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Abstract—In the last decade, many scientific applications
have been significantly accelerated by large-scale GPU sys-
tems. However, the movement of non-contiguous GPU-resident
data is one of the most challenging components of scaling
these applications using communication middleware like MPI.
Although plenty of research has discussed improving non-
contiguous data movement within communication middleware,
the packing/unpacking operations on GPUs are still expensive.
They cannot be hidden due to the limitation of MPI standard and
the not-well-optimized designs in existing MPI implementations
for GPU-resident data. Consequently, application developers tend
to implement customized packing/unpacking kernels to improve
GPU utilization by avoiding unnecessary synchronizations in MPI
routines. However, this reduces productivity as well as perfor-
mance as it cannot overlap the packing/unpacking operations
with communication. In this paper, we propose a novel approach
to achieve low-latency and high-bandwidth by dynamically fusing
the packing/unpacking GPU Kkernels to reduce the expensive
kernel launch overhead. The evaluation of the proposed designs
shows up to 8X and 5X performance improvement for sparse and
dense non-contiguous layout, respectively, compared to the state-
of-the-art approaches on the Lassen system. Similarly, we observe
up to 19X improvement over existing approaches on the ABCI
system. Furthermore, the proposed design also outperforms
the production libraries, such as SpectrumMPI, OpenMPI, and
MVAPICH2, by many orders of magnitude.

Index Terms—Datatype, GPU, MPI

I. INTRODUCTION

The recent rapid developments of accelerators, domain-
specific architectures, and the high-speed interconnects have
led the large-scale heterogeneous clusters to become ubig-
uitous in the High-Performance Computing (HPC) commu-
nity. In particular, the general-purpose graphic processing
unit (GPU) has been widely deployed in current and next-
generation supercomputers [1], [2]. As evident in the latest
Top500 list, five out of ToplO supercomputers are powered
by NVIDIA Volta GPU architecture with NVLink intercon-
nect [3]. These large-scale HPC systems help numerous sci-
entific applications in pushing their boundary [4] and also open
new opportunities for artificial intelligence (AI) domains [5].

For utilizing the computing power and accelerating time-
to-solution, it is inevitable to involve communication among
nodes. In this context, communication models such as Message
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Passing Interface (MPI) are commonly used in HPC applica-
tions. To enable efficient GPU communication, GPU-aware
MPI is proposed and extensively studied in the literature for
various communication patterns including point-to-point [6]—
[10] and collective operations [11]-[13].

Many scientific applications are heavily relying on non-
contiguous data transfer to perform halo-exchange operations
involved in the multi-dimensional domain decomposition [14],
[15]. To improve the productivity for application developers,
the MPI standard defines a rich set of Derived DataType
(DDT) to flexibly represent the non-contiguous memory lay-
out. Furthermore, the MPI runtime can implicitly or ex-
plicitly “pack” the non-contiguous data into a contiguous
memory region and perform the communication. However,
such “packing” and “unpacking” operations are often con-
sidered expensive due to the extra data movement and stride
access. Moreover, the applications often require multiple non-
contiguous data transfers to multiple neighbors. Such “bulk”
non-contiguous data transfers severely escalate the overhead
of GPU-driven packing/unpacking operations. Prior research,
as summarized in TABLE I, has attempted to optimize the
packing/unpacking routines by taking advantage of GPU
parallelism at the application-level [14], [16], [17], MPI-
level [18]-[23], or even exploring packing-free scheme over
NVLink/PCle [24].

A. Motivation

Although existing GPU-driven designs have demon-
strated improvement over the traditional CPU-driven pack-
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Fig. 1. Motivated example: Time breakdown of GPU-optimized packing ker-
nels [21] on modern NVIDIA GPU architectures. Kernel launch is expensive
and outweighs the fast packing kernels.
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SUMMARY OF STATE-OF-THE-ART APPROACHES FOR HANDLING GPU-RESIDENT NON-CONTIGUOUS DATA
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ing/unpacking process, they still have significant overhead
due to the legacy kernel launch overhead and synchroniza-
tions. Fig. 1 presents the average execution time of GPU-
optimized packing kernels [21] and its associated overhead
to launch the kernels for two common workloads, namely
Specfem3D and MILC, that use MPI derived datatype on
modern NVIDIA GPU architectures. Though GPU architec-
tures have significantly evolved over the years, the legacy
kernel launch overhead remains relatively high and critical,
where the packing/unpacking operations are relatively sim-
ple and small [26]. Clearly, it violates the best practices
of GPU programming to achieve high concurrency [27]. In
this situation, the state-of-the-art GPU-driven schemes fail to
hide the kernel launch overhead since it spends more cycles
on launching the kernels than the useful packing operations
on the GPU. Moreover, such overhead delays the real data
transfer and overall performance at the application level. This
situation implies the low throughput and under-utilization of
GPU resources, i.e., high bandwidth memory and massive
parallelism.

