11 as a starting point and gradually replace each of the
convolutions with DWSConv. We note that doing so results in architectures that
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gradually resemble MobileNetV1 [11]. Specifically, we introduce three variants of
VGG11 that have an increasing number of convolutions replaced by DWSConvs.
Starting with the second layer, variant A has one layer replaced by DWSConv,
variant B has four layers replaced by DWSConvs, and variant C has all of the
layers except for the first layer replaced by DWSConvs (the architectures are
detailed in Appendix B).

As shown in Fig. 4, as the number of DWSConv increases (from variant A
to variant C), the optimal bitwidth shifts from 1 bit to 4 bits, which implies
that depth-wise separable convolutions or the layers within it are affecting the
optimal bitwidth. To identify which of the layers of the DWSConv (i.e., the
depth-wise convolution or the point-wise convolution) has more impact on the
optimal bitwidth, we keep the bitwidth of depth-wise convolutions fixed at 4 bits
and quantize other layers. As shown in Fig. 4d, the optimal curve shifts from
4 bits being the best back to 1 bit, with a similarly performing 2 bits. Thus,
depth-wise convolutions appear to directly affect the optimal bitwidth trends.

Is depth-wise convolution less resilient to quantization or
less sensitive to channel increase?

Fig. 3: Visualization of our accuracy de-
composition, which is used for analyzing
depth-wise convolutions.

After identifying that depth-wise
convolutions have a different charac-
teristic in optimal bitwidth compared
to standard all-to-all convolutions, we
are interested in understanding the
reason behind this. In our setup, the
process to obtain a lower bitwidth
network that has the same model
size as a higher bitwidth network can
be broken down into two steps: (1)
quantize a network to lower bitwidth
and (2) grow the network with width-
multiplier to compensate for the re-
duced model size. As a result, the
fact that depth-wise convolution has
higher weight bitwidth better than
lower weight bitwidth might poten-
tially be due to the large accuracy degradation introduced by quantization
or the small accuracy improvements from the use of more channels.

To further diagnose the cause, we decompose the accuracy difference between
a lower bitwidth but wider network and a higher bitwidth but narrower network
into accuracy differences incurred in the aforementioned two steps as shown
in Fig. 3. Specifically, let ∆AccQ denote the accuracy difference incurred by
quantizing a network and let ∆AccG denote the accuracy difference incurred by
increasing the channel count of the quantized network.

We analyze ∆AccG and ∆AccQ for networks with and without quantizing
depth-wise convolutions, i.e., Fig. 4c and Fig. 4d. In other words, we would
like to understand how depth-wise convolutions affect ∆AccG and ∆AccQ. On
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(a) Variant A (b) Variant B (c) Variant C (d) Variant C
without quantiz-
ing depth-wise
convolutions

Fig. 4: The optimal bitwidth for VGG shifts from 1 bit to 4 bit as more convo-
lutions are replaced with depth-wise separable convolutions (DWSConv), i.e.,
from (a) to (c). Variant A, B, and C have 30%, 60%, and 90% of the convolu-
tion layers replaced with DWSConv, respectively. As shown in (d), the optimal
bitwidth changes back to 1 bit if we only quantize point-wise convolution but
not depth-wise convolutions.

one hand, ∆AccQ is evaluated by comparing the accuracy of the 4-bit model
and the corresponding 1-bit model. On the other hand, ∆AccG is measured by
comparing the accuracy of the 1-bit model and its 2× grown counterpart. As
shown in Table 1, when quantizing depth-wise convolutions, ∆AccQ becomes
more negative such that ∆AccQ + ∆AccG < 0. This implies that the main
reason for the optimal bitwidth change is that quantizing depth-wise convolutions
introduce more accuracy degradation than it can be recovered by increasing the
channel count when going below 4 bits compared to all-to-all convolutions. We
note that it is expected that quantizing the depth-wise convolutions would incur
smaller ∆AccQ compared to their no-quantization baseline because we essentially
quantized more layers. However, depth-wise convolutions only account for 2% of
the model size but incur on average near 4× more accuracy degradation when
quantized.

