SURVEY ON GEOMETRIC LANGLANDS AND NON-ABELIAN HODGE THEORY IN CHARACTERISTIC p

TSAO-HSIEN CHEN

ABSTRACT. In this report, we give a survey on new results on geometric Langlands correspondence and non-abelian Hodge theory in characteristic p.

1. Introduction

In this survey article we discuss new results on geometric Langlands correspondence in characteristic p and non-abelian Hodge theory for smooth projective curves in characteristic p. We also discuss applications of those results to quantization of Hitchin's integrable system. The main references are [BB, BT, CZ1, CZ2].

The article is organized as follows. In $\S 2$ we recall some facts about reductive groups, connections on torsors, D-modules in characteristic p, and Azumaya property of sheaf of crystalline differential operators in characteristic p. In $\S 3$ we discuss the construction of Hitchin maps, p-Hitchin maps, and abelian duality for Hitchin maps. In $\S 4$ we discuss results on non-abelian Hodge theory for algebraic curves in characteristic p. In $\S 6$ we discuss applications to quantization of Hitchin's integrable system.

2. Preliminaries

2.1. Notations related to reductive groups. Let G be a reductive algebraic group over k of rank l. We denote by \check{G} its Langlands dual group over k. We denote by \mathfrak{g} (resp. by $\check{\mathfrak{g}}$) the Lie algebra of G (resp. \check{G}). Let T denote the abstract Cartan of G with its Lie algebra $\check{\mathfrak{t}}$. The counterparts on the Langlands dual side are denoted by \check{T} , $\check{\mathfrak{t}}$. We denote by W the abstract Weyl group of G, which acts on T and \check{T} .

From now on, we assume that the char k=p is zero or $p \nmid |W|$. We fix a W-invariant non-degenerate bilinear form $(\ ,\):\mathfrak{t}\times\mathfrak{t}\to k$ and identify \mathfrak{t} with \mathfrak{t} using $(\ ,\)$. This invariant form also determines a unique G-invariant non-degenerate bilinear form $\mathfrak{g}\times\mathfrak{g}\to k$, still denoted by $(\ ,\)$. Let $\mathfrak{g}\simeq\mathfrak{g}^*$ be the resulting G-equivariant isomorphism.

²⁰¹⁰ Mathematics Subject Classification. 14D24, 22E57.

Key words and phrases. Langlands duality, Hitchin fibration, Non-abelian Hodge theory, D-modules in characteristic p.

The author is partially supported by NSF grant DMS-1702337.

2.2. Notations related to stacks and Frobenius. We fix a smooth projective curve C of genus at least two¹ over an algebraically closed field k of characteristic p. Let $\omega = \omega_C$ denote the canonical line bundle of C. Let S be a Noetherian scheme and $\mathscr{X} \to S$ be an algebraic stack over S. If p > 0, we denote by $Fr_S : S \to S$ be the absolute Frobenius map of S. We have the following commutative diagram

$$\mathscr{X} \xrightarrow{F_{\mathscr{X}/S}} \mathscr{X}^{(S)} \xrightarrow{\pi_{\mathscr{X}/S}} \mathscr{X}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$S \xrightarrow{Fr_S} S$$

where the square is Cartesian. We call $\mathscr{X}^{(S)}$ the Frobenius twist of \mathscr{X} along S, and $F_{\mathscr{X}/S}:\mathscr{X}\to\mathscr{X}^{(S)}$ the relative Frobenius morphism. If the base scheme S is clear, $\mathscr{X}^{(S)}$ is also denoted by \mathscr{X}' for simplicity and $F_{\mathscr{X}/S}$ is denoted by $F_{\mathscr{X}}$ or F.

Let $\mathscr{X} \to S$ be a smooth algebraic stack over S. We write $T(\mathscr{X}/S)$ for relative tangent stack on \mathscr{X} and $T^*(\mathscr{X}/S)$ relative cotangent stack on \mathscr{X} . We denote by $T_{\mathscr{X}/S}$ and $\Omega^1_{\mathscr{X}/S}$ the sheaves of sections of $T(\mathscr{X}/S)$ and $T^*(\mathscr{X}/S)$ respectively, and $\mathfrak{O}_{\mathscr{X}}$ the structure sheaf of \mathscr{X} .