Fig. 2 illustrates the existing designs for efficient GPU-
driven packing/unpacking routines for GPU-resident data. Past
research mostly focuses on optimizing the packing and un-
packing kernels that require synchronization for each kernel,
ie., refer to SYNCHRONOUS in Fig. 2. In such a case,
CPU remains busy on synchronization, and GPU may be idle
during communication. To further improve the concurrency
and overlap between packing kernels and communications, one
can perform the packing kernel asynchronously as proposed
in [23] (ASYNCHRONOUS in Fig. 2). However, the overlap
opportunity is limited due to the above-mentioned high kernel
launch overhead.

To mitigate the kernel launch overhead and achieve effi-
cient DDT processing for GPU-resident data, this paper is
addressing the following broad challenge: How to minimize
the overhead of launching packing/unpacking GPU kernels
while maintaining high overlap between communication
and packing/unpacking operations?

B. Contribution

This paper tackles the challenges mentioned previously and
proposes a dynamic kernel fusion scheme to alleviate the ker-
nel launch overhead for “bulk” non-contiguous data transfer.
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Fig. 2. Overview of Existing Designs and the proposed Dynamic Kernel
Fusion for MPI datatype processing on GPU

As highlighted in the bottom of Fig. 2, the proposed scheme
“fuses” multiple pack/unpacking kernels into a single one.
Taking advantage of the powerful modern GPU architecture,
e.g., higher clock speed and more streaming multiprocessors
(SMs), we see that the fused kernel’s execution time can be
the same as the typical packing/unpacking kernel while only
costing one launch overhead. Thus, more packing/unpacking
operations can be done within the same duration. By intelli-
gently fusing the kernels and not synchronizing at the kernel
boundary, the proposed design can significantly reduce the
launch overhead and packing/unpacking time. In the evaluation
with representative application kernels, the proposed design
can improve the performance of bulk non-contiguous data
transfer in the order of magnitude on the GPU-enabled HPC
systems, including top-ranked Lassen and ABCI systems. This
paper makes the following key contributions.

e Provide an analysis of existing solutions for communicat-
ing bulk non-contiguous GPU-resident data (Section III).

« Propose a kernel-fusion framework to significantly reduce
the overhead when performing datatype processing oper-
ations on GPU (Section IV).

e Propose an advanced dynamic kernel fusion scheme to
leverage the concept of the cooperative group to maxi-
mize GPU utilization (Section IV).

o Demonstrate the performance improvement using the
representative application kernels on GPU-enabled HPC
systems (Section V).



II. BACKGROUND

This section describes the background knowledge related to
this paper.

A. GPU Communication

NVIDIA GPUDirect technology eliminates additional mem-
ory copies and reduces CPU overhead through enabling third-
party PCle devices such as the host channel adapter (HCA)
to directly access GPU memory. This technology includes
features such as peer-to-peer access and remote direct memory
access (RDMA) that significantly improve bandwidth, reduce
latency, and further enhance overall performance of applica-
tions [28]. Message Passing Interface (MPI) is a programming
paradigm used in parallel applications to enable efficient
communication between distributed processes. CUDA-aware
MPI enables developing applications on the large-scale HPC
systems equipped with NVIDIA GPUs. Through CUDA-aware
MPI, GPU buffers can be directly passed to the MPI primi-
tives, eliminating the need to explicitly stage device buffers
through the host at the application-level. Many optimization
schemes, built on top of GPUDirect technology, have been
proposed in the literature to significantly improve the GPU
communication in CUDA-aware MPI libraries [6]-[8], [10].

B. Non-contiguous Memory Transfers with CUDA-Aware MPI

In the multi-dimensional domain decomposition used in
many scientific applications such as physics simulation and
weather forecasting [14], [15]. As large multi-dimensional data
is distributed into multiple GPUs, GPUs require communicat-
ing the boundary information (or so-called ghost region) with
their neighbors. Such boundary information can often be non-
contiguous in the GPU memory. Fig. 3 depicts an example of
a 2D halo exchange among four GPUs where the ‘columns’
in the ghost regions are non-contiguous. To support non-
contiguous data transfer over MPI primitives, MPI standard
defines various derived datatypes including vector, indexed,
subarray, struct, and more [29]. Although many optimization
schemes have been proposed to improve the MPI derived
datatype processing for GPU-resident data using carefully-
designed CUDA kernels [18]-[22], application developers

Fig. 3. An example of two-dimensional halo e;;change on four GPUs

typically implement their own packing/unpacking routine due
to the lack of performance or MPI primitives in GPU-aware
MPI libraries. We will address these shortcomings of existing
methods in Section III.