We would like to point out that Sheng et al. [23] also find that quantizing
depth-wise separable convolutions incurs large accuracy degradation. However,
their results are based on post-training layer-wise quantization. As mentioned in
their work [23], the quantization challenges in their setting could be resolved by
quantization-aware training, which is the scheme considered in this work. Hence,
our observation is novel and interesting.

Why is depth-wise convolution less resilient to quantization?

Having uncovered that depth-wise convolutions introduce large accuracy
degradation when weights are quantized below 4 bits, in this section, we investigate
depth-wise convolutions from a quantization perspective. When comparing depth-
wise convolutions and all-to-all convolutions in the context of quantization, they
differ in the number of elements to be quantized, i.e., Cin = 1 for depth-wise
convolutions and Cin >> 1 for all-to-all convolutions.
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Table 1: Quantizing depth-wise convolution introduces large accuracy degradation
across model sizes. ∆AccQ = Acc1bit−Acc4bit denotes the accuracy introduced by
quantization and ∆AccG = Acc1bit,2×−Acc1bit denotes the accuracy improvement
by increasing channel counts. The ConvNet is VGG variant C with and without
quantizing the depth-wise convolutions from 4 bits to 1 bit.

Width-multiplier 1.00× 1.25× 1.50× 1.75× 2.00× Average
Variant C ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG ∆AccQ ∆AccG

w/o Quantizing DWConv -1.54 +2.61 -2.76 +2.80 -1.77 +1.74 -1.82 +1.64 -1.58 +1.55 -1.89 +2.07
Quantizing DWConv -8.60 +4.39 -7.60 +3.41 -7.74 +3.19 -8.61 +4.09 -7.49 +2.25 -8.01 +3.47

Why does the number of elements matter? In quantization-aware training,
one needs to estimate some statistics of the vector to be quantized (i.e., a in
Equation 1 and ¯|w| in Equations 3,4) based on the elements in the vector. The
number of elements affect the robustness of the estimate that further decides the
quantized weights. More formally, we provide the following proposition.

Proposition 1. Let w ∈ Rd be the weight vector to be quantized where wi is
characterized by normal distribution N (0, σ2) ∀ i without assuming samples are
drawn independently and d = CinKwKh. If the average correlation of the weights
is denoted by ρ, the variance of ¯|w| can be written as follows:

Var( ¯|w|) =
σ2

d
+

(d− 1)ρσ2

d
− 2σ2

π
. (7)

The proof is in Appendix C. This proposition states that, as the number of
elements (d) increases, the variance of the estimate can be reduced (due to the
first term in equation (7)). The second term depends on the correlation between
weights. Since the weights might not be independent during training, the variance
is also affected by their correlations.

Fig. 5: The average estimate Var( ¯|w|) for
each depth-wise convolution under differ-
ent d = (Cin ×Kw ×Kh) values.

We empirically validate Proposi-
tion 1 by looking into the sample
variance of ¯|w| across the course of
training8 for different d values by in-
creasing (Kw,Kh) or Cin. Specifically,
we consider the 0.5× VGG variant C
and change the number of elements of
the depth-wise convolutions. Let d =
(Cin ×Kw ×Kh) for a convolutional
layer, we consider the original depth-
wise convolution, i.e., d = 1×3×3 and
increased channels with d = 4× 3× 3
and d = 16×3×3, and increased kernel size with d = 1×6×6 and d = 1×12×12.

8 We treat the calculated ¯|w| at each training step as a sample and calculate the sample
variance across training steps.
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The numbers are selected such that increasing the channel count results in the
same d compared to increasing the kernel sizes. We note that when the channel
count (Cin) is increased, it is no longer a depth-wise convolution, but rather a
group convolution.

