
Future Directions of the Cyberinfrastructure for Sustained Scientific
Innovation (CSSI) Program

CSSI 2019 Workshop Report

Ritu Arora, Texas Advanced Computing Center (Co-Chair)
Xiaosong Li, University of Washington (Co-Chair)

Bonnie Hurwitz, University of Arizona (Steering Committee Member)
Daniel Fay, Microsoft (Steering Committee Member)

Dhabaleswar K. Panda, The Ohio State University (Steering Committee Member)
Edward Valeev, Virginia Tech University (Steering Committee Member)
Shaowen Wang, University of Illinois (Steering Committee Member)

Shirley Moore, Oak Ridge National Lab (Steering Committee Member)
Sunita Chandrasekaran, University of Delaware (Steering Committee Member)

Ting Cao, University of Washington (Steering Committee Member)

Additional Contributors to Report Preparation:

Holly Bik, University of California, Riverside
Matthew Curry, Sandia National Laboratories

Tanzima Islam, Texas State University

This report was submitted in April 2020 to the National Science Foundation (NSF).

Contents

1 Executive Summary 3

2 Overview of the NSF CSSI Program 3

3 Recommendations 4
3.1 Evaluation Metrics . 4
3.2 Scope of the Projects . 5
3.3 Letters of Collaboration . 5
3.4 Community Building . 5
3.5 Best Practices and Policies . 7
3.6 Sustainability . 8
3.7 Staffing . 8

4 Organization of the Workshop 9

5 Impact of the CSSI Program 9

6 Themes for Brainstorming Sessions 10

1

6.1 Software and/or Data Management Processes and Sustainability 10
6.2 Software/Data Reusability and Quality . 13
6.3 Project Staffing . 16
6.4 Inter-Disciplinary Collaborations . 18
6.5 New/Emerging CSSI Domain Science . 19
6.6 Software/Data Dissemination Plans . 21
6.7 Feedback on the Award Process, Scope, and Impact of the CSSI Program 22

7 Closing Thoughts 26

8 Acknowledgement 26

A APPENDIX 27
A.1 Workshop Overview . 27
A.2 Brainstorm Themes and Breakout Group Worksheet 27
A.3 Participants . 29
A.4 Workshop Program . 31
A.5 Pre-Workshop Questions and Responses . 34

2

1 Executive Summary

The CSSI 2019 workshop was held on October 28-29, 2019, in Austin, Texas. The main objectives
of this workshop were to (1) understand the impact of the CSSI program on the community over
the last 9 years, (2) engage workshop participants in identifying gaps and opportunities in the
current CSSI landscape, (3) gather ideas on the cyberinfrastructure needs and expectations of the
community with respect to the CSSI program, and (4) prepare a report summarizing the feedback
gathered from the community that can inform the future solicitations of the CSSI program.

The workshop participants included a diverse mix of researchers and practitioners from academia,
industry, and national laboratories. The participants belonged to diverse domains such as quantum
physics, computational biology, High Performance Computing (HPC), and library science. Almost
50% participants were from computer science domain and roughly 50% were from non-computer
science domains. As per the self-reported statistics, roughly 27% of the participants were from the
different underrepresented groups as defined by the National Science Foundation (NSF).

The workshop brought together different stakeholders interested in provisioning sustainable cy-
berinfrastructure that can power discoveries impacting the various fields of science and technology
and maintaining the nation’s competitiveness in the areas such as scientific software, HPC, network-
ing, cybersecurity, and data/information science. The workshop served as a venue for gathering
the community-feedback on the current state of the CSSI program and its future directions.

Before they arrived at the workshop, the participants were encouraged to take an online survey
on the challenges that they face in using the current cyberinfrastructure and the importance of the
CSSI program in enabling cutting-edge research. The workshop included 16 brain-storming sessions
of one hour each. Additionally, the workshop program included 16 lightning talks and an extempore
session. The information collected from the survey, brainstorming sessions, lightning talks, and the
extempore session are summarized in this report and can potentially be useful for the NSF in
formulating the future CSSI solicitations. The workshop fostered an environment in which the
participants were encouraged to identify gaps and opportunities in the current cyberinfrastructure
landscape, and develop thoughts for proposing new projects.

2 Overview of the NSF CSSI Program

The CSSI program funds projects that:

• support the development and deployment of robust, reliable and sustainable data and software
cyberinfrastructure,

• bring innovative capabilities towards sustained scientific innovation and discovery,

• provide a cross-directorate opportunity to advance common approaches to sustain and inno-
vate research cyberinfrastructures,

• follow accepted data management and software development practices.

The successful projects should be science-driven, innovative, collaborative, and where possible,
should build on existing capabilities. The projects should include management plans and metrics
that encourage measurement of progress and sharing of results with a broad community. The
projects should produce widely accessible, long-term community cyberinfrastructure. Following is
the list of the CSSI proposal evaluation criteria:

1. Intellectual Merit/s: Can the project advance, if not transform, the frontiers of knowledge?
Is the project innovative?

3

2. Does the project have the potential of creating “Broader Impacts” (societal outcomes)?

3. Is the project science-driven?

4. Does the proposal demonstrate close collaboration with the different stakeholders?

5. Does the proposal clearly describe the role of the collaborators?

6. Does the project builds on existing capabilities?

7. Is the project plan and the software engineering process clearly articulated?

8. Does the proposal include evaluation metrics, including the community-usage metrics for each
year of the award?

9. Does the proposal mention the license under which the software/data product will be released
to the public?

10. Does the proposal include the information on the dissemination of the product?

11. How will the project sustain itself after the funding is over?

12. Is the data management plan appropriate?

Currently, a Principal Investigator (PI), Co-PI, or Senior Personnel can be named on only one
proposal submitted to the CSSI program for each evaluation window.

3 Recommendations

The discussions held during, before, and after the CSSI 2019 workshop, and the survey responses
provided by the workshop participants were used to formulate the recommendations presented in
this section. The future CSSI solicitation could potentially include additional guidance on the
following topics: evaluation metrics, scope of the projects, letters of collaboration, community
building, best practices and policies, sustainability, and project staffing. These topics are detailed
in the sub-sections below.

3.1 Evaluation Metrics

The CSSI program requires that the proposals discuss the evaluation metrics, including the community-
usage metrics for each year of the awards. The CSSI program very realistically allows the evaluation
metrics to change or evolve with the progress of the projects, and the PIs are allowed to include
additional indicators of success as the projects’ progress. Some of the workshop participants com-
mented that the need for robust evaluation metrics should be emphasized further in the solicitation
by providing some general but concrete examples. They suggested that the metrics should be clas-
sified as short-term and long-term. The short-term evaluation metrics are the yearly evaluation
metrics that the CSSI solicitation already advises the PIs to provide. In addition to these short-
term metrics, the already established projects — older than 5 years — should also be required
to propose long-term metrics for assessing their success in case they go in for the second round
of funding. Having both short-term and long-term metrics is important because unlike research
projects, the CSSI projects typically focus on product development and community-building. The
PIs of the CSSI projects could be spending the majority of the duration of their projects for product
development. By the time a product is ready, there may not be sufficient time left for collecting
the data on its usage by the community. In such cases, perhaps, it may be useful to allow the

4

PIs to report the metrics on the adoption of their products even after the project is over. Such
metrics are long-term and could be useful for evaluating the projects if they seek a second round
of funding, and can also help in evaluating the long-term impact of the projects. Such metrics
could be submitted as an addendum to the final report or the outcomes report. In fact, a third
report — that is, a report in addition to the final project report and the project outcome report
— specifically related to the metrics could also be requested from the PIs to quantify the impact
that the projects have created on the community. Examples of the short- and long-term metrics
that could be provided are as follows:

(i) Short-term metrics (yearly, as already mentioned in the CSSI solicitation, for all projects
requesting funding): Number of users, frequency of product usage, number of downloads,
and website visits (if applicable), bug reports, support forum posts, number of contributing
external developers, number of case studies or new sciences enabled, community-building
activities

(ii) Long-term metrics (for projects that are ≥ 5 years old): Self-conducted user-studies, high-
lighted success stories, number of software citations, performance and usability of the prod-
ucts, and continued community-building activities

3.2 Scope of the Projects

The CSSI program is very broad is terms of the disciplines and scope of the projects that it funds.
The program, very fairly, lays emphasis on the advancement of science through the innovations in
the CyberInfrastructure (CI). Some of the workshop participants felt that proposing an innovative
and sustainable CI that helps in accomplishing novel scientific outcomes can be challenging as
an Elements project. They were unclear if the projects that propose innovative CI but include a
limited number of science use-cases in the proposal (as compared to showing transformative and
sustainable impact on the scientific disciplines) could be considered competitive or not. Moreover,
it was not clear to them if the level (or amount) of expected innovation and sustainability from
an Elements project is different from that of a Frameworks project. While the CSSI solicitation
already clarifies on the scope of the Elements and Frameworks projects, it would be nice if the
solicitation further clarifies whether there is any difference in the expected level of sustainability
between these two categories of projects.

3.3 Letters of Collaboration

Currently, the CSSI program requires that the letters of collaboration from unfunded collaborators
be provided in a standard format. While this brings uniformity, the prescribed format of the letter
is very general and precludes the collaborators from explaining the value that they agree to add
to the project. It is recommended that the unfunded collaborators briefly describe their specific
contributions to the projects in their letters of collaboration, and their resume be added to the
proposal so that their role and level of contributions to the project can be evaluated unambiguously
and objectively. This will also imply that the collaborators’ role is not over after providing the
letters, and that they really have the resources to support all the projects that they are providing
the letters for.

3.4 Community Building

An engaged user-community is needed for supporting and evolving the products after the funding
is over. Therefore, it is commendable that the community-development activities are encouraged
by the CSSI program. The CSSI solicitation encourages PIs to demonstrate an existing community

5

for the proposed products. Going forward, it is recommended that all the CSSI projects are
required to engage in some level of community-building effort, and the proposals clearly include
the metrics for measuring the community engagement. The CSSI program could also consider
encouraging cross-agency (viz., NSF, DOE, and NIH) and international collaborations to help
form broad communities of the funded products. It could be worth exploring the feasibility of
leveraging the existing resources, networks, forums, and initiatives supported by other agencies
and government laboratories, and proposing new joint workshops and funding opportunities. Some
examples of the programs and groups that the PIs could be encouraged to look into for cross-agency
and cross-border collaboration are:

(i) NSF AccelNet program

(ii) NSF PIRE program

(iii) ORNL Research Software Engineering Group

(iv) Sandia National Laboratories Center of Computing Research

Some examples of the community-building activities include:

(i) Where feasible, the projects that produce domain-specific software (e.g., a computation chem-
istry or computational physics software), can consider developing education and training con-
tent, and explore the option of incorporating the software in the University or online courses.

(ii) Where feasible, project-specific hackathons can be organized to engage the community (es-
pecially students and new users) in using the products, and developers in contributing new
features.

Forming cross-disciplinary teams for developing innovative products and user communities is
critical for the advancement of the national CI and is already encouraged by the CSSI program.
However, some of the workshop participants (particularly, early-career) mentioned that they have
challenges in finding collaborators for forming such teams. These participants appreciated the
format of the CSSI workshop and recommended that additional workshops/meetings that can
provide opportunities to develop cross-disciplinary collaborations should be organized. While the
CSSI program PIs can request for a supplement to their existing CSSI awards to offset the cost
of organizing such events, a Research Coordination Network (RCN) award has the potential of
conducting such events and providing additional in-person and online services to the community
in a sustainable manner. Hence, the CSSI program could consider funding such RCNs. Additional
strategies for encouraging or developing cross-disciplinary collaborations are as follows:

(i) NSF and/or NSF-funded PIs could continue to organize Birds of a Feather (BoF) sessions at
major conferences like Supercomputing (e.g., NSF BoF at SC19). NSF and/or NSF-funded
PIs could explore opportunities to organize such sessions at the scientific symposia in domain
science focused national meetings (e.g., ACS, APS, MRS) to foster conversations around
software and data products that brings together domain-scientists and CISE experts.

(ii) NSF could continue funding the organization of cross-disciplinary workshops/meetings/conferences,
and encourage the PIs to consider networking with the organizers of domain science meetings
(e.g., ACS, APS, MRS) to foster conversations around software and data products with the
domain scientists (and other potential end-users of the products).

6

(iii) The sessions at the annual CSSI PI meeting could be organized in a way that promotes
forming new collaborations - for example, theme-based sessions, and brain-storming sessions.

(iv) It may perhaps be useful to have NSF funded workshops and conferences in partnership with
the widely known publishers such as ACM/IEEE/Springer that can help in disseminating the
results of the projects. These publications can be peer-reviewed and the workshop/conference
venue can be in the same city as another major conference and just before or after it. The
scope of the annual PI meeting could perhaps also be extended/modified to enable this.

3.5 Best Practices and Policies

There is a clear need for creating and sharing the best practices and processes for scientific software
development, data management, and dissemination of the products. Such practices and processes
can lead to high-quality products that are easy to use/reuse, discover, maintain, and sustain.
Therefore, the CSSI project PIs could be encouraged to:

(i) Make the products convenient to use/reuse by adopting:

• Software-as-a-service model, where appropriate, instead of just the download model

• Containerization of the products, where appropriate

• Software change management processes that ensure backward and forward compatibility
with the published interfaces

• Portable and scalable file-formats for computational data (such as HDF5 and netCDF)

• Provide clear instructions/user-guides/videos on product use

(ii) Consider adopting the “continuous integration/continuous delivery” model

(iii) Consider adopting modern programming standards/models/tools

(iv) Conduct a thorough assessment of the existing products that could be a part of the tool-chain,
and integrate or build upon those existing products that have a sizeable user community as
doing so will help in preventing the software and data products from decaying due to the
lack of availability/support/need/utility of the internal components used in the products’
composition

(v) Consider the life-cycle of the hardware on which they are developing and deploying the prod-
ucts

• The PIs should be encouraged to invest effort in the preservation of their software and
data products through their institutional repositories and libraries

• The PIs could ensure that their products continue to function on modern hardware
equipped with latest software stack

• Consider incorporating the best practices recommended by the software preservation
network

The CSSI program could also consider defining policies (or setting expectations) on making the
software and data products accessible, discoverable, and citable by the community. Such policies
have the potential of bringing uniformity to the process of dissemination of the products funded
through the CSSI program and in tracking their use in the community. It is recommended that the

7

products funded through the CSSI program be encouraged to have DOI numbers or some other
citation mechanism. Tools are becoming common for DOI creation for public software releases
and other artifacts (e.g., Zenodo can be configured to tag every release of a public GitHub repo
with DOI automatically). This recommendation also ties back to the evaluation metrics and can
help in assessing the impact of the project on a broad community. PIs should consider publishing
peer-reviewed papers on their products to illustrate new features in new product releases. Some
potential venues that encourage publication of papers and artifacts associated with software and
data products are:

(i) Gigascience - open source software for big data analytics

(ii) Springer Nature Computer Science (SNCS) journal on Software Challenges to Exascale Com-
puting

(iii) Patterns - new journal “The science of data - Patterns” is a premium open access journal
from Cell Press, publishing ground-breaking original research across the full breadth of data
science. Data are the foundation of all research, and all data are in scope, regardless of
original domain.

(iv) WIREs Computational Molecular Science

3.6 Sustainability

Sustaining the products and their evolution after the award period can be challenging for many
PIs even if there is a clearly demonstrable need in the community for their products. Majority
of the workshop participants agreed that it is impractical to seek or expect continuous support
through the CSSI program for sustaining and maintaining the products in the long run. Some
recommendations for sustaining and maintaining the products after the CSSI award period are as
follows:

(i) When a software or data product matures, the PIs could consider seeking industrial partner-
ships, patents, or commercializing their products to raise additional funds. The PIs could
also consider additional funding opportunities such as NSF SBIR and NSF Icorps. Hence,
while writing their CSSI proposal, the PIs should carefully consider their choice of license
and software delivery model. If feasible, the CSSI program could also consider encouraging
the PIs to seek patents for original and transformative work by explicitly mentioning such a
possibility in the solicitation.

(ii) NSF could consider providing new funding opportunities for supporting the evolution, and
maintenance of existing products and services that are popular in the community and are
innovative.

(iii) The PIs can consider engaging with Software Institutes, and if applicable, seeking support
through virtual collaborations such as eXtreme Science and Engineering Discovery Environ-
ment (XSEDE) in deploying their products on the resources that are a part of the national
CyberInfrastructure (CI).

3.7 Staffing

Majority of the workshop participants agreed that staffing is a big challenge in the successful
completion of the projects in a timely manner. Finding talented developers and keeping them in

8

academia can be challenging. Some workshop participants mentioned that training short-term staff
so that they are productive on the projects is difficult and costly, and there are insufficient funds
to do long-term hiring. For mitigating the staffing related challenges to some extent:

(i) The CSSI program could consider requiring that head of the PIs’ departments provide a letter
stating that the PIs will be ensured adequate staff support to execute their projects

(ii) The PIs could be asked to include their hiring/recruitment plans, and also provide a risk
mitigation strategy for addressing the change of staff or managing the effect of delays in
hiring

(iii) Engaging consultants to complete the implementation of the projects can be considered as
an option, and such consultancy services could also be offered by the large software institutes
funded by the CSSI program

(iv) Where viable, PIs could consider outsourcing product development to industrial partners or
collaborators who have the required expertise. The PIs should provide sufficient rationale to
support such an effort.

(v) The PIs should have the required expertise to take the project to completion with the help
of students or temporary staff

(vi) The projects should budget time for onboarding and training staff/students

(vii) The software engineering processes adopted by the projects should ensure that the products
and the related artifacts are of high-quality so that the learning curve of the new staff on the
project is not too steep

4 Organization of the Workshop

Well before the workshop, the organizers discussed with program managers about suggested brain-
storm themes and questions about future directions for the CSSI program. These were posted in
advance in a pre-workshop survey. Each participant was asked to prepare their thoughts about the
brainstorm questions and suggest topics that they thought should be discussed at the workshop.

The workshop’s morning program on the first day featured two lightning talk sessions and an
extempore session. There were two breakout sessions in the afternoon on the first day, followed
by summary presentations from the breakout groups. The breakout sessions were organized as per
specific themes: each breakout group focused on one of the themes. To help ensure productive
discussions, each breakout group had two steering committee members to guide the discussions and
a worksheet with questions to address during the sessions and in the summary presentations. The
first day event ended with another lightning talk session. On the second day, an invited talk on
quantum computing was featured, followed by two breakout sessions and summary presentations
from the breakout groups.

5 Impact of the CSSI Program

The CSSI program and its precursors (SI2 and DIBBS programs) have fostered a growing scientific
software community. It is a unique program that has impacted the career growth and development
of many domain and computer scientists. The CSSI program has opened new opportunities for
interdisciplinary collaborations and dissemination of products to the broader scientific community.
The success of the CSSI program has led to many innovative products driven by the need of the

9

scientific community. The program has raised the awareness of the importance for best practices in
developing software and data products such as thoughtfully choosing licenses, defining the software
engineering process, and considering the sustainability of the projects in the long-run.

Software and data products are instrumental in powering discoveries and maintaining the na-
tion’s competitiveness globally. Hence, the CSSI program and its precursors, SI2 and DIBBS
programs, have played a vital role in the sustainable growth of the scientific community and in
supporting continuous scientific innovations.

6 Themes for Brainstorming Sessions

6.1 Software and/or Data Management Processes and Sustainability

How can sustainability be supported while encouraging creativity?

The word ‘Sustainability’ has multiple meanings and the answers may depend on multiple
factors, such as, developers vs. users, and design vs. coding. Some of the following meanings
were raised and discussed: Does your software adhere to the standards? Does it have a wide user
base? Can it survive without NSF funds for any period of time? Does it keep up with standard
technologies (such as, OpenACC, OpenMP, and MPI)?

There are always tug-of-war issues between these angles where sustainability and creativity can
be at odds. Research questions encourage creativity, but limit sustainability. Sustainability can
support creativity, but it is harder to make a reverse connection.

The conflict between these two also arises because sustainability includes tasks such as main-
taining, documentation - there is no prize for that. It takes away from creativity since all these
mundane work takes away time. Panels (especially in domains) think science is the most important,
so tend to prioritize creativity. Domains fund most of the software development, NOT computer
science. Software development is not credited in tenure evaluations (not even in computer science).

The following points were recommended:

• Software development and coding should be an integral part of scientific training.

• Software may need to be updated to reflect the advances made in the domain-sciences - for
example, to use a new type of mathematical model. In such situations, one may need to
re-write software in order to support innovative features - such activities should probably be
supported, not discarded, especially if there are potentially promising improvements of initial
versions of the products.

• NSF does emphasize the importance of the software aspects of the proposal, and need to
continue to do so.

• The CSSI program should consider encouraging in-person interactions like in the CSSI 2019
workshop to promote cross-disciplinary interactions.

• Who are you asking of “creativity” and what do you mean by “sustainability” - it is important
to define these up front.

• It may be useful to set the expectations for sustainability on projects that are of the level of
“Frameworks”. “Elements” proposals (typically small projects - for hardening the prototypes)
could be rated leniently with respect to the sustainability criteria.

10

Is it realistic to expect high-quality software or data product that is perpetually free, and for how
long should the NSF funding support the development life-cycle?

Expectation for “free” software varies strongly across disciplines from “definite yes” to “definite
no”. There were questions regarding whether it is free for users or for commercial usages. It was
also indicated that it is difficult to make scientific software free forever. The following alternative
suggestions were made:

• Once bridge from innovation to application is made, NSF should stop funding. Community
should support it, somehow. Bridges made to other funding organizations (e.g., NIH) via
joint calls, unsolicited proposals, etc. can be explored.

• The PI can continue to support the project via other grants that innovate, with overhead of
maintenance.

• Gaps need to be filled between rapid prototyping and sustainable software. For example, a
multi-stage approach (prototyping to hardening software to user community) can be explored.

• Long term funding may be warranted to drive the project, if there is a large community
behind it.

• NSF could consider supporting projects that define best practices and processes for software
development and data management.

• Some attendees indicated that it is not an NSF requirements that all things need to be free
forever - sometimes these tools need to be licensed for money or developed commercially.

For sustainability and cost-effectiveness, should the PIs be encouraged to buy software and services
from industry instead of spending effort in developing open-source and free versions of the com-
mercial software, and when is it appropriate to compete with commercial solutions and build from
scratch?

This question had mixed answers. Some attendees argued positively to purchase software with
the following reasons: 1) Good commercial software is built based on the point of view of a domain
scientist. 2) Open-source and free versions of the commercial software can be of poor feature
coverage and poor interoperability. 3) It is unrealistic to expect monolithic software packages to
cover all research done in a group. 4) “Competing” can be risky — Cease & Desist.

Several attendees argued negatively to purchase software and preferred to focus on effort in
developing open-source and free versions of the commercial software with the following reasons: 1)
A community may not be served by commercial structure. 2) Severe licensing restrictions (e.g.,
per-core licenses) can make commercial solutions unfeasible. 3) Vendor lock-in can cause extra
unforeseen expenses — e.g., the dependence on the MKL library requires purchasing Intel proces-
sors. 4) Commercial versions can limit reproducibility, or encourage “black box” mentality of data
analysis. Even those in industry are concerned by “black boxes”. 5) If there is no competition,
vendors can take advantage of the users. 6) To avoid undue influence of the industrial vendors on
research agendas. 7) Some domain software may or may not have commercial value, depending
on the applications/science. Activities such as methodology testing, and understanding the fun-
damentals of science may not be of huge interest to the industry. However, the applied aspects
of the scientific domains, such as binding energy calculations, could potentially be of interest to
industry and could potentially be commercialized. 8) Testing new methods and theories is not of
large commercial interest, therefore, the support from the NSF is essential for such activities.

11

Some attendees also indicated that NSF should not be taking a stance one way or the other.
Since there are too many variations on what you need, this should be grant-specific and any/all
strategies need to be well-justified. The cost of extending open source software should be considered
and carefully evaluated.

There was also some opinion that funding agency/industry partnership may be useful for re-
ducing costs. The cloud-access subsidy for the PIs, or providing credits for compute and storage
on the cloud may help increase sustainability of the projects. There was also some opinion that the
cost-benefit can vary widely, e.g., computing on commercial clouds can be expensive as compared to
the access to the large-scale HPC systems and cloud computing systems funded by NSF. However,
the commercial clouds do provide the advantage of on-demand scalability at competitive pricing,
and several commercial cloud providers offer free computing credits to the PIs for educational and
research purposes.

Industry maintains the lead over the academia in establishing software development processes, es-
pecially for web-portals, and has crystallized the best practices. Are such practices and processes
easy to adopt in academia? Should the PIs be encouraged to subcontract the development of web
applications and portals to colleagues from industry? What are the challenges and advantages of
doing this?

Academic environments are not well-suited to handle strict adherence to coding guidelines/processes,
as the needs of graduate students and PIs can be quite different from the colleagues in the industry.