III. ANALYSIS OF EXISTING SOLUTIONS

In this section, we analyze the existing solutions with MPI
primitives that can be used to accomplish bulk non-contiguous
data transfer. Fig. 4 depicts three primary methods to perform
non-contiguous data transfer in MPI applications.

A. MPI-level Explicit Packing/Unpacking

MPI standard defines blocking pack and unpack routines
to allow implementations in the MPI library for its own
packing and unpacking function. Algorithm 1 shows the
usage of this approach for halo exchanges and Fig. 4(a)
illustrates the communication flow. As can be seen, each
MPI_Pack/MPI_Unpack call is a blocking routine and has
to ensure the completion of packing/unpacking before re-
turning to the application. Despite offloading the efficient
packing/unpacking kernels to the GPU, the extra synchro-
nization, in order to comply with the MPI semantic (i.e.,
red dotted line), prohibits overlapping the communication and
packing/unpacking operations.

Algorithm 1 MPI-Level Explicit Pack/Unpack
1: MPI_Type_create_*();

MPI_Type_commit(mpiddt);

for each neighbor i do
MPI_Irecv(packed_rbufTi]);
for each boundary buffer j for neighbor i do

MPI_Pack(buf[i][j], packed_sbuf[i][j], mpiddt);

end for
MPI_Isend(pack_sbuf[i]);

end for

MPI_Waitall(...);

: for each neighbor i do

for each boundary buffer j for neighbor ¢ do
MPI_Unpack(packed_rbuf[i][j], rbuf[i][j], mpiddt);

14:  end for

15: end for

16: /* Computation on boundary data */
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B. Application-level Packing/Unpacking

Since the previous approach requires explicit synchroniza-
tion in each pack and unpack routine, and there are no non-
blocking primitives defined, an application often implements
their specialized GPU kernels to perform the packing and
unpacking explicitly. In this way, applications may perform
the synchronization only if needed. Algorithm 2 shows the
implementation details of this approach. As can be seen,
multiple asynchronous kernels are launched for packing and
unpacking non-contiguous data (lines 2-5 and 12-16) and only
a single synchronization point at the final kernel boundary.
Fig. 4(b) shows the communication flow of this approach. In



Algorithm 2 Application Level Explicit Pack/Unpack

Algorithm 3 MPI-Level Implicit Pack/Unpack

1: for each neighbor i do
2:  for each boundary buffer j for neighbor ¢ do

3 pack_gpu_kernel(sbuf[i][j] to packed_sbufli][j]);

4 end for

5: end for

6: Synchronize_TO_GPU();

7: for each neighbor i do

8 MPI_Irecv(packed_rbuf[i]);

9:  MPI_Isend(packed_sbuf[i]);

10: end for

11: MPI_Waitall(...);

12: for each neighbor i do

13:  for each boundary buffer j for neighbor i do

14: unpack_gpu_kernel(packed_rbuf[i][j] to rbufli][j]);
15:  end for

16: end for

17: Synchronize_TO_GPU();

18: /* Computation on boundary data */

many cases, the application’s optimized GPU may perform
pack/unpack more efficiently than MPI runtimes provide.
However, it is hard to generalize and reuse the kernel for other
applications, unlike MPI. This approach requires more effort at
the application level, as can be seen in Algorithm 2 (i.e., more
lines of code compared to other approaches) and lacks overlap
between packing/unpacking kernels and communication.

C. MPI-level Implicit Packing/Unpacking

To avoid explicit synchronization, we can also pass the non-
contiguous buffer to the MPI primitives. In such a case, the
packing or unpacking operations may be performed by the
MPI library implicitly. Algorithm 3 explains the usage of this
approach, and we can see a productive way to use only 10
lines to implement a halo exchange routine, which can be
significantly cleaner than previous two approaches. One key
difference here is that we issue send and receive operations for
each boundary buffer instead of only issue one send/recv oper-
ation with the packed buffer to a neighbor. This approach gives
high flexibility to the MPI runtime to schedule the communi-
cation and to perform packing/unpacking operations. Fig. 4(c)
depicts one possible flow where asynchronous approach is
used for offloading packing/unpacking to GPUs [23]. Ideally,
the overlap between communication and packing/unpacking is
possible. However, as discussed earlier, the high GPU driver
overhead introduces significant penalties.

In this paper, we aim to propose a kernel fusion framework
to mitigate the driver overhead and transparently maximize
the productivity and performance of the MPI-level implicit
packing/unpacking approach.

