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Abstract
We propose a new setting for testing properties of distributions while receiving samples from several
distributions, but few samples per distribution. Given samples from s distributions, p1, p2, . . . , ps,
we design testers for the following problems: (1) Uniformity Testing: Testing whether all the pi’s
are uniform or ε-far from being uniform in `1-distance (2) Identity Testing: Testing whether all the
pi’s are equal to an explicitly given distribution q or ε-far from q in `1-distance, and (3) Closeness
Testing: Testing whether all the pi’s are equal to a distribution q which we have sample access
to, or ε-far from q in `1-distance. By assuming an additional natural condition about the source
distributions, we provide sample optimal testers for all of these problems.
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1 Introduction

Statistical tests are a crucial tool in scientific endeavors to analyze data: We routinely model
data to be a set of samples from an unknown distribution, and use statistical tests to infer
or verify the properties of the underlying distribution. While these tests typically operate
under the assumption that data points are drawn from a single underlying distribution,
in applications, usually the data is gathered from multiple sources. Furthermore in many
situations, it is the case that the dataset contains only a few data points from each source.
For example, an online shop may have the purchase history of thousands of customers while
each customer may shop at the store a small number of times. Alternatively, a medical
dataset might record the lifestyle behaviors of patients of a particular disease while only
having few data points from any specific demographic (such as age).
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69:2 Testing Properties of Multiple Distributions with Few Samples

On the other hand, data that comes from multiple sources may result in a dataset
consisting of a collection of unconnected and unrelated data points. For example, it might
not be possible to derive any meaningful conclusions from a dataset that contains the blood
pressure of patients with heart diseases, Alzheimer patients, and healthy individuals. However,
if there is some consensus among the sources, we may be able to make reasonable inferences
based on the data. Therefore, an important question to ask is: how can we mathematically
model agreement among the sources such that it is possible to design testers with theoretical
guarantees?

In this work, we propose a framework for hypothesis testing, one of the most fundamental
problems in statistics, while allowing for the underlying data to be drawn from multiple
distributions (sources) and only receiving “few” samples from each distribution. More
specifically, we study the following problem: suppose we have s source distributions, p1, . . . , ps.
We have a distribution q (hypothesis), and we aim to distinguish between the case where all
the source distributions are equal to q and the case where all the source distributions are
far from q. We propose a structural condition in order to model the agreement among the
sources to enable us to draw meaningful conclusions.

Our structural condition requires all the sources to have the same preference for every
element, meaning that for each domain element x, either all the sources assign higher
probability than the “speculated” probability, q(x), or all of them assign lower probabilities.
However, the sources can go arbitrarily higher or lower than q(x) as long as they stay on
the same side of the q(x). For example, suppose one has tried several prize wheels (lottery
machines) in a casino. The player spins the wheel and expects to receive one of the prizes
uniformly. Given the results of each spin, our goal is to test whether all the machines were
fair (i.e., selecting the prize uniformly), or they are far from being fair. In this case, we can
naturally assume that if the machines are unfair, the house will assign a lower probability
to the expensive prizes, and higher probability to cheap ones. Another example is political
affiliation at a local vs. national level. Suppose a political party polls its constituents in
a district about their opinion on the most crucial policy and compares it with national
polls. It is natural to assume that the policies of national interest will receive the same
responses in different districts. On the other hand, if a policy affects the district positively
(or negatively), members of the district are more (less) likely to pick them. It is worth noting
that if no structural condition is assumed, the problem becomes vacuous even in the simplest
cases. The main issue is that two completely different sets of distributions may result in
identical set of samples. For example, suppose each pi is a singleton distribution on a random
element x ∈ [n]. If we draw one sample from each distribution, the samples we obtain will be
indistinguishable from the samples that are i.i.d. from a uniform distribution over [n]. See
Section 2.2 for more elaboration.

Given our agreement condition, we consider three different cases for our hypothesis q:
(i) Uniformity testing: q is uniform. (ii) Identity testing (goodness of fit): q is explicitly
known. (iii) Closeness testing (equivalence test): q is accessible through samples. We require
each source distribution to provide exactly one sample for uniformity and one sample in
expectation for identity and closeness testing. We develop sample optimal testers for all these
three problems. In fact, the sample complexity of our testers is exactly equal to the standard
versions of these problems when samples are drawn from a single source. These results lead
to the belief that our agreement condition provides the same power as the standard setting
for designing the testers while operating under a weaker assumption.
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Our sample complexity upper bounds are achieved by using variants of testers previously
used for distribution testing in the case where samples are drawn from a fixed distribution.
The challenge however, lies in analyzing these testers in our more general setting with multiple
sources. The sample complexity lower bounds follow directly from the single distribution
setting. For a full description of our contributions and approaches, see Section 2.3.

1.1 Necessity of modeling multiple sources
We might hypothesize that data points drawn from different distributions can be thought of
as coming from some “average” or “aggregated” distribution. Indeed, we know by de Finetti’s
theorem that an infinite sequence of exchangeable random variables is actually drawn from
a mixture of product distributions. In other words, there is some latent variable such that
conditioning on this variable, all the samples are independently drawn from one probability
distribution. However in the case that we have finitely many samples (or equivalently finitely
many sources), de Finetti type theorems only hold up to some approximation error and in
the case where the number of samples is sublinear in the domain size, we give a family of
distributions where the sequence of random variables with each sample drawn from a different
distribution cannot be seen as a mixture of product distributions. This result implies that
modeling data as samples from a single distribution is not sufficient when multiple sources
are involved. See Section 2.3.4 for more information.

1.2 Comparison with other models
Studying properties of a collection of distributions has been studied prior to our work
in [26, 2, 16]. These papers consider two primary models for sampling a collection of
distributions. In the first model, which is called the query model, the user can query each
distribution and receive a sample from it. In the second model, which is called the sampling
model, the user does not get to choose the source distribution, but the user receives a pair
(i, j) which can be interpreted as a sample from the collection: the first element i indicates
that distribution i was selected with a probability proportional to some (known or unknown)
weight, and then j is a sample drawn from the i-th distribution.

There are few differences between our model and two models listed above. In these
models, there is no limit on the number of samples that can come from a distribution. This is
in contrast to our setting where every distribution contributes only one sample in expectation.
On the other hand, in these two models, there is no agreement condition imposed between
the different distributions, and their goal is to distinguish if all the distributions are equal
or their average distance from a single distribution is at least ε. Considering the average
distance essentially turns this problem into testing closeness of a distribution over the domain
[n]× [s] which requires more samples.

While our problems are inherently different, none of the results in the papers cited above
solve the problems we consider using a sublinear number of queries. In fact in some regime
of the parameters, their algorithms draw ω(1) samples (even in expectation). In some special
case, where the number of samples per distribution is Θ(1) in expectation, the sample
complexity of their algorithm is greatly larger than ours. In particular, suppose we have s
distributions over a domain of size n and we draw m samples from them in total. In the query
model, the provided algorithms pick a few distributions and draw O(n2/3) samples from
them which is in contrast to our requirement of one sample per distribution. Moreover for
the sampling model, the optimal algorithm needs m = O(

√
ns/ε2 + n2/3s1/3/ε4/3) samples

in total. Roughly speaking, if the number of distributions is asymptotically smaller than n,
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i.e., s = o(n), then certainly the number of samples, m, has to be ω(s) meaning that we need
more than Θ(1) samples per distribution. On the other hand, if the number of distributions,
s, is Ω(n), then the number of samples, m, has to be Ω(n/ε2) which is drastically larger than
our sample complexity, O(

√
n/ε2 + n2/3/ε4/3).

In [31, 36], the authors consider a similar setting as our paper. In their setting, they have
N distributions over the domain of size two. Each distribution is determined by a parameter
which indicates the probability of the first domain element, and the algorithm receives t
samples from each distribution. However, these papers consider a very different problem
compared to ours as their goal is to optimally learn the histogram of the parameters with
approximation error as a function of t.

1.3 Other related work
Distribution property testing is a framework for investigating properties of a distribution(s)
upon receiving samples. This framework was first introduced in [21, 6], and it is part of
the broader topic of hypothesis testing in statistics [27, 25]. In this framework, we wish
to determine if one or more unknown distributions satisfy a certain property or are “far”
from satisfying the property. The goal is to obtain an algorithm, or tester, for this task
that has the optimal sample complexity. Since its introduction, several properties have been
considered. See [30, 9, 20] for a survey of results.

The problems of testing uniformity, identity, and closeness of distributions have first
been considered in [22, 6, 5]where it is assumed that samples are always drawn from a
fixed distribution. Many subsequent work improved on their results, and eventually testers
with optimal sample complexities of Θ(

√
n/ε2) for identity and uniformity testing, and

Θ(n2/3/ε4/3 +
√
n/ε2) for closeness testing were obtained. See [34, 28, 33, 10, 17, 1, 16, 18,

14, 15, 8, 4]. For a survey of techniques used for these problems, see [9].

1.4 Organization
We start with definitions and preliminaries in Section 2. In Section 3, we study uniformity
testing with samples from multiple sources.

In Section 4, we study identity testing with non-identically drawn samples. In Section 5
we study closeness testing with non-identically drawn samples. Finally, we prove Theorem 2
in Appendix 6.

2 Preliminaries

2.1 Notation and Definitions
We use [n] to denote the set {1, · · · , n}. We consider discrete distributions over [n], which
are non-negative functions p : [n] → [0, 1] such that

∑
i∈[n] p(i) = 1. We let p(i) denote

the probability assigned to element i ∈ [n] by a distribution p and for a set A ⊆ [n], we
define p(A) =

∑
i∈A p(i). For q ≥ 1, the `q-norm of distribution q is defined as ‖p‖q =

(
∑
i∈[n] p(i)q)1/q. Given two distributions p and p′, the `q-distance between them is defined as

the `q-norm of the vector of their differences: ‖p− p′‖q = (
∑
i∈[n] |p(i)− q(i)|q)1/q. The total

variation distance of two distributions p and p′ is defined as ‖p−p′‖TV = supA |p(A)−p′(A)|
which is known to be equal to ‖p− p′‖1/2. We say that two distributions p and p′ are ε-far
in `q-distance if ‖p− p′‖q ≥ ε. Otherwise, we say that p and p′ are ε-close in `q-distance. In
this paper, we primarily focus on `1-distance. We denote the uniform distribution over [n]
by Un. Also, we refer to a Poisson random variable with parameter λ as Poi(λ).
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2.2 The Structural Condition
We introduce the structural condition used in our multiple source distribution testing setting.
This condition models the assumption that the different sources have an agreement of the
preferences which we explain earlier.

I Definition 1 (Structural Condition). Given a sequence of distributions p1, p2, · · · over [n]
and another distribution q over [n], we say that {pi}i≥1 satisfy the structural condition if
there exist sets A ⊂ [n], B = [n] \A, such that for all the pi’s,

pi(j) ≥ q(j) ∀j ∈ A ,
pi(j) ≤ q(j) ∀j ∈ B.

Note that we do not assume knowledge of what the sets A and B are, just that they exist.

2.2.1 Alternative agreement conditions
To motivate Definition 1, our structural condition, we focus on the problem of uniformity
testing. In the usual setting of uniformity testing, we are given sample access to a single
unknown probability distribution p over [n], and we wish to determine if p is equal to Un or
if ‖p− Un‖1 ≥ ε.

The most general relaxation of the single source assumption is to allow each sample to
be drawn from a possibly different distribution. In particular, we wish to distinguish the
completeness case, where each sample is i.i.d. from Un, from the soundness case, where sample
i is drawn independently from pi, and pi and pj are not necessarily the same for i 6= j, and
‖pi − Un‖1 ≥ ε for all i. By using the relation between the `1-norm and the total variation
distance, this general setting can be written in the following way in the soundness case which
we require the total variation distance between every pi and the uniform distribution to be
at least ε/2:

min
i

max
A⊆[n]

|pi(A)− Un(A)| ≥ ε/2. (1)

However, we cannot hope to drive meaningful conclusions in this setting. Consider the case
where each pi is a singleton distribution on a random element x ∈ [n]. If we draw one sample
from each distribution, the samples we obtain will be indistinguishable from the samples that
are i.i.d. from a uniform distribution over [n]. A natural strengthening of (1) is to assume
that in the soundness case, not only each distribution is different from Un on some set A, as
we had above, but all the pi’s are far from Un on the same set A. This can be written as:

max
A⊆[n]

min
i
|pi(A)− Un(A)| ≥ ε/2. (2)

(Note that the min and max are switched from Equation (1)). In other words, there is some
fixed set A such that pi and Un are assigning very different probability mass to the set A.
However, this assumption is still too weak to support uniformity testing in sublinear time.
The main reason is that we can come up with s distribution satisfying Equation (2), but the
samples drawn from them look the same as uniform distribution. In general, for testing a
symmetric property (i.e., a property that does not depend on the labeling of the elements),
e.g., uniformity, we only consider the number of repetition in the sample set. The main
sources of information is how many elements repeated t many times in the sample set. In
the single distribution setting, these information is related to the moments of the underlying
distribution, and it is known that distributions with the similar moments requires a lot of
samples to tell them apart [29, 35, 37].

