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Abstract. In this report, we give a survey on new results on geometric Langlands
correspondence and non-abelian Hodge theory in characteristic p.

1. Introduction

In this survey article we discuss new results on geometric Langlands correspondence
in characteristic p and non-abelian Hodge theory for smooth projective curves in char-
acteristic p. We also discuss applications of those results to quantization of Hitchin’s
integrable system. The main references are [BB, BT, CZ1, CZ2].

The article is organized as follows. In §2 we recall some facts about reductive groups,
connections on torsors, D-modules in characteristic p, and Azumaya property of sheaf
of crystalline differential operators in characteristic p. In §3 we discuss the construc-
tion of Hitchin maps, p-Hitchin maps, and abelian duality for Hitchin maps. In §4 we
discuss results on non-abelian Hodge theory for algebraic curves in characteristic p. In
§5 we discuss geometric Langlands correspondence in characteristic p. In §6 we discuss
applications to quantization of Hitchin’s integrable system.

2. Preliminaries

2.1. Notations related to reductive groups. Let G be a reductive algebraic group
over k of rank l. We denote by Ǧ its Langlands dual group over k. We denote by g
(resp. by ǧ) the Lie algebra of G (resp. Ǧ). Let T denote the abstract Cartan of G with
its Lie algebra t. The counterparts on the Langlands dual side are denoted by Ť , ť. We
denote by W the abstract Weyl group of G, which acts on T and Ť .

From now on, we assume that the char k = p is zero or p - |W|. We fix a W-
invariant non-degenerate bilinear form ( , ) : t× t→ k and identify t with ť using ( , ).
This invariant form also determines a unique G-invariant non-degenerate bilinear form
g×g→ k, still denoted by ( , ). Let g ' g∗ be the resulting G-equivariant isomorphism.
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2.2. Notations related to stacks and Frobenius. We fix a smooth projective curve
C of genus at least two1 over an algebraically closed field k of characteristic p. Let
ω = ωC denote the canonical line bundle of C. Let S be a Noetherian scheme and
X → S be an algebraic stack over S. If p > 0, we denote by FrS : S → S be the
absolute Frobenius map of S. We have the following commutative diagram

X
FX /S//

##

X (S)
πX /S //

��

X

��
S

FrS // S

where the square is Cartesian. We call X (S) the Frobenius twist of X along S, and
FX /S : X → X (S) the relative Frobenius morphism. If the base scheme S is clear,

X (S) is also denoted by X ′ for simplicity and FX /S is denoted by FX or F .

Let X → S be a smooth algebraic stack over S. We write T (X /S) for relative
tangent stack on X and T ∗(X /S) relative cotangent stack on X . We denote by TX /S

and Ω1
X /S the sheaves of sections of T (X /S) and T ∗(X /S) respectively, and OX the

structure sheaf of X .

2.3. D-modules. Let X be a smooth scheme over k. We denote by DX the sheaf of
crystalline differential operators. Recall DX is the sheaf of algebra generated by OX and
TX subject to the relations v1v2− v2v1 = [v1, v2] for v1, v2 ∈ TX , and vf − fv = v(f) for
v ∈ TX and f ∈ OX . By definition, a D-module on X is a sheaf of DX-module which is
quasi-coherent as OX-module. It follows from the definition of DX that a D-module is
just a quasi-coherent OX-module N equipped with a flat connection, that is, a k-linear
map

∇ : TX → Endk(N)

satisfying ∇(f · v) = v ⊗ df + f∇(v) for f ∈ OX , v ∈ TX and ∇([v, w]) = [∇(v),∇(w)]
for v, w ∈ TX .

2.4. Azumaya property of DX in positive characteristic and p-curvatures. If
chark = 0, DX is simple, that is, it has no proper two-sided ideals. If chark > 0, the
center Z(DX) of DX (resp. the centralizer ZOX

(DX) of OX in DX) is freely generated
by elements of the form fp (resp. f), f ∈ OX and vp − v[p], v ∈ TX , where v[p] is the
p-th restricted power of the vector field v. The center Z(DX) (resp. the centralizer
ZOX

(DX)) is canonically isomorphic to the structure sheaf OT ∗X′ (resp. OX×X′T
∗X′).