2.3. D-modules. Let X be a smooth scheme over k. We denote by \mathcal{D}_X the sheaf of crystalline differential operators. Recall \mathcal{D}_X is the sheaf of algebra generated by \mathcal{O}_X and T_X subject to the relations $v_1v_2 - v_2v_1 = [v_1, v_2]$ for $v_1, v_2 \in T_X$, and $v_1 - v_2 = v_1$ for $v_1 \in T_X$ and $v_2 \in T_X$. By definition, a $v_1 \in T_X$ -module on $v_2 \in T_X$ is a sheaf of $v_2 \in T_X$ -module which is quasi-coherent as $v_2 \in T_X$ -module. It follows from the definition of $v_2 \in T_X$ -module is just a quasi-coherent $v_2 \in T_X$ -module $v_2 \in T_X$ -module is a quasi-coherent $v_2 \in T_X$ -module $v_2 \in T_X$ -module $v_3 \in T_X$ -module $v_$

$$\nabla: T_X \to \operatorname{End}_k(N)$$

satisfying $\nabla(f \cdot v) = v \otimes df + f\nabla(v)$ for $f \in \mathcal{O}_X, v \in T_X$ and $\nabla([v, w]) = [\nabla(v), \nabla(w)]$ for $v, w \in T_X$.

2.4. Azumaya property of \mathcal{D}_X in positive characteristic and p-curvatures. If $\operatorname{char} k = 0$, \mathcal{D}_X is simple, that is, it has no proper two-sided ideals. If $\operatorname{char} k > 0$, the center $Z(\mathcal{D}_X)$ of \mathcal{D}_X (resp. the centralizer $Z_{\mathcal{O}_X}(\mathcal{D}_X)$ of \mathcal{O}_X in \mathcal{D}_X) is freely generated by elements of the form f^p (resp. f), $f \in \mathcal{O}_X$ and $v^p - v^{[p]}$, $v \in T_X$, where $v^{[p]}$ is the p-th restricted power of the vector field v. The center $Z(\mathcal{D}_X)$ (resp. the centralizer $Z_{\mathcal{O}_X}(\mathcal{D}_X)$) is canonically isomorphic to the structure sheaf $\mathcal{O}_{T^*X'}$ (resp. $\mathcal{O}_{X\times_{X'}T^*X'}$). Thus \mathcal{D}_X can be regraded as a quasi-coherent sheaf of algebra on T^*X' . We have the following fundamental observation: recall that an Azumaya algebra on a scheme is a locally free sheaf A of \mathcal{O}_X -algebra, such that the fiber of A at every geometric point is isomorphic to a matrix algebra.

Proposition 2.1. [BMR] \mathcal{D}_X is an Azumaya algebra of rank $p^{2\dim X}$ on T^*X' .

¹This assumption should not be essential. We impose it to avoid the DG structure on moduli spaces.

Since $Z_{\mathcal{O}_X}(\mathcal{D}_X) \simeq \mathcal{O}_{X \times_{X'} T^* X'}$, any *D*-module *N* carries an action of $\mathcal{O}_{X \times_{X'} T^* X'}$. Such an action is the same as a section $s \in \Gamma(X, Fr_X^*\Omega_X^1 \otimes \operatorname{End}_{\mathcal{O}_X}(N))$. As we noted before N can be considered as a quasi-coherent sheaf on X with a flat connection $\nabla: T_X \to T_X$ $\operatorname{End}_k(N)$ and the map $\Psi_{\nabla}: T_X \to (Fr_X)_* \operatorname{End}_{\mathcal{O}_X}(N)$ corresponding to s, via adjunction, is given by

$$\Psi_{\nabla}: T_X \to (Fr_X)_* \operatorname{End}_{\mathcal{O}_X}(N), v \to \nabla(v)^p - \nabla(v^{[p]}).$$

The map Ψ_{∇} is known as the *p-curvature* of the connection.

2.5. Connections on G-torsors. Let E be a G-torsor on a smooth scheme X over k. We have the Atiyah sequence (or Atiyah algebroid)

$$0 \to \operatorname{ad}(E) \to \widetilde{T}_E \stackrel{\sigma}{\to} T_X \to 0$$

associated to E. Here ad(E) is the adjoint bundle for E and \widetilde{T}_E is the Lie algebroid of infinitesimal symmetries of E consisting of pairs (v, \tilde{v}) , where $v \in T_X$ is a vector field on X and $\tilde{v} \in T_E$ is a G-invariant vector field on E that lifts v.

A connection on E is a section $\nabla: T_X \to \widetilde{T}_E$ of σ . A connection ∇ is called flat, or integrable, if ∇ commutes with the natural Lie brackets on T_X and T_E . The connections on E form a $\operatorname{Hom}(T_X,\operatorname{ad}(E))=\Gamma(X,\operatorname{ad}(E)\otimes\Omega^1_X)$ -torsor. Note that when X=C is a smooth curve, all connections on a G-torsor is flat.