ITCS 2020
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Consider the following example where we have s < n distributions, and each distribution
pi is supported on [1, i] ⊂ [n]. For i ∈ [s] The distribution pi assigns the following probability
to the domain element x ∈ [n].

pi(x) =


1
n if x < i

1− i−1
n if x = i

0 if x > i

.

Let A be the set of elements that all the pi’s assign zero probability to them: {s+1, s+2, . . . , n}.
Clearly in our example Equation (2) holds for a parameter ε < 1. As long as s ≤ (1− ε)n
since ‖pi − Un‖1/2 ≥ |pi(A) − Un(A)| ≥ (n − s)/n ≥ ε for all i. Now, the probability that
samples i and j, where i < j, are equal is

i− 1
n2 +

(
1− i− 1

n

)
1
n

= 1
n

which is exactly the probability of a collision between two different samples in the completeness
case. Furthermore, for any k ≤ s ≤ (1 − ε)n, we can compute the probability that any
k samples i1 < · · · < ik match. Due to the support of pi1 , we know that this quantity is
precisely

i1 − 1
nk

+
(

1− i1 − 1
n

)
1

nk−1 = 1
nk−1

which is exactly the probability that any k samples all match if all samples are drawn from
the uniform distribution. Therefore with some generalized notion of the moments, the set of
distributions in the above example match the first O(n) moments of the uniform distribution.
Due to the matching of these moments, we cannot hope to test uniformity (or any other
symmetric property). Hence, a stronger structural condition than (2) is needed to allow
testing in our setting. In this work, we proposed a natural strengthening of the assumption
(2), given in Definition 1, which is enough to perform uniformity testing, along with other
hypothesis testing problems. This is elaborated in Section 2.3.

2.3 Our Contributions
2.3.1 Uniformity testing with multiple sources
In our multiple source distributions setting for uniformity testing, we have s distributions,
p1, . . . , ps, and each distribution provides exactly one sample. Our goal is to distinguish the
following cases with probability at least 2/32:

Completeness case: p1, p2, · · · are all uniform on [n].
Soundness case: p1, p2, · · · are all ε-far from uniform on [n] in `1-distance.

Furthermore, we impose that in the soundness case, the distributions {pi}si=1 satisfy the
structural condition given in Definition 1 with q being Un, the uniform distribution. That is
in the soundness case, all the distributions have mass at least 1/n on the elements in A and
at most 1/n on the elements in B for some sets A and B that are unknown to us. Note
that the structural condition trivially holds in the completeness case when all the pi’s are the
same distribution. Therefore, we can think of our setting as a generalization of uniformity
testing.

2 Note that the constant 2/3 is arbitrary here. One can boost the accuracy to 1− δ for an arbitrary small
δ by increasing the number of samples (distributions) by a O(log δ−1) factor.
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We show that the standard collision-based algorithm used in the single distribution case
of uniformity testing ([23, 6, 14]) is able to distinguish the completeness and the soundness
case in our multiple sources setting. The statistic that we calculate is the number of pairwise
collisions among the samples. We show that in the completeness case, there are “few”
collisions among the samples whereas in the soundness case, we see “many” collisions. The
main challenge is the analysis of this statistic in the soundness case, since the distributions
p1, p2, · · · are not necessarily the same.

In the completeness case that all the pi’s are equal to some distribution p, the collision
statistic is equal to a multiple of the `2-norm of p. We proceed similarly by introducing a
more general notion of `2-norm in our setting. In addition, we argue that our statistic is
sufficiently concentrated by calculating its variance. We generalize the tight variance analysis
of [14], which shows that the collision based tester is optimal in the single source setting.
Again if all the pi’s are equal to some distribution p, as is the case in the single source
uniformity testing setting, the variance is related to the `3-norm of p. In our case where the
pi’s are not necessarily the same, we introduce a generalized notion of `3-norm and relate
it to our notion of `2-norm. This argument relies on Maclaurin’s inequality. Altogether,
our analysis shows that we can perform uniformity testing in our setting using O(

√
n/ε2)

samples, which is optimal since the standard single source uniformity testing is a special case
of our setting, has a known sample complexity lower bound of Ω(

√
n/ε2) [28]. This result is

presented in Section 3.

2.3.2 Identity testing with multiple sources
We now describe identity testing in the multiple source distributions setting. We first assume
that we explicitly know some fixed distribution q over [n]. We suppose we have s distributions,
p1, . . . , ps. Our goal then is to distinguish the following cases with probability at least 2/3:

Completeness case: p1, p2, · · · , ps are identical to q
Soundness case: p1, p2, · · · , ps are all ε-far from q in `1-distance.

Furthermore, we impose that the distributions {pi}si=1 and q satisfy the structural condition
given in Definition 1. For identity testing with multiple sources, we use a generalization of
the poissonization method used in many distribution testing problem (see [9]): we assume
that we receive Poi(1) samples, as opposed to one sample from each distribution pi that we
had in the uniformity case. Clearly, each distribution provides one sample in expectation,
and with high constant probability, no distribution provides more than O(log s) samples.

In standard single distribution identity testing, a modified version of Pearson’s χ2-test
statistic is picked to calculate the expected value of ‖q−p‖2

2, where q is the known distribution
and all samples are from p [32, 10, 1, 16]. In our case, we generalize this approach and give
a new statistic, again a modified version of Pearson’s χ2-test, which calculates a variant of
the `2-distance between our known distribution q and the distributions that our samples
come from.

In particular, if we take s samples, we show that the expected value of our statistic is∥∥∥∑s
j=1 ~ej

∥∥∥2

2
, where ~ej is a vector in Rn where the x-th entry is |pj(x) − q(x)| for x ∈ [n].

Note that one can think of this quantity as a generalization of ‖q − p‖2
2. We then show

that the sample complexity of distinguishing the soundness and completeness cases for our
generalized identity testing depends on ‖q‖2, the `2-norm of the known distribution. The
main technical issue is to analyze the variance of our statistic which is challenging since
each sample can come from a possibly distinct distribution. Finally, we show how to reduce
‖q‖2 using a “flattening” scheme adapted from [16] that only enlarges the domain size by a

ITCS 2020
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constant factor which results in the sample complexity of O(
√
n/ε2) which is optimal since

the standard single distribution uniformity testing is a special case of our generalized identity
testing, and it requires Ω(

√
n/ε2) samples [28].

Remark on Goldreich’s reduction from identity to uniformity testing. There is a reduction
from identity testing to uniformity testing given in [19] in which Goldreich gives mappings
F1 and F2 such that if p is ε-far from q, then F2(F1(p)) is a distribution that is O(ε)-far from
the uniform distribution over a larger domain of size m = n/γ where γ is a parameter of
the reduction. This reduction works partially in our case. Denote F = F2 ◦ F1. Then we
can check that F (pi) is O(ε)-far from q for every pi in the soundness case. Furthermore, if
x ∈ [n] is also in A, then the domain elements corresponding to x in [m] are all at least 1/m
and similarly, if x ∈ [n] is in the set B, the domain elements corresponding to x in [m] are
all at most 1/m. In particular, F maps the set A ⊆ [n] to a set A′ ⊆ [m] that has the same
properties as A and similarly, F maps the set B ⊆ [n] to another subset B′ ⊆ [m].

The issue in applying this reduction to our setting is with F1. In particular, F1(pi)
increases the domain size from [n] to possibly [n+ 1], and there is no guarantee if the domain
elements in m corresponding to n+ 1 will be in A′ or B′. In particular, it could be that for
some pi’s, these domain elements will be in A′ and for other pi’s, these domain elements
can possibly be in B′. This could create potential “cancellations” that hide collisions when
observing samples from F (pi). To fix this, we would have to make sure these domain elements
don’t have much probability mass, which leads to letting γ = O(ε). This ultimately leads
to a sub optimal query complexity in terms of ε for identity testing. Therefore, we do not
pursue this approach.

2.3.3 Closeness testing with multiple sources
We now describe our generalized version of closeness testing. We assume that we have
access to two streams of samples. In the first stream, all samples are i.i.d. from some fixed
distribution q over [n] that is unknown to us. In the second stream, samples are drawn
independently from distributions p1, . . . , ps where pi and pj are not necessarily the same
distribution for i 6= j. Our goal then is to distinguish the following cases with probability at
least 2/3:

Completeness case: p1, p2, · · · , ps are identical to q
Soundness case: p1, p2, · · · , ps are all ε-far from q in `1-distance.

We also impose that the distributions {pi}si=1 and q satisfy the structural condition given in
Definition 1. Note that the structural condition trivially holds in the completeness case.

Our approach to closeness testing with multiple sources is very similar to our approach
for identity testing above. We make use of the poissonization method. In particular, we draw
Poi(s) samples from distribution q. Also, we take Poi(1) samples from each of the distributions
pi, so in total we have Poi(s) samples from the distributions {pi}si=1. Furthermore, we use
a (different) modified version of Pearson’s χ2-test proposed in [10, 16] and show that the
expected value of our statistic is

∥∥∥∑s
j=1 ~ej

∥∥∥2

2
where the vector ~ej is the same as in the identity

testing case above. With a careful analysis of the statistic, in contrast with [16], we show that
the sample complexity only depends on the `2

2-norm of the q. 3 Finally, we use a (randomized)
“flattening” scheme from [16] which results in the sample complexity of O(n2/3/ε4/3 +

√
n/ε2)

3 Similar analysis has appeared in [3] before this work.
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which is optimal since there is a known lower bound of Ω(max(n2/3/ε4/3,
√
n/ε2)) for the

single distribution setting of closeness testing [16]. Using the same techniques, we also
obtain a tester which uses asymptotically different number of samples from q compared to
the number of sources (known as testing with unequal-sized samples). See Remark 18 for
more details.

2.3.4 Failure of de Finetti’s Theorem with sublinear number of samples
An infinite sequence X1, X2, . . . of random variables is called exchangeable if for all m ≥ 1, the
distribution of the sequence X1, . . . , Xm is identical to the distribution of Xσ(1), . . . , Xσ(m) for
any permutation σ on m elements. de Finetti’s theorem states that any infinite exchangeable
sequence is a mixture of product distributions. In other words, there exists a probability
measure µ such that conditioned on µ, X1, X2, . . . can be seen as i.i.d. samples from a
distribution.

Similarly, a finite sequence X1, . . . , Xm is called exchangeable if all the permutations of
the sequence have the same distribution. If an exact version of de Finetti’s theorem were
to hold for finite sequences, our new setting where each sample can come from a different
distribution reduces to the known setting where all the samples are i.i.d. (since an algorithm
can turn the samples it sees into an exchangeable sequence by randomly permuting the
samples). However, all the known finite versions of de Finetti’s type theorems have an error
term which roughly states that finite exchangeable sequences are only approximately close to
mixtures of product distributions (see [13, 12, 24]).

In Section 6, we give an example of a finite sequence of random variables that falls in
the soundness case of our setting of uniformity testing with multiple sources that is Ω(1)-far
from any mixture of product distributions. More precisely, our theorem, Theorem 2, tells
us that it is not always possible to approximate a finite exchangeable sequence X1, . . . , Xs

arbitrarily well by a mixture of product distributions. This suggests that it is not possible to
use de Finetti’s theorem in our setting and therefore, more refined tools are needed rather
than a hammer like de Finetti’s theorem. More formally, our theorem is the following.

I Theorem 2. Let s = O(
√
n) be the number of samples required by Algorithm 1 for ε = 1/3.

There exists an exchangeable sequence X1, . . . , Xs such that Xi is drawn from distribution qi
which are all supported in [n] and satisfy ‖qi − Un‖1 ≥ 1/3 for all i. Furthermore, {qi}si=1
all satisfy the structural condition given in Definition 1 with q = Un. Let P denote the
distribution of the sequence X1, . . . , Xs. Then P is Ω(1)-far in `1-distance from any mixture
of product distributions.

The proof of Theorem 2 uses ideas from Diaconis and Freedman in [13]. For other variants
and finite extension of de Finetti’s theorem, see [24].

3 Uniformity Testing with Multiple Sources

We now present our algorithm, Uniformity-Tester, for uniformity testing with multiple
sources. We show the standard collision based statistic, introduced in [22, 7], is a sufficient
statistic to distinguish whether all sources are uniform or all sources are ε-far from uniform in
our multiple sources setting. The collision statistic is selected based on a simple observation:
if we draw two samples from a distribution, the probability that these two samples are equal
(also known as a collision) is lowest when the distribution is uniform. Thus, the number of
pairwise collisions tends to be “small” if the samples are drawn from a uniform distribution.
We show that this observation still holds in our setting. Our algorithm takes s samples (for
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Algorithm 1 Uniformity-Tester.

Input :n, ε, one sample from each of p1, p2, . . . , ps
Output : accept or reject

1 s← c1
√
n

ε2

2 Take s samples X1, · · · , Xs.
3 For each 1 ≤ i < j ≤ s, let σij be the indicator variable for the event Xi = Xj .
4 τ ← 1+ε2/16

n

5 Z ←
∑
i<j σij/

(
s
2
)

6 if Z ≥ τ then
7 Output reject and abort.
8 Output accept.

a parameter s which we determine later) and calculates the number of pairwise collisions in
the samples. Then, it compares the number collisions to a threshold, τ , which we specify
later. If the number of collisions is less than τ , we infer the sources are uniform and output
accept; otherwise, we infer the sources are far from uniform, and output reject. We present
our approach in Algorithm 1 along with the main theorem, Theorem 3, which proves the
correctness of our algorithm.