For those types of software that are likely to be easily outsourced, costs are an issue. Other
types of software are too ill-defined or “special” to be outsourced, and may not even be able
to leverage high-quality software engineering practices for this reason. In fact, some argue that
academic software may need its own specialized processes to support development scenarios that
are unique to academia, and do not commonly occur in industry.

One strategy for buying software engineering expertise is performing a “group buy” of software
engineering services. This can help to reduce costs – sharing a single engineering contract among
several small projects reduces overhead. This could work well for consultants that are dedicated to
helping teams improve the quality of their existing codebases.

In spite of the unique nature of academic software development, the lack of proficiency in
industrial software engineering practice is harmful. Since academic and industrial software engineers
tend to be on separate career tracks, training tends to be different, so academic software engineers
use fewer sustainable practices. Instituting something like software carpentry in the academic
environment would be a good way to get people trained in these practices, as well as to create the
next generation of trainers, providing ongoing sustainability.

Some of the workshop participants also mentioned that it would be nice if the future CSSI solic-
itations encourage investments from industry during the funding process. One of the participants
from the industry mentioned that instead of the community spending a lot of time in developing
custom versions of certain popular functions/libraries/software components, it would be nice if the
community tells them (industry) about their needs, and they (colleagues in the industry) expand
on the functionality of the software at their end using their own investments.

Academia could collaborate with industries to build prototypes, and test solutions. For the
community to propose changes/updates to existing vendor functions/libraries/software, it would be
necessary for the newer functions/libraries/software to be tested by the contributors (or developers)
in the community before they can be incorporated into the vendor software and tools. For any such
suggestion, a prototype is almost the first important step. Partnering and working closely with the

12

colleagues from the industry can make this plausible. To that end, collaboration with industry in
the form of internships, or short-term funded projects can be encouraged as part of the solicitation.

Some of the workshop participants mentioned that Where viable, development can be out-
sourced to industrial partners or collaborators who have the required expertise.

What if the NSF funding is used to develop a minimum viable product that can be made free and
open-source, and extended features and services are offered on top of the free versions at a cost?
Does this look like a reasonable approach for sustainability?

It is valuable to move software maintenance costs from CSSI/other innovation-focused funding
to domain scientists that use the software. However, attaching a cost to software incurs risk that
PIs will choose to not support software, and instead will create forks/competing projects to avoid
monetary costs. Software support costs are often underestimated by academics, so this strategy
will rarely lead to a more sustainable solution, and instead fragments a user base.

The “open core” model described in this question has the potential downside where companies
release barely usable or severely restricted base versions in order to maximize the likelihood that
a customer must buy the software to get good use of it. This can extend beyond missing features
into poor documentation. The classical way to guard against this is to insist that base capabilities
developed via grant funding must remain open and available.

How should the software be maintained in the long run? When a new software compiler and hard-
ware infrastructure come out, if needed, who should update the software accordingly - developers
and/or the community for whom the software was developed?

Community support for software is not reasonable until the community is quite large (e.g.,
the Linux kernel project), as software should reach a community that is much broader than its
developer community. Until a project reaches that point, the core developers are uniquely qualified
to make modifications to their own software – context, undocumented design decisions, previous
experience in its construction, and cognizance of high-level concerns enable efficient introduction
of features, hardware support, and so on.

Centralized funding of maintenance is an issue, as grants are usually directed at innovation
instead of support. There appears to be a wide-spread sentiment that important, impactful software
is hard to support long-term via NSF, even though such support is considered important.

There are business models targeted at providing support for legacy projects. These include
support contracts, fee-for-service, and pay-as-you-go arrangements. Companies following these
models can provide sustainable ongoing maintenance for open source projects.

Do you use your institution’s infrastructure or the national cyberinfrastructure for the long-term
retention of your software and related artifacts?

Many PIs use institutional or commercial solutions for artifact retention. GitHub, BOX, Google
Drive, etc. are popular choices. Unfortunately, many are unaware of the national cyberinfrastruc-
ture that can be used for these purposes.

6.2 Software/Data Reusability and Quality

How do you measure the quality of the software/data product that you produce for public release?

“Quality” of software/data product has multiple meanings/attributes. First, there is technical
quality. Second, there is the impact that the software has on the community. The former is a
prerequisite to the latter, but is not sufficient.

Software/data product has high technical quality if it has the following attributes:

13

• It comes with a thorough set of tests (unit, validation, performance)

• Test coverage is measured and reported

• Tests are invoked automatically (e.g., via Continuous Integration infrastructure)

• If applicable, software is deployed automatically via Continuous Integration

• Complete user and reference documentation

• Clear license terms

• In case of data products, it is important to have precise curation/provisioning of the data,
support for data retrieval in all industry-standard formats

Some technical quality attributes are more subjective, difficult to define, and are inter-related;
these generally correlate with the “hard” attributes above:

• Easy to use (usability, UI/UX) and easy to modify/extend

• Well-designed

• Feature set is complete

• Maintainability

It should be noted that the technical quality metrics used by the industry may not be as useful
in academia due to differences in product objectives and life cycles. Thus it is not sufficient to
simply copy the best practices from the industry.

There are a number of metrics for gauging the software impact:

• Number of downloads/releases

• Number of users

• Number of external contributors and developers reusing the software

• Number of publications citing and acknowledging the use of software

– This metric may not be easy to use for middleware developers if they cannot track how
many people are reusing their products because their products may not receive as many
citations in publications as an end-user application

What is the software engineering process or data management process that you (and your group)
follow currently?

The workshop participants reported that they follow standard best practices that ensure high-
quality of software, and some of these are:

• Automated testing of various kinds (such as, correctness and performance testing)

• Pull-request-centric development workflow, with peer review of code

• Modular design

14

• Structured software evolution:

– Regular code review and refactoring

– Release planning

Standard best practices for data management that are followed by the workshop participants in-
clude:

• Adoption of automated processes for data management, and ontologies

• Making the data Findable, Accessible, Interoperable, Reproducible (FAIR)

• Adoption of data governance practices

• Compliance with regulatory requirements, government approvals, and following certification
processes for different regulations such as FISMA, FERPA, etc.

Some of the workshop participants mentioned that developing software/data repositories while
following best practices is expensive.

• Small labs can’t do “all” the best practices, but some are easier to implement than oth-
ers such as version control, maintaining usable documentation, and using modern tools and
technologies.

How often do you favor using existing software components (either by buying or using for free) and,
if needed, customizing it for your needs instead of writing from scratch? What are the challenges,
if any, that you typically face in reusing existing software or data products?

• The opinions range widely, from “should always reuse” to “long term it’s best to not reuse”.

• For some foundational pieces of software (BLAS/LAPACK, FFT, MPI) reuse is a no-brainer:
the cost of not reusing them is extreme.

• There are pros and cons for reusing existing software and for writing software from scratch

– Quality and reusability of existing software in science varies greatly; these traits can
only be discovered by trying to reuse the software.

– Writing software has educational value, especially for junior developers, but junior de-
velopers are unlikely to produce something as robust and reusable as an established
software component.

– There is a chance that the software component will stop being maintained.

– Extra dependencies add to the complexity of software configuration and building; using
packaged components is relatively easy.

– The cost of learning someone else’s code may not outweigh the benefit of using it.

– Software evolution can introduce non-backward-compatible changes.

– IP/licensing issues can create bottlenecks. Need to ensure correct attribution for tools
(especially, when wrapped into larger frameworks).

– For large data sets, data sharing and accessibility can be a challenge. Additionally, data
privacy and compliance can bar one from reusing data meaningfully.

15

∗ Raw data sets can be easier to reuse in multiple scenarios than the finished data
products. Not only the finished data products, but also the raw datasets and all
the changes applied on the datasets to obtain the finished products (such as algo-
rithms for noise reduction, calibration, and other processing) should have long-term
retention value.

How do I get/find the software components to compose the software framework/system?

Whereas experts within a domain are aware of most/all established pieces of software, a more
systematic cataloging/search capability is necessary to enable novice and other non-expert users to
find software (whether supported by CSSI or not). Participants listed a number of ways for how
they look for software/data repos:

• Internet search engines (e.g., Google). Google data search is in development. However,
quality of search engine results can be affected by SEO factors. It can be difficult to know
what term to search for and/or how to filter out irrelevant results.

• Google Scholar and citation databases are used but they are biased towards publications
rather than software/data.

• Some scientific publication include links to supplemental data, GitHub, data repositories.

• Word of mouth. This also provides feedback on ease of use, availability of tutorials, existence
of local/online community support, etc.

• Code repositories (GitHub, Gitlab, BitBucket, SourceForge, etc.)

• Some projects have web portals that provide information on the project software/data.

• Specialized software catalogues, e.g., Netlib, are available for browsing.

It is suggested that a catalogue of software or data products developed using the funds from the
CSSI program is maintained. This catalog should have tags or metadata for describing the different
types of software and data products. PIs should be able to add predefined tags (keywords) to
their project proposals and the proposal could be compared against the related previously funded
projects.

6.3 Project Staffing

If software engineers are available for contract jobs at industry rate, is it more cost-effective to hire
their services for short-term to complete the project on time than have full-time staff hired for the
job?

• If the user base is small, then contracting may not be cost-effective.

• Funding/hiring long-term staff can help with the sustainability of the software.

• Using students/postdocs would train the next -generation workforce.

• Hired staff needs to go through a learning curve to understand the domain science.

• For production code, having contracted resources can help with the overall architecture of
the product, design, testing, and documentation.

16

Does new hiring introduce delays on the project, and do you plan for that in your project timeline?

• New hiring definitely introduces delays, but the amount depends on the specific domain
and/or scientific focus.

• It is important to build a pipeline of talent with postdoc, graduate, and undergraduate
students.

• Having scientific computing added to the undergrad curriculum can help build the founda-
tion earlier with classes, and organizing tutorials, and hackathons can be helpful for skill-
development.

• The following ideas are suggested:

– Universities could help match-make between domain scientists and software engineers
with certain skill sets.

– Universities or professional societies could setup professional degrees or “professional
certification for software engineering” to help incentivize students to pursue a career
path in academic research computing/software engineering.

When the senior personnel on the project who are in charge of the development work get promoted
or take a lucrative job elsewhere, or when the students graduate, how do you address the loss in
progress on the project?

• Large groups can accommodate the loss easily.

• The PIs should be qualified to complete the project on their own to minimize the loss in
progress.

• The PIs should have continuous training/replacement activities in the group - planning ahead
for the structural changes that might occur - PIs should have a staffing/risk-management plan
specified in the proposal.

• PIs should setup best practices in the group. They should utilize standard resources (for
example GitHub) for sharing code, have solid documentation, cross-train students, and en-
courage code reuse.

What are the tradeoffs in having a full-time, senior-level staff, learn the basics of software engineer-
ing and deliver on the project, versus hiring trained or trainable graduate/undergraduate students?

• It is helpful for the sake of continuity to have a full-time staff, but funding is difficult, making
it difficult to hire full-time staff in a sustainable manner.

• For PhD students, the experience helps understand the project/code and provides continuity.

• It is important that the personnel have a strong domain knowledge for the success of the
project. For example, the HPC Center at the University of Houston conduct tutorials during
which scientists train CS students on how to use their tools, so that CS students can contribute
to their projects.

17

• Engaging trained or trainable students in the development of software and data products
can contribute towards the workforce development efforts. On some projects, there can be a
learning curve that the students would need to climb before they are productive. However,
once they are productive, the senior staff members can have time freed up for focusing on
quality and other critical activities on the project.

Should we put PhD students in the project for non-research oriented tasks (e.g., software mainte-
nance)? How about recruiting students pursuing Master’s or undergraduate degrees?

• For masters and undergrad students, it is a good experience for their career.

• PhDs could initially use the experience to be familiar with the project and provide continuity.
The task should be related to their research focus.

• Software engineering is an important and necessary skill for CS and domain scientists. Stu-
dents can be trained via programs like Software Carpentry.

It is suggested that the CSSI program could fund “software institutes” that provide software
development services to domain scientists on the lines of the Extended Developer Support model
offered by the Science Gateway Community Institute (SGCI) or the Extended Collaborative Sup-
port and Service (ECSS) model of the XSEDE. Such institutes could perhaps maintain staff at
competitive salaries. The staff could be having expertise in software development (e.g., in C,
C++, Fortran, Python, and parallel programming), cloud computing, data lifecycle management,
and Artificial Intelligence (AI). The domain scientists could consider requesting some percentage
of the time of the full-time staff at such institutes and accomplish their code development and
maintenance objectives without feeling burdened by the need to hire full-time staff for developing
production-quality code. As an experiment, independent software providers (or companies) could
be invited to bid for small-duration code development and maintenance projects through a central
agency.

6.4 Inter-Disciplinary Collaborations

Should the domain-science projects - funded through the CSSI program - be required to have the
CISE collaborators engaged at a substantial level of effort to ensure that best practices for software
engineering and data management are followed? Should the CISE projects - funded through CSSI
- be required to ensure accountability from domain-scientists (who could have promised to provide
test-cases in their letters of collaboration)?

• The CSSI program funds projects at different phases and from a diverse background, i.e.,
physics, materials science, chemistry, geography, biophysics, biology, and fluid mechanics.
As different projects may have distinct demands, it would be “too strong” to make it a
requirement to substantially engage CISE collaborators. However, such collaborations should
be encouraged, especially for larger proposals that involve team efforts. To engage CISE
collaborators is helpful to take advantage of rapid changes of technologies. One suggestion is
to engage social sciences to figure out how to do better team sciences.

• For element proposals, where grants are limited in size, it may not be feasible to involve CISE
collaborators at substantial levels. Making a rigid requirement to have CISE collaborators
would cut out a large percentage of proposals in the program. If such a requirement is

18

necessary, the NSF solicitation could also have language to encourage collaboration with
library science for preparing the data management plan, campus HPC infrastructure where
applicable, and including trainees (students/postdocs) for product development.

• Some of the workshop participants suggested that NSF could consider helping in pairing up
domain projects with potential collaborators, e.g., by allowing domain scientists to describe
requirements. This is probably important to pick up CISE collaborator across the whole CSSI
domain. Opportunities for speed networking could also be helpful.

• Ensuring long-term commitment from all collaborators who provide the letters of collabora-
tion can be challenging. As an industrial practice, outsourcing software engineering requires
rigorous specifications, but it is rare in domain science. Aligning interests of domain scien-
tists with computer scientists is possible but challenging. Budget support for postdocs and
graduate students to attend collaborative meetings is a useful mechanism for enabling deeper
synergy in the long-term.

• For addressing the accountability issue, a collaboration should be more synergistic than just
meant for getting help from the CISE counterpart on software engineering. Having joint
research publications may help address this issue partially. As computer scientists can derive
interesting problems when they work with domain scientists, both parties can benefit in the
end.

• The unfunded collaborators could be requested to briefly describe the nature of their con-
tribution to the project in their “letter of collaboration” and their two-page resume should
be included in the proposal to help the reviewers in objectively evaluating the nature of the
collaboration.

6.5 New/Emerging CSSI Domain Science

How is heterogeneity in the hardware considered in the modern software development and data
management practices?

Software:

• In general, many domain scientists narrow their focus onto platforms they deal with and/or ac-
cess routinely (mostly CPU). State-of-the-art in programming accelerators is still fluid/immature;
domain scientists do not expect to have to deal with this. While some libraries like the Mes-
sage Passing Interface (MPI) consider different hardware architecture during their develop-
ment phase, there are many software products that do not work out-of-the-box on different
hardware architectures and may need adaptation to get installed, and work correctly and
efficiently.

• Materials science: Computational scientists spend significant effort in porting and optimizing
to new architectures. The main driving force is to reach realistic physical conditions. With
the development of quantum co-processors, people would be willing to redesign their entire
stack to use them due to its revolutionary capability.

• Fluid mechanics: Computational scientists also spend significant effort in porting and opti-
mizing to new architectures.

• Chemistry: The field is moving slowly, need future CSSI support to improve the performance
of legacy software. In some cases, platform concerns are often secondary to the research
problems.

19

• Biophysics: Some applications already use GPUs, and in some cases, heterogeneity is not
really an issue.

• Biology: It is not an issue for smaller labs (they use whatever code runs on their lap-
top/HPC/cloud), but biologists tend to write scripts/pipelines instead of proper new al-
gorithms.

• GIS and spatial analysis: There are huge challenges to transform convention sequential algo-
rithms to high-performance and scalable algorithms that can harness the power of heteroge-
neous hardware.

• Image processing: Large in-memory systems have been used for streaming data analytics in
applications such as image processing.

Professional services for code adaptation and optimization for different hardware platforms are
needed. Such services could be available locally through the research computing centers at the PIs’
institutions, or through NSF funded institutes and facilities.

Data:

• Domain knowledge behind data is critical to meaningful applications of machine learning.

• Domain scientists lag behind in awareness and proper best practices (and/or lack desire) for
data management; it also takes time and funding support. Some of the workshop participants
noted that the importance of data management, in some cases, is even greater than the
simulation itself.

• Library/Information Science staff are important for data management practices (and may
offer know-how for using campus hardware and best practices for data management) - input
from librarians and research computing staff should be encouraged/promoted to ensure that
PIs follow best practices.

Are artificial intelligence techniques such as deep learning disrupting or impacting the future direc-
tions of your discipline? If yes, then how?

• Yes or No, depending on discipline. We are at the early stages for deep learning in some
research areas. Funding agencies could facilitate these efforts. Machine learning (ML) may
need to be broadened to data-driven and/or hypothesis-driven science, where same concerns
apply.

• Importance of education for using ML effectively and safely. Modern tools not only make
using ML easy but also too easy.

• Successful stories: Computer scientists have been trying to use deep learning to figure out
certain trends in communication patterns, and use this to design better algorithms.

• Successful stories: Physicists have been using deep learning in spaces where they previously
used low-fidelity simulations to look for interesting phenomena (e.g., neural networks to run
faux simulations at 1000x faster in shock physics). This can now be done on desktops, so
more people can easily adopt deep learning approaches.

20

• Unsuccessful stories: Biophysicists have been analyzing large amount of synchrotron data,
but there are so many things that can go wrong. It is not ready to use deep learning right
now because people do not trust the data due to noise and experimental variability.

• Unsuccessful stories: There are too many other problems in biology to solve first and too
little baseline knowledge in most biological disciplines.

6.6 Software/Data Dissemination Plans

What are some of the effective approaches for software dissemination?

• Using containers on large compute systems to address challenges of reimplementing software
and dependencies

• Using central repositories to load data and code (e.g., Code Ocean)

• The manuscript publishers could consider making software dissemination mandatory by re-
quiring authors to add software as a part of their publications

• Where feasible, the PIs could consider using popular tools of interest to the community so
that the information about their products can be relayed through the communication channels
that are already established for these tools

How can software and data products be made discoverable, accessible, and usable by the community?

• Disseminate results and information through conferences, and symposiums

• Consider creating documentation, tutorials, and YouTube videos for wide dissemination

• Choose the right keywords for tagging the products while disseminating information

• The PIs could define policies on how the data must be used and shared

• Funding agencies could make it mandatory that the PIs consider making their data discover-
able, accessible, and usable

Hosting software or data on GitHub may not be sufficient for meeting the community engagement
needs of the project. What are some of the approaches to engage the community?

• Hosting summer schools and providing hands-on experiences is another way to disseminate
data and engage with the community

– A success story being summer school for astrophysics where the participants quoting the
summer school experience have led up to over 180 publications

• Engage not just with users but also developers

• Engage local participants via in-person workshops but also engage with remote participants
via online materials and tutorials

How can software be enabled on XSEDE systems?

21

• First up understand users’ wants and needs

• It is not practical to ask developers to maintain software across XSEDE and other systems

• It is not practical to have XSEDE maintain software across all the systems affiliated with
XSEDE

• The PIs could consider talking to the XSEDE campus champions who could be aware of the
need for software and packages in their local communities

• The PIs could consider having their teams and/or campus champions attend programs such
as the Argonne Training Program on Extreme-Scale Computing (ATPESC)

• The PIs could consider using containers on XSEDE systems

Other topics discussed

• Reproducibility of research results from both software and data perspectives were discussed.
The discussants mentioned that community-wide efforts are required to enable reproducible
science. Some changes on this front have started happening (e.g., some journals mandate
open-access of software/data or extra documents for reproducibility).

• Challenges with reproducibility: Hardware and software ecosystem changes can prevent legacy
code from compiling or running on modern systems. This is a key challenge in doing repro-
ducible science. A possible solution is to deposit containers as paper artifacts to be able to
reproduce data in perpetuity.

6.7 Feedback on the Award Process, Scope, and Impact of the CSSI Program

What are the metrics for evaluating the impact of a project? Number of users? Number of down-
loads? Number of citations? Some of the workshop participants commented that as the CSSI pro-
gram has a broad range of domains and projects of interest, it is hard to have a general rubric
to measure the impact of the projects. Both short-term and long-term metrics should be required
to set a mindset for good project management and for considering community adoption/use in
product evaluations.

• Short-term metrics: Number of users, frequency and mode of usage, downloads, and site
visits should be considered as recommended software and data product evaluation metrics.
Evaluation metrics should be tracked over time. Evaluation metrics can also change or include
additional indicators as time goes on. Additional indicators, such as bug reports, support
forum posts, number of contributing external developers, and case studies or new sciences
enabled, can also be used.

• Long-term metrics: As software and data products mature, additional evaluation metrics
should be included. This can be in the form of self-conducted user-studies, highlighted success
stories, and the number of software citations. Journals/reviewers need to enforce citation,
attribution, and acknowledgement to the software. Metrics should favor speed and ease of
use. Additionally, community activities and interactions must be evaluated as an important
part of building a user community around the software.

22

An open question is how to track the long-tailed impact after a project ends. Some participants
discussed the idea of developing a method for tracking the use of products developed using CSSI
funds. If a tracking mechanism is in place, perhaps the CSSI projects funded in future may
be encouraged to use such a mechanism for reporting statistics on the long-term impact of the
software/data products. The Research Management Administration System implemented at some
UK universities is a good example of a system for tracking the projects funded by the Higher
Education Funding Council for England (HEFCE) over a course of multiple years.

How can the magnitude of the impact of the CSSI program be amplified?

• NSF supported facilities or organizations or institutes could support the dissemination of the
information about the products. This could be a good way to help users discover new software
and CSSI projects.

• Solicitations should encourage the use of NSF-funded cyberinfrastructure resources and ser-
vices where feasible - the PIs could be encouraged to do feasibility studies for technology
integration a priori.

• NSF could consider making NSF-funded resources and services easy to find.

• The investigators who teach courses at universities can incorporate relevant/applicable soft-
ware packages with tutorials/resources to teach the use of software packages to their students,
and help grow the user communities of their products.

• Investigators could explore funding opportunities to facilitate incorporating CSSI projects
into their courses or in porting them on NSF supported facilities (viz., XSEDE).

• Project-specific hackathons can be implemented to get CSSI PIs together and have stu-
dents/trainees test out and learn how to use their code.

• NSF, the public relations team at the universities, or project-specific communication and
outreach personnel may be helpful for communicating the information on research products
to the community.

• The PIs from the CISE domain may need to reach out to broader audience and raise awareness
in domain-specific conferences. Software Institutes can help provide the human resources or
training for storytelling or scientific communication between computer and domain scientists.
Computer scientists and domain scientists should also reach out to each other locally. The
CSSI PIs could consider offering webinars related to their products.

• Integration between use cases and cyberinfrastructure needs to be done well across an entire
project lifecycle.

• NSF and CSSI PIs could consider taking an active role in forming collaborations, fostering
linkages across different projects in the program, and coordinating with other agencies (such
as NSF-DOE joint effort) and national laboratories. This can be organized at the CSSI PI
meeting or in the form of an NSF sponsored workshop.

• The PIs could consider organizing Birds of a Feather (BOF) sessions at major conferences
like Supercomputing

• The PIs could consider engaging with professional societies to reach out to scientists in dif-
ferent domains

23

NSF has invested millions of dollars - across multiple directorates - for building web-portals that
support computation, data analysis, and data management from the convenience of the web-browser.
Are you aware of such investments, and if needed, will you be able to comfortably leverage these
investments in your current or future projects?

• NSF has invested heavily in science gateways (i.e., web portals that serve as computational
and/or educational workbenches or provide data management services) through different pro-
grams. There are numerous gateways out there but the impact of many of these gateways
on research/development/education is not very clear. While some gateways have hundreds
of users, others support the number of users in double digits only. It may be useful to assess
the long-term research and education outcomes supported by such gateways while making
funding decisions. Usability and data discovery are some of the key challenges associated
with several gateways in the community.

• Most people are aware of such investments, however, many people are unable to take advan-
tage of these investments. Awareness is higher in some cases (such as XSEDE portals and
nanoHUB) than others. However, there are too many out there. Awareness and visibility
still needs to be improved.