Example 2.2. Assume $G = GL_n(k)$. There is an equivalence between the category of G-torsors and rank n bundles on X given by $E \to N := E \times^G k^n$. Then under the equivalence above a connection ∇ on E corresponds to k-linear map

$$\nabla_N: T_X \to \operatorname{End}_k(N)$$

satisfying $\nabla_N(f \cdot v) = v \otimes df + f \nabla(v)$ for $f \in \mathcal{O}_X, v \in T_X$. If the connection is flat then we have $\nabla_N([v,w]) = [\nabla_N(v), \nabla_N(w)]$ for $v,w \in T_X$, hence by Example 2.3, a *D*-module structure on N. It is not hard to see that the assignment $(E, \nabla) \to (N, \nabla_N)$ defines an equivalence between the category of flat connections on GL_n -torsors and the category D-modules on X which are locally free (as \mathcal{O}_X -module) of rank n.

Example 2.3. Let ∇ be a connection on a G-torsor E. Choose a local trivialization of E, we can write the connection ∇ as a differential operator

$$d+A, A \in \mathfrak{g} \otimes \Omega^1_X.$$

Here A is called the connection matrix for ∇ with respect to the trivialization.

2.6. p-curvatures of connections on G-torsors. Assume char k = p > 0. The pcurvature of a connection ∇ on G-bundle E is the following map

$$T_X \to \operatorname{ad}(E), v \to \Psi_{\nabla}(v) := \nabla(v)^p - \nabla(v^{[p]})$$

here p and p are the p-th restrict Lie algebra structures on \widetilde{T}_E and T_X respectively. According to [Bo, K], the map Ψ_{∇} is p-linear, that is $\Psi_{\nabla}(fv) = f^p \Psi_{\nabla}(v)$. Hence one can view the p-curvature as a \mathcal{O}_X -linear map

$$\Psi_{\nabla}: T_X \to (Fr_X)_* \operatorname{ad}(E).$$

By adjunction, the p-curvature gives rise to a section $s \in \Gamma(X, Fr_X^*\Omega_X^1 \otimes \operatorname{ad}(E))$.

Example 2.4. Assume $G = GL_n$ and $X = \operatorname{Spec}(k[z])$ is the affine line. Let $\nabla = d + A$ be a connection on the trivial G-bundle, where $A = A_z \otimes dz \in M_n(k[z]) \otimes dz$ is the connection matrix. Then we have

$$\Psi_{\nabla}(\partial_z) = (\partial_z + A_z)^p = (\partial_z + A_z)^{p-1} A_z \in M_n(k[z]).$$

The results in §2 can be generalized to the setting of smooth algebraic stacks, see [BB, BD, CZ2].

3. HITCHIN MAP AND p-HITCHIN MAP

In this subsection, we recall the definition of Hitchin map and p-Hitchin map following [N, CZ1].

3.1. **Hitchin map.** Let $k[\mathfrak{g}]$ and $k[\mathfrak{t}]$ be the algebra of polynomial function on \mathfrak{g} and \mathfrak{t} . By Chevalley's theorem, we have an isomorphism $k[\mathfrak{g}]^G \simeq k[\mathfrak{t}]^W$. Moreover, $k[\mathfrak{t}]^W$ is isomorphic to a polynomial ring of l variables u_1, \ldots, u_l and each u_i is homogeneous in degree e_i . Let $\mathfrak{c} = \operatorname{Spec}(k[\mathfrak{t}]^W)$. Let

$$\chi:\mathfrak{g}\to\mathfrak{c}$$

be the map induced by $k[\mathfrak{c}] \simeq k[\mathfrak{g}]^G \hookrightarrow k[\mathfrak{g}]$. This is $G \times \mathbb{G}_m$ -equivariant map where G acts trivially on \mathfrak{c} , and \mathbb{G}_m acts on \mathfrak{c} through the gradings on $k[\mathfrak{t}]^W$. Let \mathcal{L} be an invertible sheaf on C and \mathcal{L}^\times be the corresponding \mathbb{G}_m -torsor. Let $\mathfrak{g}_{\mathcal{L}} = \mathfrak{g} \times^{\mathbb{G}_m} \mathcal{L}^\times$ and $\mathfrak{c}_{\mathcal{L}} = \mathfrak{c} \times^{\mathbb{G}_m} \mathcal{L}^\times$ be the \mathbb{G}_m -twist of \mathfrak{g} and \mathfrak{c} with respect to the natural \mathbb{G}_m -action.

Let $\operatorname{Higgs}_{G,\mathcal{L}} = \operatorname{Sect}(C,[\mathfrak{g}_{\mathcal{L}}/G])$ be the stack of section of $[\mathfrak{g}_{\mathcal{L}}/G]$ over C, i.e., for each k-scheme S the groupoid $\operatorname{Higgs}_{G,\mathcal{L}}(S)$ consists of maps over C:

$$h_{E,\phi}: C \times S \to [\mathfrak{g}_{\mathcal{L}}/G].$$

Equivalently, $\operatorname{Higgs}_{G,\mathcal{L}}(S)$ consists of a pair (E,ϕ) (called a Higgs bundle), where E is a G-torsor over $C\times S$ and ϕ is an element in $\Gamma(C\times S,\operatorname{ad}(E)\otimes\mathcal{L})$.