I Theorem 3 (Correctness of Uniformity-Tester). There exists a constants c1 independent
of n such that the following statements hold with probability 2/3:

Completeness case: Uniformity-Tester outputs accept if each of the s distributions
p1, . . . , ps are uniform.
Soundness Case: Uniformity-Tester outputs reject if the pi’s are ε-far from the
uniform distribution (i.e., ‖pi − Un‖1 ≥ ε) and {pi}si=1 satisfy the structural condition of
Definition 1 with q = Un.

I Remark 4. The sample complexity of Algorithm 1 is optimal due to the lower bound of
Ω(
√
n/ε2) for testing uniformity in the standard single source setting presented in [28].

Overview of the proof. To prove the correctness of Uniformity-Tester, we analyze the
statistic Z which is the number of collisions in the sample set:

Z = 1(
s
2
) ∑

1≤i<j≤s
σij

where σij , for i < j, is the indicator that sample i is equal to sample j. The algorithm
outputs accept or reject by comparing the statistic Z to a threshold τ . Our goal is to show
Z is below the threshold in the completeness case and above the threshold in the soundness
case. To do so, we first compute the expectation of Z and then show a sufficiently strong
concentration around its expectation by bounding the variance of Z. By a careful selection
of the number of samples and the threshold τ , we can prove with high probability that Z is
on the desired side of the threshold, and consequently the correctness of the algorithm.

Proof of Theorem 3. We start by setting the parameters: Let the threshold τ be (1 +
ε2/16)/n. Define α to be the solution to E[Z] = (1 + α)/n. Let the number of samples, s, to
be c1

√
n/ε2 for a sufficiently large constant c1.
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Note that in the completeness case, all samples are coming from the uniform distribution.
In this case, Z is analyzed in [22, 6, 14], so we know the expected value of the statistic is as
follows:

E[Z] = ‖Un‖2
2 = 1

n
.

Furthermore, the variance of Z is bounded from above as below (see Lemma 2.3 in [14]):

Var[Z] ≤ Θ
(
s2 · ‖Un‖2

2 +m3 (‖Un‖3
3 − ‖Un‖4

2
)(

s
2
)2

)
≤ Θ

(
1
ns2

)
.

Now, by Chebyshev’s inequality, we can bound the probability that Z become larger than
the threshold as follows

Pr [Z ≥ τ ] ≤ Pr
[
|Z −E[Z]| ≥ ε2

16n

]
≤ Θ

( n

ε4 s2

)
≤ 1

3

where the last inequality holds for a sufficiently large constant c1 and having s = c1
√
n/ε2

which proves the correctness of the completeness case.
The main challenge of this proof is to analyze the soundness case when the pi’s are

potentially different. We first give a lower bound for the expected value of Z. We begin by
providing an intuitive overview of our approach. In the soundness case, we can compute that
the expected value of the indicator random variable for a collision between the i-th and the
j-th sample is given by

E[σij ] =
∑
x∈[n]

pi(x)pj(x) (3)

where pi and pj are the distributions that sample i and j are respectively drawn from. One
can think of Equation (3) as a generalization of ‖p‖2

2 when two distributions are involved.
To bound Equation (3) from below, we make use of the structural condition. Namely, we can
define the error terms

ei(x) = pi(x)− 1
n

∀x ∈ A

ei(x) = 1
n
− pi(x) ∀x ∈ B . (4)

We know that∑
x∈A

ei(x) =
∑
x∈B

ei(x) .

In fact, the above quantities are half the `1-distance between pi and the uniform distribution.
We define ej(x) similarly for pj , and the above identity similarly holds for the ej ’s as well.
Using these equations, we show in Lemma 5 that∑

x∈[n]

pi(x)pj(x) = 1
n

+
∑
x∈[n]

ei(x)ej(x).

Recall that our goal is to show that the expected number of collisions in the soundness case
is substantially larger than

(
s
2
)
/n. Thus, we desired to bound find a lower bound for the

second term in the right hand side above. However, since pi and pj are not necessarily the
same distribution, it could be the case that for a fixed pair i, j we have

∑
x∈[n] ei(x)ej(x) = 0

which is what we would expect if pi and pj were both uniform. Thus, instead of bounding∑
x∈[n] ei(x)ej(x) for each pair i and j, we show that the sum of these terms over all the

pairs i < j is Θ(ε2). More formally, we have the following lemma.
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I Lemma 5. Let {pi}si=1 be distributions over [n] that are all ε-far from Un in `1-distance,
and satisfy the structural condition given in Definition 1 with q = Un. Let Xi be drawn
independently from pi for all 1 ≤ i ≤ s. Let σij be the indicator variable for the event
Xi = Xj and define Z =

∑
i<j σij/

(
s
2
)
. Then the following estimate holds

E[Z] ≥ 1 + ε2/8
n

.

Proof. Recall the error terms which we defined in Equation (4):

ei(x) = pi(x)− 1
n

∀x ∈ A ,

ei(x) = 1
n
− pi(x) ∀x ∈ B .

We start by giving a convenient representation of E[σij ] in terms of the error terms:

E[σij ] = 1
n

+
∑
x∈[n]

ei(x)ej(x) . (5)

To prove the above equation, observe that since the sum of the probabilities in any discrete
distribution is one, we have:∑

x∈A
ei(x) =

∑
x∈B

ei(x) (6)

and similar for the ej ’s. All of the ei(x)’s and the ej(x)’s are non-negative for any domain
element x by definition and the structural condition. Thus, we can obtain:

E[σij ] =
∑
x∈[n]

pi(x)pj(x)

=
∑
x∈A

(
ei(x) + 1

n

)(
ej(x) + 1

n

)
+
∑
x∈B

(
1
n
− ei(x)

)(
1
n
− ej(x)

)
= |A|

n2 + 1
n

∑
x∈A

ei(x) + 1
n

∑
x∈A

ej(x) +
∑
x∈A

ei(x)ej(x)

+ |B|
n2 −

1
n

∑
x∈B

ei(x)− 1
n

∑
x∈B

ej(x) +
∑
x∈B

ei(x)ej(x) .

Using Equation (6), it is clear that the sum of two middle terms above are zero:

1
n

∑
x∈A

ei(x)− 1
n

∑
x∈B

ei(x) = 0 , and 1
n

∑
x∈A

ej(x)− 1
n

∑
x∈B

ej(x) = 0 ,

which implies the desired identity we claimed in Equation (5):

E[σij ] = |A|+ |B|
n2 +

∑
x∈[n]

ei(x)ej(x) = 1
n

+
∑
x∈[n]

ei(x)ej(x) .

Using this identity for all
(
s
2
)
pair of samples, yields to the following:

E
[(
s

2

)
Z

]
= E

∑
j<i

σij

 =
∑
j<i

∑
x∈[n]

pi(x)pj(x) =
(
s

2

)
1
n

+
∑
j<i

∑
x∈[n]

ei(x)ej(x). (7)
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Now, we focus on the second term on the right hand side of the equation above. We can
compute that

∑
j<i

∑
x∈B

ei(x)ej(x) = 1
2


∑
x∈B

(
s∑
i=1

ei(x)
)2

︸ ︷︷ ︸
first term

−
s∑
i=1

∑
x∈B

ei(x)2

︸ ︷︷ ︸
second term

 . (8)

To fine a lower bound E[Z], we find a lower bound for the first term and an upper bound for
the second term in the right hand side above.

Lower bound for the first term. Note that if x ∈ B, by definition, ei(x) is at most 1/n. On
the other hand,

∑
x∈B ei(x) is half of the `1-distance between pi and the uniform distribution.

Define ε′i to be ‖pi − Un‖1 = 2
∑
x∈B ei(x). Clearly, ε′i is at least ε. Then, we have the

following lower bound for the size of B:

|B| · 1
n
≥
∑
x∈B

ei(x) = ε′i
2 , ⇒ |B| ≥ ε′in

2 ≥
εn

2 .

Therefore, it follows that for any i, we have∑
x∈B

ei(x)2 ≤ 1
n2 ·

ε′in

2 = ε′i
2n.

Now by the Cauchy-Schwarz inequality, and having |B| ≤ n, we have:

∑
x∈B

(
s∑
i=1

ei(x)
)2

≥ 1
|B|

(
s∑
i=1

∑
x∈B

ei(x)
)2

≥
(
∑s
i=1 ε

′
i)

2

4n .

Upper bound for the second term. On the other hand, for the second term in Equation (8),

we obtain:
s∑
i=1

∑
x∈B

ei(x)2 ≤
s∑
i=1

∑
x∈B

ei(x)
n
≤ 1

2n

s∑
i=1

ε′i

where the first inequality holds since the ei(x)’s are at most 1/n.

Putting it all together. Using the two bounds above, we achieve the following lower bound
for Equation (8):

∑
j<i

∑
x∈B

ei(x)ej(x) ≥ 1
2

(
(
∑s
i=1 ε

′
i)

2

4n −
∑s
i=1 ε

′
i

2n

)
.

Observe that since s = c1
√
n/ε2, for a sufficiently large c1, s is at least Θ(1/ε). Therefore,

we have:
s∑
i=1

ε′i ≥ sε ≥ 4 ⇒ 1
2

(
s∑
i=1

ε′i

)2

−
s∑
i=1

ε′i ≥
(
∑s
i=1 ε

′
i)

2

4 .

Therefore, we obtain:

∑
j<i

∑
x∈B

ei(x)ej(x) ≥ 1
2

(
(
∑s
i=1 ε

′
i)

2

4n −
∑s
i=1 ε

′
i

2n

)
≥

(
∑s
i=1 ε

′
i)

2

16n ≥ s2ε2

16n .

ITCS 2020



69:14 Testing Properties of Multiple Distributions with Few Samples

Going back to Equation (7), we achieve:

E
[(
s

2

)
Z

]
≥
(
s

2

)
1
n

+ s2ε2

16n ≥
(
s

2

)
(1 + ε2/8)

n
,

which concludes the proof of the lemma. J

We now proceed with the proof of Theorem 3. In the next step, we show a tight bound for
the variance of the our statistic Z. We generalize the tight variance analysis given in [14] for
the standard collision based tester in the single source setting to our multiple source setting.
We start by a useful identity for the variance: Var[Z] = E[Z2]−E[Z]2. Note that when we
expand Z2 = (

∑
i<j σij)2, we get terms of the form σijσjk. In the single distribution case,

this term can be related to the `3-norm of p. In our setting, we introduce a generalization of
the `3-norm which is the following:

E[σijσjk] =
∑
x∈[n]

pi(x)pj(x)pk(x). (9)

To upper bound Equation (9), we again make use of the structural condition and relate it
to our version of the `2-norm, Equation (3), by using Maclaurin’s inequality which roughly
states that the `3-norm is at most the `2-norm. More formally, we have the following lemma
and our proof is presented in Section 3.1.

I Lemma 6. Let {pi}si=1 be distributions over [n] that are all ε-far from U in `1-distance
and satisfy the structural condition given in Definition 1 with q = Un. Let Xi be drawn
independently from pi for all 1 ≤ i ≤ s. Let σij be the indicator variable for the event
Xi = Xj. Then the following estimate holds

Var

∑
i<j

σij

 ≤ 18αs
n2

(
s

2

)
+ 3

(
α

n

(
s

2

))3/2
+
∑
i<j

E[σij ]

where α is defined to be the solution to E[Z] = (1 + α)/n, and it is at least ε2/8.

We can now prove the correctness of the algorithm by bounding the probability that
Z is below the threshold τ . Recall that E[Z] = (1 + α)/n ≥ (1 + ε2/8)/n from Lemma 5.
Therefore, α ≥ ε2/8. By Chebyshev’s inequality, we have

Pr [Z < τ ] = Pr [E[Z]− Z ≥ E[Z]− τ ] ≤ Pr [|E[Z]− Z| ≥ E[Z]− τ ]

≤ Pr
[
|E[Z]− Z| ≥ α− ε2/16

n

]
≤ Var[Z] ·

(
n

α− ε2/16

)2

≤ Var

∑
i<j

σij

 ·( n(
s
2
)
(α− ε2/16)

)2

.

Now, Lemma 6 gives us

Var

∑
i<j

σij

 ≤ 18αs
n2

(
s

2

)
+ 3

(
α

n

(
s

2

))3/2

︸ ︷︷ ︸
T1

+
∑
i<j

E[σij ]︸ ︷︷ ︸
T2

.

We use T1 and T2 to indicate the two terms in the upper bound above. In either of the cases
T1 ≤ T2 or T1 > T2, we show the error probability is bounded by 1/3.
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Case 1: T1 ≤ T2T1 ≤ T2T1 ≤ T2. In this case, we bound the variance of the number of collisions by 2T2.
We have:

Pr [Z < τ ] ≤ Var

∑
i<j

σij

 ·( n(
s
2
)
(α− ε2/16)

)2

≤ 2T2 ·

(
n(

s
2
)
(α− ε2/16)

)2

≤ 2
∑
i<j

E[σij ] ·
(

n(
s
2
)
(α− ε2/16)

)2

≤ Θ
(
s2(1 + α)

n
· n2

s4(α− ε2/16)2

)

≤ Θ

 n

s2 ·
1 + α

(α− ε2/16)2︸ ︷︷ ︸
f(α)

 .