IV. PROPOSED DESIGNS

To mitigate the overhead of launching GPU kernels and
improve the utilization of GPU computational resources during
non-contiguous data communication, we propose a framework

1: MPI_Type_create_*();
: MPI_Type_commit(mpiddt);
: for each neighbor i do
for each boundary buffer j for neighbor ¢ do
MPIL_Irecv(rbufli][j], mpiddkt,...);
MPI_Isend(sbuf[i][j], mpiddkt,...);
end for
end for
: MPI_Wiaitall(...);
: /* Computation on boundary data */
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to exploit the kernel fusion approach. This section elaborates
on the proposed framework to support kernel fusion for
bulk non-contiguous data transfer, and how a communication
middleware such as MPI can take advantage of it to achieve
overlap between DDT processing and communication. It also
elaborates on the design considerations to optimize the kernel
fusion framework in practice.

A. Kernel Fusion Framework

To design a kernel fusion framework, there are three vital re-
quirements: 1) a request queue to record the operations/kernels
to be fused, 2) a scheduler to maintain the request queue and
trigger the proper fused kernel when needed, 3) an efficient
fused kernel to concurrently execute various operations for
non-contiguous buffers.

1) Request list: As shown at the top of Fig. 5, we use
a circular buffer to contain multiple requests that require
supported operations on the GPU for non-contiguous buffers.
Each request should contain the following necessary informa-
tion:

e UID: a unique number, e.g., unsigned integer number,

used to identify the request object.

o requested operation: this could be one of Packing, Un-
packing or DirectIPC (i.e., a direct non-contiguous data
transfer over NVLink/PCle proposed in [24]) kernels.

e origin buffer: the pointer of a non-contiguous buffer to
be packed or contiguous buffer to be unpacked.

o target buffer: the pointer of a non-contiguous buffer to
store unpacked data or contiguous buffer to store packed
data.

e data layout: the cached data layout entry (follow the
scheme proposed in [24]).

o request status: the status of IDLE, PENDING, BUSY or
COMPLETED for progress engine to query.

e response status: similar to request status, but only allow
the GPU to update for reporting the status of a given
request.

In addition, the Scheduler maintains two indexes, namely Head
and Tail, to know which requests are pending to be fused.

2) Scheduler: Next, we need a scheduler to maintain the
request list for interacting with the communication progress
engine and GPU. As illustrated in Fig. 5, a scheduler has
four primary functions: @ enqueue requests from the progress
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engine, @ launch fused kernel on the GPU with proper
configuration, ® complete the requests, and @ provide status
to the progress engine.

In @, the progress engine may have packing requests for
a non-contiguous buffer. The scheduler takes the information
from the progress engine and creates a corresponding request
object, i.e., fill up the information described in Section IV-Al,
and insert it to the tail of the request list, then the Tail will
be moved to the next IDLE entry. Here, the scheduler returns
a UID to the progress engine to be used for checking the
status. Also, the UID can be a negative number to notify
the progress engine that the operation cannot be fused for
various reasons such as running out of the request list, then the
progress engine can take a fallback mechanism and proceed
with other alternatives.

If there are multiple operations in the request list and
meet the conditions (will be discussed in Section IV-C), the
scheduler may launch a single fused kernel with an array of
requests as the input (@ in Fig. 5). As soon as GPU kernel
completes any request, a GPU thread immediately signals the

completion by updating the response status for a given request
object (@ in Fig. 5). As a result, the scheduler does not have
to perform an explicit synchronization at the kernel boundary.

Finally, whenever the progress engine needs to act on a
request, it can use the request UID to make a query through
the scheduler (@ in Fig. 5). The scheduler can simply compare
the request status to response status to realize the status.
If the progress engine has no more non-contiguous buffers
to be processed and fused, it can request the scheduler to
immediately launch the fused kernel to avoid wasting cycles.

It is worth noting that one single CPU thread is sufficient
to act as scheduler and progress engine to avoid any context
switching overheads if an application has a dedicated thread
for communication. If an application is utilizing one CPU
thread for MPI communication and heavy computation, it
would benefit from using a separate thread to work as the
scheduler. In this work, we implemented and evaluated the
scheduler on the same thread as communication progress
engine, which is the common scenarios for most GPU-enabled
applications.

3) Implementation of Fusion Kernel: The primary func-
tionality of the fused kernel is to partition the thread blocks,
distribute the workload, then perform the required operations.
Based on the input size in each request, we could decide how
many threads are required to perform the packing, unpacking,
or DirectIPC operation. For example, for a packing operation
on a small buffer, which only has 128 elements, we could
schedule a thread block with less than 128 threads to efficiently
complete the task and free to the rest of the threads for other
requests. To achieve this high concurrency kernel with fine-
grained thread blocks, we leverage a feature called ‘Coopera-
tive Group*‘ in the CUDA programming platform for NVIDIA
GPUs [30]. As demonstrated in Fig. 6, after the first Partition
phase, each thread block will work on different requests with
corresponding operations (i.e., device functions). Note that
each thread block will perform synchronization separately and
signal the completion to the request list.
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B. Communicating Non-contiguous Buffers with Kernel Fu-
sion Framework

Once we have the kernel fusion framework mentioned
above, we now discuss how the progress engine in a commu-
nication middleware can take advantage of it. Fig. 7 illustrates
a high-level overview of communication flow when kernel
fusion is used. Here, we elaborate on the designs from the
sender and receiver perspectives.