Thus DX can be regraded as a quasi-coherent sheaf of algebra on T ∗X ′. We have the
following fundamental observation: recall that an Azumaya algebra on a scheme is a
locally free sheaf A of OX-algebra, such that the fiber of A at every geometric point is
isomorphic to a matrix algebra.

Proposition 2.1. [BMR] DX is an Azumaya algebra of rank p2 dimX on T ∗X ′.

1This assumption should not be essential. We impose it to avoid the DG structure on moduli spaces.
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Since ZOX
(DX) ' OX×X′T

∗X′ , any D-module N carries an action of OX×X′T
∗X′ . Such

an action is the same as a section s ∈ Γ(X,Fr∗XΩ1
X ⊗ EndOX

(N)). As we noted before
N can be considered as a quasi-coherent sheaf on X with a flat connection ∇ : TX →
Endk(N) and the map Ψ∇ : TX → (FrX)∗EndOX

(N) corresponding to s, via adjunction,
is given by

Ψ∇ : TX → (FrX)∗EndOX
(N), v → ∇(v)p −∇(v[p]).

The map Ψ∇ is known as the p-curvature of the connection.

2.5. Connections on G-torsors. Let E be a G-torsor on a smooth scheme X over k.
We have the Atiyah sequence (or Atiyah algebroid)

0→ ad(E)→ T̃E
σ→ TX → 0

associated to E. Here ad(E) is the adjoint bundle for E and T̃E is the Lie algebroid of
infinitesimal symmetries of E consisting of pairs (v, ṽ), where v ∈ TX is a vector field on
X and ṽ ∈ TE is a G-invariant vector field on E that lifts v.

A connection on E is a section ∇ : TX → T̃E of σ. A connection ∇ is called flat, or

integrable, if ∇ commutes with the natural Lie brackets on TX and T̃E. The connections
on E form a Hom(TX , ad(E)) = Γ(X, ad(E)⊗ Ω1

X)-torsor. Note that when X = C is a
smooth curve, all connections on a G-torsor is flat.

Example 2.2. Assume G = GLn(k). There is an equivalence between the category of
G-torsors and rank n bundles on X given by E → N := E ×G kn. Then under the
equivalence above a connection ∇ on E corresponds to k-linear map

∇N : TX → Endk(N)

satisfying ∇N(f · v) = v⊗ df + f∇(v) for f ∈ OX , v ∈ TX . If the connection is flat then
we have ∇N([v, w]) = [∇N(v),∇N(w)] for v, w ∈ TX , hence by Example 2.3, a D-module
structure on N . It is not hard to see that the assignment (E,∇)→ (N,∇N) defines an
equivalence between the category of flat connections on GLn-torsors and the category
D-modules on X which are locally free (as OX-module) of rank n.

Example 2.3. Let ∇ be a connection on a G-torsor E. Choose a local trivialization of
E, we can write the connection ∇ as a differential operator

d+ A, A ∈ g⊗ Ω1
X .

Here A is called the connection matrix for ∇ with respect to the trivialization.

2.6. p-curvatures of connections on G-torsors. Assume char k = p > 0. The p-
curvature of a connection ∇ on G-bundle E is the following map

TX → ad(E), v → Ψ∇(v) := ∇(v)p −∇(v[p])

here ·p and ·[p] are the p-th restrict Lie algebra structures on T̃E and TX respectively.
According to [Bo, K], the map Ψ∇ is p-linear, that is Ψ∇(fv) = fpΨ∇(v). Hence one
can view the p-curvature as a OX-linear map

Ψ∇ : TX → (FrX)∗ad(E).
3



By adjunction, the p-curvature gives rise to a section s ∈ Γ(X,Fr∗XΩ1
X ⊗ ad(E)).