• nanoHUB is useful for education and classroom teaching for engineers without a computa-
tional background, but it is very difficult for software development or implementation (non-
standard code). Some workshop participants have also tried to use XSEDE and Jetstream
for teaching purposes. Neuroscience gateway has many highly cited publications. XSEDE
and SGCI provide a list of web portals that can be useful in research and education, such as:

– Data.gov, fema.gov, archeology data portal, digital rocks portal, ICPSR, harvard data-
verse

– HydroShare, Datacenter share, nanoHUB

– Harvard dataverse will take any type of data from anyone (need to be small)

• Some participants indicated that many portals have performance issues and are not user-
friendly. Portals can make simple tasks very complex (e.g., downloading a dataset) and do
not stay updated with changing technologies (e.g., browsers and different hardware such as
tablets). Reproducibility can also be an issue but is supported by some portals. Technical sup-
port for portals (via email) is challenging because staff don’t know about users’ data/problem.
It is often easier to use campus HPC resources and troubleshoot face-to-face.

• Searchability and organization of data need to be improved. A single online place could be
developed to find out what resources and services are available. Documentation for these
resources is important: to crosslink different tools in the portal. PIs need to advertise these
support at different conferences.

• The diversity of CSSI funded projects is challenging to build portals accessible to users across
domains. Portal developers do not always know exactly what researchers need because do-
main users driving their own science (e.g., life science). Workflows that are up and running
may not be innovative in terms of the science. Probably it is worth comparing/partnering
between agencies - NIH has many portals and initiatives that are relevant and complemen-
tary/overlapping. As NSF has already funded a software institute for supporting web-portal
based activities - SGCI - the PIs proposing to develop new web portals could be guided to
take advantage of such institutes as much as possible.

24

How to advance the CSSI program in the future?

• The CSSI solicitation should lucidly communicate what the CSSI program aims to accomplish
and its vision, and how this vision fits into the broad cyberinfrastructure ecosystem and
science communities.

• The CSSI program could promote a new culture that recognizes the importance and value of
research software and data capabilities.

• NSF could ensure that the CSSI panelists equally weigh the science, software engineering
practices, and community engagement aspects of the proposal. Panelists could be instructed
specifically on how to gauge the sustainability of the proposed projects. SBIR metrics of
evaluation could be leveraged (perhaps not entirely).

It is recommended that the CSSI program’s solicitation clarifies the degree of novelty expected
in the projects. A clear statement on what is considered “novel” would greatly help the PIs put
their proposals together.

If the novelty is with respect to the science:

• A novel algorithm will need to be proposed

• A prototype of the algorithm will need to be developed

• The prototype will need to be extensively evaluated with different scenarios/test cases

• Results from the tests acting as feedback will need to be incorporated into the algorithm
devised

• Further experiments would need to be performed before the novel algorithm is considered a
success

The above steps can by itself take 12-18 months at the least depending on the algorithm and its
complexity. This could also largely vary from application to application.

If the novelty in science is a component of CSSI, the proposal would be expected to have the
above steps in place, followed by the steps below as the goal is to create sustainable software. Some
of those steps may entail:

• Assuming a preliminary version of the corresponding software already exists

• An ecosystem will need to be created and prototyped that can be accessible by small, medium,
or large communities

• The ecosystem would also need to be able to run on small to large-scale computing platforms,
potentially including cloud resources

• Setting up partnerships with relevant stakeholders

• Developing relevant education materials to train the next-generation workforce as we are
aiming to build a sustainable cyberinfrastructure

25

• If the scope of the project involves domain scientists in the mix, appropriate best practices
will need to be in place such that the domain scientists can also seamlessly use the proposed
cyberinfrastructure

Executing these above steps among others to create a sustainable software in the remaining 18
months or so of a project may not be feasible. Hence some degree of clarification is required to
the novelty component in the proposal. What are the expectations? What is the rubric that this
bullet will be evaluated against?

7 Closing Thoughts

The CSSI program aims to foster a culture of innovation across multiple disciplines of science and
technology. At the center of achieving this objective are best practices for software development and
data management, sustained efforts for community-building, and initiatives for workforce develop-
ment. The software and data products funded through the CSSI program should be well-designed
and well-documented to promote reusability, composability, and maintainability. An ecosystem of
innovative and well-maintained products funded by the CSSI program has the potential of impact-
ing the rate of advancement in computational and data sciences.

8 Acknowledgement

This workshop was made possible with NSF Award 2034617. We are grateful to NSF for the same.

26

A APPENDIX

A.1 Workshop Overview

The goal of the National Science Foundation (NSF) Workshop on Future Directions for Cyber-
infrastructure for Sustained Scientific Innovation (CSSI) is to elicit input from the community to
guide the future directions and funding scope of the CSSI program. This 1.5-day workshop brings
together researchers and practitioners from different fields of sciences to identify the current and
future cyberinfrastructure needs of the community for enabling innovation in the various disciplines.

This workshop comprises of presentations and brainstorming sessions on some of the key thrust
areas related to the cyberinfrastructure. A key outcome of the workshop is a report capturing the
feedback/input from the community. The report is submitted to NSF and will be made available
to the community to inspire future cyberinfrastructure research and development activities. Ad-
ditionally, the workshop will broaden its participants’ perspective on the various topics related to
the cyberinfrastructure and will serve as a venue to form new collaborations.

A.2 Brainstorm Themes and Breakout Group Worksheet

A.2.1 Software and/or Data Management Processes and Sustainability

(a) How can sustainability be supported while encouraging creativity?

(b) Is it realistic to expect high-quality software or data product that is perpetually free, and for
how long should the NSF funding support the development life-cycle?

(c) For sustainability and cost-effectiveness, should the PIs be encouraged to buy software and
services from industry instead of spending effort in developing open-source and free versions
of the commercial software, and when is it appropriate to compete with commercial solutions
and build from scratch?

(d) Industry maintains the lead over the academia in establishing software development processes,
especially for web-portals, and has crystallized the best practices. Are such practices and
processes easy to adopt in academia? Should the PIs be encouraged to subcontract the
development of web applications and portals to colleagues from industry? What are the
challenges and advantages of doing this?

(e) What if the NSF funding is used to develop a minimum viable product that can be made free
and open-source, and extended features and services are offered on top of the free versions at
a cost? Does this look like a reasonable approach for sustainability?

(f) How should the software be maintained in the long run? When a new software compiler and
hardware infrastructure come out, if needed, who should update the software accordingly -
developers and/or the community for whom the software was developed?

(g) Do you use your institution’s infrastructure or the national cyberinfrastructure for the long-
term retention of your software and related artifacts?

A.2.2 Software/Data Reusability and Quality

(a) How do you measure the quality of the software/data product that you produce for public
release?

27

(b) What is the software engineering process or data management process that you (and your
group) follow currently?

(c) How often do you favor using existing software components (either by buying or using for
free) and, if needed, customizing it for your needs instead of writing from scratch?

(d) What are the challenges, if any, that you typically face in reusing existing software or data
products?

(e) How do I get/find the software components to compose the software framework/system?

A.2.3 Project Staffing

(a) If software engineers are available for contract jobs at industry rate, is it more cost-effective
to hire their services for short-term to complete the project on time than have full-time staff
hired for the job?

(b) Does new hiring introduce delays on the project, and do you plan for that in your project
timeline?

(c) When the senior personnel on the project who are in charge of the development work get
promoted or take a lucrative job elsewhere, or when the students graduate, how do you
address the loss in progress on the project?

(d) What are the tradeoffs in having a full-time, senior-level staff, learn the basics of software engi-
neering and deliver on the project, versus hiring trained or trainable graduate/undergraduate
students?

(e) Should we put PhD students in the project for non-research oriented tasks (e.g., software
maintenance)? How about recruiting students pursuing Master’s or undergraduate degrees?

A.2.4 New/Emerging CSSI Domain Science

(a) Should the domain-science projects - funded through the CSSI program - be required to have
the CISE collaborators engaged at a substantial level of effort to ensure that best practices for
software engineering and data management are followed? Should the CISE projects - funded
through CSSI - be required to ensure accountability from domain-scientists (who could have
promised to provide test-cases in their letters of collaboration)?

(b) How is heterogeneity in the hardware considered in the modern software development and
data management practices?

(c) Are deep learning techniques disrupting or impacting the future directions of your discipline?
If yes, then how?

A.2.5 Software/Data Dissemination Plans

(a) What are some of the effective approaches for software dissemination?

(b) How can software and data products be made discoverable, accessible, and usable by the
community?

28

(c) Hosting software or data on GitHub may not be sufficient for meeting the community engage-
ment needs of the project. What are some of the approaches to engage the community?

(d) How can software be enabled on XSEDE systems?

A.2.6 Feedback on the Award Process, Scope, and Impact of the CSSI program

(a) What are the metrics for evaluating the impact of a project? Number of users? Number of
downloads? Number of citations?

(b) How can the magnitude of the impact of the CSSI program be amplified?

(c) NSF has invested millions of dollars - across multiple directorates - for building web-portals
that support computation, data analyses, and data management from the convenience of
the web-browser. Are you aware of such investments, and if needed, will you be able to
comfortably leverage these investments in your current or future projects?

A.3 Participants

In addition to the participants listed below in the alphabetical order of their last names, the fol-
lowing NSF officers also attended the meeting: Dr. Alan Sussman, Dr. Alexis Lewis, Dr. Amy
Walton, Dr. Micah Beck, Dr. Joseph Whitmeyer, Dr. Stefan Robila, and Dr. Vipin Chaudhary.

Alexey Akimov, University at Buffalo
Jay Alameda, NCSA, University of Illinois at Urbana-Champaign
Ilkay Altintas, San Diego Supercomputer Center, UCSD
David Anderson, University of California, Berkeley
Ritu Arora, Texas Advanced Computing Center, UT Austin
Bill Barth, Texas Advanced Computing Center
Wolfgang Bangerth, Colorado State University
Ira Baxter, Semantic Design
Timothy Berkelbach, Columbia University
Sanjukta Bhowmick, University of North Texas
Emre Brookes, University of Montana
Holly Bik, University of California Riverside
Ting Cao, University of Washington
Umit Catalyurek, Georgia Institute of Technology
Sunita Chandrasekharan, University of Delaware
Yong Chen, Texas Tech University
Margaret Cheung, University of Houston
Aurora Clark, Washington State University
Davide Cureli, University of Illinois at Urbana-Champaign
Matthew Curry, Sandia National Laboratories
Diego Donzis, Texas A&M University
Rudi Eigenmann, University of Delaware
Peter Elmer, Princeton University
Maria Esteva, Texas Advanced Computing Center
Dan Fay, Microsoft
Ian Foster, University of Chicago

29

Geof Hannigan, Merck
Hrant Hratchian, University of California, Merced
Howie Huang, George Washington University
Tanzima Islam, Texas State University
Shantenu Jha, Rutgers University
Ananth Kalyanraman, Washington State University
Kate Keahey, Argonne National Laboratory
Gerald Knizia, Penn State University
Antia Lamas-Linares, Spectral Quantum Technologies
Elliot Lefkowitz, University of Alabama at Birmingham
Ben Levine, Michigan State University
Xiaosong Li, University of Washington
Si Liu, Texas Advanced Computing Center
Zhenfei Liu, Wayne State University
Andrew Lumsdaine, University of Washington, PNNL
Paul Macklin, Indiana University
Amit Majumdar, San Diego Supercomputer Center, UCSD
Madhav Marathe, University of Virginia
Devin Matthews, Southern Methodist University
Robert McLay, Texas Advanced Computing Center
Bronson Messer, Oak Ridge National Laboratory, University of Tennessee
Barbara Minsker, Southern Methodist University
Shirley Moore, Oak Ridge National Laboratory
Catherine Olschanowsky, Boise State University
DK Panda, Ohio State University
Abani Patra, Tufts University
Joshua Patterson, NVIDIA
George Percivall, Open Geospatial Consortium
Sushil Prasad, University of Texas at San Antonio
Xiaofeng Qian, Texas A&M University
Diana Qiu, Yale University
Ravi Radhakrishnan, University of Pennsylvania
Rajiv Ramnath, Ohio State University
Bhanu Rekipalli, BioTeam
Natalia Rosales, University of Texas at El Paso
Andre Schleife, University of Illinois at Urbana-Champaign
Loren Schwiebert, Wayne State University
Sahar Sharifzadeh, Boston University
Sameer Shende, University of Oregon
Subhashini Sivagnanam, San Diego Supercomputer Center, UCSD
Alexander Sokolov, Ohio State University
Dan Stanzione, Texas Advanced Computing Center, UT Austin
Hari Subramoni, Ohio State University
Gary Trucks, Gaussian Inc
Ed Valeev, VirginiaTech
Stéphanie Valleau, University of Washington
Robert van de Geijn, University of Texas at Austin
Sudharshan Vazhkudai, Oak Ridge National Laboratory

30

Shaowen Wang, University of Illinois at Urbana-Champaign
Nathan Wiebe, Pacific Northwest National Laboratory, University of Washington
Bryan Wong, University of California, Riverside
Elisha Wood-Charlson, Lawrence Berkeley National Lab
Michael Zentner, San Diego Supercomputer Center, UCSD
Xiao Zhu, Purdue University

A.4 Workshop Program

October 29, 2019

8:30 AM REGISTRATION, TEA/COFFEE/BREAKFAST, Location: near Primrose A/B

MORNING SESSION I:(Location: Primrose A/B)

9:30 AM Opening Remarks, 10 minutes, Workshop Chairs
9:40 AM Welcome from TACC, 5 minutes, Dan Stanzione, TACC
9:45 AM NSF CSSI Program Overview, 15 minutes + Q&A, Vipin Chaudhary, NSF
10:05 AM Overview of the data-focused CI, 5 minutes, Stefan Robila, NSF
10:10 AM Lightning Talks, 8 minutes each, no Q&A

1) “Thoughts on the CSSI/SI2 program”
Wolfgang Bangerth, Colorado State University

2) “The Perils and Promises of Sustainable Data, a Cyberinfrastructure Perspective”
Maria Esteva, TACC

3) “Keeping Software Infrastructure on Life Support Past SI2 or CSSI Funding”
Robert Van De Geijn, UT Austin

4) “To Interface Or Not To Interface Or: What is an Interface Anyways?”
Devin Matthews, Southern Methodist University

5) “A Science Gateways Perspective”
Amit Majumdar and Subhashini Sivagnanam, SDSC

10:55 AM BREAK - 15 minutes
11:10 AM Lightning Talks, 8 minutes each, no Q&A

6) “Building Collaborative User Communities”
Elisha M Wood-Charlson, Lawrence Berkeley National Lab

7) “Network Analysis in the Era of Inexactness”
Sanjukta Bhowmick, University of North Texas

8) “Speeding Up Science in Environmental -Omics ...”
Holly Bik, UC Riverside

9) “Supporting Modern Programming Environments for High Performance Computing”
Jay Alameda, NCSA

11:45 AM Extempore, 45 minutes
12:30 PM LUNCH (Food & Beverage Service) - 60 minutes, Location: near Primrose A/B

31

AFTERNOON SESSION:

1:30 PM Brainstorming Session-1, 60 minutes
2:30 PM Brainstorming Session-2, 60 minutes
3:30 PM BREAK - 15 minutes
3:45 PM Presentations, 5 minutes each, Session Moderators
4:35 PM GROUP PHOTO
4:45 PM BREAK (Food & Beverage Service), 60 minutes
5:45 PM Lightning Talks, 8 minutes each, no Q&A

10) “CSSI Workshop: Challenges and Gaps”
Mike Zentner, SDSC

11) “Design Capture as a Paradigm”
Ira Baxter, Semantic Designs

12) “Next-Generation Frameworks for Irregular Data-Intensive Applications”
Howie Huang, George Washington University

13) “Software Challenges at TACC, CSSI Thoughts, and the LCCF”
Dan Stanzione, TACC

14) “Clowder: An Open Source Customizable Research Data Management Framework”
Barbara Minsker, SMU

15) “Improving Reproducibility with Clouds and Notebooks”
Kate Keahey, Argonne National Laboratory

16) “Software Challenges for ML driven HPC Simulations”
Shantenu Jha, Rutgers University

6:50 PM Self-paid dinner at a nearby restaurant
8:00 PM Report writing discussion (for only those having report-writing assignments)

32

October 30, 2019

8:00 AM TEA/COFFEE/BREAKFAST (Location: Primrose A/B)

MORNING SESSION (Location: Primrose A/B) :

9:00 AM Opening Remarks/Agenda of the Day, 5 minutes, Workshop Chairs
9:05 AM Invited Talk, 20 minutes

“Quantum Computing’s Killer Application”, Nathan Wiebe, PNNL/UW
9:25 AM Brainstorming Session-3, 60 minutes
10:30 AM Brainstorming Session-4, 60 minutes
11:30 AM BREAK - 15 minutes
11:45 AM Presentations from Different Groups, 60 minutes
12:45 PM LUNCH (Food & Beverage Service) - 60 minutes (Location: near Primrose A/B)

AFTERNOON SESSION:

2:00 PM NSF Report Writing Session, 5 hours, Steering Committee

33

A.5 Pre-Workshop Questions and Responses

A.5.1 Is it realistic to expect high-quality software or data product that is perpetually
free, and for how long should the NSF funding support the development life-cycle?

• Yes, the Linux operating system is perhaps one of the best examples. As far as scien-
tific software goes, there are many high-quality open-source solutions to electronic struc-
ture and molecular mechanics/dynamics available nowadays (e.g., Quantum Espresso, CP2K,
NWChem, GAMESS US, Psi4, LAMMPS, NAMD, VMD, etc.) These solutions are widely
used by the research community, if not to say more - they have become de facto the standards
for some groups. The NSF should continue supporting the future developments of the free
software at every stages, as far as such developments are justified by the community or sci-
entific needs, even is the community may not seem to be very large. The commercial entities
may not always be interested in such developments since they won’t be able to gain much
profit, either because the community may be relatively small or because the developments
would focus on the fundamental scientific aspects which may not have an immediate fast
return. Without the NSF support, some important problems may remain unaddressed for
long time.

• 1) For some widely used infrastructure, perhaps yes; witness Linux, GCC, PostGres and
OpenOffice. For infrastructure with limited audiences, absolutely not; the economics don’t
support it. 2) “Development lifecycle” needs a definition; when does development “stop”?
The problem with useful artifacts is the the supporting structures rot, and so the software
has to be modified, and demands for improvement require the software to be modified. An
unchanging software artifact is a dead artifact. I think NSF has to decide which artifacts have
limited audiences but need ongoing support (e.g., Automatic Differentiation tools?) and plan
on long term support as investment in national infrastructure.

• Yes. Open source software has shown that it can stay relevant for a long time, both inside and
out of academia, and so I see no reason why high quality open source software can stay free
forever. As for funding: NSF supports other core infrastructure – say, telescopes. As long as
the community believes (through periodic peer review) that a particular infrastructure piece is
useful for the broader community as opposed to just a small and potentially diminishing part
of it, then NSF ought to continue supporting its continued development and its community.
It is on the PIs to describe the size of its user community and the impact a piece of software
has.

• It is never free, someone has to pay for it. Either it is paid up front, for quality development
and support, or on the backend, by license and support fees. I think there is a gradation of
software, a small amount that would benefit by direct, long-term support because of its global
importance, and others that would be better with an initial investment and followed by a
diversification of support mechanisms. The mechanisms are critical, as without the support,
the software dies quickly. I can’t put a single number on how long NSF should support the
development lifecycle, the answer is far more nuanced than that.

• Potentially - Yes. A very good example is the MVAPICH2 MPI library that has been/is being
supported by NSF over the last 18 years and has been free throughout its lifetime will continue
to be. However, the NSF should not support a pure development/maintenance effort. NSFs
role is to promote innovation and research. Thus, as long as the software is innovating and
creating new and novel solutions, NSF can and should continue to support it. It is up to

34

the creators of the software to then find a way to balance development/maintenance with
innovation.

• The current model is good, but building a user base with sufficient users who are motivated
enough to maintain and develop the software for free for their use takes a lot of time and
effort. For new projects, building a user community happens only after the software has
sufficient functionality to meet user needs. So, NSF funding is required for longer than some
might consider ideal. For instance, a new software project of reasonably large scope isn’t
going to be self-sustaining after only 3-5 years of funding.

• It depends on the functionality of the software. Does it need to “grow” by adding new
functionality or new architectures? If so, then NSF funding may be needed periodically for
a new generation of the software. If the functionality is relatively fixed and the software is
layered so that changes in architecture are handled by other libraries (e.g., the BLAS), then
software could be perpetually free and may not need much further maintenance.

• It is not realistic because sustainability and maintenance of software is a really difficult prob-
lem to solve - especially if the user base grows exponentially and the software needs continual
web resources, support, and training in order to stay relevant to research. However, per-
petually free (open source) software is the ideal for scientific research, and NSF should find
long-term ways to keep funding such software maintenance and development.

• This is only possible if the software never gets updated. However, due to the changes in
computer availability and growing scientific developments, scientific computing software is
frequently updated. The person who works on updating the software will need to be funded,
whether that is a graduate student, postdoc or specialized staff. Therefore continued support
for the development of the code is necessary.

• Research groups should focus on developing a stable version of the software or making sig-
nificant changes to the existing version. There should be a different mechanism/entity for
maintaining software. Instead of competing for funding for maintaining software, groups
should compete for inclusion of their software into that entity. Or have institutional grants
for supporting maintenance

• no, software should be built into modular containers where they can be repurposed and used
across different systems and projects. Data should be built into frictionless data packages
using community standards for metadata so that they too can be reused in a modular fashion
across sites. Data storage and compute resources need to be democratized, however, to
promote access.

• This requires sustained effort and personnel to maintain existing software which seems at
odds with the academic goal of cutting edge research. I see no educational benefit attached
to maintaining existing software which precludes the use of students and post doctoral fellows.
It is also a difficult task for a PI who typically would be supporting new research.

• We cannot expect software to be perpetually free, in general: The math doesn’t work. Soft-
ware sustainability is expensive. With few exceptions (e.g., industry wants to pay for open
source, the user community also happens to be a passionate developer community,) software
developers and maintainers need to be paid, and NSF can’t pay for them all.

35

• No. Sustainability of the software or data product has to transition away from NSF and be
sustained by the community. NSF can fund innovation, but the community is responsible for
sustenance. “After how long” will vary by situation, but there should be transition path that
begins as soon as possible once the software starts getting adopted.

• Data and software stewardship is one of the key problems to be addressed, so far communities
can sustain it through different funding strategies but there is never a warranty that software
or data will be available after a few years that the project ends and new resources and funding
is needed to sometimes “reinvent the wheel”.

• Yes. It needs to be. Free access to software is an important step for leveling the field so that
small institutions with little to no research funding can provide research experience to their
students. NSF should fund productive projects as long as they are producing research results
and educational experiences for students.

• No it is not realistic. I can say that two cycles of NSF funding can be justified if after the
initial funding there is actually some usage and/or impact to the community. Even in this
case, the second funding should be for a proposal where further improvement, new feature
(based on initial usage) is proposed.

• I think it is. NSF needs to proactively identify software that is likely to stand the test of time
(function of utility and timeliness), and invest in early development that makes it portable.
The funding model can be a recurrent short bursts model - 1 year grants every ∼3-4 years of
the software.

• No, that wouldn’t be a realistic expectation. It will depend on the product and its evolution.
I believe via active discussions with the PI, a time stamp on how long should NSF sup-
port support the development life-cycle can be answered as different products have different
expectations and goals.

• In computational chemistry, there are high quality, free software packages available. However,
they often benefit from perpetual support, typically from DOE (e.g., GAMESS, LAMMPS,
NWCHEM) or NIH (NAMD, VMD). NSF might consider these cases as models for free,
high-quality software.

• Yes. Many software packages have a free version with basic features and the option to
subscribe for a more fully featured version. This model seems to be sustainable. NSF needs
to support the software until it’s developed enough for industry or a non-profit to take over.

• It would be helpful if after the major development, there is minimal funding from NSF just
enough to support its regular maintenance. And when a major upgrade is needed, there are
funding mechanisms such that the PI could apply for some larger grants to do the upgrade.

• Yes. There are plenty of examples: e.g., Linux kernel. In science there are examples too:
e.g., BLAS/LAPACK/MPI/etc. NSF funding should support the development as long as the
case can be made that supporting the development advances the science, which is the goal of
NSF.

• It is realistic to release a project and leave it free, however, it is not reasonable to expect
it to be updated. NSF should also consider work with other agencies (e.g., NIH, USDA) to
support the further development of software in a specific scientific domain.

36

• It may be realistic to expect high-quality free software, while the application remains an
area of active research interest, but if this is the case, there must be funding for software
development and maintenance throughout its entire lifetime.

• NSF should support the entirety of the development cycle, perhaps with multiple renewal
opportunities. It takes at least 5 years to develop a good quality software, so NSF should
support such a project for at least 5 years, if not more.

• Yes, I believe the big data community has shown this is possible. Dask is another example
of a NSF funded project that’s picking up use as well as Numba. I believe 3-5 years is a
reasonable time for projects to become self-sufficient.

• I personally am an “open-source believer”, but high-quality free software requires both funding
and long-term personal emotional involvement. The role of commercial software should be
considered where appropriate.