1) Sender side: On the sender side, the only possible
operation is packing the non-contiguous buffers. When an
application is calling multiple non-blocking send operations,
i.e., MPI_Isend, with non-contiguous data, the sender process
first retrieves the cached data layout (please refer to [24] for
designs of datatype layout cache) and signals the scheduler
with the required information mentioned in Section IV-A.
Once the packing request is enqueued, sender associates the
UID returned by the scheduler with the corresponding send
request (e.g., MPI_Request), then the sender returns immedi-
ately to the application, i.e., the communication gets delayed.
This process may repeat multiple times if there are multiple
non-contiguous buffers to be transferred.

To progress the delayed communication, the runtime may
enter the progress engine periodically and check the status with
the scheduler. Note that the progress engine and scheduler may
be running on a separate and desiccate CPU thread to increase

concurrency. As soon as any packing request is completed
by the GPU (red dot line in Fig. 7), the progress engine
issues the send operation immediately. If a send operation
uses an eager protocol for the small message, the progress
engine sends out the packed data. If it is an operation with
rendezvous protocol, there are two sub-protocols that could
be used, namely RGET and RPUT. In the RGET protocol,
the progress engine sends out Request-To-Send (RTS) packets
after the non-contiguous data is packed. Then the receiver
may perform an RDMA-READ operation through InfiniBand.
For the RPUT protocol, the sender can send the RTS packet
before the packing operation has taken place and only check
the completion of the packing request when a Clear-To-
Send (CTS) packet is received. In this way, the hand-shaking
procedure can be overlapped with the packing operations.

2) Receiver side: For a receiver side, it may fuse Unpack-
ing or DirectIPC operations into the kernel. Similar to the
sender side, the receiver prepares the required information
when a non-contiguous data is expected to be received (e.g.,
calling MPI_Irecv) and insert a callback function to that
receive request. Upon receiving data, the callback function
gets called and signals the scheduler to enqueue the unpacking
or DirectIPC requests. For unexpected messages, the signal
method occurs until the application reaches the corresponding
MPI_Irecv, and no callback function is required. The progress
engine checks the completion of fused requests only when the
application requires the data, e.g., when calling MPI_Wait or
MPI_Waitall.

Fig. 7 shows a simplified scenario where send and receive
operations happen serially. Note that the send and receive oper-
ations can occur simultaneously, and the proposed framework
may fuse the packing, unpacking, and DirectIPC operations
into a single kernel.

C. Design Considerations for Optimal Kernel Fusion

In this section, we discuss the design considerations for the
optimal kernel fusion scheme to maximize the GPU utilization
while balancing the delayed communication.

To have an efficient kernel fusion framework, it is critical
for the scheduler to realize when to launch the fused kernels to
balance the reduced kernel launch overhead with fused kernel
and delayed communication. Naively fusing all kernels may
result in performance degradation as the communication gets
delayed and also can reduce the overlap opportunities between
the the communication and the fused kernels. Broadly, there
are two primary scenarios the scheduler should launch the
kernel: 1) the communication progress engine has no more
operations to request and reaches the synchronization point,
e.g., MPI_Waitall, 2) the fused kernel has enough work to do,
e.g., the execution time can be longer than the kernel launch
overhead.

In the first scenario, the scheduler must launch the ker-
nel to allow the progress engine to proceed. However, the
second scenario is difficult to realize. In this paper, we
use the heuristic method to activate the fused kernel based
on the experimental results. Fig. 8 shows the performance
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effects when using a different threshold to launch the pack-
ing/unpacking kernel for the specfem3D_cm workload, which
has a sparse layout (e.g., thousands of blocks), with 32
continuous MPI_Isend/MPI_Irecv operations. As can be seen,
when the threshold is too low, e.g., 16KB, the execution time
remains high because it activates the kernel launch frequently.
We refer this phenomena as under-fused. As we increase
the threshold, we start observing reduced latency due to the
reduced kernels. If the threshold is too high (i.e, over-fused.),
e.g., above 1MB, we observe performance degradation for
large input size as the delayed communication is not able to
overlap with the fused kernel on GPU.

We note that such threshold varies from system to system
based on the hardware (e.g., GPU, network models), firmware,
and software (e.g., driver versions, OS distributions). To figure
out the optimal threshold, the principle is to make sure the
running time of the fused kernel is longer than the kernel
launch overhead either through fusing more kernels or fusing
more data in each kernel. In this paper, we use the above-
mentioned heuristic method to find the optimal threshold for
a given workload on a given system. In many workloads
including sparse and dense layout, we observe that fusing
around 512KB data can achieve the best performance on the
systems we tested in this paper. In future work, we plan to
develop a model-based prediction to dynamically figure out
the optimal threshold for kernel fusion that can maximize the
overlap between the fused kernel and communication.