Example 2.4. Assume G = GLn and X = Spec(k[z]) is the affine line. Let ∇ = d+A
be a connection on the trivial G-bundle, where A = Az ⊗ dz ∈ Mn(k[z]) ⊗ dz is the
connection matrix. Then we have

Ψ∇(∂z) = (∂z + Az)
p = (∂z + Az)

p−1Az ∈Mn(k[z]).

The results in §2 can be generalized to the setting of smooth algebraic stacks, see
[BB, BD, CZ2].

3. Hitchin map and p-Hitchin map

In this subsection, we recall the definition of Hitchin map and p-Hitchin map following
[N, CZ1].

3.1. Hitchin map. Let k[g] and k[t] be the algebra of polynomial function on g and
t. By Chevalley’s theorem, we have an isomorphism k[g]G ' k[t]W. Moreover, k[t]W is
isomorphic to a polynomial ring of l variables u1, . . . , ul and each ui is homogeneous in
degree ei. Let c = Spec(k[t]W ). Let

χ : g→ c

be the map induced by k[c] ' k[g]G ↪→ k[g]. This is G × Gm-equivariant map where
G acts trivially on c, and Gm acts on c through the gradings on k[t]W. Let L be an
invertible sheaf on C and L× be the corresponding Gm-torsor. Let gL = g×Gm L× and
cL = c×Gm L× be the Gm-twist of g and c with respect to the natural Gm-action.

Let HiggsG,L = Sect(C, [gL/G]) be the stack of section of [gL/G] over C, i.e., for each
k-scheme S the groupoid HiggsG,L(S) consists of maps over C:

hE,φ : C × S → [gL/G].

Equivalently, HiggsG,L(S) consists of a pair (E, φ) (called a Higgs bundle), where E is a
G-torsor over C × S and φ is an element in Γ(C × S, ad(E)⊗ L).

Let BG,L = Sect(C, cL) be the scheme of sections of cL over C, i.e., for each k-scheme
S, BG,L(S) is the set of sections over C

b : C × S → cL.

This is called the Hitchin base of G.

The natural G-invariant projection χ : g→ c induces a map

[χL] : [gL/G]→ cL,

which in turn induces a natural map

hG,L : HiggsG,L = Sect(C, [gL/G])→ Sect(C, cL) = BG,L.

We call hG,L : HiggsG,L → BG,L the Hitchin map associated to L. We denote by

HiggsG,L,b := h−1
G,L(b) the fiber of the Hitchin map over b.
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If the group G is clear from the content, we simply write HiggsL, BL, and hL for
HiggsG,L, BG,L, and hG,L. We are mostly interested in the case L = ω. For simplicity,
from now on we denote B = BG,ω, Higgs = HiggsG,ω and h = hG,ω, etc.

For a choice of a square root L1/2, there is a section εL1/2 : BL → HiggsL of hL :
HiggsL → BL, induced by the Kostant section kos : c→ g. Sometimes, we also call εL1/2

the Kostant section of the Hitchin fibration.

Example 3.1. Consider the case G = GLn. The stack of Higgs bundles HiggsL consists
of pair (E, φ), where E is a rank n bundle on C and φ is a OC-linear map φ : E → E⊗L.
The Hitchin base is equal to BL = ⊕ni=1Γ(C,Li) and the Hitchin map is given by taking
the characteristic polynomial of φ

hL : HiggsL → BL, (E, φ)→ (b1(φ), ..., bn(φ)),

where bi(φ) := Tr(∧iφ) ∈ Γ(C,Li).

3.2. The universal centralizer group schemes. Consider the group scheme I over
g consisting of pairs

I = {(g, x) ∈ G× g | Adg(x) = x}.
We define J = kos∗I, where kos : c → g is the Kostant section. This is called the
universal centralizer group scheme of g (see Proposition 3.2).

The following proposition is proved in [N] (see also [DG]).

Proposition 3.2. [N, Lemma 2.1.1] There is a unique morphism of group schemes
a : χ∗J → I ⊂ G× g, which extends the canonical isomorphism χ∗J |greg ' I|greg .

