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Responding to the need to teach remotely due to COVID-19, we used readily available 

computational approaches (and developed associated tutorials (https://mdh-cures-

community.squarespace.com/virtual-cures-and-ures)) to teach virtual Course-Based Undergraduate 

Research Experience (CURE) laboratories that fulfil generally accepted main components of 

CUREs or Undergraduate Research Experiences (UREs): Scientific Background, Hypothesis 

Development, Proposal, Experiments, Teamwork, Data Analysis, Conclusions, and 

Presentation1. We then developed and taught remotely, in three phases, protein-centric CURE 

activities that are adaptable to virtually any protein, emphasizing contributions of noncovalent 

interactions to structure, binding and catalysis (an ASBMB learning framework2 foundational 

concept). 

The courses had five learning goals (unchanged in the virtual format),focused on  i) use of 

primary literature and bioinformatics, ii) the roles of non-covalent interactions,  iii) keeping 

accurate laboratory notebooks,  iv) hypothesis development and research proposal writing, and, 

v) presenting the project and drawing evidence based conclusions  

The first phase, Developing a Research Proposal, contains three modules, and develops 

hallmarks of a good student-developed hypothesis using available literature (PubMed3) and 

preliminary observations obtained using bioinformatics,  Module 1: Using Primary Literature 

and Data Bases (Protein Data Base4, Blast5 and Clustal Omega6),  Module 2: Molecular 

Visualization (PyMol7 and Chimera8), culminating in a research proposal (Module 3). Provided 

rubrics guide student expectations. In the second phase, Preparing the Proteins, students prepared 

necessary proteins and mutants using Module 4: Creating and Validating Models, which leads 

users through creating mutants with PyMol, homology modeling with Phyre29 or Missense10, 

energy minimization using RefineD11 or ModRefiner12, and structure validation using 

MolProbity13.  

In the third phase, Computational Experimental Approaches to Explore the Questions developed 

from the Hypothesis, students selected appropriate tools to perform their experiments, chosen 

from computational techniques suitable for a CURE laboratory class taught remotely. Questions, 

paired with computational approaches were selected from Modules 5: Exploring Titratable 

Groups in a Protein using H++14, 6: Exploring Small Molecule Ligand Binding (with 

SwissDock15), 7: Exploring Protein-Protein Interaction (with HawkDock16), 8: Detecting and 

Exploring Potential Binding Sites on a Protein (with POCASA17 and SwissDock), and 9: 

Structure-Activity Relationships of Ligand Binding & Drug Design (with SwissDock, Open 

Eye18 or the Molecular Operating Environment (MOE)19). 
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All involve freely available computational approaches on publicly accessible web-based servers 

around the world (with the exception of MOE). Original literature/Journal club activities on 

approaches helped students suggest tie-ins to wet lab experiments they could conduct in the 

future to complement their computational approaches. 

This approach allowed us to continue using high impact CURE teaching, without changing our 

course learning goals. Quantitative data (including replicates) was collected and analyzed during 

regular class periods. Students developed evidence-based conclusions and related them to their 

research questions and hypotheses. Projects culminated in a presentation where faculty feedback 

was facilitated with the Virtual Presentation platform from QUBES20  

These computational approaches are readily adaptable for topics accessible for first to senior 

year classes and individual research projects (UREs). We used them in both partial and full 

semester CUREs in various institutional settings. We believe this format can benefit faculty and 

students from a wide variety of teaching institutions under conditions where remote teaching is 

necessary. 
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