Let $B_{G,\mathcal{L}} = \text{Sect}(C, \mathfrak{c}_{\mathcal{L}})$ be the scheme of sections of $\mathfrak{c}_{\mathcal{L}}$ over C, i.e., for each k-scheme $S, B_{G,\mathcal{L}}(S)$ is the set of sections over C

$$b: C \times S \to \mathfrak{c}_{C}$$

This is called the Hitchin base of G.

The natural G-invariant projection $\chi: \mathfrak{g} \to \mathfrak{c}$ induces a map

$$[\chi_{\mathcal{L}}]: [\mathfrak{g}_{\mathcal{L}}/G] \to \mathfrak{c}_{\mathcal{L}},$$

which in turn induces a natural map

$$h_{G,\mathcal{L}}: \mathrm{Higgs}_{G,\mathcal{L}} = \mathrm{Sect}(C, [\mathfrak{g}_{\mathcal{L}}/G]) \to \mathrm{Sect}(C, \mathfrak{c}_{\mathcal{L}}) = B_{G,\mathcal{L}}.$$

We call $h_{G,\mathcal{L}}$: Higgs_{G,\mathcal{L}} $\to B_{G,\mathcal{L}}$ the Hitchin map associated to \mathcal{L} . We denote by Higgs_{G,\mathcal{L},b} := $h_{G,\mathcal{L}}^{-1}(b)$ the fiber of the Hitchin map over b.

If the group G is clear from the content, we simply write $\mathrm{Higgs}_{\mathcal{L}}$, $B_{\mathcal{L}}$, and $h_{\mathcal{L}}$ for $\mathrm{Higgs}_{G,\mathcal{L}}$, $B_{G,\mathcal{L}}$, and $h_{G,\mathcal{L}}$. We are mostly interested in the case $\mathcal{L} = \omega$. For simplicity, from now on we denote $B = B_{G,\omega}$, $\mathrm{Higgs} = \mathrm{Higgs}_{G,\omega}$ and $h = h_{G,\omega}$, etc.

For a choice of a square root $\mathcal{L}^{1/2}$, there is a section $\epsilon_{\mathcal{L}^{1/2}}: B_{\mathcal{L}} \to \operatorname{Higgs}_{\mathcal{L}}$ of $h_{\mathcal{L}}: \operatorname{Higgs}_{\mathcal{L}} \to B_{\mathcal{L}}$, induced by the Kostant section $kos: \mathfrak{c} \to \mathfrak{g}$. Sometimes, we also call $\epsilon_{\mathcal{L}^{1/2}}$ the Kostant section of the Hitchin fibration.

Example 3.1. Consider the case $G = GL_n$. The stack of Higgs bundles $\operatorname{Higgs}_{\mathcal{L}}$ consists of pair (E, ϕ) , where E is a rank n bundle on C and ϕ is a \mathcal{O}_C -linear map $\phi : E \to E \otimes \mathcal{L}$. The Hitchin base is equal to $B_{\mathcal{L}} = \bigoplus_{i=1}^n \Gamma(C, \mathcal{L}^i)$ and the Hitchin map is given by taking the characteristic polynomial of ϕ

$$h_{\mathcal{L}}: \mathrm{Higgs}_{\mathcal{L}} \to B_{\mathcal{L}}, \ (E, \phi) \to (b_1(\phi), ..., b_n(\phi)),$$

where $b_i(\phi) := \operatorname{Tr}(\wedge^i \phi) \in \Gamma(C, \mathcal{L}^i)$.

3.2. The universal centralizer group schemes. Consider the group scheme I over \mathfrak{g} consisting of pairs

$$I = \{ (g, x) \in G \times \mathfrak{g} \mid \mathrm{Ad}_q(x) = x \}.$$

We define $J = kos^*I$, where $kos : \mathfrak{c} \to \mathfrak{g}$ is the Kostant section. This is called the universal centralizer group scheme of \mathfrak{g} (see Proposition 3.2).

The following proposition is proved in [N] (see also [DG]).

Proposition 3.2. [N, Lemma 2.1.1] There is a unique morphism of group schemes $a: \chi^* J \to I \subset G \times \mathfrak{g}$, which extends the canonical isomorphism $\chi^* J|_{\mathfrak{g}^{reg}} \simeq I|_{\mathfrak{g}^{reg}}$.