All the constructions above can be twisted. Namely, there are Gm-actions on I, J .
Moreover, the Gm-action on I can be extended to a G×Gm-action given by (h, t)·(x, g) =
(t · hxh−1, hgh−1). The natural morphisms J → c and I → g are Gm-equivariant, and
therefore we can twist everything by the Gm-torsor L× to get JL → cL, IL → gL where
JL = J ×Gm L× and IL = I ×Gm L× . The group scheme IL over gL is equivariant under
the G-action, hence it descends to a group scheme [IL] over [gL/G].

3.3. Symmetries of Hitchin fibration. Let b : S → BL be an S-point of BL, corre-
sponding to a map b : C × S → cL. Pulling back JL → cL along this map, we obtain a
smooth group scheme Jb = b∗J over C × S.

Let PG,b be the Picard category of Jb-torsors over C × S. The assignment b →
Pb defines a Picard stack over B, denoted by PG,L. Let us fix b ∈ BL(S), and let
(E, φ) ∈ HiggsG,L,b corresponding to the map hE,φ : C × S → [gL/G]. Observe that the
morphism χ∗J → I in Proposition 3.2 induces [χL]∗JL → [IL] of group schemes over
[gL/G]. Pulling back to C × S using hE,φ, we get a map

(3.1) aE,φ : Jb → h∗E,φ[I] = Aut(E, φ) ⊂ Aut(E),

which allows us to twist (E, φ) ∈ HiggsG,L,b by a Jb-torsor. This construction defines an
action of PG,L on HiggsG,L over BL.
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Let HiggsregG,L be the open stack of HiggsG,L consisting of (E, φ) : C → [gL/G] that fac-

tors through C → [(greg)L/G]. If (E, φ) ∈ HiggsregG,L, then aE,φ above is an isomorphism.

The Kostant section εL1/2 : BL → HiggsG,L factors through εL1/2 : BL → HiggsregG,L. Fol-

lowing [N, §4], we define B0
L as the open sub-scheme of BL consisting of b ∈ BL(k) such

that the image of the map b : C → cL intersects the discriminant divisor transversally.
The following proposition can be extracted from [DG, DP, N]:

Proposition 3.3. We have the following:

(1) The stack HiggsregG,L is a PG,L-torsor, which can be trivialized by a choice of a
Kostant section εL1/2.

(2) One has HiggsregG,L×BL
B0

L = HiggsG,L×BL
B0

L and the Hitchin map hL : HiggsL →
BL is smooth over B0

L.

Example 3.4. We give examples of fibers HiggsL,b and PL,b in the case G = GLn. We
keep the notation in Example 3.1. We first recall the construction of spectral curves.
Let Tot(Li) be the total space of the line bundle Li. Consider the map

ib : BL × Tot(L)→ Tot(Ln), (b1, ..., bn, v)→
n∑
i=1

(−1)ibi ⊗ vn−1.

Recall BL = ⊕ni=1Γ(C,Li). The universal spectral curves, denoted by S̃, is the scheme-
theoretic pre-image of the zero section in Tot(Ln) under the map ib. It is a closed
subscheme S of BL × Tot(L) and we have a natural projection map

S → BL × C
with is finite flat of degree n. For any b ∈ BL, we let Sb be the fiber over b under the
projection map S → BL. We call Sb the spectral curve associated to b. We have b ∈ B0

L

if and only if Sb is smooth. We have PL,b ' Pic(Sb) the Picard stack of line bundles on
the spectral curve. For b ∈ BL such that the corresponding spectral curve Sb is integral,
we have HiggsL,b ' Pic(Sb), the stack classifying torsion-free coherent sheaves that are
generically of rank 1, and PL,b ' Pic(Sb) acts on HiggsL,b by tensoring.

3.4. Abelian duality. Let PG,L and PǦ,L be the Picard stacks in §3.3 for G and Ǧ
respectively. Let (PG,L)∨ := Hom(PG,L, BGm) be the dual Picard stack (see [CZ2,
Appendix A] for more details about duality of Picard stacks). The W-invariant (, )
form on t (fixed in the beginning of §2) induces isomorphisms BG,L ' BǦ,L and the
corresponding open subset B0

G,L ' B0
Ǧ,L

. We have the following abelian duality theorem.