• NSF funding should support development of the software product. As long as more features
are developed or the software is updated, funding should be provided, to keep the software
perpetually free.

• Well, nothing is free, someone pays the salaries of the people who develop it. But open source
is a good model in my opinion. How long NSF should support depends on the program and
the objectives.

• It is not realistic to expect a high quality software or a data product for free. I think
NSF funding should support 2-3 development life-cycle for products that are used by the
community

• It’s realistic to expect so for the software or data generated during the project period. The
NSF funding should support the development for the project period.

• It is realistic, but it depends on the user community. For the domains of relatively small user
space, it will need much longer support from NSF.

• Yes, there are such software available in my field of electronic structure, such as Quantum
Espresso, that are highly used and very good.

• Perpetually free is not realistic. Both code and data require maintenance. As long as they
are used they will need to be maintained.

• yes to the extent that it enables new science in ways not otherwise possible. The length would
be determined by the same criterion.

• Yes, because this is critical national science infrastructure that is much cheaper to maintain
than it is to create.

• Yes. it is not possible for a single lab to do this without consistent support from the NSF.

• Not realistic. NSF should consider funding the ones that have shown value to the community.

• Free, no. Subsidized, yes. Funding period will vary greatly depending on the product.

• I think it is ideal but not realistic in perpetuity

37

• Yes, it is a major gap right now.

• Somewhat, 5 years or more.

• no; 5-6 years

• sure, 3 years

A.5.2 How can sustainability be supported while encouraging creativity?

• In my experience, creativity in scientific software is ∼100% driven by scientific inquiry. To
some extent, commercial software provides sustainability while allowing creative input via
feature requests by users. However, this approach tends to disfavor high-risk high-reward
features. In academia, sustainability is usually sacrificed due to time and funding limitations,
and a reduced focus on software quality (because it is not directly incentivized). Expecting
individual scientists (even with additional funding) to produce high-quality sustainable soft-
ware is generally not realistic, but funding interactions between groups of scientists, between
domain and computer scientists, and perhaps between scientists and industry in order to col-
laboratively produce larger frameworks and community codes that spread out the burden of
sustainability might be a better solution. On-going maintenance roles and funding is a major
issue.

• The creativity and the “new” aspects of research have been emphasized both by NSF and
nearly all peer-reviewed scientific journals. However, this philosophy is not supportive of the
idea of sustainability at all. As a result, we see a large number of “new” solutions being
proposed all the time, whereas the continued efforts on “established” (not fully developed
though - that’s why the quotes) approaches are not typically considered popular or fundable.
Perhaps, NSF could revise (or extend) the definitions of the merit/impact criteria to reflect
the need for “sustainability”, at least at the scale of individual programs, e.g., within CISE.

• I assume that this is a question about what CSSI should fund. A first question is what
is CSSI’s goal. The name says that it is about building cyberinfratructure, but funding
decisions seems to emphasize cyberinfrastructure research, i.e., creativity with no attention
paid to sustainability. I’d argue that for CSSI to have an impact, it needs to be serious about
evaluating sustainability plans, and to recognize that open source is NOT a sustainability
plan in itself.

• I think in order to be sustainable one needs to be creative and break out of conventional ways
of solving a problem. So they both should go hand in hand IMHO. For example - producing
green energy - Wind solar geothermal ways to extract energy. Need creative techniques.
Evolution has to be democratic. Another example - How to tackle climate change? Creative
ways such as smart fabrics using sensors that can sense temperatures and adjust temperature.
That will determine heating/cooling requirements.

• To be honest, I’m not sure. I think many research codes run into a problem where the initial
implementation is done in a quick and dirty way to get results and then the code dies after
the graduate student or postdoc who developed it leaves the group. One way to avoid this
might be to offer some sort of technical support for code refactoring and optimization and
to make collaborations with this technical support a requirement for using in-house codes on
NSF supercomputers.

38

• I think the answer lies in who gets the funding to sustain/perform continued development
of a given software. Current models encourage same team of developers or centers. But if
we have to ensure creativity and wider community contribution for large-scale software, I
think preference should be given to new developing team of contributors each funding cycle.
This would not only promote creativity but also would facilitate decentralized management
(ownership) of software.

• Sustainability is what makes our research usable. I think there should be a separate oppor-
tunity, perhaps a small amount of money or allocation grant on XSEDE or the cloud storage,
for making data and results produced accessible to the community. I think building a storage
cloud and interfaces for scientists to share and access their artifacts long after the 3 or 5 year
development cycle will go a long way in making research sustainable.

• The challenge is to get developers to invest the time needed into making each feature robust
and flexible for a wide range of users before moving on to develop the next feature. This
requires some discipline within the project team that is difficult to enforce from outside
the project. It isn’t clear what metrics could be used to determine how well a software
development project is being developed for sustainability.

• Innovation and stability is achieved in software development by having specifications for the
concepts and implementation specs. The conceptual specifications capture the concepts which
evolve slower than technology. Implementation specs show how the concepts are implemented
in various technologies. The conceptual specifications form a sustainable architecture that
enables creativity of implementations.

• Sustainability is hard because artifacts are becoming more complex, and we insist on forget-
ting how and why they are built the way they are. We literally forget the design, and then
we pay highly to recover enough to do “sustaininabilty” work. We should push methods to
capture and retain design information as one key way to reduce sustainability let yet people
be more creative.

• I think “usage” of a software is key to sustainability. NSF shouldn’t fund something because
it is exciting; realistic usage potential has to be evaluated and demanded explicitly in the
proposal call and carefully reviewed during the review process. “Usage” will also lead to
creativity as new needs from users will give rise to requirement for new features and which
will lead to creativity.

• This is exactly where federal funding is likely required. Once software becomes a commercial
product, changes to the software will likely become incremental since new funding is dependent
on the success of funded changes. More radical change requires longer term funding, which
for the kind of software supported by CSSI means, well, CSSI-like funding.

• Every project could be a mix of innovation and sustenance. Or else innovation and sustainabil-
ity can be the primary responsibilities of different communities with different funding/support
streams. In addition, there is creativity in making something sustainable as well. This should
be recognized.

• More early prototyping grants for “risky” software, especially those that encourage collabora-
tions between interdisciplinary researchers (e.g., Biologists and Computer Scientists, and/or
industry partnerships especially amongst the freelance data visualization community)

39

• I don’t think they are mutually exclusive. I think it is best to sustain software that is evolving
and developing in new and wonderful ways. Simply trying to keep the lights on is the opposite
of a dynamic software ecosystem.

• This is a difficult question. One method could be by supporting long-standing projects that
are 1) being used by the community 2) continually innovating, and 3) have an impact on the
scientific community.

• That’s a question for software design. Most of the successful projects are led by experienced
software developers who can come up with designs that allow for extensibility in view of new
requirements.

• Some crucial elements of scientific software infrastructure are so important that it may make
sense to invest in their maintenance. So NSF should balance these two (sometimes exclusive)
objectives. This could be the down side because there is a lack of motivation to create some-
thing new if funding is stable. Perhaps the community can create a committee to constantly
create new ideas.

• Encouraging establishing a community of developers, some of which are responsible for sus-
taining the code and others are responsible for building new (creative) features.

• These two don’t have to be mutually exclusive, but they have to be viable. There has to be
some end user that wants to use these or the output will inspire new research.

• Different thrusts of the program can accommodate the early stage high risk creative project,
while the established ones can focus on the sustainability.

• I don’t see why these two goals should be at odds with one another. NSF should fund CSSI
proposals that demonstrate both sustainability and creativity.

• Sustainability can drive innovation by introducing new design constraints that shape how key
resources are used in products and processes.

• If the thrust of this question is related to the question above then they are two different tasks
albeit equally important.

• Encourage the formation of open source consortia with production software and continued
open source innovation.

• Funds need to be allocated that value both. Furthermore reviews should accommodate these
two views as well.

• I don’t think there is a contradiction between the two. A creative work could also be sustain-
able.

• A software project can serve as a firm foundation for research into different aspects in an
area.

• good question. i guess creativity is involved in the beginning and will be always evolving

• Through sites like Dock Store that promote community sharing and ongoing innovation.

• Allow more non-traditional funding, including crowdsourcing, donations, endowments.

40

• need strong oversight and need to change peer review standards for software papers

• Federal funding and reducing redundancy between the funding organizations

• on a case-by-case basis. General principles would be worth a discussion.

• Easy. Provide a separate source of funds to support sustainability.

• Gaining invested support in a life-cycle plan for the project.

• Have continuous funding to support the software development

A.5.3 For sustainability and cost-effectiveness, should the PIs be encouraged to buy
software and services from industry instead of spending effort in developing open-
source and free versions of the commercial software, and when is it appropriate to
compete with commercial solutions and build from scratch?

• Perhaps, sometimes it makes sense to encourage the use of commercially-available software.
But the PIs should not be forced to obtain such software and services from the commercial
entities. By definition, the primary goal of the commercial entities is to make profit, which
may inhibit the transparency and the ideas’ sharing vital to the scientific progress. Scientific
software should be open-source and freely available to the community, so the community could
help the software’s future grow and development. This is especially true for the developing
areas, where the solutions are not well established yet. For more-or-less standard solutions
(e.g., a range of “standard” electronic structure or molecular mechanics methods) the compa-
nies that involve a wide scientific community may be reasonably positioned to provide reliable
software solutions to the broader community. In this cases, it would make sense to encourage
the PI to use such solutions, provided the PI’s goal is in the applications of the software and
not in the development of new approaches, unless there is a way for the PI to obtain access
to the code base, free of charge.

• I strongly believe that products out of academic research is key to creativity. To that end,
I don’t believe PIs must be encouraged to use existing software and services from industry.
Competing can be encouraged once it is clear that the PI has spent enough effort to refute
existing solutions (via experiments) and that there is a good/high demand for newer solutions.
This does put a heavy burden on the PI to do substantial homework before proposing a
solution but I believe that is what research is all about. Many a times we resort to an existing
commercial solution as it is one of a kind and probably the best out there and cost-wise it
might take a lot more $$$ to build something similar which is only going to be marginally
creative and useful. So I believe estimating the reward and the demand ahead of time is key
to demonstrating the need for new open-source software.

• In general this can be problematic for a few reasons. If the source code is not available it will
be very difficult to understand how to add any additional modules if needed. On the other
hand, even if the source code is available it can be very time consuming to learn how a code
was written to be able to add a new part of code to that existing code. Lastly, software from
industry often comes at a high cost which adds to the expenses of PIs in academia. Open
source code on the other hand solves the above problems.

• You frame the problem incorrectly. The choice is NOT just between commercial and free. 1)
An important alternative, as illustrated by, e.g., Globus, HUBzero, InCommon, is support

41

from stakeholders for software developed by not-for-profit entities aligned with needs of aca-
demic research. 2) Many widely used open source solutions (e.g., Linux, Mysql) are successful
because of substantial commercial contributions. 3) Software-as-a-service as a delivery vehicle
for research software can change cost calculations.

• Software and services from industry make sense only if they are offered at a competitive
price, which doesn’t often seem to be the case. Building competing systems makes sense when
commercial solutions are either prohibitively expensive or lacking in the required functionality
or flexibility for users to accomplish their research. The dividing line depends also on the size
of the community. The larger the user community, the lower the requirements for deciding to
developing a competing project.

• Perhaps. It is appropriate to “compete” with commercial interests to ensure open, portable,
reproducible research that avoids proprietary lock-in, and to avoid the risks of corporations
unexpectedly exiting the market (bankruptcy, deciding a service isn’t profitable, etc.) Open
source, portable infrastructure should be hosted on low-cost commercial platforms. Software /
data maintained by open source and scientific community, easily ported from one commercial
host to another for safety.

• At least in my field, transformative and innovative new theoretical methods require modi-
fications to the program; some commercial packages allow/encourage this, but open source
is beneficial in this case. In more extreme cases, an entirely new program is the most prag-
matic way to move forward, but definitely is a burden on sustainability. Re cost-effectiveness:
cost-effectiveness in terms of PI and student time is generally inversely correlated with sus-
tainability.

• Yes, this definitely makes sense. One way PIs could be encouraged to do something like that
is by allowing them to allocate money from the budget to buy license for the duration of
their development. This will allow them to figure out the kinks, and address all issues with
the vendors before their grant expires, so that afterward they feel confident about spending
money from their pocket to sustain this investment.

• I feel if something is well developed and serviced by industry and where there are competition
among industries, it is OK to do that. Academia will do new CI development and to some
extent truthfully (i.e., CI should be usage driven) propose new CI/software ideas and this
is something industry will not do. And hence new software/CI development proposals from
industry an be built on something obtained by industry. I might be biased as I lead an open
source project, but I believe value is in data, not in the SW. Opensource also seems to bridge
more communities than divide them, so I believe PIs should be encourage to opensource AND
if they do contribute to other existing ecosystems and adopt standards. The goal should be
to advance the space, and not create more close to but slightly different libraries.

• There is no publishable work connected with reinventing the wheel. Doing so is a disservice
to both students, postdocs and the PI. Software efforts should fill in gaps and push the state
of the art. Otherwise, this is as ridiculous as writing your own word processor. Competition
with commercial solutions include ongoing support and maintenance requiring mundane yet
time intensive duties.

• I think that developing software will always be necessary for cutting edge computational
research, as frequently the most interesting applications are new areas of research where

42

software does not yet exist. The problem with working exclusively with industry software
and services is that they are usually proprietary, making modifications or new development
challenging.

• Developing open-source versions has the advantage of greater expandability, and it is rela-
tively easy for the developers to modify such versions by adding new features, compared to
the industry-level software. However, this practice should only be supported when there is
absolutely such a need, e.g., when commercial software lacks a feature that is well desired.

• PI’s specific requirements for using the software and the amount of funding available will
determine whether they need to buy software or develop open source version. It is beneficial
to develop open source solutions when the desired features of the software are community
driven and the community can make recommendations on how the product matures over
time.

• No - open source should be the main emphasis. I have philosophical and practical con-
cerns with closed source (proprietary) and fee-for-service workflows that are opaque and
non-reproducible. Open source alternatives to commercial software would be highly valuable
to the scientific community, even if it means building this software from scratch.

• In general, license fees for software developed by the industry can be expensive. In the
absence of open source competitors, these license fees can be jacked up quickly. However,
doing everything from scratch is also not viable for very complicated packages like Fluent.
Thus, one needs to have a good balance the two.

• I don’t see a reason why PIs should not be allowed to buy commercially available tools from
industry. However, “encouraged” is a strong word in this context. I think commercial tool
usage as part of research should be allowed when a strong justification in terms of productivity
and cost-effectiveness can be made.

• When a small group of well-paid private companies control research software they also control
the research agenda. The methods used to produce the data can’t be explored in the same
way. Now, when the software handles a decided part of the workflow that isn’t an issue, but
I am not sure that is common.

• Depends on the capabilities in a given lab or institution. This is often true, most lab rely on
graduate students and postdocs whose skills are fleeting, and therefore cannot be depended
on for robust bullet proof code. Labs with developers, however, may be able to produce
robust production-level code.

• Wow. Where to start on this. It really depends on the goals of the development; industry
can be far outside of the places where research software needs to go. The answer on this
is basically - it depends, on a lot of complicated factors. And, don’t forget there are costs
literally everywhere.

• The PI should be given both options. While it is difficult and few can do it, there are some
PIs who can develop and sustain high quality codes that are highly used –they should be
allowed to do this and supported by NSF because it benefits the scientific community.

• It should be in the mission of the NSF to support Open Source software as a common good
for the US and it should be considered vital to the support of scientific research to do so.
Certain types of services should be outsourced, including web-portal development.

43

• There is a continuum of software options in my field, ranging from 100% publicly funded
to largely commercially supported. The publicly funded projects are competitive with the
commercial ones. NSF should continue to fund both free and commercial packages.

• Most software/algorithms available commercially are not suitable for research. In particular,
research has many intricate questions for which knowing how to modify the software or
collaborating with people developing the software is essential for success.

• There are two reasons (that I can think of) for developing community versions of software.
One is if the community versions are advance innovations and the second is when relying
completely on industry versions is a risk to the scientific community.

• There’s a third answer: NSF could outsource support for software and services on a commer-
cial contract basis to ensure continuity, with the proviso that the software resulting is free to
at least research institutions if not outright open source.

• I think the PIs should definitely leverage the resources from industry, if the commercial
solution is solid. The PIs could then spend more efforts on building tools that do not exist
yet, and that is where creativity occurs.

• Partnership with industry should be encouraged, some companies have open-source versions
with possible limited features but new ideas or exploring features that are not priority for
industry can be explored by academics.

• Depends on the availability of commercial software. If high quality software is available, that
might be preferred to build-from-scratch. If software is very specialized, build from scratch
might be the only alternative.

• I don’t think NSF should encourage. But if there is no clear need to develop software from
scratch it should be proposal reviewers and panels who should make this judgement and
recommend industrial/commercial solutions.

• Depends. There are cases when the answer is a clear yes or a clear no. In general industry
solution need not be the best (nor should be ruled out). It depends on how mature the
systems have become.

• No! PIs should be encouraged to support open source sources of software and contribute to
its development. Industry software is fine if it is affordable and fills the need.

• This is a complex business problem. There is probably some middle ground around developing
free software, but providing services like support through a commercial model.

• If industry software is available at a reasonable cost and can be integrated with other software
then it should be used. Otherwise open source development is justified.

• From my experience with Gaussian that prohibits benchmarking, it is stifling to the progress
of research when the test of new ideas needs tinkering and modifying codes.

• PIs should be encouraged to embrace the most cost-effective solution, keeping in mind that
there is cyber-training value in developing open-source and free versions.

• Neither should be discouraged at least, to foster the diverse approaches. However, the focus
shall be placed on the intellectual merits and impacts.

44

• no point reinventing if open source tools and packages are around. Key is open source. It is
appropriate to create when new methods are developed

• No; it is appropriate when the developed software has some additional capability that the
commercial software does not

• If the goal is science and discovery. Yes, rather researchers do good science then spend time
on developing software

• If this functionality is readily available commercially, I see no reason not to go with commercial
products.

• No single answer. Sometimes industry solutions are a perfect fit, some times NSF requirements
are unique.

• Commercial software is often not scalable for HPC applications and systems.

• when intellectual merit and broader impact justify it.

• only use free open sources, no need to buy.

A.5.4 Industry maintains the lead over the academia in establishing software devel-
opment processes, especially for web-portals, and has crystallized the best practices.
Are such practices and processes easy to adopt in academia? Should the PIs be en-
couraged to subcontract the development of web applications and portals to colleagues
from industry? What are the challenges and advantages of doing this?

• Industry maintains the lead because of a need for an iterative process in software over many
years. Until the NSF begins to create funding opportunities that are many years long, this is
not needed. It is up to anyone who picks up the open source software after the fact to deal
with it. The PI should be encouraged to subcontract the portion such as the web applications
and portals development to industry. The main challenge would stay the same, which is the
communication between the researchers and software developers, in particular on usability. In
fact, it could be improved considering business mission of the industrial partner. For sure, the
subcontract should be kept short term with renewable option. In addition, NSF has funded
the project like SGCI and PIs should be strongly encouraged to work with SGCI for related
science gateway development.

• Challenge: Discourage early career academics and put one more hurdle in their pathway that
will discourage them to pursue funding from NSF. In turn, this might discourage academics
altogether to pursue this career option. I am an early academician, and I feel intimidated by
the fact that there is one more duck I have to get in the row, a rather large and non-cooperative
duck at times, before I can pursue NSF funding. This option will only work IFF NSF arranges
for such collaboration. Advantage: The potential benefit is obvious. Following software
engineering practices and leveraging web-portals from the professionals, if subcontracted, can
only improve the quality of software that is output from a project. I am just worried, that
such requirement will make these funding opportunities less accessible to early career people.

• The primary challenge here is that an academic’s funding depends on his/her ability to
publish papers. Adopting software best practices is time consuming (at least at the outset),
and that time does not result in publications. If researchers can expect sustained funding for

45

software development, it will become easier for academics to adopt best practices. It is my
understanding that this is CSSI’s goal. Perhaps the sticking point is that it’s not obvious to
potential PIs that they should expect “sustained” funding for software development projects
the way that they can for fundamental science.

• I don’t get the emphasis on web portals. They’re surely not the most important part of
research software? Some relevant perspectives: 1) Building high-quality software needs spe-
cialized skills and teams; it is unusual that these can be established in a university setting,
but can be done so, e.g., Condor, Globus, HUBzero. 2) Research software should make much
heavier use of software-as-a-service methods than it does, these can semi-automate a lot of
the required development. 3) See https://docs.globus.org/modern-research-data-portal/ for
how the right platform can simplify things.

• With proper support, I believe they can be. While industry can lower the cost of the develop-
ment and maintenance, it increases the risk of proprietary lock-in, unexpected cost increases
beyond our control (e.g., Oracle-style business practices), unexpected loss of services (e.g.,
Google wakes up and decides to discontinue a service), etc. I’d encourage PIs to use com-
mercial low-level services to reduce data hosting and other costs, but to build the higher-level
software etc. on the top that can be easily moved from one commercial vendor to another.

• Industry best practices are efficient and end-product-driven, which I think is a good thing.
This is not always easy to adopt in academia however because of time demands on PIs and the
difficulty of finding good people to employ (e.g., brain drain to industry, much lower salaries
that make these positions less attractive). Subcontracting out to industry is fine, as long as
the development focuses on open source tools and there is no long-term commercial/for-profit
agreement that would produce negative consequences for scientific end users.

• No, it is not easy to adopt such practices and processes because academia has reward systems
that generally do not reward industry-scale software development. Subcontracting develop-
ment of web applications and portals would be great if the budgets can be sufficient to support
this. Advantage would be working with professionals who know how to do software design
well. Challenges would be managing the additional cost.

• I would say academia will be saving time if this component is off-loaded to already well
established and existing solutions. The advantage is that the academia will not be re-inventing
the wheel as I believe there are many such solutions out there and the downside is lack of
possibility to customize according to needs. So this would depend on one’s flexibility and
adaptability to existing solutions.

• The practices followed in industry, while good, can be too cumbersome for academia to follow
due to lack of software developer time. In my view, one can compare software development in
academia to a startup company — A startup follows some set of best practices while ensuring
that the process does not impose too rigid of a restriction on the pace of development.

• The primary challenge is disseminating this information on best practices to those working on
the software development and encouraging adoption of these practices. The actual processes
are not as difficult as getting them to be used. Subcontracting these services is a viable
option, depending on costs including long-term maintenance.

• I think productization and maintenance could be handed over to entities more capable of
doing that kind of work. These entities could be industry organizations or they could also

46

be professional research infrastructure support organizations like super-computing centers or
research computing entities within the university.

• PIs can be encouraged to subcontract the development of portals to industry if the existing
open source solutions are not a good fit based on the requirements. The advantage is out-
sourcing of the development work and the challenge is cost, additional cost for new features,
and continued maintenance

• I think tasks such as web applications are best left to industry. The effort of academicians
and researchers are best spent on research and generating and testing new ideas. NSF can
partner with industry to help facilitate academic-industry partnerships.

• Not sure. Are the web apps and portals mainly for outreach? If it is not specialized to an
academic subfield, it may be advantageous to subcontract to industry. Otherwise, I think
academic software development processes may be very subfield dependent.

• It depends on the partners and the goals. In general this has become relatively mature and
industry does provide very good alternatives (cost is a different matter). There is of course
the broader question of training the next generation scientists.

• It will be great to partner with industry. The main advantage is the mutual benefits to both
academia and industry as the former can concentrate on scientific development. The main
challenge will be to standardize and speed up the process.

• I think that industry members would be interested in collaborating with academics who can
build the tool but lack the web-portal capabilities. A big challenge would be linking the
academic groups with the industry members who could benefit.

• Subcontracting for more “standardized” implementations is likely preferable, because it en-
sures cutting-edge web portals that are safe, and the scientist can focus on putting creativity
and effort into building backend functionality.

• Does industry make its processes and products available? I am not aware of solutions that
would readily support our academic needs. As for subcontracting, this should only be done
on a case by case basis dependent on need.

• Depending on the software, some are easy to adopt and some need significant training and
education. But having uniform applications with enough competing commercial tools will
help in long run for academia and industry.

• The question is why should academia need to develop these? It is indeed possible and,
yet again, requires manpower very different from most PIs, students and postdocs areas of
expertise. Is this a worthwhile endeavor?

• I think that is totally valid. However, there are also open-source equivalents for these well
established software, and it might make more sense to subcontract the development of the
open-source ones if available.

• Challenges: the process is expensive if collaborating with industry, also the requirements of
industry and academia are very different Advantages: More accessible software, outsourcing
of “non-research” component

47

• Sometimes it may make sense, but I am afraid that there is just not enough money in most
PI budgets to afford industry-grade solutions. I think this should be done on a case by case
basis.

• Perhaps the NSF can allow the budget for a research staff who can do this thankless work.
No postdoc or grad students I have worked with wanted to spend time on this.