All the constructions above can be twisted. Namely, there are \mathbb{G}_m -actions on I, J. Moreover, the \mathbb{G}_m -action on I can be extended to a $G \times \mathbb{G}_m$ -action given by $(h,t) \cdot (x,g) = (t \cdot hxh^{-1}, hgh^{-1})$. The natural morphisms $J \to \mathfrak{c}$ and $I \to \mathfrak{g}$ are \mathbb{G}_m -equivariant, and therefore we can twist everything by the \mathbb{G}_m -torsor \mathcal{L}^{\times} to get $J_{\mathcal{L}} \to \mathfrak{c}_{\mathcal{L}}$, $I_{\mathcal{L}} \to \mathfrak{g}_{\mathcal{L}}$ where $J_{\mathcal{L}} = J \times^{\mathbb{G}_m} \mathcal{L}^{\times}$ and $I_{\mathcal{L}} = I \times^{\mathbb{G}_m} \mathcal{L}^{\times}$. The group scheme $I_{\mathcal{L}}$ over $\mathfrak{g}_{\mathcal{L}}$ is equivariant under the G-action, hence it descends to a group scheme $[I_{\mathcal{L}}]$ over $[\mathfrak{g}_{\mathcal{L}}/G]$.

3.3. Symmetries of Hitchin fibration. Let $b: S \to B_{\mathcal{L}}$ be an S-point of $B_{\mathcal{L}}$, corresponding to a map $b: C \times S \to \mathfrak{c}_{\mathcal{L}}$. Pulling back $J_{\mathcal{L}} \to \mathfrak{c}_{\mathcal{L}}$ along this map, we obtain a smooth group scheme $J_b = b^*J$ over $C \times S$.

Let $\mathscr{P}_{G,b}$ be the Picard category of J_b -torsors over $C \times S$. The assignment $b \to \mathscr{P}_b$ defines a Picard stack over B, denoted by $\mathscr{P}_{G,\mathcal{L}}$. Let us fix $b \in B_{\mathcal{L}}(S)$, and let $(E,\phi) \in \operatorname{Higgs}_{G,\mathcal{L},b}$ corresponding to the map $h_{E,\phi}: C \times S \to [\mathfrak{g}_{\mathcal{L}}/G]$. Observe that the morphism $\chi^*J \to I$ in Proposition 3.2 induces $[\chi_{\mathcal{L}}]^*J_{\mathcal{L}} \to [I_{\mathcal{L}}]$ of group schemes over $[\mathfrak{g}_{\mathcal{L}}/G]$. Pulling back to $C \times S$ using $h_{E,\phi}$, we get a map

(3.1)
$$a_{E,\phi}: J_b \to h_{E,\phi}^*[I] = \operatorname{Aut}(E,\phi) \subset \operatorname{Aut}(E),$$

which allows us to twist $(E, \phi) \in \text{Higgs}_{G,\mathcal{L},b}$ by a J_b -torsor. This construction defines an action of $\mathscr{P}_{G,\mathcal{L}}$ on $\text{Higgs}_{G,\mathcal{L}}$ over $B_{\mathcal{L}}$.

Let $\operatorname{Higgs}_{G,\mathcal{L}}^{reg}$ be the open stack of $\operatorname{Higgs}_{G,\mathcal{L}}$ consisting of $(E,\phi):C\to [\mathfrak{g}_{\mathcal{L}}/G]$ that factors through $C \to [(\mathfrak{g}^{reg})_{\mathcal{L}}/G]$. If $(E,\phi) \in \mathrm{Higgs}_{G,\mathcal{L}}^{reg}$, then $a_{E,\phi}$ above is an isomorphism. The Kostant section $\epsilon_{\mathcal{L}^{1/2}}: B_{\mathcal{L}} \to \operatorname{Higgs}_{G,\mathcal{L}}$ factors through $\epsilon_{\mathcal{L}^{1/2}}: B_{\mathcal{L}} \to \operatorname{Higgs}_{G,\mathcal{L}}^{reg}$. Following [N, §4], we define $B_{\mathcal{L}}^0$ as the open sub-scheme of $B_{\mathcal{L}}$ consisting of $b \in B_{\mathcal{L}}(k)$ such that the image of the map $b: C \to \mathfrak{c}_{\mathcal{L}}$ intersects the discriminant divisor transversally. The following proposition can be extracted from [DG, DP, N]:

Proposition 3.3. We have the following:

- (1) The stack Higgs^{reg}_{G,L} is a $\mathscr{P}_{G,\mathcal{L}}$ -torsor, which can be trivialized by a choice of a
- Kostant section $\epsilon_{\mathcal{L}^{1/2}}$.

 (2) One has $\operatorname{Higgs}_{G,\mathcal{L}}^{reg} \times_{B_{\mathcal{L}}} B_{\mathcal{L}}^{0} = \operatorname{Higgs}_{G,\mathcal{L}} \times_{B_{\mathcal{L}}} B_{\mathcal{L}}^{0}$ and the Hitchin map $h_{\mathcal{L}} : \operatorname{Higgs}_{\mathcal{L}} \to$ $B_{\mathcal{L}}$ is smooth over $B_{\mathcal{L}}^0$.