V. PERFORMANCE EVALUATION

This section includes the performance evaluation of the
proposed design compared to state-of-the-art MPI datatype
processing schemes for GPU-resident data.

A. Experimental Platforms and Setup

The experiments were carried out on two cutting-edge GPU
platforms: 1) Lassen system, operated by Lawrence Livermore
National Laboratory, U.S.A., is powered by IBM POWER9
CPUs and NVIDIA V100 GPUs, and 2) Al Bridging Cloud
Infrastructure (ABCI) system is operated by the National In-
stitute of Advanced Industrial Science and Technology, Japan.
ABCI is powered by Intel Xeon Gold CPU and NVIDIA V100

GPU architectures. More hardware and software details are
summarised in Table II. The key difference is the intercon-
nect where Lassen’s POWERY architecture enables NVLink
between CPU and GPU, and ABCI system is using traditional
PCle Gen3, which is slower than NVLink. We evaluated the
proposed and existing schemes as follows: 1) the proposed dy-
namic kernel fusion scheme (Proposed and Proposed-Tuned),
2) existing GPU-driven synchronous scheme (GPU-Sync) [8],
[22], 3) existing GPU-driven asynchronous scheme (GPU-
Aync) [23], and 4) existing CPU-GPU-Hybrid scheme (CPU-
GPU-Hybrid) [24]. The schemes as mentioned above were
implemented on top of the MVAPICH2-GDR library, which
is a high-performance GPU-Aware MPI implementation [31].
We also compared the proposed design with production li-
braries such as SpectrumMPI v10.3.0 that is only available on
POWER systems (SpectrumMPI), and OpenMPI v4.0.3 with
UCX v1.8.0 (OpenMPI).

In this paper, we evaluated the application kernels with
representative datatype layouts. Specifically, we use the sparse
layout, i.e., more than thousands of small blocks, created by in-
dexed (specfem3D_oc) and struct-on-indexed (specfem3D_cm)
which commonly used in Geophysical Science applications.
Also, we also studied the dense layout, i.e., less than thousand
of blocks created by vectors (NAS_MG) and nested vectors
(MILC) that are used for Fluid Dynamics and Quantum Chro-
modynamics applications. We implemented the GPU-enabled
application kernels based on the popular benchmarks including
ddtbench [32] and a kernel of 3D domain decomposition [33].
All numbers reported in the paper are the average of 500
iterations, excluding the 50 warm-up iterations.

B. Performance Effects on Bulk Communication

In multi-dimensional domain decomposition, as explained
in Section II-B, each GPU performs multiple halo exchange
operations with its neighbors. In this section, we present
the evaluation and study how the bulk communication may
affect the performance of existing packing schemes and the
proposed schemes. Figures 9 and 10 presents the performance
of bulk communication with sparse and dense layout using
specfem3d_cm and MILC workloads, respectively, on the
Lassen system. We increased the number of buffers to be
exchanged (i.e., number of boundary data to neighbors) from
1 to 16 to observe the impact to various GPU-driven DDT
processing schemes. In the sparse layout exhibited in Fig. 9,
the proposed kernel fusion design outperforms all existing

TABLE II
EXPERIMENTAL ENVIRONMENT

ABCI |
Dual-socket Intel Xeon Gold 6148
2.4 GHz, 20 Cores/socket

384 GB

NVIDIA Tesla V100x4

16 GB

PClIe Gen3x 16 and x64 switches
(one-way 32 GB/s)

NVLink-2 (one-way 50 GB/s)

Cluster Specs
CPU Processor

[ LLNL Lassen

Dual-socket IBM POWER9 AC922
3.1GHz, 44 Cores/socket

256 GB

NVIDIA Tesla V100 x4

16 GB

NVLink-2 (one-way 75 GB/s)

System Memory
GPU Processor
GPU Memory
Interconnects
CPU and GPU

between

Interconnects between
GPUs
Interconnects
nodes

Operating System
NVIDIA Driver Version
CUDA Toolkit Version

NVLink-2 (one-way 75 GB/s)

Dual-rail  Mellanox InfiniBand
EDR (one-way 25 GB/s)

RHEL 7.3 (4.14.0-115.10.1.1)
418.87.00

10.1.243

Mellanox  InfiniBand ~ EDRx2
(one-way 25 GB/s)

CentOS (3.10.0-862)