Theorem 3.5. [CZ2, DP] Assume that the characteristic char k = p is zero or p > 0
with p - |W|. There is a canonical isomorphism of Picard stack

(PG,L)∨|B0
G,L
'PǦ,L|B0

Ǧ,L
.

Example 3.6. In the case of G = GLn, we have PL|B0
L
' Pic(S/B0

L) and Theorem

3.5 amounts to the well-known autoduality Pic(Sb)
∨ ' Pic(Sb) of Picard stack of line

bundles on smooth spectral curves Sb.
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Remark 3.7. In the case p = 0, Theorem 3.5 is the main theorem of [DP] (for G = SLn,
see [HT]). As mentioned by the authors, transcendental arguments are used in [DP] in
an essential way, and therefore cannot be applied directly to the case when p > 0 . The
argument in [CZ2] works for any algebraically closed field k of characteristic zero or
p > 0 with p - |W|.

Remark 3.8. In [A], the author extends the autoduality in Example 3.6, hence Theorem
3.5 for GLn, to integral spectral curves Sb.

3.5. p-Hitchin map. In this section we assume p > 0. Let LocSysG be the stack of
G-local system on C, that is, for every scheme S over k, LocSysG(S) is the groupoid

of all G-torsors E on C × S together with a connection ∇ : TC×S/S → T̃E. For any
(E,∇) ∈ LocSysG let

Ψ∇ : TC → Fr∗ad(E), v → ∇(v)p −∇(vp)

be its p-curvature (see §2.6). We regard Ψ∇ as a section Ψ∇ ∈ Γ(C, ad(E) ⊗ ωp) and
call such a pair an F -Higgs field. The assignment (E,∇) → (E,Ψ∇) defines a map
ΨG : LocSysG → HiggsG,ωp . Combining this map with hωp , we get a morphism from
LocSysG to Bωp :

h̃p : LocSysG → Bωp .

Observe that the pullback along FC : C → C ′ induces a natural map F p : B′ → Bωp ,
where the superscript denotes the Frobenius twist.

Theorem 3.9. [CZ2, Theorem 3.1 and Proposition 3.5] We have the following:

(1) The p-curvature morphism h̃p : LocSysG → Bωp factors through a unique mor-
phism

hp : LocSysG → B′.

We called this map the p-Hitchin map.
(2) There is a canonical action P ′ ×B′ LocSysG → LocSysG of the Picard stack P ′

on LocSysG.

Remark 3.10. In the case of G = GLn, part (1) of Theorem 3.9 is the main theorem
of [LP].

Example 3.11. Consider the case G = GL1. Let (L,∇) ∈ LocSysGL1
, here L is a

line bundle on C and ∇ : L → L ⊗ ω is a flat connection. The p-curvature of ∇ is a
section Ψ∇ ∈ Γ(C, ωpC). By [K], the section is Ψ∇ is flat with respect to the canonical
connection coming from the Frobenius pullback ωpC ' F ∗CωC′ , hence by Cartier descent,
we have Ψ∇ = F ∗C(α) for a 1-form α ∈ Γ(C ′, ωC′). The p-Hitchin map is given by

hp : LocSysGL1
→ B′ = Γ(C ′, ωC′), (L,∇)→ α.

The action of (L′) ∈ P ′
GL1,b′

' Pic(C ′) on LocSysGL1,b′ is given by (L,∇) → (L ⊗
F ∗C′L

′,∇ ⊗ ∇can), where ∇can is the canonical connection on F ∗C′L
′ coming from the

Frobenius pullback.
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4. Non-abelian Hodge theory in characteristic p.