Example 3.4. We give examples of fibers $\text{Higgs}_{\mathcal{L},b}$ and $\mathscr{P}_{\mathcal{L},b}$ in the case $G = GL_n$. We keep the notation in Example 3.1. We first recall the construction of spectral curves. Let $Tot(\mathcal{L}^i)$ be the total space of the line bundle \mathcal{L}^i . Consider the map

$$i_b: B_{\mathcal{L}} \times \operatorname{Tot}(\mathcal{L}) \to \operatorname{Tot}(\mathcal{L}^n), \ (b_1, ..., b_n, v) \to \sum_{i=1}^n (-1)^i b_i \otimes v^{n-1}.$$

Recall $B_{\mathcal{L}} = \bigoplus_{i=1}^n \Gamma(C, \mathcal{L}^i)$. The universal spectral curves, denoted by \tilde{S} , is the schemetheoretic pre-image of the zero section in $Tot(\mathcal{L}^n)$ under the map i_b . It is a closed subscheme S of $B_{\mathcal{L}} \times \text{Tot}(\mathcal{L})$ and we have a natural projection map

$$S \to B_L \times C$$

with is finite flat of degree n. For any $b \in B_{\mathcal{L}}$, we let S_b be the fiber over b under the projection map $S \to B_{\mathcal{L}}$. We call S_b the spectral curve associated to b. We have $b \in B_{\mathcal{L}}^0$ if and only if S_b is smooth. We have $\mathscr{P}_{\mathcal{L},b} \simeq \operatorname{Pic}(S_b)$ the Picard stack of line bundles on the spectral curve. For $b \in B_{\mathcal{L}}$ such that the corresponding spectral curve S_b is integral, we have $\operatorname{Higgs}_{\mathcal{L},b} \simeq \overline{\operatorname{Pic}}(S_b)$, the stack classifying torsion-free coherent sheaves that are generically of rank 1, and $\mathscr{P}_{\mathcal{L},b} \simeq \operatorname{Pic}(S_b)$ acts on $\operatorname{Higgs}_{\mathcal{L},b}$ by tensoring.

3.4. Abelian duality. Let $\mathscr{P}_{G,\mathcal{L}}$ and $\mathscr{P}_{\check{G},\mathcal{L}}$ be the Picard stacks in §3.3 for G and \check{G} respectively. Let $(\mathscr{P}_{G,\mathcal{L}})^{\vee} := \operatorname{Hom}(\mathscr{P}_{G,\mathcal{L}}, B\mathbb{G}_m)$ be the dual Picard stack (see [CZ2, Appendix A] for more details about duality of Picard stacks). The W-invariant (,) form on \mathfrak{t} (fixed in the beginning of §2) induces isomorphisms $B_{G,\mathcal{L}} \simeq B_{\tilde{G},\mathcal{L}}$ and the corresponding open subset $B^0_{G,\mathcal{L}} \simeq B^0_{\check{G},\mathcal{L}}$. We have the following abelian duality theorem.

Theorem 3.5. [CZ2, DP] Assume that the characteristic char k = p is zero or p > 0with $p \nmid |W|$. There is a canonical isomorphism of Picard stack

$$(\mathscr{P}_{G,\mathcal{L}})^{\vee}|_{B^0_{G,\mathcal{L}}} \simeq \mathscr{P}_{\check{G},\mathcal{L}}|_{B^0_{\check{G},\mathcal{L}}}.$$

Example 3.6. In the case of $G = GL_n$, we have $\mathscr{P}_{\mathcal{L}}|_{B^0_{\mathcal{L}}} \simeq \operatorname{Pic}(S/B^0_{\mathcal{L}})$ and Theorem 3.5 amounts to the well-known autoduality $\operatorname{Pic}(S_b)^{\vee} \simeq \operatorname{Pic}(S_b)$ of Picard stack of line bundles on smooth spectral curves S_b .

Remark 3.7. In the case p = 0, Theorem 3.5 is the main theorem of [DP] (for $G = SL_n$, see [HT]). As mentioned by the authors, transcendental arguments are used in [DP] in an essential way, and therefore cannot be applied directly to the case when p > 0. The argument in [CZ2] works for any algebraically closed field k of characteristic zero or p > 0 with $p \nmid |W|$.

Remark 3.8. In [A], the author extends the autoduality in Example 3.6, hence Theorem 3.5 for GL_n , to integral spectral curves S_b .