• I believe these processes are easy to adopt. GitHub for instance is how RAPIDS plans and
tracks all roadmaps and issues. Many best practices are low cost.

• Depends on the nature of the job - some jobs require a sufficient understanding of the science,
which industry may not work as well as people in academia.

• It is not easy to adopt this in academia since student-training time is so long, whereas industry
workers are typically trained from the start.

• I don’t understand the emphasis on “web portals”. Surely that isn’t the most important topic
in the scientific sustainability space?

• Software for web-portals have become commodity products. Populating web portals with
NSF content requires PI guidance.

• Yes, these best practices need to be adopted and used in academia, often times labs are not
infrastructure savvy

• college students are creative and they can do great development, given resources, examples
and experiences

• Yes, providing funding for web application development and user interface is very important.

• Yes, processes can be adopted as long as a savvy software engineer can support the project.

• Probably yes, unless they can pay undergraduates or support non-research staff to do it.

• Web design seems like a good task for students. They will learn and earn.

• need to educate or change software engineering education

• I don’t agree with the premise.

A.5.5 What if the NSF funding is used to develop a minimum viable product that
can be made free and open-source, and extended features and services are offered
on top of the free versions at a cost? Does this look like a reasonable approach for
sustainability?

• It sounds reasonable at first and could potentially work. However, there is still a risk that a
wide range of versions of the “extended features” may be provided by different vendors, in
which case the sustainability may be compromised since it will not be clear which “camp”
to choose. As I indicated in another answer, it may be good to rely on the commercially-
available solutions with lower variability - that is for more-or-less established methods (e.g.,
Hartree Fock could be done by various commercial solutions more-or-less identically). Then,
NSF could support further efforts on finding consensus among various new directions and
solutions to important unresolved problems. For instance, there are tons of approaches for

48

nonadiabatic and quantum dynamics, but it is really hard to know how they all relate to
each other and what their limits of applicability. In such situations, some comprehensive
analysis across various methods is needed to make further developments sustainable. This is
an example of the area with a greater variability in the methodological approaches. Although
it is important to foster this ideas’ diversity, the sustainability would require finding common
grounds among them and finding the ways these methods to be interoperable with each other
mutually reinforcing their strengths.

• Is this cheaper for NSF? I recognize that it will impose the cost of the software on the NSF-
funded projects of those people who actually use it, rather than the whole community. But
in the end, NSF will have to pay. My concern would rather be that the unavailability of the
real functionality “for free” will encourage PIs to develop their own software because that is
“for free” – it just costs PIs and NSF-funded grad students time they could spend on more
relevant research, and it will almost certainly lead to worse software. I believe that the end
result will simply be less and worse research.

• I suspect that the main driver to develop new features is to explore new science. Thus, making
these new features a source of income might not offer much additional incentive, especially
since the target audience may be very small. For open-source codes, I think a requirement
that any branches resulting in publications also need to be made freely available within a year
would be a good incentive for the community to contribute actively to code development and
maintenance.

• I like this idea and I think mixing up NSF funding and topping it up with features and
services sounds like a win-win. Again this would largely depend on how much in agreement
both parties are and will require several dialogues and compromises from both ends. But
worth a try. This way academia is able to brainstorm one piece of the puzzle and come up
with novel ideas and lean on others to complete the rest of the puzzle.

• I’m not convinced that, at least in many cases, this would be attractive option to the aca-
demic community. What is the value added and who has budget to pay for these additional
costs? Users often underestimate the time/cost of developing a system from scratch and the
drawbacks, including debugging and reproducibility of results are often overlooked in these
calculations.

• This is possible. I think if anybody wanted customer service, they can pay extra for this.
However, I don’t think it is realistic for a research lab to offer customer service. Perhaps
we can see ourselves as the R&D arm in a company for an example, and leave productive
development to other specialists.

• The success of this model would depend on the size of the market for extended features. Would
it be profitable for companies to take on? and would scientists have budget to spend on those
types of add-ons? Also, the add-ons are often where the interesting research questions are.

• Again, we need to determine what is the goal of NSF/OCI funding. I think that it should
be to create high-quality, sustainable research software, not fund research in software. The
question of whether the software is free or commercial seems to me to be a red herring.

• Possibly. The problem is that the kind of people who like to develop software in academia
are not necessarily interested in creating a company. Shouldn’t we encourage such people to
stay in academia by funding the valuable software they develop?

49

• Who would offer the commercial version? What would the extended features be? Services (I
guess support?)? What would the effect be on sustainability of innovation and creativity (at
least as important as sustainability of the software itself)?

• yes. If the added feature are big science enablers, the equation changes a little. Whether OAC
pays for development/sustainability and what domain directorates would pay for services
should be considered and balanced across directorates.

• This question is confusing. Development of MVPs that transition in to sustained baseline
is a good plan but it needs an architecture to enable the transition and an infrastructure to
promote the open-source community, e.g., Apache.

• It would depend on the size of the market for a particular project. If a PI proposed and
justified this model for sustainability in a specific proposal, I would definitely support it. It’s
not a one-size-fits-all solution, though.

• That is a great approach, a free and open source core, and derivative “products” offered
for a cost. The weak copyleft license used by the Eclipse foundation, plus the processes the
foundation employs, is one way to handle this .

• Yes, this is a viable approach. However, we have seen a lot of questions (especially in NSF
reviews and as feedback from the community) asking why an NSF funded project is not made
available free of cost.

• This appears to be moving in the arena of commercialization. It can be done; however, it
requires ongoing funding and stable personnel. It seems counter to the academic mission of
education and research.

• I think there is good reason to believe anything that originates from NSF funding should be
free to the broader community until commercialization of the tool (via startups or adoption
in industry).

• This needs significant effort and funding from NSF to keep developing these tools. For some
it might be reasonable but for other it might not be realistic to maintain for long time.

• With the current funding model, it seems like this is all that can be done and a reasonable
approach for sustainability while encouraging diverse prototypes.

• Yes, NSF should help researchers to develop a Minimal Viable Product (MVP) that can then
be hardened by industry. Academia is good at R&D and innovation.

• Maybe, it would depend on implementation and how effectively it is managed. I think it
would require a dedicated group just to manage this and promote it.

• Sounds like a good idea. Then there is the huge question of what features should be paid-
features and what features should be kept in the free version.

• This is possible, of course the hard part is to decide on MVP. But the original developers
have a continued role in systems that are good and improve.

• Yes, but it depends on the nature of the product. I don’t think some of the research software
could fit in this model.

50

• Yes, but the path to sustainability depends on the situation. Freemium services could cer-
tainly be one path.

• I don’t think people would be interested in a minimal product so I don’t see the point of
doing this.

• Yes, but the NSF should ensure that previously free features are not moved to the paid
version.

• it is a good idea and I can see myself being excited about this model.

• Yes. Matches my “third answer” point above.

• Yes, this seems like a reasonable approach.

• Yes, this could be one potential solution.

• Yes this is very reasonable.

• Yes - see my response above

• Yes that seems reasonable.

• This is a terrific idea!

• this sounds a good idea.

• Yes, possibly

• Possibly yes.

• Perhaps ...

• Yes.

A.5.6 How should the software be maintained in the long run? When a new software
compiler and hardware infrastructure come out, if needed, who should update the
software accordingly - developers and/or the community for whom the software was
developed?

• Perhaps, there could be a “cyber-infrastructure updates” category of the NSF grants, simi-
lar to the instrumentation grants to experimentalists. The rationale is very similar - to help
advance science via getting better instruments/infrastructure, so perhaps this new grants cat-
egory could re-use the existing structure of the instrumentation grants applications. These
grants could support solely the software updates due to major changes in the compilers
and hardware infrastructure. The proposals would then address the needs for such transi-
tions/updates, potential benefits from it, and how the transition will be made. The project
could probably be rather short-termed – 1 to max 2 years and could support hiring profes-
sional software engineers.

• I think both are equally responsible to keep the software up to date. The person who created
the software is naturally going to know all the hoops and jumps and hence completely offload-
ing the software to the community to update will not sustain and might break the software.
Instead I believe the onus is on the developer to find those handful from the community

51

that could help him/her update the software in a systematic way. This effort could grow in
the right direction with inputs from the developer. This is also needed as the developer can
maintain the software only to a certain point, sooner or later he/she is going to need help
esp. if the software is being widely popular and used.

• I think there is a case to be made that with every NSF research project that gets funded,
some part of the money should be allocated to software development in the budget. Currently
there is no incentive in terms of publication for such development exercises. That is why
academia doesn’t do it. Creating an added incentive in funding (i.e., research expenditure)
can help mitigate this issue. All universities have qualified MS and UG students who can
possibly be supported and this kind of added budget component (in the form of a SW Dev.
Supplement) can make PIs think of creative ways of engaging with the available student talent
at a university across all levels.

• Depends on the software. Some developers are willing to do this type of work, some are not.
What is crucial here is the mechanism for translating the “demand” for software development
from users into financial support. This works differently for each case. Some developers use
CSSI to do this translation. Some do this directly by raising money by selling software. The
latter is more direct and probably “honest” in a sense that it is clear what the funder pays
for. But we should not have to become business people if we want to provide software to the
community.

• Ideally, this should be a shared responsibility across the user community. Assuming the
developers are still using the software, they should have motivation for doing this, but so
should others. When there is no longer funding for the software, it is not realistic to have a
single point of support. When there is funding for research that relies on the software, this
motivates someone to maintain the software. This may be the best solution in the long run.

• The real question is whether there should be a “gate keeper” to ensure continued quality
control as new compilers and hardware infrastructure (and/or functionality) comes along.
We would like to think of such a person more as a facilitator, who supports a community that
contributes while safeguarding the quality of the software. This person (or group of people)
is of extreme importance to the software and is often expensive to fund.

• It depends on the skill set of the community. Some software is meant to be used by researchers
that would not know where to begin to maintain the software. Other software is more of
a collaborative development, and the development and maintenance burden can somewhat
realistically be shifted to the “user” community that is using it. In that case, the developer
community and user community lines really blur.

• In most cases, maintenance of software for new compilers and/or small updates in the hard-
ware platform is something the successful projects can do through their community: If projects
have a successful structure of incorporating community contributions, then small updates will
come from the community. (Of course, this will not apply for shifts such as from CPUs to
GPUs.)

• In the long run academia is not the best place to do this, they rely on students often as the
students graduate the work is neglected. It is also the case that funds need to be provided to
do the work. At this point, the level of funding given out to build good systems is small in
my opinion and when compared to funds from NIH for e.g.

52

• It is OK for the software to charge small amount from its users. This will automatically prove
if the software is needed. Sometimes the basic CI development can be funded by NSF but
afterwards some specific user oriented organization (such as NIH) may pick up funding it;
this is for a CI which is applied in biomedical field.

• This depends on the application and scope. It can be extremely time consuming so who has
the incentive, manpower and funding to perform such tasks? Outside of computer science,
this is a distraction from new research and can be very far afield from concentrated areas of
study (i.e., chemistry, physics, mathematics, etc.).

• It can be a combination of both. However, the original developers of the software or someone
who has in-depth knowledge of the software must review the changes and ensure 1) it is taken
through appropriate thorough testing, 2) there is no performance regression and 3) there are
no corner cases at the application level.

• The NSF should fund any modifications to keep the software robust if the software is critical
to a specific research. Research grants should outline the software that is critical and needed
and funding should be given accordingly, ideally after reviews or some types of assessment.

• This seems like a great educational opportunity for CS students. Many CS students are
required to work for a company for a semester before graduation – I wonder if there could be
software institutes that train undergrads in software engineering using these codes.

• I think we need a solution for the “customer service” aspect of the software development.
It is not reasonable to expect research labs to do this. Perhaps people running NSF funded
national computing centers (like TACC or SDSU) can take on this job.

• There needs to be a sustainable model for updates, whether it’s transition to industry, a
non-profit, or an open source consortium. Any of these models work, but knowing how to get
it done can be difficult.

• I think adapting to new infrastructure should be done as a collaboration between the vendor
and the developers, in order to update things most efficiently. This can be done through
workshops and hackathons.

• The developers shall maintain in the long run together with the community. It will be nice
to have all the updates maintained by the developers, however it should not be explicitly or
strictly required.

• *Funded* developers. See third point above. [One might have “funded” development accept
contributions and vet/improve them, as happens with many open source projects.

• Developers will likely do it more economically. While to cost to NSF may be similar, expenses
across directorates should be balanced.

• Again, it depends on the situation. There could be a core development team, or the commu-
nity could contribute resources to do this.

• Community - but this is probably unrealistic. We need better metrics and incentives for
community-sustained software projects.

• Communities are the champions for the resources they need, engaging a community and
involving them in the development is key.

53

• Promote containerized code, with descriptive CWL, with a eye towards optimization and
modularization where appropriate.

• Foundational ideas like FLAME should be extended to more domains to allow for algorithmic
and hardware flexibility.

• Software should be available and maintained to some level as long as it is used where there
is no alternative.

• Probably a mix of both. Developer if possible, but trying to build a community to help is
essential.

• I think it can be led by the developers but definitely the community should chime in.

• It should be a combination of both. The SW should have stewards on both sides.

• good questions. but whoever the community/company who is using it should do it

• The developer should update the software based on the community input.

• Again, this is a question best answered on a case-by-case basis.

• If you open source, you can get community contributing.

• That needs to be part of the sustainability plan.

• Both, depending on capability and need.

• Ideally, it should be the community.

• responsibility lies on both

• Community and industry

• Maybe both?

• Either.

• Both

A.5.7 Do you use your institution’s infrastructure or the national cyberinfrastructure
for the long-term retention of your software and related artifacts?

• Yes, I use national infrastructure (e.g., nanoHUB) for retention, and industry-standard
places (GitHub, sourceforge) for long-term software archival. I use institutional archives and
pubMED for long-term archival of research papers, as well as bioRxiv (public+philanthropic
subsidized) I fear the long-term, and truly believe it is in the national interest to long-term
archive software created by public money. Should there be a national GitHub mirror?

• There is no national CI for this, that I know of. For the project I recently completed, we used
foundation provided infrastructure for everything about the software.

• Both. The software and artifacts are available on a project web site within the University’s
domain, but the software is also available on GitHub.

54

• I use NSF XSEDE resources and infrastructure, we also have a web-server, and small compute
server for small jobs that take too long to stage.

• We use GitHub and/or bitbucket for most of our software. If a similarly useful tool were
available through NSF, we would consider using it.

• For long term support we rely on mature open-source managed in a community, e.g., Apache
Software Foundation, and on industry.

• I have used my institution’s infrastructure. I don’t know if XSEDE has any option for long-
term retention.

• At this point, my institution’s infrastructure, or “free” infrastructure like GitHub.

• I would rely on national cyberinfrastructure for the long term retention.

• We use local infrastructure, but we are not your typical “science” shop.

• I use my institution’s cyberinfrastructure for both of these purposes.

• Yes, we store all of our software on our own and national resources.

• I don’t understand this question. We use GitHub to store software.

• We have not used this as much as we would like.

• I’m at ORNL, so I use ORNL infrastructure.

• I use GitHub, paid for by my university.

• We use our institutions infrastructure.

• My own/institutional infrastructure.

• using institution’s infrastructure.

• We have everything in-house.

• Institution. This is policy.

• Yes - national CI for data.

• Do Box and GitHub count?

• When appropriate, yes.

• institution resource

• no. I use GitHub.

• We use GitHub

• National CI

• Sometimes

• national

55

• GitHub

• Both

• yes

A.5.8 How do you measure the quality of the software/data product that you produce
for public release?

• To date, the main focus has been on its validation by reproducing known test cases. The
metric here is the number of model problems that can be handled well by the program. This
metric also includes the number of methods that can handle particular model problems. The
secondary metrics are the amount of educational materials (quantified as the % coverage of
the use cases possible by the software) and the amount of documentation provided (both as
the comments in the code and via stand-alone website content, although the two are related
via the auto-doc generation). Finally, an important metric will be the number of unit tests
that work as supposed, although this has been the area we paid a bit less attention due to
the limits of time/human resources available and due to the funding climate being somewhat
non-rewarding these efforts.

• The documentation should be clearly readable, code needs to be annotated with comments,
people can follow them to setup, install, and use, they should be able to explore any and
all options that software promises to deliver —- when all these can be ensured, I deem this
software as a quality product that can be released to the public. Any software that is made
public under MIT or such license, does not need a whole lot to be out there. Also, I am all
for the community to pitch in and make pull requests to augment a software and extend it
to make it their own. I think the most important part is for the software to work and the
documentations to allow for easy extendability.

• Metrics! First up standards/specification need to be set that will determine the quality of
software/data product. Aggregate experts on the topic (industry, labs, academia) and come
up with a specification/standards document on the metrics to be achieved and reasonings on
what defines those metrics and document them. Look at the state of the art on the particular
software/data product that others have released. Set expectations. Metrics, expectations,
standard, specifications and thresholds would help to measure the quality of the software/data
product. Other indicators include reliability, testability, security, maintainability, efficiency
and usability.

• Primarily through testing, especially of the new features. As well as regression testing based
on prior results. We maintain a set of tests that can be run against the code along with
being used as examples for new users. In the case of features that have been added based on
community feedback, by requesting feedback on a pre-release version.

• High quality is the result of mature software development processes which is the result of
people caring about quality. So checking whether a project has a test suite, uses GitHub,
does peer review for each patch, and has a continuous integration suite is a very good indicator
for a project’s quality.

• Have I introduced any new bugs that affect accuracy or efficiency? Have I broken existing
models? Does it perform tests as expected? Can it make reasonable scientific predictions?
Can end users create models as easily or more easily in this release than in the last?

56

• Testing, testing, testing, against a well-defined release cycle. Since the software is interactive,
this involves putting release candidates through usage testing that typifies paths a developer
would take using the software.

• 1. Number of downloads/releases 2. Number of organizations using the software stack 3.
Number of external contributors 4. Number of publications arising out of the project to
measure the innovation component.

• Does it have a testsuite? Does it pass? Is there complete documentation? Can users actually
use it (more difficult to measure)? Are there field-specific performance criteria that can be
measured?

• Two methods: 1) Certification tests against adopted open international standards, 2) Software
sprints that involve developers and users.

• Software performs its expected functions, is easy to use, and fills an important societal need
that other software does not.

• Partners in industry have told us that the software we produce is of higher quality than they
can produce in house.

• We run internal benchmarking. Groups related to RStudio are also building methods to
quantify package quality.

• ease of use and documentation, optimized and fast computation, can be combined into user-
defined workflows

• New features, range of applicability for a variety of users, reliability, speed, ease of use and
support.

• Not sure. There are several metrics for several aspects (from point of view of user, developer,
...).

• Hard question: We do a lot of internal testing and acceptability tests and release things in
stages.

• We don’t, measuring is a huge undertaking and measuring quality is not currently a metric
needed.

• I run a commercial software tools company. We build (we think) thorough tests of of products.

• We don’t directly develop software but use other CI software for specific domain sciences.

• Rigorous testing. Continuous monitoring of usage and errors. External security reviews.

• Easy to compile, run, good readme files and moderately easy to read the code to change

• Publications arising from the software. It takes years before these arrive, though.

• One way we measure the quality of software is by performing rigorous testing.

• Benchmarking of scalability, number of individual downloads, citations

• documentation, examples, tutorials, user comments and feedbacks

57

• By testing and comparing to existing published software/data.

• Code reviews by my group and the software engineering group.

• Industry and government best practices and recommendations.

• User interfaces, API for extensions, Simplicity in usage

• CI/CD and lots of unit test plus reviews from peers.

• End user growth, scientific publications that result

• don’t have really good metrics. Worth a discussion.

• I basically archive them or upload them to GitHub.

• Haven’t done much recently, but in the past, yes.

• By how much it is used by the public.

• The number of issues users create :)

• Number of citations/downloads/users.

• user feedback and analytics

• By the extent of its use

• Number of citations.

A.5.9 What are the software engineering processes or data management process that
you (and your group) follow currently?

• The modular approach, interoperability, and hybrid programming. Through modular ap-
proach, we try to improve the reusability and maintainability of various computational meth-
ods and facilitate their interfacing with each other in a simple, intuitive way. Such interop-
erability can help boost the advantages of various approaches when combined together. In
addition, it makes the systematic benchmarking of various approaches possible. Our programs
are being periodically refactored as we find more systematic and general ways/strategies to
put the broad range of methods on a similar footing. The refactoring ensures the backward-
compatibility until the older use scenarios become obsolete, at which time the old functionality
is dropped. We also utilize the methodology prototyping approach which is facilitated by the
hybrid C++/Python programming. In this approach, new methods are being implemented
and tested using Python (with the help of the C++ components of our code already exposed
to Python). Such developments are significantly faster and easier than they could be in plain
C++. Once the functionality is established, the Python functions and data types are trans-
lated into C++ and re-exposed to Python. At this point, the newly added methodologies
become interoperable both with other C++ methods and with the Python codebase. The
original Python code is then moved into the “obsolete” directory, which can be still useful
for other purposes – as the ready code blocks for other developments or as the educational
examples. We preserve and share the most critical data used or resulted from our research. In
fact, for every publication, I request my students to create a GitHub repository and deposit
such critical data. I request the data to be narrated enough for an external person to repeat

58

our “computational experiments”. In addition, for some of the most important use cases, our
code would automatically save all the input configuration used to run the calculations. This
is important when one utilizes on-the-fly computations (e.g., via Jupyter notebook), when
one can easily change the input parameters directly in the script. In the common “black-box”
approaches the input configuration is always predefined and is manually created by the user.
That’s why in this type of calculations there is no much need for such a bookkeeping of the
input configurations. In the “on-the-fly” approaches with larger flexibility, such automated
bookkeeping of the input configuration is important.

• We have a Strong Procedure for Design, Development and Release: Research is done for
exploring new designs; Designs are first presented to conference/journal publications; Best
performing designs are incorporated into the codebase; Rigorous Q&A procedure before mak-
ing a release; Exhaustive unit testing - Various test procedures on diverse range of platforms
and interconnects Test 19 different benchmarks and applications including, but not limited
to - OMB, IMB, MPICH Test Suite, Intel Test Suite, NAS, ScaLAPACK, and SPEC - Spend
about 18,000 core hours per commit - Performance regression and tuning - Applications-based
evaluation - Evaluation on large-scale systems (Lassen, Frontera, Summit etc); All versions
(alpha, beta, RC1 and RC2) go through the above testing.

• (1) Git repository and version control (2) Put emphasis on modular designs, develop a com-
ponent architecture, and ensure simple interfaces between the modules and components (3)
Develop iteratively (4) Make sure to develop unit testing for each module and component (5)
Comment code, and document a component before moving onto developing another compo-
nent. For data management, my team has completely moved to HDF5 data format, all data
that we collect are through the HDF5 interface or we use our own converter to convert data
first to HDF5 format. HDF5 provides a scalable method for extreme-scale I/O and provides
the only way we can survive the data deluge – portability and reusability. We use GitHub
for hosting our data, but also looking into cloud storage for long term storage.

• Software engineering processes: Use of version-control software and a git repository shared
by all developers. Pull-Requests at GitHub automatically spawn tests of a test suite in Ama-
zon Web Services with a Plethora of Different Compiler and Runtime Options. Automated
builbot prevents commits from breaking code. Established coding conventions help bring
uniformity to code. Dedicated slack workspace improves communication between developers.
New applications are validated against analytical results and compared to other independent
implementations of the same method. Data management processes: input and output files
uploaded to public repository

• My students build machine learning algorithms and we publish them as Brown Dog/Clowder
extractors, as well as making them available on GitHub. We share and archive our datasets
on Clowder. We partner with NCSA on projects where we are one use case for cyberinfras-
tructure development. My students work closely with their research programmers to identify
requirements that they can use to develop/improve the software. We use Slack for communi-
cation among the team, a wiki for notes and documents, and a software repository for sharing
code.

• Dev and master branches, numbered releases, representative qualitative / behavioral tests on
multiple platforms (it is stochastic agent-based software that wasn’t originally engineered for
bitwise reproducibility when run multithreaded), update user documentation, write change
log and release notes.

59

• We have tailored an Evolutionary Software Development process to meet our needs. The pro-
cesses combines use case development, agile sprints in the context of an abstract/conceptual
architecture, and informed by a technology forecasting activity to foster innovation.

• For the recently completed project, we used code reviews facilitated by gerrit, and we prac-
ticed source management through git. Additionally, all features or issues that needed to be
addressed were managed through bugzilla.

• Our software engineering process aligns with the crystal agile development model. We focus
on iterative and incremental development, active user involvement with project stakeholders
and on-time deliveries

• We work with an industrial partner (data viz studio); our biology lab are end users and guide
the devleopment process and also provide feedback on the software features and UI/UX

• Have followed fairly standard and accepted processes. Spiral processes are followed along
with processes for documentation etc that typical industries follow.

• Doesn’t directly apply to us. We are starting to get into data management and will need to
gain more experience before I can answer confidently.

• Peer review of each patch, use of CI suites, a very large test suite, periodic automated
regression tests on a large number of platforms.