Let G be a reductive group over an algebraically closed field k of positive characteristic
p. Let C be a smooth projective curve over k. In a joint work with X. Zhu [CZ1], we
use Hitchin map and p-Hitchin map to give a description of the moduli space of flat
G-bundles in terms of the moduli space of G-Higgs bundles over the Frobenius twist C ′

of C. This extends the work of [BB] and [G] in the case of GLn and can be regarded as
the non-abelian Hodge theory for algebraic curves.

Let me describe the result in more detail. Let HiggsG be the moduli stack of G-Higgs
bundles on C and let

h : HiggsG → B

denote the Hitchin fibration, on which the Picard stack P → B of J-torsors acts. Here
J is the group scheme of regular centralizer over C × B. Let LocSysG be the moduli
stack of G-flat connections on C. Recall the p-Hitchin map

hp : LocSysG → B′

in §3.5. To relate HiggsG to LocSysG, we introduce a characteristic p analogue of moduli
stack of harmonic bundles, which we denote by HG, as introduced by Simpson in [S].
By definition, the stack HG classifies (relative) splittings of a certain J ′-gerbe over B′

(see [CZ1, §3.2]). We show that HG is naturally a stack over B′

(4.1) HG → B′.

Moreover, there is a canonical action of P ′
G on HG and under this action the stack HG

becomes a P ′
G-torsor. We write Hb′ for the fiber over b′ ∈ B′. We will give examples of

the stack Hb′ (in the case when G = GLn) in Example 4.5.

The following theorem is proved in [CZ2].

Theorem 4.1. [CZ2, Theorem 1.2] Over B′, there is a canonical isomorphism

C : HG ×P′G Higgs′G → LocSysG .

Here C : HG ×P′G Higgs′G is the twist of Higgs′G by the P ′
G-torsor HG.

Since the Picard stack P ′
G is smooth, the P ′

G-torsor HG can be trivialized étale
locally and the theorem above implies the following

Corollary 4.2. There is an étale cover U of B′, such that LocSysG×B′U is isomorpshic
to Higgs′G×B′U .

Remark 4.3. In the case G = GLn, this corollary is one of the main theorems of [G],
which extends a result of [BB] that establishes the above isomorphism over (B0)′.

Remark 4.4. The relation between our work and the construction of A. Ogus and V.
Vologodsky in [OV] (in the curve case) is as follows. The construction of [OV] amounts
to the restriction of C to 0 ∈ B′. Namely, upon a choice of a lifting of C to W2(k),
H admits a canonical trivialization, and thus C induces an isomorphism between the
moduli of nilpotent G-Higgs bundles Higgs′G,0 over C ′ and the moduli LocSysG,0 of flat
G-local systems with nilpotent p-curvatures.
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Example 4.5. We give a description of the isomorphism C in the case when G = GLn.
For simplicity, we fix b′ ∈ B′. We first describe the fibers Higgs′G,b′ ,LocSysG,b′ and Hb′

in this case.

Let S ′b′ ⊂ T ∗C ′ be the spectral curve for b′, and Sbp ⊂ T ∗C ′ ×C′ C be the pullback of
S ′b′ which fits into the following Cartesian diagram

Sbp
W−−−→ S ′b′

πbp

y y
C −−−→ C ′.

Note that Sbp is the spectral curve corresponding to bp = F ∗b′. The stack Higgs′G,b′ is
the space of Higgs fields (E ′, φ′) with the characteristic polynomial b′. By the classical
BNR correspondence (see [BNR]), such a Higgs field defines a coherent sheaf F(E′,φ′) on
S ′b′ . The space LocSysG,b′ consist of rank n vector bundles with a connection (E,∇) on
C whose p-curvature Ψ∇ has the characteristic polynomial bp. Therefore, every object in
LocSysG,b′ defines a coherent sheaf F(E,Ψ∇) on Sbp . The stack Hb′ is the moduli stack of
splitting modules of the restriction to S ′b′ of the Azumaya algebra of the ring of crystalline
differential operators DC , that is, we have

Hb′ = {(V, i)|V a rank p bundle on S ′b′ , i : End(V ) ' DC |S′
b′
}.