440.33.01

10.2.89

between
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GPU-driven and CPU-GPU-Hybrid schemes for all dimension
sizes up to 5.9X. On the other hand, the dense layout presented
in Fig. 10 shows that CPU-GPU-Hybrid can actually perform
better although the proposed design outperforms GPU-Sync
and GPU-Async schemes. This is because the CPU-GPU-
Hybrid use a low-overhead CPU-driven method for pack-
ing/unpacking dense and small data that can totally remove the
GPU driver overhead [24]. Note that it requires a special kernel
module called GDRCopy [34], which may not be available
in all HPC systems. We can also observe that GPU-Async
performs worse than GPU-Sync even if there are multiple
packing/unpacking operations that can potentially to be over-
lapped with each other. However, the extra synchronizations,
e.g., cudaEventRecord and cudaEvenQuery calls, are adding
more penalties that cause the performance to degrade when
again the packing/unpacking operations are not long enough
on modern GPUs to overlap and hide the overhead.

To provide the insights into these GPU-driven designs,
Fig. 11 shows the time breakdown of them using the MILC
workloads with two GPU nodes on the ABCI cluster. Here, we
compare five primary costs when performing back-to-back 16
non-contiguous data transfers over 100 iterations: 1) (Un)Pack:
Packing and Unpacking kernels, 2) Launching: Overhead of
launching GPU kernels, 3) Scheduling: GPU-Async sched-
ules kernels without explicit synchronization using CUDA
APIs such as cudaEventRecord [23]. In the proposed design,
scheduler enqueues and dequeues the pack/unpack tasks. This
cost is meaningless for GPU-Sync. 4) Sync.: synchronization

90 8 GPU-Sync =GPU-Async HProposed

i
m
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Fig. 11. Time breakdown of different GPU-driven designs for MILC
workloads: 1) (Un)Pack: Pack/Unpack kernels, 2) Launching: Kernel launch
overhead, 3) Scheduling: Scheduling GPU kernels, 4) Sync.: CPU-GPU
Synchronization, 5) Comm.: Communication between GPUs.

between CPU and GPU to complete the packing and unpack-
ing kernels. In GPU-Sync, explicit synchronization such as
cudaStreamSynchronize is used. GPU-Async may use APIs
like cudaEventQuery to ensure the completion of GPU kernels.
The proposed scheduler uses a polling scheme mentioned in
Section IV-A2. 5) Comm.: ‘observed‘ communication time for
packed data, i.e., some communication may be overlapped
with pack/unpack kernels. As can be seen in Fig. 11, GPU-
Sync and GPU-Async has higher launching overhead than the
proposed designs while they spend some amount of time on
packing/unpacking kernels. GPU-Sync always has the highest
overhead on explicit synchronization. The proposed kernel
fusion design has the lowest launching and synchronization
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Fig. 13. Performance Evaluation of bulk non-contiguous data transfer between two GPU nodes on ABCI system (lower is better)

overhead while maintaining the highest overlap with commu-
nication. The scheduling overhead of the proposed scheduler
has insignificant overhead as low as 2us per message. Note
that we omit the results of other workloads to avoid repetition
as they show a similar trend.

C. Evaluation of different non-contiguous data layouts

Next, we present the evaluation of various application
kernels with the 3D halo exchange operations that involves
32 non-blocking communication that uses non-contiguous data
layout. Note that a typical 3D domain decomposition would
involve 27 boundary data to be exchanged. We explicitly
stressed the communication in these experiments. Fig. 12
reports the performance on Lassen system. For the sparse
layouts shown in figures 13(a) and 13(b), the proposed design
significantly outperform all existing designs. Specifically, the
proposed design yields up to 8.5X, 7.1X and 8.9X im-
provement compared to CPU-GPU-Hybrid, GPU-Sync, and
GPU-Async schemes, respectively. Fig. 12(c) shows an only
exception where CPU-GPU-Hybrid performs the best for
small and dense layout, as explained previously. Nevertheless,
for large and dense layout like NAS shown in Fig. 12(d),
the proposed design again significantly outperforms CPU-
GPU-Hybrid, GPU-Sync, and GPU-Async schemes around
1.4X to 5.8X. For NAS workload with large dimension size,
i.e., large buffer size, up to 80X performance improvement
can be observed from the proposed design over GPU-Async.
This could be caused by the poor to zero overlaps between
packing/unpacking kernels and communication. On the other
side, the proposed design significantly reduces the latency for

all workloads on ABCI systems, as depicted in Fig. 13. We can
also see that GPU-Async can slightly outperform GPU-Sync
as shown in figures 13(c) and 13(d). Such an outcome may be
caused by the slower PCle interconnect on the ABCI system
to allow more overlap. Nonetheless, the proposed design with
kernel fusion can achieve up to 19X and 14.7X improvements
over the existing schemes for sparse and dense layouts.