Define f(α) := (1 + α)/(α − ε2/16)2. We can compute that f is a decreasing function
over the range [ε2/8,∞), so we can bound f(α) by f(ε2/8) = Θ(1/ε2) from above. Thus,
we bound the probability of Z < τ as

Pr [Z < τ ] ≤ Θ
( n

s2ε2

)
≤ 1

3 ,

where the last inequality holds for a sufficiently large constant c1 and having s = c1
√
n/ε2.

Case 2: T1 > T2T1 > T2T1 > T2. In this case, we bound the variance of Z by 2A. Note that we know
α ≥ ε2/8, so we have:

Pr [Z < τ ] ≤ Var

∑
i<j

σij

 ·( n(
s
2
)
(α− ε2/16)

)2

≤ 2T2 ·

(
n(

s
2
)
(α− ε2/16)

)2

≤ 2
(

18αs
n2

(
s

2

)
+ 3

(
α

n

(
s

2

))3/2
)
·

(
n(

s
2
)
(α− ε2/16)

)2

≤ Θ
((

αs3

n2 + α3/2s3

n3/2

)
· n2

s4α2

)
≤ Θ

(
1
s α

+
√
n

s
√
α

)
.

The number of samples, s is chosen to be

s = c1 ·
√
n

ε2
≥ Θ

(
1
ε2

+
√
n

ε

)
≥ Θ

(
1
α

+
√
n√
α

)
,

and therefore, by picking a sufficiently large constant c1, we can bound the probability of
outputting the incorrect answer in the soundness case by 1/3. J

3.1 Proof of Lemma 6
I Lemma 6. Let {pi}si=1 be distributions over [n] that are all ε-far from U in `1-distance
and satisfy the structural condition given in Definition 1 with q = Un. Let Xi be drawn
independently from pi for all 1 ≤ i ≤ s. Let σij be the indicator variable for the event
Xi = Xj. Then the following estimate holds

Var

∑
i<j

σij

 ≤ 18αs
n2

(
s

2

)
+ 3

(
α

n

(
s

2

))3/2
+
∑
i<j

E[σij ]

where α is defined to be the solution to E[Z] = (1 + α)/n, and it is at least ε2/8.
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Proof. For simplicity, let W denote
∑
i<j σij . We bound the variance of W from above in

the following steps.

Var[W ] = E[W 2]−E[W ]2 = E


∑
i<j

σij

2
−

∑
i<j

E[σij ]

2

= E

 ∑
i<j,k<`
all distinct

σijσk` + 2
∑
i<j<`

(σijσik + σijσjk + σikσjk) +
∑
i<j

σ2
ij


−

∑
i<j,k<`
all distinct

E[σij ] E[σk`]− 2
∑
i<j<`

(E[σij ] E[σik] + E[σij ] E[σjk] + E[σik] E[σjk])

−
∑
i<j

E[σij ]2 .

Note that if i, j, k, and ` are all distinct, then σij is independent from σk`. Thus, we have:

E[σijσk`] = E[σij ] E[σk`] .

Moreover, we know that E[σij ] ≥ 1/n for all i < j from Lemma 5. Having σ2
ij = σij , we

continue bounding the variance as follows:

Var[W ] = 2
∑
i<j<`

(E[σijσik] + E[σijσjk] + E[σikσjk])

+ E

∑
i<j

σij

− (s3
)

6
n2 −

∑
i<j

E[σij ]2 .

For now, we focus on the first sum in the right hand side above. We bound this term via the
error terms we defined in Equation (4). We note that

E[σijσik] = E[σijσjk] = E[σikσjk] =
∑
x∈[n]

pi(x)pj(x)pk(x)

=
∑
x∈A

(
1
n

+ ei(x)
)(

1
n

+ ej(x)
)(

1
n

+ ek(x)
)

+
∑
x∈B

(
1
n
− ei(x)

)(
1
n
− ej(x)

)(
1
n
− ek(x)

)

≤ 1
n2


∑
x∈A

ei(x)−
∑
x∈B

ei(x)︸ ︷︷ ︸
=0

+
∑
x∈A

ej(x)−
∑
x∈B

ej(x)︸ ︷︷ ︸
=0

+
∑
x∈A

ek(x)−
∑
x∈B

ek(x)︸ ︷︷ ︸
=0


+ 1
n

∑
x∈[n]

ei(x)ej(x) + ei(x)ek(x) + ej(x)ek(x)

+
∑
x∈[n]

ei(x)ej(x)ek(x) +
∑
x∈[n]

1
n3

where the last inequality holds since all the ei(x)’s are non-negative. Therefore, we can
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continue bounding the variance as follows:

Var[W ] ≤
(
s

3

)
6
n2 + 18 s

n

∑
i<j

∑
x∈[n]

ei(x)ej(x)

+ 6
∑
i<j<k

∑
x∈[n]

ei(x)ej(x)ek(x) + E[W ]−
(
s

3

)
6
n2 .

To bound the above terms, we use Maclaurin’s inequality proved in [11].

I Lemma 7 (Maclaurin’s inequality). Let {ai}si=1 be non-negative real numbers. Define

Sk = 1(
s
k

) ∑
1≤i1<···<ik≤s

ai1ai2 · · · aik .

Then,

S1 ≥
√
S2 ≥ 3

√
S3 ≥ · · · ≥ s

√
Ss.

For our purposes, we prove a strengthening of Maclaurin’s inequality which is given in the
following lemma:

I Lemma 8 (Strengthened Maclaurin’s Inequality).2
∑
i<j<k

∑
x∈[n]

ei(x)ej(x)ek(x)

2

≤

∑
i<j

∑
x∈[n]

ei(x)ej(x)

3

.

Proof. We prove this by induction on n. Consider the case n = 1. By Lemma 7, we have:∑
i<j

ei(1)ej(1)

3

≥
(
s
2
)3(
s
3
)2

 ∑
i<j<k

ei(1)ej(1)ek(1)

2

.

Now for s ≥ 3, we have:
(
s
2
)3
/
(
s
3
)2
> 4 which proves our claim. We now proceed by induction.

Suppose that the induction hypothesis is true for n−1. We know by the induction hypothesis
that the following two inequalities hold:2

∑
i<j<k

∑
x∈[n−1]

ei(x)ej(x)ek(x)

︸ ︷︷ ︸
F


2

≤


∑
i<j

∑
x∈[n−1]

ei(x)ej(x)

︸ ︷︷ ︸
F ′


3

2
∑
i<j<k

ei(n)ej(n)ek(n)︸ ︷︷ ︸
G


2

≤


∑
i<j

ei(n)ej(n)︸ ︷︷ ︸
G′


3

where the first inequality is the induction hypothesis and the second inequality is just the
base case of the induction which was proved earlier. Let F, F ′, G, and G′ denote the terms as
indicated above. The above inequalities after substituting new variables become: F ′3 ≥ F 2

and G′3 ≥ G2. Since all of these terms are positive, we have:

(F ′3G′3)1/2 ≥ FG
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Then, by the arithmetic mean-geometric mean inequality, we have

3F ′2G′ + 3F ′G′2 ≥ 6(F ′G′)3/2 ≥ 6FG ≥ 2FG.

Using the fact that F ′3 ≥ F 2 and G′3 ≥ G2 again, yields

(F ′ +G′)3 ≥ (F +G)2 ,

which concludes the lemma. J

We now proceed to bound the variance of W . We know

Var[W ] ≤ 18 s
n

∑
i<j

∑
x∈[n]

ei(x)ej(x) + 6
∑
i<j<k

∑
x∈[n]

ei(x)ej(x)ek(x) + E[W ] .

In the next step, we bound the two middle term based on n, s, and α. Using Lemma 8, we
have

∑
i<j<k

∑
x∈[n]

ei(x)ej(x)ek(x) ≤ 1
2

∑
i<j

∑
x∈[n]

ei(x)ej(x)

3/2

.

Recall that E[Z] = (1 + α)/n. Thus, using Equation (5), we know(
s

2

)
1 + α

n
= E[W ] =

∑
i<j

∑
x∈[n]

pi(x)pj(x) =
∑
i<j

∑
x∈[n]

(
ei(x)ej(x) + 1

n

)
,

which immediately implies that∑
i<j

∑
x∈[n]

ei(x)ej(x) =
(
s

2

)
α

n
.

Putting all of it together, we obtain

Var[W ] ≤ 18α s
n2

(
s

2

)
+ 3

((
s

2

)
α

n

)3/2
+
∑
i<j

E[σij ] ,

as desired. J

4 Identity Testing with Multiple Sources

In this section, we present our algorithm for identity testing with multiple sources and its
analysis. Recall that our goal is to distinguish the following two cases with probability at
least 2/3 given knowledge of some fixed distribution q over [n]:

Completeness case: p1, p2, · · · , ps are identical to q
Soundness case: p1, p2, · · · , ps are all ε-far from q in `1-distance

where we receive samples from {pi}si=1. In the soundness case, we also assume that the pi’s
satisfy the structural condition given in Definition 1: we assume there are disjoint sets A and
B that partition [n] such that all pi’s are larger than q on the indices in A, and all the pi’s
are smaller than q on the indices in B. Note that structural condition trivially holds in the
completeness case.
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4.1 Algorithm for Identity Testing
We now present our algorithm, Identity-Tester, for identity testing with multiple sources.
Suppose we receive Poi(1) samples from each of the distributions pi. This is a generalization
of the standard technique in distribution testing which significantly simplifies the analysis
of our algorithm by making certain random variables independent, as we explain later.
Furthermore, as Poi(s) is tightly concentrated around s, we can carry out this poissonization
method at the expense of only constant factor increases in the sample complexity. Moreover,
while we draw one sample in expectation per source, with probability 0.9, we will not receive
more than O(log s) samples per distribution.

Our algorithm calculates a new χ-square type statistics inspired by the previous χ2-type
statistics [32, 1, 10, 16]). The statistic is designed so that its expected value is related to
the “`2-norm” of the difference of the distributions, as explained in Section 2.3. Similarly
to uniformity testing, our algorithm in this section also proceeds by taking samples and
calculating our statistic. Then, it compares the value of this statistic to a threshold τ . If the
value of the statistic is “large”, the algorithm outputs reject and aborts, and outputs accept
otherwise. Ultimately, we prove that the sample complexity of our generalized identity tester
depends on the `2-norm of q, the known distribution. We give a flattening procedure in
Section 4.2 which allows us to assume that the `2-norm of the known distribution is O(1/

√
n),

resulting in the optimal sample complexity. We present our algorithm below along with the
main theorem, Theorem 9, which proves the correctness of our algorithm.

Algorithm 2 Identity-Tester.

Input :n, ε, q, Poi(1) samples from each of p1, p2, · · · , ps
Output : accept or reject

1 s← c1n‖q‖2
ε2

2 Draw Poi(1) samples from each of the s distributions {pj}sj=1.
3 Tx ← # times we see element x ∈ [n] among the samples.
4 τ ← 5s2ε2

8n
5 Z ←

∑
x∈[n](Tx − sq(x))2 − Tx

6 if Z ≥ τ then
7 Output reject and abort.
8 Output accept

I Theorem 9 (Correctness of Identity-Tester). There exist a constant c1 independent of
n such that the following statements hold with probability 2/3:

Identity-Tester outputs accept if each of the s distributions p1, · · · , ps are equal to q.
Identity-Tester outputs reject if the pi’s are ε-far from q (‖pi − q‖1 ≥ ε) and {pi}si=1
satisfy the structural condition given in Definition 1.

I Remark 10. The sample complexity of Algorithm 2 is Θ(n‖q‖2/ε
2). Using the flattening

procedure of Section 4.2, the sample complexity of Identity-Tester reduces to Θ(
√
n/ε2)

which is optimal since the lower bound of Ω(
√
n/ε2) holds for identity testing in the standard

single distribution setting [28].

I Remark 11. Note that identity testing is a generalization of uniformity testing in Section 3.
However, we keep our approach for uniformity testing since we only use exactly one sample
per distribution, rather than one sample in expectation.
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Overview of the proof. To prove the correctness of Identity-Tester, we analyze the
statistic

Z =
∑
x∈[n]

(Tx − s q(x))2 − Tx ,

where Tx denotes the number of times we observe element x among our s′ ∼ Poi(s) samples.
Note that by employing the poissonization method, Tx is a Poisson random variable with
parameter λx :=

∑s
j=1 pj(x) and Tx and Ty are independent for x 6= y. The independence

among Tx’s greatly simplifies our calculations.
Our goal is to show Z is below the threshold τ in the completeness case, and above

the threshold in the soundness case. To do so, we make use of the structural condition
to first define a convenient representation of E[Z] in Lemma 12. We then show a strong
concentration around its expectation by bounding the variance of Z in Lemma 13. Finally,
we show that Z is always on the desired side of the threshold proving the correctness of our
algorithm.