The Picard stack Pic(S ′b′) acts naturally on Hb′ by tensoring and under this action Hb′

becomes a Pic(S ′b′)-torsor. Note that Hb′ is isomorphic to the open substack LocSysregG,b′
of LocSysG,b′ consisting of those (E,∇), such that L := F(E,Ψ∇) is an invertible sheaf
on Sbp . To see this, we observe that for such a pair (E,∇), the direct image of L along
W : Sbp → S ′b′ is locally free of rank p on S ′b′ and therefore is a splitting of DC on S ′b′ .
This defines the desired isomorphism from LocSysregG,b′ to Hb′ . The isomorphism

Cb′ : Hb′ ×P′
b′ Higgs′G,b′ → LocSysG,b′

will send an object (E ′, φ′) ∈ Higgs′G,b′ , regarded as a coherent sheaf F(E′,φ′) on S ′b′ ,
and an object Hb′ , which is a splitting module (V, i) of DC |S′

b′
, to the tensor product

F(E′,φ′) ⊗ V .

5. Geometric Langlands correspondence in characteristic p

Let C be a smooth projective curve over C. Let G be a reductive algebraic group
over C and let Ǧ be its Langlands dual group. Geometric Langlands conjecture (GLC),
proposed by Beilinson and Drinfeld, is a conjectural equivalence between derived cate-
gory of quasi-coherent sheaves on LocSysǦ and derived category of D-modules on BunG.
In the paper [BB], the authors proved a characteristic p version of geometric Langlands
conjecture in the case G = GLn. In the joint work with Xinwen Zhu [CZ1], we general-
ized the methods in [BB] to arbitrary semi-simple group and proved a characteristic p
version of geometric Langlands conjecture for arbitrary semi-simple groups.

We now describe the result in more details. Let G be semi-simple group over an
algebraically closed field k whose characteristic p is positive and does not divide the
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order of the Weyl group of G and let Ǧ be its Langlands dual group, defined over k.
Let C be a smooth projective curve over k and let ωC denote the canonical bundle of C.
We will identify the Hitchin base B and the corresponding open subset B0 for G and Ǧ
using the W-invariant form (, ). We denote by

Higgs0
G = HiggsG×BB0, LocSys0

Ğ
= LocSysĞ×B′(B

0)′,

the preimage of (B0)′ along the Hitchin map and p-Hitchin map respectively. The open
subset Higgs0

G (or rather its Frobenius twist) defines a localization

D -mod(BunG)0

of the category D -mod(BunG) of D-modules on BunG, that is, D -mod(BunG)0 is the
category of D0

BunG
-modules on (Higgs0

G)′, where D0
BunG

is the restriction of DBunG
, the

sheaf of Azumaya algebra of differential operators on T ∗ Bun′G
∼= Higgs′G, to the open

set (Higgs0
G)′.

The following theorem is proved in [CZ2], which can be viewed as a generic version of
geometric Langlands correspondence in positive characteristic.

Theorem 5.1. [CZ2, Theorem 5.0.4] For a choice of a square root κ of ωC, we have a
canonical equivalence of bounded derived categories

Dκ : Db(D -mod(BunG)0) ' Db(QCoh(LocSys0
Ǧ)).

Remark 5.2. In the case G = GLn, the theorem above was first proved in [BB]. In [G],
the author extends the equivalence in [BB] over the locus of B′ where the corresponding
spectral curves are integral.

Theorem 5.1 follows from the non-abelian Hodge theory in Theorem 4.1, and the
following twisted version of Theorem 3.5: let HǦ → B′ be the P ′

Ǧ
-torsor of harmonic

bundles for the dual group Ǧ introduced in (4.1) and we define H 0
Ǧ

:= HǦ ×B′ (B0)′.

Let iκ : P ′
G|(B0)′ ' (Higgs0

G)′ be the isomorphism induced by the Kostant section εκ
associated to κ (see §3.3). It is shown in [CZ1, §4] that the the Azumaya algebra
A := i∗κ(DBunG

) on P ′
G|(B0)′ has a canonical multplicative structure compatible with the

multiplication on the Picard stack P ′
G|(B0)′ and we define

S 0
G → (B0)′

to be the (P ′
G)∨-torsor classifying mutiplicative splittings of the Azumaya algebra A

relatively over (B0)′ (see [CZ2, Appendix A] for the notions of multiplicative structure
on an Azumaya algebra over a Picard stack and multiplicative splittings).