In Fig. 5, we analyze layer-level sample variance by averaging the kernel-level
sample variance in the same layer. First, we observe that results align with
Proposition 1. That is, one can reduce the variance of the estimate by increasing
the number of elements along both the channel (Cin) and kernel size dimensions
(Kw,Kh). Second, we find that increasing the number of channels (Cin) is more
effective in reducing the variance than increasing kernel size (Kw,Kh), which
could be due to the weight correlation, i.e., intra-channel weights have larger
correlation than inter-channel weights.

Fig. 6: d negatively correlates with
the variance and positively correlates
with the accuracy difference induced
by quantization ∆AccQ = Acc1bit −
Acc4bit.

Nonetheless, while lower variance sug-
gests a more stable value during training,
it might not necessarily imply lower quan-
tization error for the quantized models.
Thus, we conduct an accuracy sensitivity
analysis with respect to quantization for
different d values. More specifically, we
want to understand how d affects the ac-
curacy difference between lower bitwidth
(1 bit) and higher bitwidth (4 bits) models
(∆AccQ). As shown in Fig. 6, we empiri-
cally find that d positively correlates with
∆AccQ, i.e., the larger the d, the smaller
the accuracy degradation is. On the other
hand, when comparing channel counts and
kernel sizes, we observe that increasing the
number of channels is more effective than

increasing the kernel size in reducing accuracy degradation caused by quantization.
This analysis sheds light on the two different trends observed in Fig. 1.

4.4 Remarks and scaling up to ImageNet

We have two intriguing findings so far. First, there exists some bitwidth that is
better than others across model sizes when compared under a given model size.
Second, the optimal bitwidth is architecture-dependent. More specifically, the
optimal weight bitwidth negatively correlates with the fan-in channel counts per
convolutional kernel. These findings show promising results for the hardware and
software researchers to support only a certain set of bitwidths when it comes to
parameter-efficiency. For example, use binary weights for networks with all-to-all
convolutions.

Next, we scale up our analysis to the ImageNet dataset. Specifically, we
study ResNet50 and MobileNetV2 on the ImageNet dataset. Since we keep the
bitwidth of the first and last layer quantized at 8 bits, scaling them in terms
of width will grow the number of parameters much more quickly than other
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Table 2: bitwidth ordering for MobileNetV2 and ResNet50 with the model size
aligned to the 0.25× 8 bits models on ImageNet. Each cell reports the top-1
accuracy of the corresponding model. The trend for the optimal bitwidth is
similar to that of CIFAR-100 (4 bit for MobileNetV2 and 1 bit for ResNet).

Weight bitwidth for MobileNetV2 ResNet50
Convs \ DWConvs 8 bits 4 bits 2 bits 1 bit None

8 bits 52.17 53.89 50.51 48.78 71.11
4 bits 56.84 59.51 57.37 55.91 74.65
2 bits 53.89 57.10 55.26 54.04 75.12
1 bit 54.82 58.16 56.90 55.82 75.44

layers. As a result, we keep the number of channels for the first and last channel
fixed for the ImageNet experiments. As demonstrated in Section 4.2, the bit
ordering is consistent across model sizes, we conduct our analysis for ResNet50
and MobileNetV2 by scaling them down with a width-multiplier of 0.25× for
computational considerations. The choices of bitwidths are limited to {1, 2, 4, 8}.

As shown in Table 2, we can observe a trend similar to the CIFAR-100
experiments, i.e., for networks without depth-wise convolutions, the lower weight
bitwidths the better, and for networks with depth-wise convolutions, there are
sweet spots for depth-wise and other convolutions. Specifically, the final weight
bitwidth selected for MobileNetV2 is 4 bits for both depth-wise and standard
convolutions. On the other hand, the selected weight bitwidth for ResNet50 is
1 bit. If bit ordering is indeed consistent across model sizes, these results suggest
that the optimal bitwidth for MobileNetV2 is 4 bit and it is 1 bit for ResNet50.
However, throughout our analysis, we have not considered mixed-precision, which
makes it unclear if the so-called optimal bitwidth (4 bit for MobileNetV2 and 1 bit
for ResNet-50) is still optimal when compared to mixed-precision quantization.