Proof of Theorem 9. Note that we set the (expected) number of samples to be s =
c1n‖q‖2/ε

2 for some sufficiently large constant c1, and the threshold τ to be equal to
5s2ε2/(8n). We begin by stating a convenient representation of E[Z]. To motivate our
calculations, note that for a fixed x,

E[(Tx − s q(x))2 − Tx] = E[T 2
x ]−E[Tx]− 2sq(x)E[Tx] + s2q(x)2

= λ2
x − 2s q(x)λx + s2q(x)2 = (λx − s q(x))2

which follows from the fact that Tx is a Poisson random variable with parameter λx =∑s
j=1 pj(x). Now using the structural condition, we can define error terms similar to our

uniformity testing section. For each distribution pj , we define

ej(x) = pj(x)− q(x) ∀x ∈ A
ej(x) = q(x)− pj(x) ∀x ∈ B.

After plugging in ej(x) for all x into our expression for λx, we combine these terms into
a more useful representation of E[Z]. We precisely show this representation in Lemma 12
where we prove that E[Z] is given by ‖~e1 + · · ·+~es‖2

2 where we interpret the vector ~ej ∈ Rn
as the vector with entries ej(x) = |q(x)− pj(x)|. Note that this is a natural generalization
of the quantity s2‖q − p‖2

2 which is the quantity calculated by all χ2-based testers in the
single distribution setting of identity testing (where all the samples are i.i.d. from a fixed
distribution p). More formally, we have the following lemma which we prove in Section 4.3.

I Lemma 12. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and let Tx be the number of
times we see element x ∈ [n] among the samples. Let Z =

∑
x∈[n](Tx − sq(x))2 − Tx. Then,

E[Z] = ‖~e1 + · · ·+ ~es‖2
2

where the x-th coordinate of ~ej ∈ Rn is |q(x)− pj(x)|.

We now give a tight upper bound for the variance of our statistic Z. Let Zx denote the
x-th term in Z, (Tx − sq(x))2 − Tx. As we establish earlier, using the Poissonization method,
Tx’s are independent from each other. Thus, the Zx’s are independent as well. Therefore,
one can expand the variance of Z as bellow:

Var[Z] =
∑
x∈[n]

Var[Zx] =
∑
x∈[n]

E[Z2
x]−E[Zx]2 .
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As we expand the term Z2
x, to bound E

[
Z2
x

]
, higher norms of Tx, i.e., E

[
T kx
]
for k ∈ [4],

appear in our calculation. We can compute the closed-form of these quantities via the known
norms of the Poisson distribution. Combining these terms, we again get an upper bound of
Var[Z] in terms of the vectors ~ej . Formally, we prove the following lemma in Section 4.4.

I Lemma 13. Let {pi}si=1 be s distributions over [n] that satisfy the structural condition
given in Definition 1. Suppose we draw Poi(1) samples from each pi, and let Tx be the number
of times we see element x ∈ [n] among the samples. Let Z =

∑
x∈[n](Tx − sq(x))2 − Tx.

Then, we have:

Var[Z] ≤ 4s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 2

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

,

where |q(x)− pj(x)| is the x-th coordinates of ~ej ∈ Rn, and ~pj is the vector representation of
the distribution pj.

We can now proceed to the proof of the theorem in the completeness case.

Proof of the completeness case. In this case, Lemma 12 gives us E[Z] = 0, and Lemma 13
gives us Var[Z] ≤ 2s2‖q‖2

2. Therefore by Chebyshev’s inequality,

Pr[Z ≥ τ ] ≤ Pr
[
|Z| = |Z −E[Z]| ≥ s2ε2

4n

]
≤ 32s2‖q‖2

2n
2

s4ε4
= 32‖q‖2

2n
2

s2ε4
.

Recall that we let s = c1n‖q‖2/ε
2. The right hand side of the above inequality can be made

arbitrarily small by picking a sufficiently large constant c1, which proves the completeness
case.

Proof of the soundness case. In this case, Lemma 12 gives us

E[Z] = ‖~e1 + · · ·+ ~es‖2
2 =

∑
x∈[n]

 s∑
j=1

ej(x)

2

≥ 1
n

 s∑
j=1

∑
x∈[n]

ej(x)

2

≥ s2ε2

n

where the first inequality is Cauchy-Schwarz, and the second inequality follows from the fact
that∑

x∈[n]

ej(x) = ‖q − pj‖1 ≥ ε

for each j ∈ [s]. Then by Chebyshev’s inequality and Lemma 13,

Pr
[
|Z −E[Z]| ≥ E[Z]

4

]
≤ 16Var[Z]

E[Z]2

≤
4s‖q‖2

∥∥∥∑s
j=1 ~ej

∥∥∥2

4∥∥∥∑s
j=1 ~ej

∥∥∥4

2

+
2
∥∥∥∑s

j=1 ~pj
∥∥∥2

2∥∥∥∑s
j=1 ~ej

∥∥∥4

2

+
4
∥∥∥∑s

j=1 ~ej
∥∥∥3

3∥∥∥∑s
j=1 ~ej

∥∥∥4

2

(10)

Now, we bound each of the three terms above separately. We start off by introducing a
new distribution denoted by p̃ to be p̃ := 1

s

∑s
j=1 pj . In some of our calculation, this new

representation simplifies our calculations.
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First term: Now, we focus on the first term in Equation (10). We note that all the
ej(x) are positive, so we have:∥∥∥∥∥∥

s∑
j=1

~ej

∥∥∥∥∥∥
2

4

=

√√√√√∑
x∈[n]

 s∑
j=1

ej(x)

4

≤
∑
x∈[n]

 s∑
j=1

ej(x)

2

≤

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

2

. (11)

We again use the same Cauchy-Schwarz calculation as in E[Z] and get:∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

2

=
∑
x∈[n]

 s∑
j=1

ej(x)

2

≥ 1
n

∑
x∈[n]

s∑
j=1

ej(x)

2

≥ s2ε2

n
. (12)

Therefore, we bound the first term from above:

4s‖q‖2

∥∥∥∑s
j=1 ~ej

∥∥∥2

4∥∥∥∑s
j=1 ~ej

∥∥∥4

2

≤ 4n‖q‖2

sε2
.

Second term: For the second term, we have:

2
∥∥∥∑s

j=1 ~pj
∥∥∥2

2∥∥∥∑s
j=1 ~ej

∥∥∥4

2

= 2s2‖p̃‖2
2∥∥∥∑s

j=1 ~ej
∥∥∥4

2

where p̃ = 1
s

∑s
j=1 pj . We now consider two cases. If it is the case that ‖p̃‖2 ≤ 3‖q‖2,

then we have:

2s2‖p̃‖2
2∥∥∥∑s

j=1 ~ej
∥∥∥4

2

≤
(

5n‖q‖2

sε2

)2
.

On the other hand, suppose that ‖p̃‖2 > 3‖q‖2. Then, using our structural condition, we
obtain:

2s2‖p̃‖2
2∥∥∥∑s

j=1 ~ej
∥∥∥4

2

= 2‖p̃‖2
2

s2‖p̃− q‖4
2

and note that

‖p̃− q‖2
2 ≥ ‖p̃‖2

2 + ‖q‖2
2 − 2‖q‖2‖p̃‖2 ≥ ‖p̃‖2

2/3.

Hence,

2‖p̃‖2
2

s2‖p̃− q‖4
2
≤ 18
s2‖p̃‖2

2
≤
(

5
s‖q‖2

)2
.

Third term: Again, we use the Cauchy-Schwarz inequality to obtain:∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

=
∑
x∈[n]

 s∑
j=1

ej(x)

3

≤

√√√√√√
∑
x∈[n]

 s∑
j=1

ej(x)

2
 ·

∑
x∈[n]

 s∑
j=1

ej(x)

4


≤

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

·

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4
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Now, we use Equation (11) and Equation (12), which we show earlier, to bound the third
term:

4
∥∥∥∑s

j=1 ~ej
∥∥∥3

3∥∥∥∑s
j=1 ~ej

∥∥∥4

2

≤
4
∥∥∥∑s

j=1 ~ej
∥∥∥

2
·
∥∥∥∑s

j=1 ~ej
∥∥∥2

4∥∥∥∑s
j=1 ~ej

∥∥∥4

2

≤ 4∥∥∥∑s
j=1 ~ej

∥∥∥
2

≤ 4
√
n

sε
.

Thus in all cases, we have

Pr
[
|Z −E[Z]| ≥ E[Z]

4

]
≤ 4n‖q‖2

sε2
+
(

5n‖q‖2

sε2

)2
+
(

5
s‖q‖2

)2
+ 4
√
n

sε
.

Note that s = c1n‖q‖2/ε
2 and ‖q‖2 ≥ 1/

√
n. Therefore, by letting c1 be a sufficiently large

constant, we get that the above probability is smaller than 1/3. Hence with probability at
least 2/3, we know Z ≥ 3s2ε2/(4n) in the soundness case, so we reject with probability at
least 2/3, as desired. J

4.2 Flattening Procedure
In this section, we present the flattening procedure which allows us to assume that ‖q‖2

2 =
O(1/n) in Remark 10 without loss of generality where q is our known distribution. While
this procedure is similar to the one used in [16], we state it here for the sake of completeness.
For each x ∈ [n], define

bx := bnq(x)c+ 1.

We note that bx ≥ 1 for each x ∈ [n]. Given a sample x from a distribution p over [n], we
can get a sample from the “flattened” distribution p′ over a new domain, D, defined as

D := {(x, y) | x ∈ [n], y ∈ [bx]},

by drawing an element from y ∈ [bx] uniformly at random and creating the tuple (x, y). This
is the flattening procedure that we use for our version of identity testing. Note that the
probability mass over [n] placed by p gets “flattened” to be a probability distribution over
the domain D.

Furthermore, this procedure has a few desired properties which we state here: First, the
size of this new domain is O(n):

|D| =
∑
x∈[n]

bx ≤ 2n.

Second, the procedure preserves the `1-distance between two distributions: let p′ and q′
denote the flattened versions of p and q. Then, we have:

‖q′ − p′‖1 =
∑
x∈[n]

∑
y∈[bx]

|q(x)− p(x)|
|bx|

=
∑
x∈[n]

|q(x)− p(x)| = ‖q − p‖1.

Third, by definition of the bx’s, we can show that q′ has a low `2-norm:

‖q′‖2
2 =

∑
x∈[n]

∑
y∈[bx]

q(x)2

b2
x

=
∑
x∈[n]

q(x)2

bx
≤
∑
x∈[n]

q(x)
n
≤ 1
n
.

The above inequality implies that the `2-norm of q′ is within a constant factor of the smallest
possible norm, which is (|D|)−1/2.
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Therefore whenever we get a sample over [n] in Identity-Tester, we can use this
flattening procedure to draw a sample over D. By using this flattening procedure to draw
samples from a slightly larger domain, we can assume that the `2-norm of the known
distribution q is O(1/

√
n). Note that since the size of the larger domain is still O(n), the

flattening procedure only affects the sample complexity up to constant factors. Therefore, by
combining with Theorem 9, we can perform our generalized version of identity testing by
using s = O(

√
n/ε2) samples, which is optimal up to constant factors.

4.3 Proof of Lemma 12
I Lemma 12. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and let Tx be the number of
times we see element x ∈ [n] among the samples. Let Z =

∑
x∈[n](Tx − sq(x))2 − Tx. Then,

E[Z] = ‖~e1 + · · ·+ ~es‖2
2

where the x-th coordinate of ~ej ∈ Rn is |q(x)− pj(x)|.

Proof. Let

Zx = (Tx − sq(x))2 − Tx.

We have:

Z2
x = T 2

x − 2sq(x)Tx + s2q(x)2 − Tx.

We can compute that:

E[Zx] = E[T 2
x ]−E[Tx]− 2sq(x)E[Tx] + s2q(x)2

= λ2
x − 2sq(x)λx + s2q(x)2

where we have used the fact that the variance of a Poisson random variable with parameter
λ is also λ. We introduce the following notation (−1)x∈B which is defined as

(−1)x∈B =
{
−1 if x ∈ B,

1 if x 6∈ B.

Using the fact that λx =
∑s
j=1 pj(x), we can compute that

∑
x∈[n]

λx =
s∑
j=1

∑
x∈[n]

(
q(x) + (−1)x∈Bej(x)

)
.

In Appendix A, we calculate the
∑
x∈[n] λ

2
x. There we show that

∑
x∈[n]

λ2
x = s2||q||22 + 2s

s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x)

+
s∑
j=1

∑
x∈[n]

ej(x)2 +
∑
j 6=k

∑
x∈[n]

ej(x)ek(x).
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Using these two results, we have:∑
x∈[n]

E[Zx] =
∑
x∈[n]

λ2
x − 2s

∑
x∈[n]

q(x)λx + s2
∑
x∈[n]

q(x)2

= 2s
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x) +
s∑
j=1

∑
x∈[n]

ej(x)2 +
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

− 2s
s∑
j=1

∑
x∈[n]

(q(x)2 + (−1)x∈Bq(x)ej(x)) + 2s2‖q‖2
2

=
s∑
j=1

∑
x∈[n]

ej(x)2 +
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

= ‖~e1 + · · ·+ ~es‖2
2.