Theorem 5.3. [CZ1, Theorem 1.2.2] There is an isomorphism (P ′
G)∨|(B0)′ ' P̌ ′

Ǧ
|(B0)′-

torosrs
S 0
G 'H 0

Ǧ
.

To complete the proof of Theorem 5.1, we first observe that Theorem 4.1 and the
Kostant section εκ : B′ → Higgs′Ǧ induce an isomorphism

(5.1) H 0
Ǧ
'H 0

Ǧ
×P′

Ǧ (Higgs0
Ǧ)′ ' LocSys0

Ǧ
10



over (B0)′. On the other hand, a twisted version of Fourier-Mukai transform (see [CZ2,
Appendix A]) implies

(5.2) Db(D -mod(BunG)0) ' Db(QCoh(S 0
G)).

All together we arrive the desired equivalence

Db(D -mod(BunG)0)
(5.2)
' Db(QCoh(S 0

G))
Thm 5.3' Db(QCoh(H 0

Ǧ
))

(5.1)
' Db(QCoh(LocSys0

G)).

6. Quantization of Hitchin’s intergrable systems

In the last section we give a report on the recent work of R.Bezrukavnikov and
R.Travkin [BT] on quantization of Hitchin’s intergrable systems.

We assume G = GLn. Let Bun = BunG be the moduli stack of rank n-bundles on C
and Bund be the component of rank n-bundles of degree d. Let ωBun be the canonical
bundle on Bun. We fixed a square root (ωBun)1/2 of ωBun and we write D(ωBun)1/2 for

the sheaf of (ωBun)1/2-twisted differential operators on Bun (see [BD, §2]). Let Op
denote the space of marked opers. Recall that a marked oper consists of the data
(E,∇, {Ei}i=1,...n, φ) where (E,∇) is a rank n bundle on C with a flat connection, 0 ⊂
E1 ⊂ ·· · ⊂ En = E is a complete flag, φ : E1 ' ω

(n−1)/2
C , such that 1) ∇(Ei) ⊂ Ei+1⊗ωC

and 2) the induced map gr(∇) : Ei/Ei−1 → Ei+1/Ei ⊗ ωC is an isomorphism (see [BT,
Appendix] or [B] for more details).

Theorem 6.1. [BT, Theorem 1] Assume char k = p is zero or p 6= 2.

(1) For every d ∈ Z we have a canonical isomorphism Γ(Bund,D(ωBun)1/2) ' Γ(Op,O).
(2) Let x ∈ Op be a marked oper with underling flat connection (E,∇). Let fx :

Γ(Op,O) → k be the corresponding homomorphism of k-algebra. Then the D-
module

Autx := (D(ωBun)1/2 ⊗Γ(Op,O),fx k)⊗ ω−1/2
Bun

is a Hecke-eigen D-module on Bun with respect to (E,∇) (see [BD, §5] for the
notion of Hecke-eigen D-modules).

In the case when the characteristic of k is zero, Theorem 6.1 is the main result of
the work of Beilinson-Drinfeld [BD] on quantization of Hitchin’s integrable system and
Hecke eigensheaves. The construction in [BD] used local to global argument and results
on representation theory of affine Lie algebras at critical level. The proof of Theorem
6.1 in [BT] is quite interesting and different from the one in [BD]: they first establish
the result when the characteristic of k is positive using the generic geometric Lang-
lands correspondence in characteristic p in Theorem 5.1 and then formally deduce the
characteristic zero case.

Remark 6.2. Since the stack Bun is not good in the sense of [BD, §1], one has to use a
modified version of Bund in the statement of Theorem 6.1 (see [BT, §2] or [BB, §4.6]).
We ignore this technical details here.
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