As a result, we further compare with mixed-precision quantization that
uses reinforcement learning to find the layer-wise bitwidth [29]. Specifically, we
follow [29] and use a reinforcement learning approach to search for the lowest
bitwidths without accuracy degradation (compared to the 8 bits fixed point
models). To compare the searched model with other alternatives, we use width-
multipliers on top of the searched network match the model size of the 8 bit
quantized model. We consider networks of three sizes, i.e., the size of 1×, 0.5× and
0.25× 8-bit fixed point models. As shown in Table 3, we find that a single bitwidth
(selected via Table 2) outperforms both 8 bit quantization and mixed-precision
quantization by a significant margin for both networks considered. This results
suggest that searching for the bitwidth without accuracy degradation is indeed
a sub-optimal strategy and can be improved by incorporating channel counts
into the search space and reformulate the optimization problem as maximizing
accuracy under storage constraints. Moreover, our results also imply that when
the number of channels are allowed to be altered, a single weight bitwidth
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Table 3: The optimal bitwidth selected in Table 2 is indeed better than 8 bit when
scaled to larger model sizes and more surprisingly, it is better than mixed-precision
quantization. All the activations are quantized to 8 bits.

Width-multiplier for 8-bit model 1× 0.5× 0.25×

Networks Methods Top-1 (%) Csize (106) Top-1 (%) Csize (106) Top-1 (%) Csize (106)

ResNet50

Floating-point 76.71 816.72 74.71 411.48 71.27 255.4
8 bits 76.70 204.18 74.86 102.87 71.11 63.85

Flexible [29] 77.23 204.18 76.04 102.90 74.30 63.60
Optimal (1 bit) 77.58 204.08 76.70 102.83 75.44 63.13

MobileNetV2

Floating-point 71.78 110.00 63.96 61.76 52.79 47.96
8 bits 71.73 27.50 64.39 15.44 52.17 11.99

Flexible [29] 72.13 27.71 65.00 15.54 55.20 12.10
Optimal (4 bit) 73.91 27.56 68.01 15.53 59.51 12.15

throughout the network shows great potential for model compression, which has
the potential of greatly reducing the software and hardware optimization costs
for quantized ConvNets.

5 Conclusion

In this work, we provide the first attempt to understand the ordering between
different weight bitwidths by allowing the channel counts of the considered
networks to vary using the width-multiplier. If there exists such an ordering, it
may be helpful to focus on software/hardware support for higher-ranked bitwidth
when it comes to parameter-efficiency, which in turn reduces software/hardware
optimization costs. To this end, we have three surprising findings: (1) there exists a
weight bitwidth that is better than others across model sizes under a given model
size constraint, (2) the optimal weight bitwidth of a convolutional layer negatively
correlates to the fan-in channel counts per convolutional kernel, and (3) with a
single weight bitwidth for the whole network, one can find configurations that
outperform layer-wise mixed-precision quantization using reinforcement learning
when compared under a given same model size constraint. Our results suggest
that when the number of channels are allowed to be altered, a single weight
bitwidth throughout the network shows great potential for model compression.
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A Clipping Point for Quantization-aware Training

As mentioned earlier, a ∈ RCout denotes the vector of clipping factors which is
selected to minimize ‖Q(Wi,:) −Wi,:‖22 by assuming Wi,: ∼ N (0, σ2I). More
specifically, we run simulations for weights drawn from a zero-mean Gaussian dis-
tribution with several variances and identify the best a∗i = arg minai‖Qai(Wi,:)−
Wi,:‖22 empirically. According to our simulation, we find that one can infer ai
from the sample mean ¯|Wi,:|, which is shown in Fig. 7. As a result, for the

different precision values considered, we find c =
¯|Wi,:|
a∗
i

via simulation and use

the obtained c to calculate ai on-the-fly throughout training.

Fig. 7: Finding best ai for different precision values empirically through simulation
using Gaussian with various σ2.