• For a recent project, we used prototyping to check the requirements and feasibility of some
design decisions.

• Combination of agile and kanban with a focus on data driven design and test driven devel-
opment.

• Something like agile with continuous sprints, supporting a longer waterfall model.

• agile development, focus on prototypes and “early failures” for long term success

• We use a modified scrum cycle. All of our work is tracked on GitHub using zenhub.

• We currently do not produce software but do have multiple ways of storing data.

• We use revision control software. We are implementing automated unit testing.

• Ad hoc with some mixture of industry-grade elements (code styles, tools, etc.)

• theory development to code development to test to application to maintenance

• Unit tests, regression tests, valgrind, testing with multiple compilers.

• We use version control and document the code and follow C++ guidelines.

• CI testing. Code versioning. Modular and/or layered software design.

• GitHub or bitbucket are used a common space to share group code.

• Try to apply best practices from industry and literature.

• I am not the right person in our group to answer this.

60

• Nothing unique. We use generally accepted practices.

• follow the requirement from the funding agencies

• we use GitHub for release and version control.

• We follow a small set of Agile practices.

• Using GitHub for version control.

• It is all ad hoc at this point.

• Version control, documentation

• code review and unit testing

• We have in-house standards.

• We strive for AGILE.

• We use GitHub

A.5.10 How often do you favor using existing software components (either by buying
or using for free) and, if needed, customizing it for your needs instead of writing from
scratch?

• Whenever the functionality and methodology is well-established and is sufficient for our re-
search needed, I would use the available solutions. There is no need to invest time and efforts
into something other people have already done and have done it well. I would always give the
first preference to the open-source software. Another aspect on existing software components
– sometimes they are in a rather poor condition (not documented, not following best software
development practices). In this cases, it would again be reasonable to write such things from
nearly scratch (refactor, translate, redesign), but perhaps follow closely the ideas expressed
in those prototype codes blocks.

• This depends on the topic. If it is a well-explored area, for example DNA sequence alignment,
there are many tools out there. Trying to use existing software components would be my first
to-do. And then the goal would be to (a) determine if the tool meets expectations of my ideas?
(b) how usable (buggy?) the tool is (c) has the tool been maintained and being maintained,
can I create PRs? (d) Readability (e) Portability (f) Are others using the tool? and other
questions. If the answer is yes to most to all of the questions, I would use someone else’s tool
else I would build from scratch.

• Default is to compare innovative directions against the existing baseline. If a parallel devel-
opment is taken to an existing capability, then help for the community is developed: guides
on how to choose between the options, software tools (bridges, facades) to enable transition.

• Being a commercial vendor and distributor, we have to evaluate this differently from an
academic group. We own all of the rights to our software. Having said that, we do not extend
this to tools used internally. We concentrate on our area of expertise.

• It depends on the requirement. e.g., We use a software called HWLoc from Inria, France to
detect hardware topology of a system instead of writing our own. However, we customize
some portions of it to match our requirements.

61

• I prefer using existing software components when available. However, customizing others’
code can be difficult unless its been designed in a modular form that enables us to insert a
module for the needed customizations.

• As much as possible, especially components with licensing terms that are compatible with
the licensing of the overall package. Not so much by buying, but rather using components
with an appropriate open-source license.

• If it does the job effectively, you should use what exists. a) you can’t replace it for any
reasonable cost, b) you can’t discover all the gotchas needed to make it work reasonably on
your specific project budget.

• Always. I am a scientist by training, and we like to spend our cycles in more creative and
forward looking problems than reinventing the wheel. This should be the only way rationally
we should approach projects.

• We always try to favor open source projects. The NSF should strongly encourage, if not force,
researchers to look for open source alternatives and contribute to open source projects.

• It depends on the situation. BTW, there are publicly available “build vs. buy” decision
making frameworks that can be used to figure this out for each particular situation.

• Existing software components are used if they are open-source and license compatible. Maybe
25-50% for more generic library/infrastructure (e.g., Google Test) components.

• Rarely. The software complexity and dependency costs (particularly for cross-platform sup-
port) often exceed the benefits of gaining one or two minor features.

• Whenever possible. It’s had to put a number on it, but my research program depends heavily
on both free and commercial software developed outside our group.

• If the software is available and meets “production-level” robustness we always use existing
code. We only write what is needed to amplify existing efforts.

• Always review the ecosystem and see where SW can be extended rather than building from
scratch. RAPIDS tries to build as little as possible form scratch.

• We use existing free software whenever possible. In particular, we have adopted standard file
formats instead of creating our own.

• About half of my research focuses on developing theory and codes, and the other half focuses
on using other codes/software.

• I strongly prefer customizing existing open-source packages with my feature, and never write
things up from scratch.

• Whenever they are available, my team is always looking for best practices and validated tools
available.

• Almost always for production-level code. Analysis/viz code can be better from scratch, but
it depends.

• Almost all the time. Nowadays, it almost makes no sense to start from scratch for any
projects.

62

• Being able to call existing libraries is almost always better than building from scratch.

• We write everything from scratch, building on a decade of our own development.

• Yes–but there are not many to suit our needs and it is difficult to integrate

• Whenever we can use existing, we do. For example, commercial cloud services.

• If we have to use a third party tool, we use only open source/free versions.

• I am in favor of this, if the code is a “standard” and easy-to-use code

• The first step is to always do an assessment of what already exists.

• Always, as long as they do the job and the solution is sustainable.

• I favor modifying/adapting/expanding existing software products

• In my field, there is not much software for purchase.

• every time. We don’t write software from scratch.

• more using existing, unless i need to develop new

• We try to do it in almost all the cases.

• this should be done as much as possible.

• Always when we are aware of it.

• Whenever it makes sense.

• Most of the time

• Almost always.

• Quite often.

• Quite often

• Always.

A.5.11 What are the challenges, if any, that you typically face in reusing existing
software or data products?

• One issue is evolving capabilities or interface evolution, both of those can prove to be difficult
to manage. Even worse is if the software stops to be supported, that can prove to be a big
issue. Finally, for integration of large components, IP provenance is a big deal - trying to
ascertain the licenses and IP-cleanliness of the pieces can become a showstopper.

• Poor documentation or no documentation at all, or that the required environment is too
outdated, so the software fails. We were successful in some cases to leverage the inner-
workings of the software to develop our own, but that is a waste of cycle. Oh well.

• Open source projects are not really ready to use out of the box, so small modifications are
often needed to match a specific part of research and the NSF should fund that as a part of
a research project.

63

• My edits may depend on a specific version of the package. Then when the package is updated
to new versions, I might have to redo my edits for my feature to work in the new version.
That takes time.

• Not having the relevant features and the code not being commented properly so that it can
be easily modified. I’ve found this to be the case with free and for-purchase software.

• Often you only have access to the executable of the program. Therefore without seeing the
source code it is difficult to establish the reason for eventual errors in the code.

• Lots of last mile bugs, where you’re almost done but can’t put a definitive timeline on hitting
the quality you want. That said, it helps the next person along.

• We are worried about the software developers being funded to keep the software active and
supported if the software is a NSF or other govt org funded software.

• On some occasions, this software is not sufficiently well-documented, so getting a correct
implementation can be a challenge on some obscure or subtle points.

• An existing product tends to continue being valuable until the user requirements change or
the underlying software technology moves to a new version.

• Sustainability (with free/open-source but also with commercial software), software quality is
often not up to par. the code is not modifiable, etc.

• Difficulty getting them to build and run; they are often out-of-date because they were a
research artifact that was not maintained and updated.

• (1) Figuring out to make the software work. (2) Getting bugs fixed (3) being able to rely on
the software in the long term, where appropriate.

• It is typically easier than writing from scratch. The lack of general APIs for interfacing to
electronic structure codes is a bottleneck.

• the user documentation is poor. the sample scripts are buggy. and people who published
using the common software do not share input files.

• Cross-platform support (e.g., works on Linux only). Ease of installation and maintenance for
non-CS end users. License compatibility.

• Poor documentation of interfaces. Poor configuration management (Makefile fragments, au-
toconf, homegrown configuration scripts).

• I’ve found that software is poorly maintained, unit testing is lacking, and understanding the
code takes longer than rewriting.

• a) Doesn’t work on my platform. b) doesn’t integrate with the partial problem solution I
already have.

• learning cost. Complexity. Unwanted and unneeded features. Mismatch of functionality and
exact need.

• The context of this is important. There are questions of ownership, portability, reliability,
etc.

64

• Documentation. Functionality. Ease of extension. How best to contribute to the existing
product.

• Difficult to install, rely on old/outdated libraries, sparse documentation on how to use

• Difficulty in integrating with our code. Not knowing the error bounds of the codes

• Interface mismatch. Performance/stability problems. Build system integration.

• Investing time for training and effort to go through documentation

• Understanding the code, debugging issues in the software product.

• To make them fit into the specific tasks (i.e., data formats)

• different format of input/output, parallel vs serial, etc.

• Lack of documentation, support and outdated features.

• porting to new platforms for testing and comparison.

• some time do not completely meet my specific needs

• lack of documentation and inability to scale.

• Bugs, unclear documentation, not maintained.

• Becoming familiar with someone else’s code.

• Deprecation & poor documentation.

• Understanding how to use it

• documentation and training

• Adding new features

• Poor documentation

A.5.12 How can others get/find your software components to compose their software
framework/system?

• As a commercial company, we have a standard offering of software components. We are
findable on the web. We offer the components commercially with a special option for research.
We offer training in using our software, and we offer custom services. I don’t see how research
groups that are focused on doing science can do this very well; its not in their mainstream
goals.

• Our software is available for free for download and has an extensive userguide (over 400
pages). We also have a vibrant online discussion group where users can post questions to the
developers and the community.

• Through GitHub, dedicated software websites, through media (periodic Twitter and Face-
book updates and highlights), through mentions in the scientific publications and trough
presentations and seminars.

65

• These are all available through the Eclipse foundation - the process to check out the com-
ponents is well-documented (though not trivial, neither is the learning curve for developing
with them).

• Google, literature review. Freely available on GitHub and sourceforge. Alas, nothing equiva-
lent to R and Python package managers in the C/C++ world. (But GitHub is close.)

• 1. Conform to standards 2. Publicize the code 3. Provide support 4. Provide initial support
to get people over the hump with regard to adopting the software.

• Mostly through repositories and conferences. We have found that the most efficient method
is word of mouth within the community it serves.

• I would say we have not figured the best way out so far. We dot he standard things and they
have only worked some.

• We are usually aware of NSF (or other) projects that funds software component that we need.

• container repositories, GitHub, and from recent publications via google scholar alerts

• Mostly GitHub or thru my research group website or in footnotes of my publications

• We maintain a registry of software that implements the OGC standards.

• cloud sharing repositories, journal online supplementary material

• There are both in-house and outside collaborations.

• GitHub or contact me for file transfers via ftp.

• Open source project available from GitHub

• GitHub, description in scientific papers

• Word of mouth; internet search engines

• We put it out on GitHub or bitbucket.

• GitHub - https://GitHub.com/rapidsai

• through online access, or email

• Most of our codes are in GitHub

• They can see the group webpage

• We keep repository on GitHub.

• ORNL has a software portal.

• Google. Stack overflow.

• Buy or download them.

• Public repositories.

• from our web page.

• Not sure.

• GitHub.

66

A.5.13 If software engineers are available for contract jobs at industry rate, is it more
cost-effective to hire their services for short-term to complete the project on time than
have full-time staff hired for the job?

• Depends on the task. In the software industry the affordable people will usually write code
for a spec. Producing such a spec can be as much (if not more) job than doing this using
students and/or yourself. For a well-defined task it should be possible to hire someone. For
tasks that are more open-ended it will be difficult to expect a favorable outcome from a
short-term involvement of an outsider, unless they are truly an expert.

• Software engineers for contract jobs might be better if there is someone to maintain a critical
software. Students come and go, they are never going to be the source that provides sustain-
ability. So, if it is a project that needs sustainability in the long-term, then hiring a full-time
staff for the job is a better option.

• Industry rates for software engineers is likely to be significantly higher than the compensation
that full-time often receive. There is also the issue of dealing with any future bugs or software
enhancements. It also reduces opportunities/budget for hiring post-docs and Ph.D. students.

• Of course, we use this commercially at times, but there are concerns with long term sup-
port and familiarity. Most software is not simply modular and can not be dropped in and
maintained without in-depth knowledge. Proper documentation can help.

• Contracting with industry really is not something that is supported at my institution. Rather
we try to have a group of developers that can work on a multiplicity of projects, and we try
to juggle this talent amongst projects.

• In my experience the kinds of software engineering challenges encountered in scientific software
are generally not suitable for short-term contract work. For smaller contributions that are
this might be an effective strategy.

• Even if industry resources are hired to complete the project, someone has to maintain it long
term. That has to happen with internal staff or by the community.

• We maintain a staff and augment it with short-term to meet temporary needs triggered by
more work than the staff can handle or to bring in new expertise.

• I believe short-term would be more cost effective as you can get the exact talent needed for
as long as needed, but I don’t have empirical evidence.

• Possibly; especially if you can hire in cycles of short-term contracts that allow for end user
testing in between periods of intensive development.

• In the scientific computing community, I didn’t think you can hire “contract programmers”
(by definition for limited periods) and be effective.

• It could be. Some universities HPC centers are beginning to essentially sell a fraction of a
developer’s time to support software development.

• Yes, but this takes a very special software engineer. I need the code to be written “my way”
so that I can continue to grow it in my lab.

67

• Yes, sometimes – we sometimes do this with the Research Software Engineering group at
ORNL rather than hiring our own programmers.

• Yes if it is in the initial phase of the project. For maintenance and continuing support full or
part time staff is required

• Continuity and establishing an institutional memory is important. You don’t get that from
hiring contract workers.

• Yes. Although if a project is doing to continue for a very long time, it might be good to have
project’s own staff

• No. There is a steep learning to understand complex scientific software. Short-term staff are
rarely useful.

• Probably. It would depend on the length of the project and more importantly funding avail-
ability.

• Yes, unless the project is long term and will likely continue with other projects in the future.

• Rarely. We don’t need guns for hire. We need long-term support for our work and our end
users.

• Most time, it depends on the availability of software engineers, but we prefer short-term.

• Unlikely, but depends on the problem and the frequency of needing this service.

• full time staff is better. the high turn over rates impedes research process.

• It depends on the specific projects, some may benefit a lot, some may not.

• Yes, retaining full time staff is not viable for software development

• depends. for short term the former, for long term the latter

• Yes, but the quality of final product might not be optimal.

• Rarely. What is “on time” in academic software projects?

• Varies depending on need, cost, and time frame.

• At current funding levels, this will not work

• I don’t have experience related to this topic

• yes, if they have the right expertise

• It depends on the project.

• Sometimes, yes.

• That could work

• Probably not

• No comments.

• Yes

68

A.5.14 Does new hiring introduce delays on the project, and do you plan for that in
your project timeline?

• Yes–we get a grant, then have to advertise for a developer or postdoc. We can’t plan for this
because the funding cycles and both funding and university bureaucracy make it impossible.
Unless I have startup funds, I can’t advertise for a position until I have a funded grant to
pay for it. Funding agencies make this worse when they say “congratulations, your funding
is retroactive starting 2 weeks ago, and your first milestones are due soon.” This inevitably
contributes to projects that do not keep pace with milestones when they start faster than
students and staff can be hired.

• New hiring can introduce a significant delay on a project. We try to manage this by a)
maintaining a group of developers that are working on multiple projects; we actively manage
their project workload so that we can make milestones amongst the multiple projects, we also
have developed a practice where we have a standing search (for about a year at a time) that
we keep open, so that we can reduce the lead time at the beginning of a search if we need to
hire more staff to handle additional project load.

• Yes, new hiring does cost cycles! One way to mitigate that is to be actively involved in the
first few months of the project in training that staff. I always plan for delays in my project
timeline. I budget my own time into the project. I am always confident about my ability to
accomplish what I propose.

• Yes and yes; I have trouble finding skilled people to work on software development projects
as a new PI in a biology department. My professional network does not include the type of
people I need to work on software development, hence why we contract out to industry

• Yes it does coz every project has a steep timeline. One cannot avoid taking this into con-
sideration so yes, I plan for that in my project timeline. It is often a hard problem as when
funding begins, deliverables begin too. So this is the hard part.

• We have an established team, so this does not apply. We are very fortunate to have a very
dedicated core team that intends to stay with our group as long as funding continues to flow.
If funding dries up, the project will be terminated.

• Yes it does. In soft money organization staff are fully funded (otherwise they are not in the
organization) and so if new funding comes in and at the same time another funding doesn’t
end, it is hard to match staff to funded projects.

• Yes. Hiring is a problem. I’m not sure if there is a good solution other than constantly
training competent people within your group to ensure that the pipeline is full.

• New hires need training in technology on which they are going to work. That adds significant
delay. We try to hire people long term to amortize the training costs.

• Yes, there are always delays that should be taken into account although sometimes reality
surpasses all the possible planning one can anticipate.

• Yes and we do our best to plan for this in the project timeline, although this more often gets
factored into a no-cost extension.

• It can, but I think this is not different from fundamental science. I don’t see this as a major
obstacle.

69

• There is very little we are able to plan in an academic setting because there is so much
uncertainty.

• Yes new hiring introduces delays as a new hire requires training before they can become
productive.

• We tend to bring in part time support to existing staff rather than delay start.

• Yes, and the delay is usually unpredictable, so it is difficult to plan.

• Typically, we find new capable people to continue writing the software.

• Yes. We usually get extensions to the project to deal with this.

• Yes, it introduces delays because it is hard to find people.

• yes, there could be some delays in the hiring process.

• Yes, it does introduce delays. Yes, we plan for these.

• I desperately try to maintain talent to avoid this.

• Yes, this often is a longer lead than expected.

• Hiring is fundamental and must be factored in.

• Yes, there is always an administrative delay.

• sometimes is does cause delays.

• sometimes yes

• No comments.

• Yes and yes

• definitely.

A.5.15 When the senior personnel on the project who are in charge of the development
work get promoted or take a lucrative job elsewhere, or when the students graduate,
how do you address the loss in progress on the project?

• I try to build a pipeline long before a student graduates. It requires meticulous planning. For
e.g., I always pair up a Masters student with 2 undergraduate students in their junior years.
An MS student graduates after 1 year of research, and by that time the 2 undergrads are
trained. Then either they continue or we get another MS student or 2 more undergrads to
train for the project. This is a great way to build a pipeline and goes a long way in sustaining
a project. So far, I have never had any project that fell through, while providing research
exposure to the undergraduate students.

• I try to find another student to pick up from where it was left. It is not a complete match
always but works most of the time. Having said there are times when there is a long pause
between a student leaving and a new student jumping into the game. The development of
the software takes a hit and a back seat. Sometimes I have trained an undergrad student

70

along with a grad student, so if the grad student is leaving then the undergrad student picks
up the steam until a newer grad student joins - vice-versa, so this way the gap is somewhat
addressed.

• Hire as quickly as possible, transition other students into leadership. We work to make sure
software is as well documented as possible to mitigate these risks. Usually documentation
takes far more time than coding, but we are aware of this. We also are developing “com-
putational apprenticeship” STEM education practices to make sure more senior students are
training more junior students and passing on their knowledge.

• Two ways - one is we try to have more than one person on a particular project, with exposure
to a broad range of what is going on in the project, so that the risk associated with the loss
is mitigated. Secondly, we are always mentoring new developers, to have them come up to
speed with the specific skills needed for the projects.

• (Commercial company... we don’t have students). Loss of serious talent is always a setback.
It is hard to control. We work to ensure we have the software and appropriate design docu-
mentation; we try to have some overlap in work so that somebody has a chance of picking up
the pieces with some background in place.

• Each area of the project has two people working on it. Thus, when one person leaves, the
other person takes off. We also have an extensive knowledge transfer session where we the
employee leaving the organization does a series of presentations to hand over items they’re
working on.

• Students should not be writing production software. A good organization should have re-
dundancy in personnel, and reward staff in ways that discourage them from leaving. These
issues relate to the overarching need for approaches designed to provide for sustainability and
quality.

• By having multiple people on the development and bringing on new students before the
current students graduate. Having the PIs and CoPIs working with the code makes it easier
to ensure there is adequate documentation and less progress is lost when group members
depart.

• There must be continuity. That requires that more than one person be versed in the details
of a project. Frequent meetings and documentation can aid in this process. There must be
stable management of the project whether that is long term staff or the PI.

• We have an established team, so this does not apply. We are very fortunate to have a very
dedicated core team that intends to stay with our group as long as funding continues to flow.
If funding dries up, the project will be terminated.

• Understand the potential loss from the very beginning and have a well-designed process in
place, such as documentation. Do not let the senior person or student dictate the progress.

• We hope to bring in new people whom the promoted staff can oversee and guide. I can see
that for some other projects student/postdoc leaving can cause problem.

• We try to make sure the software is maintainable to begin with. After that we support the
software in ad hoc ways until we can get to a more stable situation.

71

• Senior personnel leaving should hopefully be anticipated and planned for. With students,
knowledge transfer to more junior students is generally relied on.

• I’m from industry, but we typically have people shadow to avoid key person dependencies. In
addition, we release very often to have regular checkpoints.

• can be a substantial problem due to small group size. I try to get all group members involved
in infrastructure activities to mitigate the effect.

• Good project leadership builds personnel with redundant skills. That includes leadership:
Good leaders plan to become replaceable themselves.

• Sometimes this ends up making the software languish and/or become obsolete for years,
unfortunately. This is a hard (but common) problem.

• By hiring staff (part time temporarily) who has similar skills and who might be looking for
funding. Promoting junior members.

• Interesting this would not happen if you contract experts and once the project is done you
dont have to deal with them.

• Do a technology transfer, so that the student shows how things work to the next designated
student in the group.

• Try to move the project to someone in-house who is already familiar with it and can get up
and running quickly.

• Make sure there is sufficient time overlap between the person leaving and the next person
who will do this job.

• I try my best to start training the new person before the old person leaves. This is a hit and
miss strategy.

• I try to have a pipeline of students, but sometimes, I spend my weekends coding. That is not
a solution.

• Both from promotion from within and from new highers; often new highers come from our
temporary staff.

• Try to transfer knowledge at least a few months before they leave, but some delay has to be
expected

• Everyone loves their job. No one ever leaves. (We also hire replacements as quick as possible.)

• Tough question. No easy answer but a real concern. We have been lucky and stable thus far.

• I find another student to have some transfer of knowledge from the departing person

• We avoid loss by keeping all the group code and software on a shared repository.

• It often hurts the project and the position is often filled with a new employee.

• Documenting and training a new person before the other person leaves.

• I try to hire new students who can be trained by those graduating.

72

• oh yeah. all the time. it’s terrible when it happens.

• We don’t really have this problem at a national lab.

• I have to be up-to-date myself on the code.

• We do cross training to avoid braindrain

• need to find replacement before that

• Train a new grad student/postdoc.

• Nice documentations and backups

• need overlap and handover

• No comments

A.5.16 What are the tradeoffs in having a full-time, senior-level staff, learn the basics
of software engineering and deliver on the project, versus hiring trained or trainable
graduate/undergraduate students?

• Full time developers, while expensive, are very valuable as they can easily lead development
efforts, and do not require lots of close management to make sure that goals are achieved.
Graduate and undergraduate students: mileage varies considerably, it is possible to have a
simply amazing student working on a project, and for every one of those, you may work with
2-3 less than amazing students. Also, graduate students are not “cheap”, they really are
an investment, and one needs to factor in the mentoring needed, to achieve the success you
desire. So, this is where some additional risk can be introduced into your project - I think
it is important to think of what the goal is for the work (a production software product, or
training the next generation) when trying to set the balance on the project.

• The advantage of a full-time staff is long-term sustainability. Any project such as establishing
a cyber-infrastructure would require at least one such full-time staff. Hiring students, on the
other hand, has obvious benefit of training the workforce, some might continue as the full-time
staff. Since students are cheaper, we can get more students to engage in the project, and in
the process get diverse and creative minds to enhance the quality of the overall deliverable.
Providing long and sustained service though is a challenge with students.

• We all have to keep learning and adapting :-) The constant in our field is - ability to pick
up new stuff. Full time, senior-level staff were once upon a time undergraduate/graduate
students and to that end I strongly believe in training the next-generation workforce. Yes, if
there is a major deliverable else the project would fall apart, I will need to hire a senior staff
- but that also means I need more funding to hire talented people so it is not an easy problem
to solve.

• The graduate student also understands the physics and so will be able to make more informed
choices about how to develop the software based on context. Additionally, the graduate stu-
dent can take that knowledge and continue to apply it for the benefit of their scientific com-
munity while a software engineer without the background may not see connections between
different physical problems that require similar software tools.

73

• Software engineer costs a lot of money and I have to constantly think about grants about
supporting their position into the future. But they bring continuity and sustained quality
to the project. I’ll take one good senior-level staff over 4 graduate students any day of the
week! Undergrad and grad students do play a vital role, though. Often, they bring immense
creativity and nucleate new projects / ideas within the lab.