Therefore, our final result is as follows:

E[Z] = ‖~e1 + · · ·+ ~es‖2
2,

as desired. J

I Remark 14. Note that the quantity ‖~e1 + · · · + ~es‖2
2 is a natural generalization of the

quantity s2‖q − p‖2
2 which is the expectation of the random variable calculated by identity

testers in the single distribution case where samples come from a fixed distribution p.

4.4 Proof of Lemma 13
I Lemma 13. Let {pi}si=1 be s distributions over [n] that satisfy the structural condition
given in Definition 1. Suppose we draw Poi(1) samples from each pi, and let Tx be the number
of times we see element x ∈ [n] among the samples. Let Z =

∑
x∈[n](Tx − sq(x))2 − Tx.

Then, we have:

Var[Z] ≤ 4s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 2

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

,

where |q(x)− pj(x)| is the x-th coordinates of ~ej ∈ Rn, and ~pj is the vector representation of
the distribution pj.

Proof. Let

Zx = (Tx − sq(x))2 − Tx.

Due to the independence of Tx, we have

Var[Z] =
∑
x∈[n]

Var[Zx] =
∑
x∈[n]

E[Z2
x]−E[Zx]2

where

Zx = (Tx − sq(x))2 − Tx.

Noting that Tx is a Poisson with parameter λx, we can compute that

E[Z2
x] = λ4

x+4λ3
x(1−sq(x))+2λ2

x(1−4sq(x)+3s2q(x)2)+4s2q(x)2λx(1−sq(x))+s4q(x)4.
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In Appendix A we calculate the
∑
x∈[n] λ

k
x for k ∈ {1, 2, 3, 4}. Using these results and

simplifying, we arrive at the following expression:

∑
x∈[n]

E[Z2
x] = 4s

s∑
j=1

∑
x∈[n]

q(x)ej(x)2 + 4s
∑
j 6=k

∑
x∈[n]

q(x)ej(x)ek(x) + 2s2‖q‖2
2

+ 4s
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x) + 2
s∑
j=1

∑
x∈[n]

ej(x)2 + 2
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

+ 4
s∑
j=1

∑
x∈[n]

(−1)x∈Bej(x)3 + 12
∑
j 6=k

∑
x∈[n]

(−1)x∈Bej(x)2ek(x)

+ 4
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bej(x)ek(x)e`(x) +
(

s∑
j=1

∑
x∈[n]

ej(x)4 + 6
∑
j 6=k 6=`

ej(x)2ek(x)e`(x)

+ 4
∑
j 6=k

ej(x)3ek(x) + 3
∑
j 6=k

ej(x)2ek(x)2 +
∑

j 6=k 6=`6=t
ej(x)ek(x)e`(x)et(x)

)
.

We now simplify the above expression. First note that

4s
s∑
j=1

∑
x∈[n]

q(x)ej(x)2 + 4s
∑
j 6=k

∑
x∈[n]

q(x)ej(x)ek(x)

= 4s
∑
x∈[n]

q(x)

 s∑
j=1

ej(x)2 +
∑
j 6=k

ej(x)ek(x)

 = 4s
∑
x∈[n]

q(x)

 s∑
j=1

ej(x)

2

≤ 4s‖q‖2‖~e1 + · · ·+ ~es‖2
4.

Furthermore,

2s2‖q‖2
2 + 4s

s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x) + 2
s∑
j=1

∑
x∈[n]

ej(x)2 + 2
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

= 2
∑
j 6=k

∑
x∈[n]

(q(x) + (−1)x∈Bej(x))(q(x) + (−1)x∈Bek(x))

= 2‖~p1 + · · · ~ps‖2
2

and

4
s∑
j=1

∑
x∈[n]

(−1)x∈Bej(x)3 + 12
∑
j 6=k

∑
x∈[n]

(−1)x∈Bej(x)2ek(x)

+ 4
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bej(x)ek(x)e`(x)

≤ 4

 s∑
j=1

∑
x∈[n]

ej(x)3 + 3
∑
j 6=k

∑
x∈[n]

ej(x)2ek(x) +
∑
j 6=k 6=`

∑
x∈[n]

ej(x)ek(x)e`(x)


= 4‖~e1 + · · ·+ ~es‖3

3.
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Finally, the last expression inside the parenthesis in the expression for
∑
x∈[n] E[Z2

x] which is:

s∑
j=1

∑
x∈[n]

ej(x)4 + 6
∑
j 6=k 6=`

ej(x)2ek(x)e`(x) + 4
∑
j 6=k

ej(x)3ek(x) + 3
∑
j 6=k

ej(x)2ek(x)2

+
∑

j 6=k 6=`6=t
ej(x)ek(x)e`(x)et(x)

is precisely
∑
x∈[n]

(∑s
j=1 ej(x)

)4
. Therefore, we obtain the following bound:

∑
x∈[n]

E[Z2
x] ≤ 4s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 2

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

+
∑
x∈[n]

 s∑
j=1

ej(x)

4

.

Using the calculation for E[Zx] that we performed for Lemma 12, we see that:

∑
x∈[n]

E[Zx]2 =
∑
x∈[n]

 s∑
j=1

ej(x)2 +
∑
j 6=k

ej(x)ek(x)

2

=
∑
x∈[n]

 s∑
j=1

ej(x)

4

so altogether,

Var[Z] ≤ 4s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 2

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

,

as desired. J

I Remark 15. As stated in Section 4.3, the quantity
∥∥∥∑s

j=1 ~ej
∥∥∥2

4
is a natural generalization

of s2‖q − p‖2
2 which appears in the variance calculations of the statistic used by identity

testers in the single distribution setting where samples come from a fixed distribution p.
Similarly, the quantity

∥∥∥∑s
j=1 ~pj

∥∥∥2

2
is a natural generalization of s2‖p‖2

2 which also appears
in these calculations.

5 Closeness Testing with Multiple Sources

in this section, we present our algorithm for closeness testing with multiple sources and its
analysis. Recall that our goal is to distinguish the following two cases with probability at
least 2/3:

Completeness case: p1, p2, · · · are identical to q
Soundness case: p1, p2, · · · are all ε-far from q in `1-distance

where we have access to two streams. In the first stream, all samples are i.i.d. from some fixed
distribution q over [n] that is unknown to us while in the second stream, we receive samples
from {pi}si=1. In the soundness case, we also assume that the pi’s satisfy the structural
condition given in Definition 1: we assume there are disjoint sets A and B that partition
[n] such that all pi’s are larger than q on the indices in A, and all the pi’s are smaller
than q on the indices in B. Note that the structural condition is trivially satisfied in the
completeness case.
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5.1 Algorithm for Closeness Testing
We now present our algorithm, Closeness-Tester, for closeness testing with multiple
sources. Overall, our approach is very similar to our approach in Section 4. As in the identity
testing section, we again make the assumption that we are able to receive Poi(1) samples from
each of the distributions pi. This is a generalization of the standard assumption in the single
source closeness testing [10, 16] and it significantly simplifies the analysis of our algorithm
by making certain random variables independent, similar to the identity testing section.
Furthermore, as Poi(s) is tightly concentrated around s, we can carry out this poissonization
method at the expense of only constant factor increases in the sample complexity.

As in the identity testing section, the statistic calculated by our algorithm is introduced
in [10, 16]. We show that the expected value of our statistic is related to the “`2-norm” of
the difference of the distributions, as explained in Section 2.3. If the value of the statistic
is “large” compared to some threshold τ , the algorithm outputs reject and outputs accept
otherwise. As in uniformity testing, the challenge is to show that the value of this statistic
concentrates which we do so by analyzing its variance. Ultimately, we prove that the sample
complexity of our generalized identity tester depends on the `2-norm of q, the distribution
that we have i.i.d. sample access from. We then present a randomized flattening procedure in
Section 5.2 which shows how to reduce the `2-norm of q to O(1/

√
k) where k is a parameter

in our algorithm. This randomized flattening procedure is slightly different than the one used
in Section 4.2 since we do not know q in advance. Therefore, we must use some samples from
q to towards this procedure. We present our algorithm below along with the main theorem,
Theorem 16, which proves the correctness of our algorithm.

Algorithm 3 Closeness-Tester.

Input :n, ε, sample access to q, Poi(1) samples from each of p1, p2, · · · , ps
Output :Accept or Reject

1 k ← n2/3

ε4/3

2 Draw Poi(k) samples from q to perform the randomized flattening procedure given in
Section 5.2.

3 s← c1n

ε2
√
k

4 Draw Poi(s) samples from q.
5 Draw Poi(1) samples from each of the s distributions {pj}sj=1.
6 Yx ← # times we see element x ∈ [n] among the Poi(s) samples from q

7 Tx ← # times we see element x ∈ [n] among the samples from {pj}sj=1.
8 τ ← 5s2ε2

8n
9 Z ←

∑
x∈[n](Tx − Yx)2 − Tx − Yx

10 if Z ≥ τ then
11 Output reject and abort.
12 Output accept

I Theorem 16 (Correctness of Closeness-Tester). There exist a constant c1 independent
of n such that the following statements hold with probability 2/3:

Closeness-Tester outputs accept if each of the s distributions p1, · · · , ps are q.
Closeness-Tester outputs reject if each of the pi’s are ε-far from q ( ‖pi − q‖1 ≥ ε)
and {pi}si=1 satisfy the structural condition given in Definition 1.
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I Remark 17. The sample complexity of Closeness-Tester is Θ(k + n/(ε2
√
k)) using the

flattening procedure of Section 5.2. Optimizing in k, the sample complexity of Closeness-
Tester reduces to Θ(n2/3/ε4/3 +

√
n/ε2) which is optimal since the same lower bound holds

for closeness testing in the standard single distribution setting [16].

I Remark 18. Note that given the above result, we may need fewer sources as long as
we have more samples from the distribution q. In particular, suppose we use k1 =
Θ
(
min

(
n2/3/ε4/3 +

√
n/ε2, n

))
samples from q for flattening, which implies that the `2-

norm of the “flattened” q is O(1/
√
k1) with high probability. Then, we can use s =

Θ(n/(
√
k1 ε

2)+
√
n/ε2) sources, and Θ(s) samples from the “flattened” q and use Closeness-

Tester to distinguish between the completeness and the soundness case. This is an sample-
optimal trade off up to constant factors since the same lower bound holds in the standard
single distribution setting [16].

Overview of the proof. To prove the correctness of Closeness-Tester, we analyze the
statistic

Z =
∑
x∈[n]

(Tx − Yx)2 − Tx − Yx

where Tx denote the number of times we observe element x among the samples from {pi}si=1
and Yx denotes the number of times we see element x among the Poi(s) samples from q.
Note that by the poissonization method, Tx is a Poisson random variable with parameter
λx =

∑s
j=1 pj(x), similar to the identity testing section. Furthermore, Tx and Ty are

independent for x 6= y and furthermore, Yx is a Poisson random variable with parameter
s q(x). Our goal is to show Z is below the threshold τ in the completeness case, and above
the threshold in the soundness case. To do so, we make use of the structural condition
to first define a convenient representation of E[Z] in Lemma 19. We then show a strong
concentration around its expectation by bounding the variance of Z in Lemma 20. These
two lemmas are very similar to the ones proved in Section 4 due to the similarity of the
statistic Z used here and in Section 4. Finally, we show that Z is always on the desired side
of the threshold proving the correctness of our algorithm.

Proof of Theorem 16. Note that we set the number of samples to be c1n/(ε2
√
k) for a

sufficiently large constant c1, and the threshold τ to be equal to 5s2ε2/(8n). We begin by
stating a convenient representation of E[Z]. To motivate our calculations, note that for a
fixed x,

E[(Tx − Yx)2 − Tx − Yx] = E[T 2
x ]−E[Tx] + E[Y 2

x ]−E[Yx]− 2E[Yx]E[Tx]
= λ2

x − 2sq(x)λx + s2q(x)2

where we have used the fact that Tx and Yx are Poisson random variables with parameters
λx =

∑s
j=1 pj(x) and sq(x) respectively. Now using the structural condition, we can define

error terms similar to Sections 3 and 4. For each distribution pj , we define

ej(x) = pj(x)− q(x) ∀x ∈ A
ej(x) = q(x)− pj(x) ∀x ∈ B.

After plugging in ej(x) for for all x into our expression for λx, we again get terms of the
form

∑
j ej(x)2 and cross terms

∑
j 6=k ej(x)ek(x), similar to the proof of Theorem 9. Our

goal is to combine these terms into a more useful representation. We precisely show this in
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Lemma 19 where we prove that E[Z] is given by ‖~e1 + · · · + ~es‖2
2 where we interpret the

vector ~ej ∈ Rn as the vector with entries ej(x) = |q(x)− pj(x)|. Note that this is a natural
generalization of the quantity s2‖q− p‖2

2. More formally, we have the following lemma which
we prove in Section 5.3.

I Lemma 19. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and Poi(s) samples from q

and let Tx be the number of times we see element x ∈ [n] among the samples among the pi,
and let Yx be the number of times we see element x ∈ [n] among the samples from q. Let
Z =

∑
x∈[n](Tx − yx)2 − Tx − Yx. Then

E[Z] = ‖~e1 + · · ·+ ~es‖2
2

where ~ej ∈ Rn has coordinates |q(x)− pj(x)|.