B Network Architectures

For the experiments in Section 4.2, the ResNets used are detailed in Table 4.
Specifically, for the points in Fig. 1a, we consider ResNet20 to ResNet56 with
width-multipliers of 0.5×, 1×, 1.5×, and 2× for the 4-bit case. Based on these
values, we consider additional width-multipliers 2.4× and 2.8× for the 2-bit
case and 2.5×, 3×, 3.5×, and 3.9× for the 1-bit case. We note that the right-
most points in Fig. 1a is a 10× ResNet26 for the 4 bits case. On the other
hand, VGG11 is detailed in Table 6 for which we consider width-multipliers
from 0.25× to 2× with a step of 0.25 for the 4 bits case (blue dots in Fig. 1b).
The architecture of MobileNetV2 used in the CIFAR-100 experiments follows
the original MobileNetV2 (Table 2 in [22]) but we change the stride of all the
bottleneck blocks to 1 except for the fifth bottleneck block, which has a stride
of 2. As a result, we down-sample the image twice in total, which resembles the
ResNet design for the CIFAR experiments [8]. Similar to VGG11, we consider
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width-multipliers from 0.25× to 2× with a step of 0.25 for MobileNetV2 for the
4 bits case (blue dots in Fig. 1c).

Table 4: ResNet20 to ResNet56

Layers 20 26 32 38 44 50 56

Stem Conv2d (16,3,3) Stride 1

Stage 1 3×

{
Conv2d(16, 3, 3) Stride 1

Conv2d(16, 3, 3) Stride 1
4× 5× 6× 7× 8× 9×

Stage 2 3×

{
Conv2d(32, 3, 3) Stride 2

Conv2d(32, 3, 3) Stride 1
4× 5× 6× 7× 8× 9×

Stage 3 3×

{
Conv2d(64, 3, 3) Stride 2

Conv2d(64, 3, 3) Stride 1
4× 5× 6× 7× 8× 9×

Table 5: Inv-ResNet26

Stem Conv2d (16,3,3) Stride 1

Stage 1 4×


Conv2d(16× 6, 1, 1) Stride 1

DWConv2d(16× 6, 3, 3) Stride 1

Conv2d(16, 1, 1) Stride 1

Stage 2 4×


Conv2d(32× 6, 1, 1) Stride 1

DWConv2d(32× 6, 3, 3) Stride 2

Conv2d(32, 1, 1) Stride 1

Stage 3 4×


Conv2d(64× 6, 1, 1) Stride 1

DWConv2d(64× 6, 3, 3) Stride 2

Conv2d(64, 1, 1) Stride 1
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Table 6: VGGs

VGG11 Variant A Variant B Variant C

Conv2d (64,3,3)

MaxPooling

Conv2d (128,3,3)

{
Conv2d(128, 1, 1)

DWConv2d(128, 3, 3)

{
Conv2d(128, 1, 1)

DWConv2d(128, 3, 3)

{
Conv2d(128, 1, 1)

DWConv2d(128, 3, 3)

MaxPooling

Conv2d (256,3,3) Conv2d (256,3,3)

{
Conv2d(256, 1, 1)

DWConv2d(256, 3, 3)

{
Conv2d(256, 1, 1)

DWConv2d(256, 3, 3)

Conv2d (256,3,3) Conv2d (256,3,3)

{
Conv2d(256, 1, 1)

DWConv2d(256, 3, 3)

{
Conv2d(256, 1, 1)

DWConv2d(256, 3, 3)

MaxPooling

Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)

DWConv2d(512, 3, 3)

{
Conv2d(512, 1, 1)

DWConv2d(512, 3, 3)

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)

DWConv2d(512, 3, 3)

MaxPooling

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)

DWConv2d(512, 3, 3)

Conv2d (512,3,3) Conv2d (512,3,3) Conv2d (512,3,3)

{
Conv2d(512, 1, 1)

DWConv2d(512, 3, 3)

MaxPooling

C Proof for Proposition 5.1

Based on the definition of variance, we have:
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