• It requires a tremendous amount of work to mentor a student who knows basic programming
to use software engineering best practices. Additionally, senior level staff cost too much, so we
end up with students who don’t know software best practices writing all the software because
the actual cost to write good and maintainable software is too high and makes proposals
noncompetitive.

• Staff can often make more progress quickly since they are full time. However they don’t
always have a research mentality for innovation and publication, which doesn’t advance the
field the way a student would. Plus there is the advantage of educating the student, but they
tend to be slower and sometimes their code is not well written.

• For reasons of continuity and/or competent management it is necessary for the senior (includ-
ing senior PI) level people to be involved in software. But in an ideal universe where people
that the PI can hire are better in a short period of time than the PI, sure it makes sense to
outsource the software activities.

• It depends. While full time staff members allow us to make faster progress, good Gradu-
ate/Undergraduate students are equally productive. Taking the MVAPICH2 MPI library
as an example - Most of the designs in MVAPICH has been primarily (70%)been done by
graduate students with full time staff members (30%).

• Full-time staff will generally make faster progress, although they may be more resistant to
adopting new SE methodologies. Of course, getting students involved is part of broader
impacts and educating the next generation. Students may also be on the project longer or
are at least less expensive.

• Senior level staff is clearly expensive so the deployment of their resources is best done in their
field of experience. Training students for such tasks should only be done when it is beneficial
to their future careers and never when it distracts from mastering skills in their field.

• Salary is a BIG tradeoff, as is competition with industry. Pros of grad student are longevity
for 5 years whilst in the program, and the fact that students are more affordable. But
students can work slow and produce fewer outputs compared to senior/experienced staff.

• Some senior staff are capable and willing to learn in these areas, but those that aren’t cannot
be persuaded to change in my experience. Targeting students (in an educational way–not as
code monkeys) will likely be more effective in the long run.

• For small to medium project the former is often cost prohibitive. For large projects, having
a senior staff person may be desirable, even though post docs may be good for that role and
fit the university mission better.

• Senior staff (such as postdocs) can often be more productive earlier in a project. However,
graduate students offer more certainty in some cases. They are less likely to leave unexpectedly
mid-project.

74

• Having a full-time senior-level staff person be the project manager for the PAPI project, back
when I used to run it worked great because it provided continuity and we also hired students.

• Students learn fast but might also leave to take a lucrative job elsewhere with the skills
learned. Senior level staff can be mature and methodical in the learning process.

• Graduate students have more expertise in the science and might be more driven to develop
new applications, but basic software engineering could delay their research career

• The full-time staff have to be considered educators as well. The real goal of my lab is to train
students. I can’t do that if students aren’t allowed to touch the code.

• When a “production level” tool is needed, a full-time is needed, still Master students can
assist in several parts of the project and learn from the development phase.

• Having a full-time staff is better as they will stay longer in the organization and don’t have
to balance between research and work as would be the case for students.

• Staff members are critical. Students simply are not the ones one can rely on to build and
maintain the systems (they of course play an important role)

• Experienced full time staff will speedup research. Time invested in training students could
be detrimental if you have limited budget and resources

• Graduate students are not reliable, you need real developers for infrastructure. Grad students
help with innovation and piloting new ideas.

• If your software needs to survive and be sustained long term, there has to be a mix of
professional staff and students in the team.

• Students should not be writing production software. Meeting needs for sustainability and
quality requires a professional approach.

• I can’t speak to senior research staff learning basic software engineering. Student labor is
guaranteed to be ephemeral.

• Students have no long-term interest in software quality, and they have other priorities (namely
graduating).

• Graduate/undergrads can do wonderful things, but its difficult to rely on them for the core
development.

• We don’t have this issue. Our full-time, senior-level staff is well-versed in software science.

• For faculty, this will be good, but the cost is high which shall be mitigated by the fund.

• The former will typically need a higher salary than graduate/undergraduate students

• long term development of methods does require a full time person for the long term

• Having a pyramid of talent is typically more cost effective in my experience.

• Sustainability. Extended time needed for training. Cost.

• accuracy. can’t trust graduate students all the time.

75

• We mostly work with grad/undergrad students.

• Hiring full-time staff is expensive

• Both can work.

• No comments

• depends

A.5.17 Should we put PhD students in the project for non-research oriented tasks
(e.g., software maintenance)? How about recruiting students pursuing Master’s or
undergraduate degrees?

• I think, it makes sense to involve PhD students in non-research tasks related to software
development, but only partially. Here are some reasons why: a) these efforts may help students
develop their software development/maintenance skills, which may eventually be valuable to
them if they decide to go to non-academic positions; b) the PhD students assigned these tasks
would have good knowledge of the scientific aspects of the software anyways, so it should not
be a big overhead to them, as long as this is not a really-time-consuming effort; c) through
tasks such as software maintenance, students may also increase their own visibility and grow
their network, which may eventually benefit their career pathways. Master’s students may
or may not be suitable for such tasks. Typically, to be able to maintain software, one needs
to know not only the bare implementation details, but also some underlying scientific basis.
Within 1 or 2 years of Masters training, students may not reach this level. Yes, they may
contribute to somewhat more trivial tasks though that requires more guidance – e.g., to
running tests and analyzing some extensive data. The tests should be designed or pre-
created for them, either by the PhD students or by senior staff members. Analogously, the
undergraduates are less suitable for tasks such as software maintenance but may be suitable
for massive testing and analysis efforts.

• Software engineering is an important concept. Lately we are hearing a lot about Research
Software Engineers (RSE). These are personnel technically expected to be equipped with
excellent software engineering skills. RSEs could be PhDs which means they need to be
trained with software engineers. and maintenance skills. So I wouldn’t totally separate both
the aspects but balance it out. I would definitely put more focus on such skills at the MS or
undergraduate level.

• Although PhD students shouldn’t be spending a significant fraction of their time doing this,
performing software maintenance is a good way for new students to learn the code. And,
it is a good learning experience for students to have to maintain and improve their code.
Outstanding Master’s students or UG students could perform these functions, but they may
not be invested in the project enough or around long enough to handle all these requirements.

• The PhD student who was responsible for the innovation/research should be involved portions
of the software maintenance. This is valuable experience for the students in how to develop
good software and will definitely help them in the future when the join the workforce in
industry and are called upon to architect/design/develop large software frameworks. Same
goes for MS/Undergrads.

76

• They should all pitch in, but software is usually a means to an end, rather than the primary
goal. I work regularly with students at all stages who pitch into these efforts. Sometimes, we
cycle between growing / building software infrastructure, then applying them to new scientific
problems, and then back to infrastructure / training materials motivated by the last cycle.

• We should not put PhD students in the position of writing software unless it is directly
tied to their current research. Undergraduate students are much better candidates as their
availability and interest is much higher. However, the work to mentor an undergraduate (or
graduate) student to use the best software practices is large and cannot be understated.

• Definitely MS or undergrad students do an excellent job in maintaining software. I think
Ph.D. students should never be put in that position, unless that earns them an assistantship
to cover their tuition. Ph.D. is a special training that takes away a good chunk of lifetime.
One should only do it to fulfill one’s dreams or make a change they believe in.

• Not all Ph.D. students wish to go on to careers in fundamental research. Those who wish
to go to industry benefit greatly from involvement in such tasks. In particular, students
earning their Ph.D.s in application areas (e.g., Chemistry) can make a stronger case for
future employment in computational areas if they have this experience.

• Certainly MS and UG students will gain valuable experience even from non-research oriented
tasks. PhD students also learn a lot about the business of software from non-research oriented
tasks, so they could certainly work on such tasks during the initial part of their program,
before transitioning to primarily research.

• This seems exploitative. We have joint postdocs with academia and never assign projects
that are not publishable. How does it further a student’s education to assign difficult tasks
outside of the field of study? Is such deployment worthy of NSF funding or, put another way,
the best use of research dollars?

• I think it is OK for PhD (and even MS or undergrads) students to gain some experience in
non-research oriented software work as both in academia (where they themselves may get
software related funding or their research may involve some software) and industry they may
deal with software.

• I think in technical fields many “non-research-oriented” tasks are part of the research. e.g.,
is learning how to operate NMR research-oriented task? Is preparing samples for shipping to
a synchrotron? Our students will need software skills that go beyond pure-research activities

• Putting PhD talent on projects (again from an industry perspective) sometimes inspires them
to do things slightly differently or find new bottlenecks to research and improve. I think some
time in software maintenance makes them appreciate trade offs of development.

• I think this is not fair to PhD students to be put on too much of the non-research oriented
tasks, it is far too easy to put them at risk of not achieving their desired degree. I think it is
less problematic with Masters graduate students or undergraduates.

• No. It is wrong to use PhD students for such purposes. The Ph.D. students should be the
innovators rather than the code monkeys. Master’s students don’t stick around long enough.
Ditto for undergraduates.

77

• Sometimes they need the support and if they can still do something innovative for their thesis,
it can be helpful, although slower than when the project is more directly applicable to their
research.

• Yes, but like I noted earlier, I think if given a SW Development Supplement as part of a grant,
the PIs will find creative ways to deploy the services from talented MS and UG students as
well.

• Only in a very limited way that supports their research and career goals. I think students
joining a research group expect to make progress on research, not just learn software mainte-
nance.

• PhD students will suffer by having task that do not help them in their future careers. MS and
undergraduate students may gain valuable experience doing this but may not be qualified.

• Generally speaking for PhD students in science I would say no, unless they request this
explicitly and / or aim to pursue a career in software engineering after their PhD.

• It depends upon the PhD students interest. It is important to have a person in the position
that understands professional software development and maintenance.

• PhD students can benefit from working on these tasks depending on their primary area of
research. Masters and undergraduate students definitely benefit.

• That’s a question of how much time they spend on it. I think that’s part of learning how to
work with software. Students need to learn that as well.

• All students should have some experience in software development and maintenance, but no
matter their level, they should not focus solely on that

• No. just let us hire research staffs. perhaps several groups can share one research staff who
get paid for a few months from each of our grants.

• This isn’t a yes/no answer: the question is driven by the cost to train for the task vs the
amount of work delivered for that training.

• Students should not be writing production software. Meeting needs for sustainability and
quality requires a professional approach.

• I think it is better to use full-time staff for this purpose if possible – master’s or undergraduate
students can help.

• NO! They should learn critical skills in these areas but their primary job is to learn and to
research.

• Minor maintenance tasks can be done by students. This is also a potential for cross-disciplinary
work.

• They all need training on this topic and we need to change the culture in WRT software
sustainability

• It will be fine if the PhD students are ok to cover both non-research and research oriented
tasks.

78

• No, graduate students efforts are best doing research. Maybe undergraduates for training
purposes

• PhD students can do it, but it is always helpful to train under and MS students

• If their degree focus is on software development, then that could work.

• Master’s have proven to benefit the most in performing those tasks.

• Maybe for a short time to give them the needed experience.

• This is common practice and some students even prefer it.

• PhD will probably perform the best for such a task.

• Yes, but their role needs to be carefully defined.

• Both sounds like a good idea.

• No, very bad idea.

• Yes and yes

• Yes

A.5.18 Should the domain-science projects - funded through the CSSI program - be
required to have the CISE collaborators engaged at a substantial level of effort to
ensure that best practices for software engineering and data management are followed?
Should the CISE projects - funded through CSSI - be required to ensure accountability
from domain-scientists (who could have promised to provide test-cases in their letters
of collaboration)?

• First part of the question: probably not. Not all domain-science projects (e.g., in Chem-
istry/Material Sciences) require substantial software developments. In this case, collabora-
tions with CISE awardees may not be needed. Another aspect – sometimes, the domain-
science projects’ PIs may already be sufficiently versed in the software best practices or can
obtain such a training (e.g., via MolSSI’s workshops in Chemistry). Nonetheless, the CISE
collaborations should be encouraged – this looks like a good idea in general. The second
part of the question: due to the NSF’s policies on the format of the collaboration letter, it
is unlikely that the domain-scientists who provided letters of collaboration would have an
opportunity to explicitly state the scope of their work. To date, this remains up to the PI
to describe the nature of the collaboration. I think, it sounds like a good idea to incentivize
some accountability from domain-scientists, but it may be harder to do if they are not funded
(e.g., unfunded collaborations).

• This may be a good step, but should be in an opposite way. It may be more appropriate to
require “software maintainability plan” along with a data management plan, etc for domain-
science projects - funded through the CSSI program. CISE collaborators are not necessary.
This could be done through consulting service. On the other side, CISE projects-funded
through CSSI should have the domain-science collaborators engaged as collaborators at a
substantial level to provide and test the software/data and ensure the usability and quality.
It is NSF’s mission to promote the progress of science. In addition, the domain-science
collaborators are required to help recruit more researchers using the software. Most often, it
only stays within the research groups of the domain-science collaborators.

79

• The domain-science projects need to show how they will ensure best practices, but that doesn’t
necessarily have to involve CISE collaborators. Perhaps they have advisors from industry or
their students are doing or have done internships in industry where they learn good practices.
They could also send their students to courses where they will learn good practices. CISE
CSSI projects should have accountability for good test cases from domain scientists if their
software is to be used by researchers.

• All proposals need to be judged holistically. It is not realistic to expect all domain-science
proposals to achieve best practices at the same level as a CISE proposal. On the other hand,
it is not realistic to expect CISE projects to achieve the same level of domain impact as
domain-science projects. I think it is fair to judge proposals on both accounts, with the
understanding that some projects will be stronger in one aspect and some will be stronger in
the other.

• Projects should be able to demonstrate that (i) they know about and follow best practices,
and (ii) are relevant. That can be done in many different ways – using some kind of CISE-
or domain-affiliation is one of these, but ultimately I would leave the method by which they
demonstrate these points to the PIs: There are excellent software engineers also in the domain
sciences.

• To the extent that it helps projects without stifling creativity, yes. Especially if funded by
CSSI. I like the potential of this “match maker” role: CISE projects should include domain
scientists, at least on an advisory board, hopefully funded on some level. Domain projects
should include some CISE staff. Hopefully the CSSI grants can fund these.

• I don’t think there should be a set rule. Academics are most innovative if processes are
not prescribed. Indeed, the SI2 program, which has morphed into CSSI now, is much too
controlling. The special requirements that seem to now be part of the rubric by which projects
are awarded or evaluated do not help innovation. They stymie innovation.

• In general, yes. There may be cases where non-CISE researchers have strong software en-
gineering skills, but this is the exception. Yes, in general to the second question. Without
working with domain scientists, it is unlikely that the code will provide the necessary func-
tionality for anything beyond trivial/obvious problems.

• A big YES! Interdisciplinary science cannot win without both parties involved equally. CISE
need input from domain scientists to advance science and domain projects need CISE to
advance computing. So asking for test cases from domain projects is evidence of an excellent
collaboration.

• No, I don’t think so. If productive mutually-beneficial collaborations are possible and/or
exist, sure. But what CISE-funded people are motivated by is rarely what we (scientists)
need: they have very different motivations than we do.

• Having professional software development and maintenance skills are critical to the success of
the projects. Its less important where those skills come from and more important that they
are present and integral to the team.

• I think these are really laudable goals, that are really hard to achieve with the realities of
the funding levels. I think that it is worth trying to achieve these goals, though - striking a
balance in any CSSI project.

80

• There are two separate questions here. 1. CISE collaborators - while this is beneficial, it may
put an unnecessary burden on the PIs to find the right match 2. Domain Scientists - this
would be useful.

• I think this combination of CISE and domain science divisions is a good one. In some cases,
CISE may want to fund some CI projects which may impact many domain sciences.

• Yes, although a true collaboration and engagement more likely happens before the proposal
is submitted and thus scientists are involved and champions of the project.

• Yes. I strongly believe in a industry and academia working together to make sure code quality
is high as well as it does what it’s suppose to with real world data.

• domain science projects should be encouraged to take advantage of national networks that
try to support “CISE experts” that assist domain sciences.

• Yes, but there has to be funding and/or traditional scientific metrics (publications) to ensure
that this will happen (e.g., for end user testing)

• Collaboration between domain and computer scientists is critical. I’m not sure if it can be
effectively forced, though.

• Yes, I think maintenance and the quality of software in general is very important for domain-
science projects.

• Yes. Otherwise somebody will skip the step about building sustainable software or repeatable
results.

• Requiring such things can cause resistance – it’s better if people see how they will gain from
it.

• I am not familiar enough with the program to answer.

• Yes. But, needs to be a meaningful collaboration

• Yes, if the effort is funded at the same level.

• YES. There are so many benefits to this.

• This is highly dependent on the project.

• If this requirement can be sustained.

• I think so to both.

• definitely yes.

• Yes possibly

• Yes and yes.

• Not sure.

• sure

• yes

81

A.5.19 Are deep learning techniques disrupting or impacting the future directions of
your discipline? If yes, then how?

• There are some efforts in deep learning/machine learning (ML) in my discipline (excited
states and nonadiabatic dynamics), and they may be useful from the practical perspectives
(e.g., to accelerate some calculations). For instance, one can use ML techniques to accelerate
nonadiabatic molecular dynamics calculations, one can use ML to search for some materials
with desired properties or classify large datasets of materials and mine new “guiding princi-
ples”. Ultimately the ML methods can not replace the approaches based on more rigorous
theoretical grounds. So, ML can be useful to gain some technical advantages and develop
some sophisticated chemical heuristic theories, but one should not excessively commit to such
approach as a way to discover/understand new physics.

• Yes! I work on developing software tools for performance analysis, comparison, prediction,
validation, and now performance reproducibility. Deep learning is the key technique I use to
combine various sources of information about the applications, runtime, hardware counters
to gain insights into how these different sources are connected, what story do they tell, how
can we learn from the past and project to the future, and how can we continue to learn
and iterate our models based on new information. Without deep learning the questions I
am interested in—comparing performance across applications and architectures, predicting
resource utilization on future systems without ever running an application—would not be
possible.

• We define “disruptive technology” as technology that affects the overall ecosystem of devel-
opment and use. Contrast that with “sustaining technology” that incrementally improves
the ecosystem capabilities. Deep learning is requiring a reconsideration of how software is
developed and deployed and used; and so we consider it disruptive.

• yes. it’s a new disruptive technology. There is pressure to learn, and even apply, DL techniques
even before the benefit is clear. This is no different from other disruptive technologies, and
can end up in a benefit, however. Just the pace at which DL as a disruptive technology
emerges seems unprecedented.

• Yes, but I’m not sure how. Part of it is based on the perception of what deep learning
can/could do. For instance, people are using deep learning to explore supercollider events to
search for unexpected results/physics. This is interesting, but the value will depend on what
results from this exploration.

• Chemistry maps well onto deep learning. Local chemical structures determine local properties
of a molecule, and the global molecular properties arise from these local properties. Deep
learning is beginning to see some use in chemistry, and I expect that it will continue to grow.

• Yes, we recently created a deep learning log parser. While not the most exciting nor ground
breaking thing, it will save time from hand coding parsing rules. Just one example but I
strongly believe deep learning will change cybersecurity, but I’m biased as I work at NVIDIA.

• Yes. Let me illustrate with an example. Before DL, no one cared about large message
MPI Allreduce. Traditional scientific community was focused on 8-64 byte reductions. DL
has made the community focus on very large message reductions as well as GPU-awareness

82

• They are impacting the future directions of computational chemistry. They are opening the
road to thinking of problems in a different way and to finding answers by learning from the
years of scientific data and knowledge which we have accumulated.

• Both disrupting and impacting. Because of the hype, people tend to apply DL to problems
that is not appropriate for that technology. In the meantime, some high quality research do
stand out from the crowd.

• Partially, the prevalence of deep learning techniques has created an environment that now is
overhyped to do machine learning, which has decreased the incentive to do software develop-
ment in the sciences.

• Cynic here. Lots of claim that ML will solve all kinds of problems. it will solve some. At
present, ML via DL doesn’t produce “explainable” results. For me, that means you don’t
have science.

• Deep learning techniques are gaining popularity in the neuroscience discipline however it is
early to say if the techniques are disrupting the directions of neuroscience research.

• They have had some impact, but not transformative. They have been and will probably be
most effective in routine applications, but not likely in innovative or high-impact areas.

• I’m trying to understand this across many disciplines and am keenly interested in the answer
here - unfortunately, I do not have any insight on my own discipline.

• Yes. We are working hard to integrate machine learning approaches with mechanistic simu-
lation science. (I’d say we’re on the leading edge of that in cancer.)

• Yes. They are making new applications of machine learning possible, such as detecting
infrastructure or environmental conditions automatically.

• I suppose. But my interests are in why things work, md just not in having the, work.
Therefore, deep learning has more limited applications.

• Not as much in my area due to the combinatorial nature of problems (bioinformatics, graph
analytics, etc.).

• Yes. By making it easier to fit models to a bunch of data where it’s not clear what the model
should be :)

• So far, deep learning techniques are intriguing, but I do not see supplanting traditional tech-
niques.

• Yes. It is probably going to impact every discipline, but not dramatically reshape the future.

• Yes for some problems. e.g., deep learning was applied to predict many materials properties.

• disrupting, large amount of data, embedding techniques to go beyond simple classification.

• There is no direct impact of DL in CI software we deal with regarding being disruptive.

• yes. need new training and perhaps hire people with different skill sets.

• We’re interested from the hardware/software requirements point of view.

83

• yes – I work on using data science and NN for Multiscale coupling

• Not sure. I think more impactful will be mixed-method approaches.

• New requirements and opportunities, but not disrupting yet.

• Some. But there are many aspects where that is not the case.

• Yes–changing how graph algorithms are used

• yes, they improve some algorithms.

• Again, this is project dependent.

• Possibly, but currently unclear.

• yes. involved a lot.

• N.A.

• No

A.5.20 What are some of the effective approaches for software dissemination?

• Having a central registry helps by providing a place to look. somebody has to manage that
directory. It is difficult because you want some kind of sensible indexing, and we don’t know
how to do that for software very well, let alone for the problem domains to which they
apply. Current repositories like GitHub don’t have useful indexes in this sense. A major
problem with “software reuse” is the artifacts are often monolithic because they are overly
committed to the particular task or technologies they use. Another approach is find a way to
factor software into more reusable parts. This requires research into building solutions from
components; the components are more likely to be reused than the entire solution.

• Publications that discuss software/data to be made Open Access (some outlets cost quite a
bit for Open Access, so where would those $$ come from?), talk about software in different
outlets (social media, conferences, symposiums, domain-based outlets as well), write blogs
that are easy to follow than a technical publication, involve the community that the software
is targeting. Public engagement is not only a mechanism to provide evidence of the impact
but it by itself is a form of impact.

• For non-domain specific software, having a home in a software foundation is enormously
helpful. Implementing a training program, takes it to the next level, when targeted at the
right opportunities. For domain specific software, as best as I can tell, using some traditional
domain venues for publishing is effective, and supporting a community of users and developers
helps build visibility for the domain software.

• 1. Conducting user group meetings (e.g., http://mug.mvapich.cse.ohio-state.edu/) 2. Con-
ducting tutorials at conferences and workshops 3. Conducting Birds of a Feather session at
conferences and workshops 4. Giving talks at various at conferences and workshops

• Reach out to partners who are interested in co-developing the software, form an open source
consortium when there are sufficient partners. Hold workshops at relevant conferences with
hands-on training and feedback on software features for future development.

84

• Software like technology is most effectively deployed based on trained individuals disseminat-
ing the products. This happens rapidly by having testbed and sprint style initiatives that
train the community; with participation for all parts of the community.

• Make software available online. Advertise it in scientific talks. Host new user workshops.
Provide clear, concise user documentation. Provide some degree of user support. Make
software available on XSEDE or via web portals.

• The most effective that I have ever found is software-as-a-service, with high-quality web
interfaces and REST APIs. That is how people use software outside academia, and how we
should deliver much of our software.

• Identifying target users, engaging with related organizations, identifying barriers, developing
success metrics, and allocating resources to implement the plan

• Opensource, lots of tutorials, webinars etc. but bottom line is there has to be an user base
who needs it, otherwise dissemination alone will not work.

• GitHub and alike services, potentially – the educational gateways with such software and
suitable training resources, workshops and mini-conferences.

• Beginning with early adopters; Involving users in the software development from the start;
Planning early for adoption and sustainability

• Publishing scientific articles to describe the code which has been disseminated. Creating an
online website for the software.

• Workshops for (potential) users. Presentations at conferences for domain scientists about the
software capabilities.

• web pages and GitHub. There are many “software repositories”. We should find ways to
cross-reference them.

• Through open-source sharing on GitHub. This is the only thing that has worked for me so
far.

• Conferences, blogging, and regularly promoting new functionality to gain a user base.

• I think open source platforms such as Git and Bitbucket are effective and adequate.

• Free hands-on workshop, ideally in conjunction with domain science conferences.

• Twitter, GitHub, giving talks at conferences, running training workshops

• Through git hubs, news groups, presentations, use of social media.

• online and in person workshops with hands on training sessions

• Making them available for download, providing a user manual.