We now give a tight upper bound for the variance of our statistic Z. Defining Zx =
(Tx − Yx)2 − Tx − Yx and recalling the poissonization method, we see that

Var[Z] =
∑
x∈[n]

Var[Zx] =
∑
x∈[n]

E[Z2
x]−E[Zx]2.

Expanding Z2
x, we get terms involving λkx for k ∈ {1, 2, 3, 4}. Combining these terms, we

again get an upper bound of Var[Z] in terms of the vectors ~ej . Formally, we prove the
following lemma in Section 5.4.

I Lemma 20. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and Poi(s) samples from q

and let Tx be the number of times we see element x ∈ [n] among the samples among the pi,
and let Yx be the number of times we see element x ∈ [n] among the samples from q. Let
Z =

∑
x∈[n](Tx − yx)2 − Tx − Yx. Then

Var(Z) ≤ 8s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 8

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

where ~ej ∈ Rn has coordinates |q(x)− pj(x)| and ~pj ∈ Rn has coordinates pj(x).

We can now proceed to the proof of the theorem in the completeness case.

Proof of the Completeness Case. In this case, Lemma 19 gives us E[Z] = 0 and Lemma
20 gives us Var[Z] ≤ 8s2‖q‖2

2. Therefore by Chebyshev’s inequality,

Pr[|Z| ≥ τ ] = Pr
[
|Z| ≥ s2ε2

4n

]
≤ 128s2‖q‖2

2n
2

s4ε4
= 128‖q‖2

2n
2

s2ε4
.

The right hand side of the above inequality can be made arbitrarily small by letting
s = c1n‖q‖2/ε

2 for a sufficiently large constant c1. Due to our randomized flattening
procedure of Section 5.2, we can assume that ‖q‖ = O(1/

√
k). Therefore, we can make the

above probability bound arbitrarily small by letting s = c1n/(ε2
√
k) for a sufficiently large

constant c1.

Proof of the Soundness Case. In this case,

E[Z] = ‖~e1 + · · ·+ ~es‖2
2 =

∑
x∈[n]

 s∑
j=1

ej(x)

2

≥ 1
n

 s∑
j=1

∑
x∈[n]

ej(x)

2

≥ s2ε2

n
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where the first inequality is Cauchy-Schwarz and the last inequality follows from our assump-
tion about the error terms ej(x) in the soundness case. Then by Chebyshev’s inequality,

Pr
[
|Z −E[Z]| ≥ E[Z]

4

]
≤ 16Var[Z]

E[Z]2

≤
8s‖q‖2

∥∥∥∑s
j=1 ~ej

∥∥∥2

4∥∥∥∑s
j=1 ~ej

∥∥∥4

2

+
8
∥∥∥∑s

j=1 ~pj
∥∥∥2

2∥∥∥∑s
j=1 ~ej

∥∥∥4

2

+
4
∥∥∥∑s

j=1 ~ej
∥∥∥3

3∥∥∥∑s
j=1 ~ej

∥∥∥4

2

.

Note that the right hand side of the above inequality is identical to the right hand side of
Inequality (10) that appears in the probability calculation in the proof of Theorem 9. Using
the identical bounds given there, we arrive at the following inequality:

Pr
[
|Z −E[Z]| ≥ E[Z]

4

]
≤ C

(
n‖q‖2

sε2
+
(
n‖q‖
sε2

)2
+
(

1
s‖q‖2

)2
+
√
n

s ε

)

for some constant C. Note that if we let s = c1n‖q‖2/ε
2 for a sufficiently large constant

c1 and use the fact that ‖q‖2 ≥ 1/
√
n, we have that the above probability is smaller than

1/3. Again using the randomized flattening procedure of Section 5.2, we see that we can
let s = c1n/(ε2

√
k). Hence with probability at least 2/3, we know Z ≥ 3s2ε2/(4n) in the

soundness case so we reject with probability at least 2/3, as desired. J

5.2 Randomized Flattening Procedure
in this section, we present our randomized flattening procedure. Let k be some fixed parameter
(which is an input to Closeness-Tester). We show that we can assume that ‖q‖2

2 = O(1/k)
for Section 5 without loss of generality where q is the distribution that we have i.i.d. sample
access to. This procedure is similar to the one used in [16] for single distribution closeness
testing.

First, suppose that we draw Poi(k) i.i.d. samples from q. Then for each x ∈ [n], define bx
to be the number of instances of element x ∈ [n] that we see among these samples plus 1.
Note the resemblance between this definition and the one given in the flattening procedure
for identity testing in Section 4.2. Now given a sample x from a distribution p over [n], we
can get a sample from the “flattened” distribution p′ over

D = {(x, y) | x ∈ [n], y ∈ [bx]}

by drawing an element from y ∈ [bx] uniformly at random and creating the tuple (x, y). This
is the flattening procedure that we use for our generalized version closeness testing. Note that
the probability mass over [n] placed by p gets “flattened” to be a probability distribution
over D, hence the name. The size of this new domain is n+ k. We can calculate that this
procedure preserves the `1-distance:

‖q′ − p′‖1 =
∑
x∈[n]

∑
y∈[bx]

|q(x)− p(x)|
|bx|

=
∑
x∈[n]

|q(x)− p(x)| = ‖q − p‖1.

Furthermore,

E[‖q′‖2
2] = E

∑
x∈[n]

∑
y∈[bx]

q(x)2

b2
x

 ≤ ∑
x∈[n]

q(x)2E [1/bx] .
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By the poissonization method, we know that bx is distributed as 1+Z where Z is a Poi(kq(x))
random variable. Therefore, similar to [16], we have:

E [1/(Z + 1)] = E
[∫ 1

0
sz ds

]
=
∫ 1

0
E[sz] ds =

∫ 1

0
ekq(x)(s−1) ds ≤ 1

kq(x)

where we have used the probability generating function for a Poisson random variable. This
gives us

E[‖q′‖2
2] ≤

∑
x∈[n]

q(x)
k
≤ 1
k
.

Hence by Markov’s inequality, we can say that ‖q′‖2
2 = O(1/k) holds with an arbitrarily large,

constant probability. Now whenever we get a sample over [n], we can use this flattening
procedure to draw a sample over D. Furthermore, by using this flattening procedure to draw
samples from a slightly larger domain, we can assume that ‖q‖2

2 = O(1/k) in Section 5 at
the expense of losing a negligible factor in our error probability.

Note that the size of the larger domain is O(n+ k) = O(n) if we pick k ≤ n. Therefore,
combining with Theorem 16, we show that we can perform closeness testing with multiple
sources by using

O

(
k + n‖q‖2

ε2

)
= O

(
k + n

ε2
√
k

)
= O

(
n2/3

ε4/3 +
√
n

ε2

)
samples after optimizing the value of k. This sample complexity is optimal since a matching
lower bound holds for the single distribution closeness testing setting.

5.3 Proof of Lemma 19
I Lemma 19. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and Poi(s) samples from q

and let Tx be the number of times we see element x ∈ [n] among the samples among the pi,
and let Yx be the number of times we see element x ∈ [n] among the samples from q. Let
Z =

∑
x∈[n](Tx − yx)2 − Tx − Yx. Then

E[Z] = ‖~e1 + · · ·+ ~es‖2
2

where ~ej ∈ Rn has coordinates |q(x)− pj(x)|.

Proof. Note that Tx is a Poisson random variable with parameter λx =
∑s
j=1 pj(x) and Yx

is a Poisson random variable with parameter sq(x). Let

Zx = (Tx − Yx)2 − Tx − Yx.

We can compute that

E[Zx] = E[T 2
x ]−E[Tx] + E[Y 2

x ]−E[Yx]− 2E[Yx]E[Tx]
= λ2

x − 2sq(x)λx + s2q(x)2.

This is the same as the expected value of the variable Zx in Lemma 12. Therefore, the same
computations hold and we arrive at

E[Z] =
∑
x∈[n]

E[Zx] = ‖~e1 + · · ·+ ~es‖2
2,

as desired. J
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5.4 Proof of Lemma 20
I Lemma 20. Let {pi}si=1 be distributions over [n] that satisfy the structural condition given
in Definition 1. Suppose we draw Poi(1) samples from each pi and Poi(s) samples from q

and let Tx be the number of times we see element x ∈ [n] among the samples among the pi,
and let Yx be the number of times we see element x ∈ [n] among the samples from q. Let
Z =

∑
x∈[n](Tx − yx)2 − Tx − Yx. Then

Var(Z) ≤ 8s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 8

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

where ~ej ∈ Rn has coordinates |q(x)− pj(x)| and ~pj ∈ Rn has coordinates pj(x).

Proof. Define

Zx = (Tx − Yx)2 − Tx − Yx.

Due to the independence of Tx and Yx, we have

Var(Z) =
∑
x∈[n]

Var(Zx) =
∑
x∈[n]

E[Z2
x]−E[Zx]2.

Noting that Tx is Poisson with parameter λx =
∑s
j=1 pj(x) and Yx is Poisson with parameter

sq(x), we can compute that

E[Z2
x] = λ4

x + 4λ3
x(1− sq(x)) + 2λ2

x(3s2q(x)2 − 2sq(x) + 1)
+ 4sq(x)λx(1− sq(x)− s2q(x)2) + s4q(x)4 + 4s3q(x)3 + 2s2q(x)2.

Using the formula for λkx for k ∈ {1, 2, 3, 4} given in Appendix A and simplifying, we arrive
at the following expression:

∑
x∈[n]

E[Z2
x] = 8s

s∑
j=1

∑
x∈[n]

q(x)ej(x)2 + 8s
∑
j 6=k

∑
x∈[n]

q(x)ej(x)ek(x) + 8s2‖q‖2
2

+ 8s
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x) + 2
s∑
j=1

∑
x∈[n]

ej(x)2 + 2
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

+ 4
s∑
j=1

∑
x∈[n]

(−1)x∈Bej(x)3 + 12
∑
j 6=k

∑
x∈[n]

(−1)x∈Bej(x)2ek(x)

+ 4
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bej(x)ek(x)e`(x) +
(

s∑
j=1

∑
x∈[n]

ej(x)4 + 6
∑
j 6=k 6=`

ej(x)2ek(x)e`(x)

+ 4
∑
j 6=k

ej(x)3ek(x) + 3
∑
j 6=k

ej(x)2ek(x)2 +
∑

j 6=k 6=`6=t
ej(x)ek(x)e`(x)et(x)

)
.

Similar to Lemma 13, we have

8s
s∑
j=1

∑
x∈[n]

q(x)ej(x)2 + 8s
∑
j 6=k

∑
x∈[n]

q(x)ej(x)ek(x) ≤ 8s‖q‖2‖~e1 + · · ·+ ~es‖2
4,
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and

8s2‖q‖2
2 + 8s

s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x) + 2
s∑
j=1

∑
x∈[n]

ej(x)2 + 2
∑
j 6=k

∑
x∈[n]

ej(x)ek(x)

≤ 8‖~p1 + · · · ~ps‖2
2,

and finally,

4
s∑
j=1

∑
x∈[n]

(−1)x∈Bej(x)3 + 12
∑
j 6=k

∑
x∈[n]

(−1)x∈Bej(x)2ek(x)

+ 4
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bej(x)ek(x)e`(x) = 4‖~e1 + · · ·+ ~es‖3
3.

As in Lemma 13, the last expression inside the parenthesis of E[Z2
x] is precisely

∑
x∈[n]

 s∑
j=1

ej(x)

4

.

Therefore,

∑
x∈[n]

E[Z2
x] ≤ 8s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 8

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

+
∑
x∈[n]

 s∑
j=1

ej(x)

4

.

The same calculation as in Lemma 13 gives us

∑
x∈[n]

E[Zx]2 =
∑
x∈[n]

 s∑
j=1

ej(x)2 +
∑
j 6=k

ej(x)ek(x)

2

=
∑
x∈[n]

 s∑
j=1

ej(x)

4

so altogether,

Var(Z) ≤ 8s‖q‖2

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
2

4

+ 8

∥∥∥∥∥∥
s∑
j=1

~pj

∥∥∥∥∥∥
2

2

+ 4

∥∥∥∥∥∥
s∑
j=1

~ej

∥∥∥∥∥∥
3

3

. (13)

J

6 Failure of de Finetti’s Theorem with Sublinear Number of Samples

in this section, we prove Theorem 2. Recall the statement of Theorem 2.

I Theorem 2. Let s = O(
√
n) be the number of samples required by Algorithm 1 for ε = 1/3.

There exists an exchangeable sequence X1, . . . , Xs such that Xi is drawn from distribution qi
which are all supported in [n] and satisfy ‖qi − Un‖1 ≥ 1/3 for all i. Furthermore, {qi}si=1
all satisfy the structural condition given in Definition 1 with q = Un. Let P denote the
distribution of the sequence X1, . . . , Xs. Then P is Ω(1)-far in `1-distance from any mixture
of product distributions.