3.5. $p ext{-} ext{Hitchin map.}$ In this section we assume p>0. Let LocSys_G be the stack of $G ext{-}\operatorname{local}$ system on C, that is, for every scheme S over k, $\operatorname{LocSys}_G(S)$ is the groupoid of all $G ext{-}\operatorname{torsors} E$ on $C\times S$ together with a connection $\nabla:T_{C\times S/S}\to \widetilde{T}_E$. For any $(E,\nabla)\in\operatorname{LocSys}_G$ let

$$\Psi_{\nabla}: T_C \to Fr_* \mathrm{ad}(E), \quad v \to \nabla(v)^p - \nabla(v^p)$$

be its p-curvature (see §2.6). We regard Ψ_{∇} as a section $\Psi_{\nabla} \in \Gamma(C, \operatorname{ad}(E) \otimes \omega^p)$ and call such a pair an F-Higgs field. The assignment $(E, \nabla) \to (E, \Psi_{\nabla})$ defines a map $\Psi_G : \operatorname{LocSys}_G \to \operatorname{Higgs}_{G,\omega^p}$. Combining this map with h_{ω^p} , we get a morphism from LocSys_G to B_{ω^p} :

$$\tilde{h}_p: \operatorname{LocSys}_G \to B_{\omega^p}.$$

Observe that the pullback along $F_C: C \to C'$ induces a natural map $F^p: B' \to B_{\omega^p}$, where the superscript denotes the Frobenius twist.

Theorem 3.9. [CZ2, Theorem 3.1 and Proposition 3.5] We have the following:

(1) The p-curvature morphism $\tilde{h}_p: \operatorname{LocSys}_G \to B_{\omega^p}$ factors through a unique morphism

$$h_p: \operatorname{LocSys}_G \to B'.$$

We called this map the p-Hitchin map.

(2) There is a canonical action $\mathscr{P}' \times_{B'} \operatorname{LocSys}_G \to \operatorname{LocSys}_G$ of the Picard stack \mathscr{P}' on LocSys_G .

Remark 3.10. In the case of $G = GL_n$, part (1) of Theorem 3.9 is the main theorem of [LP].

Example 3.11. Consider the case $G = GL_1$. Let $(\mathcal{L}, \nabla) \in \text{LocSys}_{GL_1}$, here \mathcal{L} is a line bundle on C and $\nabla : \mathcal{L} \to \mathcal{L} \otimes \omega$ is a flat connection. The p-curvature of ∇ is a section $\Psi_{\nabla} \in \Gamma(C, \omega_C^p)$. By [K], the section is Ψ_{∇} is flat with respect to the canonical connection coming from the Frobenius pullback $\omega_C^p \simeq F_C^*\omega_{C'}$, hence by Cartier descent, we have $\Psi_{\nabla} = F_C^*(\alpha)$ for a 1-form $\alpha \in \Gamma(C', \omega_{C'})$. The p-Hitchin map is given by

$$h_p: \operatorname{LocSys}_{GL_1} \to B' = \Gamma(C', \omega_{C'}), \ (\mathcal{L}, \nabla) \to \alpha.$$

The action of $(\mathcal{L}') \in \mathscr{P}'_{GL_1,b'} \simeq \operatorname{Pic}(C')$ on $\operatorname{LocSys}_{GL_1,b'}$ is given by $(\mathcal{L}, \nabla) \to (\mathcal{L} \otimes F^*_{C'}\mathcal{L}', \nabla \otimes \nabla_{can})$, where ∇_{can} is the canonical connection on $F^*_{C'}\mathcal{L}'$ coming from the Frobenius pullback.

4. Non-abelian Hodge theory in characteristic p.

Let G be a reductive group over an algebraically closed field k of positive characteristic p. Let C be a smooth projective curve over k. In a joint work with X. Zhu [CZ1], we use Hitchin map and p-Hitchin map to give a description of the moduli space of flat G-bundles in terms of the moduli space of G-Higgs bundles over the Frobenius twist C' of C. This extends the work of [BB] and [G] in the case of GL_n and can be regarded as the non-abelian Hodge theory for algebraic curves.

Let me describe the result in more detail. Let Higgs_G be the moduli stack of G-Higgs bundles on C and let

$$h: \mathrm{Higgs}_G \to B$$

denote the Hitchin fibration, on which the Picard stack $\mathscr{P} \to B$ of J-torsors acts. Here J is the group scheme of regular centralizer over $C \times B$. Let LocSys_G be the moduli stack of G-flat connections on C. Recall the p-Hitchin map

$$h_n: \operatorname{LocSys}_G \to B'$$

in §3.5. To relate Higgs_G to LocSys_G , we introduce a characteristic p analogue of moduli stack of harmonic bundles, which we denote by \mathscr{H}_G , as introduced by Simpson in [S]. By definition, the stack \mathscr{H}_G classifies (relative) splittings of a certain J'-gerbe over B' (see [CZ1, §3.2]). We show that \mathscr{H}_G is naturally a stack over B'

$$\mathscr{H}_G \to B'.$$

Moreover, there is a canonical action of \mathscr{P}'_G on \mathscr{H}_G and under this action the stack \mathscr{H}_G becomes a \mathscr{P}'_G -torsor. We write $\mathscr{H}_{b'}$ for the fiber over $b' \in B'$. We will give examples of the stack $\mathscr{H}_{b'}$ (in the case when $G = GL_n$) in Example 4.5.