Finally, we compare the proposed design with the produc-
tion GPU-Aware MPI libraries including SpectrumMPI, Open-
MPI with UCX, and MVAPICH2-GDR on Lassen system.
We note that the SpectrumMPI and OpenMPI do not have
optimized support for non-contiguous data movement and use
a naive approach, which uses multiple memory copies such
as cudaMemcpyAsync, to pack and unpack non-contiguous
GPU-resident data. As a result, the optimized proposed de-
sign can be thousand times faster than SpectrumMPI and
OpenMPI. Compared to the optimized scheme in MVAPICH2-
GDR, which adaptive use CPU-GPU-Hybrid and GPU-Sync
schemes, the proposed design can achieve up to 8.8X and 4.3X
lower latency for sparse and dense layouts.

VI. RELATED WORK

To efficiently mitigate performance penalties caused by
transferring non-contiguous data, extensive research has been
explored with MPI derived datatypes processing. Traff et al.
propose “flattening on the fly” scheme to optimize the parse
of MPI DDT layout [35]. Gropp et al. provide a guideline
for using various aspects of datatype [36] based on the per-
formance evaluation. Byna et al. propose packing algorithms
that take advantage of memory-optimization techniques, which
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improves the performance of derived datatypes [37]. There
are other approaches for MPI datatype communication over
the InfiniBand network such as pack/unpack-based, and copy-
reduced approaches [38]. To support processing MPI datatype
routines efficiently outside of the MPI implementations, Ross
et al. propose an open-source library, MPITypes [39]. Never-
theless, none of these approaches have taken the opportunity
to eliminate the expensive packing/unpacking operations. San-
thanaraman et al. design a new scheme called Send Gather
Receive Scatter, to achieve zero-copy MPI derived datatype
communication over InfiniBand networks across nodes [40].
In [25], the MPI DDT layout extraction and caching are
analyzed thoroughly. A new zero-copy scheme for MPI DDT
is proposed by leveraging inter-process load-store operations
on CPU and GPU memory within the node.

In respect to the GPU-resident data, the first study provides
a significant speedup over CPU-based design for datatype
processing was done by Wang et al. [18]. They process
non-contiguous datatypes by leveraging a multi-stage pipeline
of data transfer and offloading packing/unpacking processing
from the host to the device. Jenkins et al. concluded that
non-contiguous data transfer could improve performance by
kernelizing the packing operations into the GPU [19], [20].
Rong et al. propose a novel packing framework, called HAND,
to efficiently pack and unpack non-contiguous data on GPU
directly [21]. To obtain a higher overlap between CPU and
GPU executions and eliminate unnecessary synchronizations,
[23] propose an asynchronous design by taking advantage of
several CUDA features. Wu et al. implement a different way
to offload the packing and unpacking operations onto the GPU
and seamlessly integrate with RDMA networks [22]. However,
significant packing/unpacking overhead still exists in these
works because of the expensive operations such as memory
allocations, copies, and synchronizations.

Girolamo et al. [41] implement full non-contiguous mem-
ory transfer processing and work with sPIN, a packet stream-
ing processor, to develop scheduling strategies that enhance
datatype processing. Chu et al. [24] propose a zero-copy
scheme to exploit load-store semantics over NVLink/PCle and
achieve pack-free mechanism. Moreover, they implement an
adaptive scheme on selecting the optimal CPU- or GPU-driven
packing/unpacking scheme if NVLink/PCle is not available

between GPUs. The proposed framework can be combined
with its adaptive protocol as an additional option.

VII. CONCLUSION

In many scientific applications that require operations such
as multi-dimensional domain decomposition among GPUs,
the ’bulk’ non-contiguous data transfer between GPUs is
involved when running at scale and dominates the overall
communication time. With the lack of MPI standard for non-
blocking pack/unpack routine and proper runtime optimiza-
tions in the communication library, applications often rely
on its specialized packing/unpacking scheme, which signif-
icantly reduces productivity and performance. In this paper,
we analyze the existing packing/unpacking approaches at the
application level and MPI level. Based on the observation,
we propose a kernel fusion approach to transparently re-
duce the expensive kernel launch overhead that is the main
culprit of performance degradation in existing designs. The
proposed kernel fusion framework combines the proper de-
sign considerations with existing communication protocols to
significantly reduce the driver overhead while increasing GPU
utilization and maintaining high communication overlap. The
performance evaluation shows improvement up to 19X and
5X for sparse and dense non-contiguous layout, respectively,
compared to the state-of-the-art GPU-driven approaches on the
top supercomputers, including Lassen and ABCI systems. The
proposed schemes will be made publicly available under the
MVAPICH2 project [31].

In the future, we plan to evaluate the proposed designs with
more application workloads that involve bulk non-contiguous
data transfer for GPU-resident data.We also plan to develop a
model-based prediction method to automatically optimize the
parameters for kernel fusion framework to always maximize
the overlap on any GPU-enabled systems.
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