Note that an algorithm can turn samples Y1, · · · , Ys into an exchangeable sequence
X1, · · · , Xs by permuting randomly. In this section, we given an example of samples
Y1, · · · , Ys such that after permuting them to turn them into an exchangeable sequence
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X1, · · · , Xs , the exchangeable sequence is “far” from a mixture of product distributions.
The main idea behind Theorem 2 is based on Proposition 31 in [13]. Essentially, Diaconis
and Freedman show in [13] that a Polya’s urn process generates an exchangeable sequence
that is far from the mixture of any product distributions. This example does not quite work
in our case since we would like the structural condition to hold. Therefore, we adapt the
Polya’s urn idea by partitioning our domain into a “large” set and a “small” set. We then
apply a Polya’s urn type process on the small set so that no collisions can happen on it.
This results in an event E1 which we use to lower bound the distance from the distribution
of our exchangeable sequence to any mixture of product distributions. However, we need
an additional event E2 to deal with the large set. Combining these two events allows us to
prove Theorem 2. This overview is formalized below.

Proof of Theorem 2. Let ε = 1/3 and let s be the number of samples required by our
uniformity tester in Algorithm 1 for this value of ε. In particular, s2 = Cn for some constant
C > 10 and define δ as δ = 1/C. We now construct distributions {qi}si=1 as follows:

qi(x) =


1− δ/20− s/n, x = 1
1/n, x ∈ {2, · · · , s+ 1} \ {i+ 1}
δ/20, x = i+ 1.

Note that all distributions are supported only on {1, · · · , s+ 1}. We can check that for large
enough n, we have ‖qi − Un‖1 ≥ 1/3 for all i. We then draw sample Yi independently from
qi. Note that A = {1, · · · , s+ 1} and B = [n] \ {1, · · · , s+ 1} for the structural condition in
Definition 1. In other words, all the distributions are larger than uniform on A and smaller
than uniform on B so {qi}si=1 satisfy the conditions of the theorem.

Now let {Xi}si=1 be an exchangeable sequence derived from {Yi}si=1 (for example, by
permuting them randomly). Let p be the distribution of (X1, · · · , Xs). Consider the following
two events:

E1 = Event that Xi = Xj ∈ {2, · · · , s+ 1} for some i 6= j

E2 = Event that at least s(1− δ2/2) of the Xi’s are equal to 1.

We first compute p(E1). Note that for any i 6= j, we have

P(Xi = Xj ∈ {2, · · · , s+ 1}) ≤ δ

10n + s

n2 .

Therefore by a union bound, the probability that there exists some i 6= j such that E1 holds
is at most

Cδ

10 + s3

n2 ≤
1
9

for sufficiently large n. We now compute p(E2). We know that P(Xi = 1) ≤ 1 − δ/20
for all i. Therefore, the number of 1’s among the Xi’s is sum of s Bernoulli random
variables with parameters at most 1− δ/20 and hence, the expected number of 1’s is at most
s(1− δ/20). Then by a Chernoff bound, we have P(E2) ≤ 1/100 if we take n (and therefore s)
sufficiently large.

Now for a distribution pk over [n], we let psk be the distribution of s independent picks
from pk. Let M =

∑
k wkp

s
k be any mixture of product distributions psk. We wish to show

that ‖p − M‖1 = Ω(1) for any M . Note that all of the {qi}si=1 are only supported on
{1, · · · , s + 1}. Therefore, we can assume without loss of generality that the pk is also
supported only on {1, · · · , s+ 1} for all k. Now consider a single psk. We consider two cases.
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Case 1: pk({2, · · · , s+ 1}) ≥ δ2. In this case, let Z be the number of collisions among
elements in {2, · · · , s+ 1} if we draw s independent samples from pk. We have

E[Z] =
(
s

2

) ∑
i∈{2,··· ,s}

pk(i)2.

Define
∑
i∈{2,··· ,s} pk(i)2 = ‖p̃k‖2

2. Using standard calculations as in the single distribution
uniformity testing case, see [23, 6], we can compute

Var[Z] ≤ 4
((

s

2

)
‖p̃k‖2

2

)3/2
.

Hence by Chebyshev’s inequality,

P(Z = 0) ≤ P(|Z −E[Z]| ≥ E[Z]) ≤
4
(
s
2
)3/2‖p̃k‖3

2(
s
2
)2‖p̃k‖4

2

≤ C ′

s‖p̃k‖2

for some absolute constant C ′. Now by Cauchy Schwarz,

‖p̃k‖2 ≥
δ2
√
s

so we have P(Z = 0) ≤ 1/100 for sufficiently large n. Therefore, psk(E1) ≥ 99/100.
Case 2: pk({2, · · · , s+ 1}) < δ2. In this case, we have pk(1) ≥ 1 − δ2. Therefore, if

we draw s samples from pk, the number of 1’s that we will see is at least s(1 − δ2) in
expectation. By Chernoff, the probability that we see less than s(1− δ2/2) number of 1’s
is at at most 1/100 for sufficiently large n. Hence, psk(E2) ≥ 99/100.
Now note that

‖p−M‖1 = 2‖p−M‖TV ≥ |P (E1)−M(E1)|+ |p(E2)−M(E2)|.

We have

|p(E1)−M(E1)| ≥
∑

k|pk∈Case 1

wkp
s
k(E1)− 1

9 ≥
99
100

∑
k|pk∈Case 1

wk −
1
9 .

Similarly,

|p(E2)−M(E2)| ≥
∑

k|pk∈Case 2

wkp
s
k(E2)− 1

100 ≥
99
100

∑
k|pk∈Case 2

wk −
1

100 .

Hence we have that

‖p−M‖1 ≥
99
100

(∑
k

wk

)
−
(

1
9 + 1

100

)
≥ Ω(1).

Since M was arbitrary, we are done. Hence, p is Ω(1)-far from any mixture of product
distributions. J
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We compute
∑
x∈[n] λ

k
x for k ∈ {1, 2, 3, 4}. We note that

∑
x∈[n]

λx =
s∑
j=1

∑
x∈[n]

(q(x) + (−1)x∈Bej(x)) (14)

We now compute
∑
x∈[n] λ

2
x. We use the notation (−1)x∈B as follows:

(−1)x∈B =
{
−1 if x ∈ B

1 if x 6∈ B
.

Note that:

∑
x∈[n]

λ2
x =

∑
x∈[n]

 s∑
j=1

pj(x)

2

=
∑
x∈[n]

 s∑
j=1

pj(x)2 +
∑
j 6=k

pj(x)pk(x)

 .

For fixed j and k, we can compute that:

pj(x)2 = q(x)2 + 2(−1)x∈Bq(x)ej(x) + ej(x)2 ,

and we have:

pj(x)pk(x) = q(x)2 + (−1)x∈B(q(x)ek(x) + q(x)ej(x)) + ej(x)ek(x) .

Putting everything together, we obtain:∑
x∈[n]

λ2
x = s2||q||22 + 2s

s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x)

+
s∑
j=1

∑
x∈[n]

ej(x)2 +
∑
j 6=k

∑
x∈[n]

ej(x)ek(x). (15)

We now compute
∑
x∈[n] λ

3
x. For a fixed x, we have:

λ3
x =

 s∑
j=1

pj(x)

3

=
s∑
j=1

pj(x)3 + 3
∑
j 6=k

pj(x)2pk(x) +
∑
j 6=k 6=`

pj(x)pk(x)p`(x).

Now for a fixed j,

pj(x)3 = (q(x) + (−1)x∈Bej(x))3

= q(x)3 + 3(−1)x∈Bq(x)2ej(x) + 3q(x)ej(x)2 + (−1)x∈Bej(x)3,

while for fixed j 6= k,

pj(x)2pk(x) = (q(x) + (−1)x∈Bej(x))2(q(x) + (−1)x∈Bek(x))
= q(x)3 + (−1)x∈Bq(x)2(2ej(x) + ek(x)) + (−1)x∈Bej(x)2ek(x)
+ q(x)(ej(x)2 + 2ej(x)ek(x) + e2

k(x)),

and finally for j 6= k 6= `, we have:

pj(x)pk(x)p`(x) = (q(x) + (−1)x∈Bej(x))(q(x) + (−1)x∈Bek(x))(q(x) + (−1)x∈Be`(x))
= q(x)3 + (−1)x∈Bq(x)2(ej(x) + ek(x) + e`(x)) + (−1)x∈Bej(x)ek(x)e`(x)
+ q(x)(ej(x)ek(x) + ek(x)e`(x) + ej(x)e`(x)).
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Putting everything together, we have

∑
x∈[n]

λ3
x = s3‖q‖3

3 + 3s2
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)2ej(x) + 3
s∑
j=1

∑
x∈[n]

q(x)ej(x)2

+ 3s
∑
j 6=k

∑
x∈[n]

q(x)ej(x)ek(x) + 3
∑
j 6=k

∑
x∈[n]

(−1)x∈Bej(x)2ek(x)

+
s∑
j=1

∑
x∈[n]

(−1)x∈Bej(x)3 +
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bej(x)ek(x)e`(x). (16)

We now compute
∑
x∈[n] λ

4
x. We have

λx =

 s∑
j=1

pj(x)

4

=
s∑
j=1

pj(x)4 + 3
∑
j 6=k

pj(x)2pk(x)2 + 4
∑
j 6=k

pj(x)3pk(x)

+ 6
∑
j 6=k 6=`

pj(x)2pk(x)p`(x) +
∑

j 6=k 6=`6=t
pj(x)pk(x)p`(x)pt(x).

We first analyze pj(x)4 for a fixed j. We have:

pj(x)4 = (q(x) + (−1)x∈Bej(x))4 = q(x)4 + 4(−1)x∈Bq(x)3ej(x) + 6q(x)2ej(x)2

+ 4(−1)x∈Bq(x)ej(x)3 + ej(x)4.

Then for fixed j 6= k, we have:

pj(x)2pk(x)2 = (q(x) + (−1)x∈Bej(x))2(q(x) + (−1)x∈Bek(x))2

= q(x)4 + (−1)x∈Bq(x)3(2ej(x) + 2ek(x))
+ q(x2(ej(x)2 + 4ej(x)ek(x) + ek(x)2)
+ (−1)x∈Bq(x)(2ej(x)2ek(x) + 2ej(x)ek(x)2) + ej(x)2ek(x)2 ,

and, we can get:

pj(x)3pk(x) = (q(x) + (−1)x∈Bej(x))3(q(x) + (−1)x∈Bek(x))
= q(x)4 + (−1)x∈Bq(x)3(ej(x) + ek(x)) + q(x)2(3ej(x)2 + 3ej(x)ek(x))
+ (−1)x∈Bq(x)(ej(x)3 + 3ej(x)2ek(x)) + ej(x)3ek(x).

Furthermore, for fixed j 6= k 6= `, we have:

pj(x)2pk(x)p`(x)
= (q(x) + (−1)x∈Bej(x))2(q(x) + (−1)x∈Bek(x))(q(x) + (−1)x∈Be`(x))
= q(x)4 + (−1)x∈Bq(x)3(2ej(x) + e`(x) + ek(x))
+ q(x)2(ej(x)2 + 2ej(x)ek(x) + 2ej(x)e`(x) + ek(x)e`(x))
+ (−1)x∈Bq(x)(ej(x)2e`(x) + ej(x)2ek(x) + 2ej(x)ek(x)e`(x))
+ ej(x)2ek(x)e`(x).
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Finally, for fixed j 6= k 6= ` 6= t, we have:

pj(x)pk(x)p`(x)pt(x)
= (q(x) + (−1)x∈Bej(x))(q(x) + (−1)x∈Bek(x))
· (q(x) + (−1)x∈Be`(x))(q(x) + (−1)x∈Bet(x))
= q(x)4 + (−1)x∈Bq(x)(ej(x) + ek(x) + e`(x) + et(x))
+ q(x)2(ej(x)ek(x) + ej(x)e`(x) + ej(x)et(x) + ek(x)e`(x) + ek(x)et(x) + e`(x)et(x))
+ (−1)x∈Bq(x)(ej(x)ek(x)e`(x) + ej(x)ek(x)et(x) + ej(x)et(x)e`(x) + ek(x)e`(x)et(x))
+ ej(x)ek(x)e`(x)et(x).

Altogether, we have:∑
x∈[n]

λ4
x

= s4‖q‖4
4 +

∑
x∈[n]

s∑
j=1

ej(x)4 + 6s2
s∑
j=1

∑
x∈[n]

q(x)2ej(x)2 + 4s
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)ej(x)3

+ 4s3
s∑
j=1

∑
x∈[n]

(−1)x∈Bq(x)3ej(x) + 6s2
∑
j 6=k

∑
x∈[n]

q(x)2ej(x)ek(x)

+ 12s
∑
j 6=k

∑
x∈[n]

(−1)x∈Bq(x)ej(x)2ek(x) + 4s
∑
j 6=k 6=`

∑
x∈[n]

(−1)x∈Bq(x)ej(x)ek(x)e`(x)

+ 6
∑
j 6=k 6=`

ej(x)2ek(x)e`(x) + 4
∑
j 6=k

∑
x∈[n]

ej(x)3ek(x) + 3
∑
j 6=k

∑
x∈[n]

ej(x)2ek(x)2

+
∑

j 6=k 6=`6=t
ej(x)ek(x)e`(x)et(x). (17)
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