• Building broad user communities that can “spread the word”.

• Open source. Web service. One size does not fit all.

• regularly maintained on open source/data platforms

85

• containers connected to high-performance computing

• Should be made mandatory by funding organization

• Disseminate within an established community.

• Make it public in a well known repository.

• Summer schools with hands-on sessions.

• Community workshops, meetings, demos.

• share open source code and documents

• Conferences, web-portals

• GitHub works very well.

• Commercialization

• twitter

• GitHub

A.5.21 How can software and data products be made discoverable, accessible, and
usable by the community?

• Perhaps, NSF could have built their own gateway/database of such software. This gateway
would cover various disciplines and would have a database of registered users, who could
add their projects (supported by the NSF or any other). The gateway would have some
metrics tools monitoring the use/interest level of each software component. The NSF could
then promote the use of the projects they have supported. This can be done at various
events or through public outreach channels NSF may have. It would be great to and in-
centivize/encourage new projects to use/refer to the projects already in the list. One nice
example of efforts along these lines is the MolSSI’s database of computational chemistry pro-
grams. This is certainly a worthy effort, although such databases should have some proactive
components, e.g., one could do better in popularizing the tools registered in the database.
Another approach to stimulate the software accessibility and usage by the community is
through supporting training events and workshops. This is what is being done already by
the CyberTraining program. This program should be continued since it takes a persistent
effort to educate the community about what is available and this is what the CyberTraining
program aims to support.

• We need the software institutes that NSF spent resources planning and then never funded
in a broad way. They can provide support to users in identifying appropriate products and
using them, as well as providing feedback to developers on future innovations that are needed.
An online smart library that helps users find research software with the features they need,
as well as ratings from other users, would be an easier lift that would be a start.

• An idea is that there can be one platform with multiple channels, where each channel could
be an engagement ground for a community. We can “register” our data, software, product
etc. with some hashtags and key terms to be discoverable. One unified search option that
can search across the entire platform or can provide filters for more focused search. Kind of
a mixture of google and Slack, but for scientists.

86

• I think it is important to have some affiliation with organizations that support and promote
the software and data (e.g., NCAR for atmospheric modeling, Unidata for atmospheric science
data). This can help raise the visibility of both software and data, especially for domain
science, far beyond what a single project or practitioner can achieve.

• All of the above holds good for this question as well. Adding software/data products manda-
torily in a publication will bring it more visibility, dockerization and containerizing of software
will make it more accessible and usable, also loading software/data into a repository that’s
most popular in a field would also help.

• I’d argue though that what’s missing is a ranking of open source software. Once there is
a ranking we should see an improvement in the quality of the software and also its use
(dissemination). The ranking can be done like in top500 - a software competition every year
in certain defined areas.

• See previous answer. I think there has to be an incentive to place the the products in a
centralized repository so that one has sufficient volume to ensure that would be users come
look. NSF could arguably run such a repository (even if contracted out commercially).

• Make software available online. Advertise it in scientific talks. Host new user workshops.
Provide clear, concise user documentation. Provide some degree of user support. Make
software available on XSEDE or via web portals.

• I think now a days this is not a big problem given how easily everything is known by everybody
via social medial, lots of conferences, webnars, websearch etc. Real issue is if there is a need
and user base for the software.

• Having some repository for these tools would be a great option. Not sure what user commu-
nities have this. Having information available from professional societies/conferences is also
useful.

• Include cloud-hosted models, find ways to get software into other package management sys-
tems. It would be nice if there were truly cross-platform package managers.

• Software should be open source. Developers should provide examples, tutorials and a mailing
list. Information should be available on a dedicated webpage.

• The above mentioned cross-references could contain agreed metadata to inform about impor-
tant features for discovery and usability.

• Discovery through publications and talks. And usable by providing decent documentation,
access to well-commented code.

• With appropriate metadata, in open repositories that are searchable, following the FAIR
principles.

• Conferences, blogging, and regularly promoting new functionality to gain a user base.

• Twitter, scientific papers, giving talks at conferences, running training workshops

• symposiums at national conferences just for new software and data products?

• Deploy them on the community cyberinfrastructure, such as XSEDE resources.

87

• Have a research community moderate and curate a software collection.

• A registry that shows how the products meet community standards.

• Publish the code in a paper as well as making it open source

• Create curated searchable repository of research resources.

• through multi ways, such as publications, websites,

• through open source/data platform, with DOI links etc.

• Keep everything well documented and openly available.

• Historically, through publication and research talks.

• As I said we have not cracked the code on this.

• Every software product should have a DOI

• Docker hub, singularity hub, Dock Store

• Be sure they are locatable via Google.

• software expos, hackathons, workshops

• social media, GitHub, publications

• Should be standardized by NSF

• Website and publications

• Same answer as above

• arXiv for software?

• put on GitHub.

A.5.22 Hosting software or data on GitHub may not be sufficient for meeting the
community engagement needs of the project. What are some of the approaches to
engage the community?

• Some ideas include adding author survey results such as - how many times has the soft-
ware/data been used for other academic collaborations, has the software influenced policy by
a decision maker, help disseminate information in layman language for easier understanding
of the problem and solution (science is not finished until it is communicated), disseminate
software/data and results via talks in more than one type of a conference, for example with
interdisciplinary science projects it is important to talk about the software in both domain
as well computer science outlets/conferences and workshops.

• “may not be sufficient” is definitely spot-on here. Community engagement needs to be mul-
tipronged, from providing support through some kind of community user email, through
holding Birds of a Feather sessions at appropriate conferences, through tutorials whereever
appropriate, and targeting specific sessions at conferences for paper submission and presen-
tation. The use of GitHub alone does not accomplish community engagement, thought it is
helpful to make sure that the software is not hidden.

88

• Discussions, good requirement elicitation, being involved in truly collaborative efforts where
disciplines eventually disappear, communication techniques, recognizing there is a learning
process about the vocabulary and incentives across disciplines, institutions and sometimes
countries, finding common goals.

• The problem is that the community needs to be educated in order to be able to contribute.
We believe a strong outreach program is a must for CSSI projects. Such programs should not
just teach how to use the program, but should also teach the underlying techniques so that
others can contribute.

• GoSciLack – the platform I just made up would work. On the channels, scientists can engage
in discussions as well. Or people can make their own groups (channels) and chat about their
future plan.

• Most software builders want to solve their problem, not contribute to a repository. The
research funding has to somehow make this contributory effect obligatory or it basically
won’t happen.

• It has to go through domain science researchers. Need to make it as a requirement for the
domain science PI/Co-PI in order to request further funding.

• Hosting events where the software developers and the community meets. Have events like
lightening talks, speed-dating of software and domains

• Wikis, hackathons, training meetings. Online training videos. Cloud-hosted coding environ-
ments. cloud-hosted model instantiations.

• GitHub of course is only a part of the engagement. Publishing papers that demonstrate
software is a minimum threshold in science.

• Social Media, in-person testing and training, collaborations that result in scientific publica-
tions that use your software

• Host new user workshops. Provide some degree of user support. Make software available on
XSEDE or via web portals.

• Train them in the code, make them use the code and rely on the code, so they are motivated
to develop it further.

• Open Source development requires a community and shared community practices, c.f., Apache
Software Foundation.

• Attend workshops in the targeting domain, and publish in journals that is well known to the
community.

• CSSI PI meetings. Other networking project meetings. Holding events at major conferences,
such as SC.

• Conferences, blogging, and regularly promoting new functionality to gain a user base.

• Why is GitHub not sufficient? I suspect the answers are very project dependent.

• Workshops, tutorials and hackathons can help increase community engagement.

89

• Provide diverse training materials (tutorials, video lectures, workshops).

• As far as I know, GitHub is the main hosting site. I don’t know others.

• The promise of support, maintenance, stability and interoperability.

• Develop software that even your grandmother could run...

• Fair point. We are investigating other approaches.

• Create forums, Organize workshops and meetings.

• Webinars, tutorials, videos, workshops, talks.

• Workshops, collaborative projects, education

• Advertising at conferences and in meetings.

• Community-oriented conferences, forums.

• social media, publications, conferences

• software expos, hackathons, workshops

• Don’t have a clear comment on this.

• Hosted by NSF

A.5.23 How can software be enabled on XSEDE systems?

• For application software, negotiating with service providers to install and provide modules
(and perhaps containers) is key. Beyond that, making sure that the software is showing up
in the XSEDE software search is essential - this is typically pulled from module information.
For other kinds of software, e.g., non-domain-specific software with user interfaces, it is much
harder, as this is typically not in XSEDE’s scope to enable and support this software. Just
because it isn’t in scope today, though, doesn’t mean that it shouldn’t be in scope tomorrow.

• Most high-quality software has lots of dependencies, and XSEDE managers do not do their
communities a favor by installing X different compilers and Y different MPI installations.
Chances are that if you want to build a package, that one of the dependencies is only available
with one compiler and one MPI installation, and that there is possibly another dependency
that uses a different compiler. This just makes it unnecessarily hard to install software. In
the end, efforts such as xSDK will help provide many of these dependencies.

• SPs provide software module, user documentation and support. NSF should encourage PI to
work with SP to enable the capability and continuing user support. This could be used as a
metric for evaluating the impact of the project.

• One option is to use something like Spack – a content manager for HPC. It makes it very
easy for people to make their software available through Spack to the community.

• production level APIs, Agave/Tapas needs to be thought of as a production level project with
appropriate testing. Pegasus is awesome but complex to install and use.

90

• XSEDE systems need to be incentivized to allow research software to be installed on their
systems. Adequate funding for enabling software on XSEDE is also needed.

• We have been prototyping methods to build Jupyter notebook-based GUIs for command-line
C++ simulators, and connect them to back-end infrastructure like XSEDE.

• My first encounter with the term. This looks on the surface like such central repository. Don’t
know enough about it to judge.

• By working with organizations contributing resources to XSEDE (e.g., TACC, SDSC) to test
and deploy software.

• Provide a world-accessible directory where research groups can install and maintain their
software.

• I’ve never done it, but I assume you would first contact XSEDE staff and work from there.

• We are using XSEDE to validate/tune our software. Not sure what the question is asking.

• Can NSF-supported software be automatically created as a module by XSEDE?

• Good compiler/library support. User support from computing center staff.

• Via Binder and Jupyter notebooks (easy installation and accessibility)

• Software can be installed on XSEDE resources used by the community

• I think XSEDE news and webinars are good way to do this.

• this is important. Need a full time staff to do this.

• I am not sufficiently familiar with XSEDE to comment.

• Allowing the software to be a module on XSEDE systems

• Better staffing support for the entire community

• XSEDE users should voice their needs to XSEDE.

• containers and virtual environments

• Not sure what this question means.

• I have no experience with XSEDE.

• Do not have a good answer.

• no comments

91

A.5.24 What are the metrics for evaluating the impact of a project?

• The most important metrics for evaluating the impact of domain projects is scientific discovery
in that particular domain, with the particular software that is being developed and supported.
This is something that takes time to fully appreciate, but certainly literature analysis would
be one way to start to understand what may be going on with respect to impact. For non-
domain-specific software, e.g., tooling that may be used to develop software, impact is much
more difficult to ascertain. I’m very open to brainstorming on this.

• Growth in users, new projects powered by the software, third-party papers and grants based
on the project, third-party contributions back to the project, quality and quantity of software
support new users. Interactions with new communities (e.g., at conferences). Social media
engagement. Improvements to software usability.

• These projects should not use traditional metrics like a research project. Number of users or
downloads are fine, but not number of citations of the software. The metrics should more focus
on the impact on the users, researchers and the community, like the number of publications
that used the software/data products.

• With respect to NSF, traceability from support activities (components, libraries) to publi-
cations seems like the key thing to measure. Somehow one needs to measure demand for
a component, estimated effort to construct it, and whether it actually got used. Highly
trafficked components would then be successful.

• The most important in most cases would be publications based on the developed software, but
this can take years to develop. Downloads and a visible user community (e.g., in a message
board or at a user work shop) would provide earlier evidence of impact. Evidence of adoption
by industry would also be valuable.

• The number of collaborations, publications, number of students trained, perhaps letters of
support after the project ends to follow up from the partners about how they perceive the
impact, technology transfer or interest from the industry or government labs.

• Usability is one of the primary metrics. Who is using the software and how has that impacted
science? Has the software influenced a policy maker? Has the project enabled to do more
science? Gather evaluation/feedback from stakeholders,

• This is where the SI2 program, over time, really created a very restricting requirement.
These shouldn’t be prescribed metrics. Evidence can come in many forms. Right now, the
SI2 program expects bean counting that is unrealistic.

• 1. Number of downloads/releases 2. Number of organizations using the software stack 3.
Number of external contributors 4. Number of publications arising out of the project to
measure the innovation component.

• # of adopters, ongoing users, user satisfaction, publications, software produced, software
downloads, consortia formed, # of open source contributors, amount of code produced by
open source contributors

• long term: how did it enable science (# publications referring to the sw, but also highlights
describing how the sw enabled a project). Short term: dissemination (download) and use.

92

• Usability and usefulness - is this enabling scientists to answer scientific questions? Is this
solving a real-world problem and not only improving previous algorithms?

• Software features, publications, publications by users besides the developers, number of users,
outside code contributors, number of people downloading the software.

• I think number of users (for software/CI projects), publications, usage of other resources
(such as HPC, HTC) by the project etc are good measures.

• Multiple factors: a successful software product, training, new areas where this was used,
serving under-represented communities.

• Deliverables, publication, users, impact on science, solution or advancement of key problems
and fulfillment of the grant.

• Depending on the project, adoption rate, usage, and publications resulting from the project
are some metrics

• platform delivery, code delivery, domain scientists involvement and usage, publications, work-
shops

• Publications, open-source/open-data shared online, tutorials, workshops, and presentations

• High impact publications, size of user base and citations of a software project or database

• Citations in papers. But how about creating an open review model for software?

• Active End users, publications, citations, website hits and analytics, etc.

• User adoption, derivative software, citations, downloads, issues filed...

• 1. Science advancement 2. Adoption 3. Progress towards sustainability

• reuse, DOIs, citations, future grant funds for further development

• publications, software usage tracking and analytics, citations

• Number of publications, citations, downloads on GitHub.

• For SaaS: uptime, usage, support ticket response time.

• publications, user download times, and workshops.

• Very unclear. More guidance from NSF would help.

• Unique problems addresses, how widely it is used

• Usability and use. Publications. Citations.

• Citations. Better metrics would be great.

• Both publication and software metrics.

• includes business need and alignment

• Scientific discoveries and citations

93

• citations/downloads/users

• Usage, citations

• Adoption

A.5.25 How can the magnitude of the impact of the CSSI program be amplified?

• Hiring a science communicator (or pay for one in a grant) who will have the right skills and
abilities to amplify the impact. Publications that discuss software/data to be made Open
Access (some outlets cost quite a bit for Open Access, so where would those $$ come from?),
talk about software in different outlets (social media, conferences, symposiums, domain-based
outlets as well), write blogs that are easy to follow than a technical publication, involve the
community that the software is targeting. Public engagement is not only a mechanism to
provide evidence of the impact but it by itself is a form of impact.

• With so many projects over the years, it is definitely hard to see the impact arising from the
projects, as this is not raising out of the trees very well. Some things to think about: using the
NSF news mechanism to publicize successes arising from CSSI investments, this mechanism
certainly raises the visibility of many important discoveries (which are are always fascinating!)
and taking an approach which tries to make sure we amplify the successes arising from the
CSSI investments would help amplify the impact, I believe. This is not the only mechanism,
but it is one that people pay attention to.

• I think there is a need for facilitating cross-cutting team building—that is, enabling people
from different backgrounds to discover each other’s needs and forging collaborations so that
they can accomplish larger and more impactful projects, than tiny ones. The tiny ones are
good for early career people though, for establishing themselves. I really think if CSSI to
amplify its impact, one way would be to fill this gap—facilitate all hands from different
backgrounds so that we can do bigger and more challenging things. This workshop is a step
towards that.

• Look for ways to break monolithic components into smaller, more reusable pieces and make
those widely available. NSF needs to invest more in understanding and enable software
composition techniques to ensure that these smaller components become explicit artifacts.
To avoid overcommitment, components must not be merely code, but packages of design
decisions that drive the code choice.

• Make it clear to PIs and reviewers that building “high quality, long lasting” software is the
main metric, not the “scientific” innovation. From my experience being a frequent reviewer,
a lot of proposals get high ratings despite it being obvious that the PIs have no experience
in, and don’t care about, best practices in software engineering and making their software
widely usable.

• It has to be related to the impact on the research enabled by each project. Unlike research
projects, NSF should spend more efforts on reviewing the products from the projects through
peer-review process in the community or user surveys. NSF ought to factor this into consid-
eration of the project renewal and continuing support.

• The CSSI should advertise what software are available, organized in such a way that potential
users could easily navigate to their field of interest. Additionally, if there could be enforcement

94

of the quality of public software in terms of usability and accuracy, I expect that usage would
increase.

• Enable more small teams with faster evaluation and funding cycles. Shared software engi-
neering resources (national core services?) Fast funding cycles for very small prototyping to
complement slower funding/evaluation cycles for more expensive efforts.

• As an academic pursuit, it must fundamentally promote the training and education of stu-
dents and postdocs so they are more productive in their field. This is very natural for some
disciplines and seems a distraction for others.

• CSSI projects should include a specific plan to promote the developed software to its user
community. User support and documentation make software more usable, and therefore also
“amplify” impact.

• offer funds to integrate software from multiple CSSI projects into interoperable frameworks,
enable software and data publications that can be used for academic evaluations

• Address sustainability seriously. Fund less research and more development of software on
which application groups can depend. Communicate CSSI successes and capabilities.

• through better publicity to people who are meant to use the software–conferences, demos,
etc. Provide opportunities for potential users to review the software

• Promote and participate in other meetings/conferences in addition to the XSEDE conference.
Keep up current emphasis on student participation (long-term impact).

• Supporting successful projects. Only few will succeed but they should be supported. Often
projects die just when they start producing results.

• 1. Incorporation into larger frameworks 2. Leveraging established entities such as the super-
computing centers, XSEDE and software institutes.

• This is a difficult question. One way would be to continue funding projects that have had a
lasting impact on the scientific community.

• Funding projects which themselves act as productivity levers, e.g., extensible frameworks,
automation tools, etc.

• open forum for discussing challenges, including social/personal issues beyond the technical

• build a consortium and have annual meetings for grantees and others and monthly webinars

• Sustained long-term support for a number of collaborative “moon shot” type projects

• I think how many users using a software should be used as a measuring criteria.

• More partnership with industry and more promotion of SW to foster adoption.

• providing tutorials and examples to make it easy for other disciples to use

• Find and communicate highlights of the use of CSSI products.

• need to relate content knowledge to real-world applications.

95

• By collaborating with other federal agencies DOE, NIH etc

• Moving science towards applications with societal impact.

• have funding to be directed towards software development

• Engaging with broader software development communities.

• Identify strategic goals and focus on those?

• I first need to learn more bout the program.

• more domain science community involvements

• greater industry engagement

• no comments

• Not sure.

A.5.26 NSF has invested millions of dollars - across multiple directorates - for building
web-portals that support computation, data analyses, and data management from the
convenience of the web-browser. Are you aware of such investments, and if needed,
will you be able to comfortably leverage these investments in your current or future
projects?

• Yes, one of such portals will be developed in one of my recently funded projects. Thanks to
NSF. Other notable efforts are those of MolSSI and potentially some of the older NanoHub
developments. What MolSSI has been doing so far is very helpful and it makes impact on
us as well. I can potentially leverage some of the NanoHub resources, but so far we did not
have immediate need for them. I’m not aware of other web-portals, so it would be great to
have NSF’s-wide database of such projects with some metrics of their use/impact publicly
available and constantly advertised.

• NSF has funded the project like SGCI and PIs should be strongly encouraged to work with the
centralized service like SGCI for related science gateway development. Yes. CHARMM-GUI
is a web-portal that I used in almost all my projects for system setup. While it represents a
tiny amount among all NSF investments in web-portals, it is a very successful project that
impact thousands of researchers in the field of biophysics and computational chemistry.

• As an intermediate to advanced bioinformatics lab, we do not use these web portals (I think
they are impractical for our research, our HPCC workflows are much faster and easier to use
on a day-to-day basis). However, I would like to use them for teaching and training.

• I am not aware of those investments, but would like to learn more about them. I would be
very happy to leverage any such opportunity, if that falls in the scope of what I am doing.

• My field is not very externally data-driven; I have not felt much impact from web-based
portals (except the EMSL Basis Set Exchange and of course Google Docs).

• Not a lot of them but probably a few, the question prompted me to search more of these. I
would be definitely comfortable leveraging these investments

96

• Some, but knowing what’s available for particular purposes and understanding the advantages
and disadvantages of them for my use case is difficult.

• I’m aware of the investments, and would definitely want to start there on any future projects
that require web accessibility.

• These developments are often of poor quality and reinvent capabilities available elsewhere.

• I am not aware of these. Many companies will not be able to use these portals, due to IP and
security issues.

• As a small lab, the only way to survive in infrastructure development is to leverage the work
of others.

• Aware to a limited extent. Haven’t been using/exploring these but should look at it more
closely.

• Need more awareness, but would love to break free of proprietary lock-in to leverage these.

• I am aware of this as a general trend, but I have not seen it in my own field of work yet.

• I was not aware of this investment but would like to use them in future projects.

• Yes I am aware of certain projects and may use in the future if still available

• I don’t use them much because I primarily run applications on supercomputers.

• I am aware. At present, they provide very little in terms of use.

• Not aware. To be fair, I don’t work exclusively in this space.

• I am not aware as much about these investments/efforts.

• I am aware of the developments, but have not used them.

• Some but NSF can do a better job in advertising this.

• not much aware and need more educated or publicized.

• Yes. We are currently trying to do just that.

• I am less aware than I probably should be

• I mostly think the answer is yes for me

• I think I am aware of some of them.

• yes, but maybe not all of them

• yes–these would be helpful

• yes mostly involving XSEDE.

• I’m not aware and maybe

• no. I don’t know them.

97

• Somewhat

• No.

• yes

A.5.27 Would you like to provide any other comments?

• Originally, the SI2 program had a very simple mission: Fund software as an infrastructure
much like hardware (e.g., through the NSF supercomputing centers) is funded as infras-
tructure. A few years in, the focus seemed to shift more towards “how do we build happy
communities.” Now, there seem to be all kinds of requirements to up-front state software en-
gineering methods to be followed, etc. We are academics. If we wanted to plan to the degree
that is now required by NSF as part of the grant proposal for CSSI, we would be in industry.
Some of us have a demonstrated history of delivering high quality software. Evaluated if the
software we propose to develop is of value to the community and within the scope of CSSI.
If it is, fund us and get out of the way!

• These questions are fundamental and were discussed years ago at the seed meetings I attended.
I am surprised to see they are still outstanding after 511 funded proposals and $314 million
has been spent. Why aren’t we discussing experiences including success and failures from the
funded proposals? There is existing data to analyze and what are the metrics that have been
used for those?

• I think it is a mistake to believe that sustainability of scientific software is fundamentally
different that sustainability of software in general. Investment by NSF in “software sustain-
ability” in general would have a much broader effect, and would likely bring a much larger
community to the problem with corresponding scale benefits.

• I’m hoping we have a really productive 2 days, a lot of good has come from the investments
already made, but I think that we have to think hard about how to amplify that good and help
the investments achieve and sustain the broad usage and impact after the initial investment
is finished.

• Need to be able to support teams lead by domain expertise paired with CISE collaborators.
Need to help encourage best practices without stifling creativity.

• This seems like a great opportunity to build a network among people who are likely partici-
pants of a future CSSI grant. Thank you for organizing!

• I often feel like this community is more advanced in collaborative ideas than others I travel
in, such as the science community.

• MCB has done a great job advertising new tools or new develops from their division via MCB
blogs. Perhaps CISE can do that too.

• I m eager to learn more and contribute based on my biological research-centric perspective.

• These questions are well thought. Thank you for the efforts.

• Important program that I hope NSF continues to invest.

• i hope to see the CSSI program a success.

98

• Nothing further at this time.

• No thanks.

• No.

99

	Executive Summary
	Overview of the NSF CSSI Program
	Recommendations
	Evaluation Metrics
	Scope of the Projects
	Letters of Collaboration
	Community Building
	Best Practices and Policies
	Sustainability
	Staffing

	Organization of the Workshop
	Impact of the CSSI Program
	Themes for Brainstorming Sessions
	Software and/or Data Management Processes and Sustainability
	Software/Data Reusability and Quality
	Project Staffing
	Inter-Disciplinary Collaborations
	New/Emerging CSSI Domain Science
	Software/Data Dissemination Plans
	Feedback on the Award Process, Scope, and Impact of the CSSI Program

	Closing Thoughts
	Acknowledgement
	 APPENDIX
	Workshop Overview
	Brainstorm Themes and Breakout Group Worksheet
	Participants
	Workshop Program
	Pre-Workshop Questions and Responses