The following theorem is proved in [CZ2].

Theorem 4.1. [CZ2, Theorem 1.2] Over B', there is a canonical isomorphism

$$\mathfrak{C}: \mathscr{H}_G \times^{\mathscr{P}'_G} \mathrm{Higgs}'_G \to \mathrm{LocSys}_G$$
.

Here $\mathfrak{C}: \mathscr{H}_G \times^{\mathscr{P}'_G} \operatorname{Higgs}'_G$ is the twist of Higgs'_G by the \mathscr{P}'_G -torsor \mathscr{H}_G .

Since the Picard stack \mathscr{P}'_G is smooth, the \mathscr{P}'_G -torsor \mathscr{H}_G can be trivialized étale locally and the theorem above implies the following

Corollary 4.2. There is an étale cover U of B', such that $\text{LocSys}_G \times_{B'} U$ is isomorpshic to $\text{Higgs}_G' \times_{B'} U$.

Remark 4.3. In the case $G = GL_n$, this corollary is one of the main theorems of [G], which extends a result of [BB] that establishes the above isomorphism over $(B^0)'$.

Remark 4.4. The relation between our work and the construction of A. Ogus and V. Vologodsky in [OV] (in the curve case) is as follows. The construction of [OV] amounts to the restriction of $\mathfrak C$ to $0 \in B'$. Namely, upon a choice of a lifting of C to $W_2(k)$, $\mathscr H$ admits a canonical trivialization, and thus $\mathfrak C$ induces an isomorphism between the moduli of nilpotent G-Higgs bundles $\operatorname{Higgs}'_{G,0}$ over C' and the moduli $\operatorname{LocSys}_{G,0}$ of flat G-local systems with nilpotent p-curvatures.

Example 4.5. We give a description of the isomorphism \mathfrak{C} in the case when $G = GL_n$. For simplicity, we fix $b' \in B'$. We first describe the fibers $\mathrm{Higgs}'_{G,b'}$, $\mathrm{LocSys}_{G,b'}$ and $\mathscr{H}_{b'}$ in this case.

Let $S'_{b'} \subset T^*C'$ be the spectral curve for b', and $S_{b^p} \subset T^*C' \times_{C'} C$ be the pullback of $S'_{b'}$ which fits into the following Cartesian diagram

$$\begin{array}{ccc} S_{b^p} & \xrightarrow{W} & S'_{b'} \\ \pi_{b^p} \downarrow & & \downarrow \\ C & \longrightarrow & C' \end{array}$$

Note that S_{b^p} is the spectral curve corresponding to $b^p = F^*b'$. The stack $\operatorname{Higgs}'_{G,b'}$ is the space of Higgs fields (E', ϕ') with the characteristic polynomial b'. By the classical BNR correspondence (see [BNR]), such a Higgs field defines a coherent sheaf $\mathcal{F}_{(E',\phi')}$ on $S'_{b'}$. The space $\operatorname{LocSys}_{G,b'}$ consist of rank n vector bundles with a connection (E,∇) on C whose p-curvature Ψ_{∇} has the characteristic polynomial b^p . Therefore, every object in $\operatorname{LocSys}_{G,b'}$ defines a coherent sheaf $\mathcal{F}_{(E,\Psi_{\nabla})}$ on S_{b^p} . The stack $\mathscr{H}_{b'}$ is the moduli stack of splitting modules of the restriction to $S'_{b'}$ of the Azumaya algebra of the ring of crystalline differential operators \mathcal{D}_C , that is, we have

$$\mathscr{H}_{b'} = \{(V, i) | V \text{a rank } p \text{ bundle on } S'_{b'}, i : \text{End}(V) \simeq \mathcal{D}_C|_{S'_{b'}} \}.$$

The Picard stack $\operatorname{Pic}(S'_{b'})$ acts naturally on $\mathscr{H}_{b'}$ by tensoring and under this action $\mathscr{H}_{b'}$ becomes a $\operatorname{Pic}(S'_{b'})$ -torsor. Note that $\mathscr{H}_{b'}$ is isomorphic to the open substack $\operatorname{LocSys}_{G,b'}^{reg}$ of $\operatorname{LocSys}_{G,b'}$ consisting of those (E,∇) , such that $\mathcal{L} := \mathcal{F}_{(E,\Psi_{\nabla})}$ is an invertible sheaf on S_{b^p} . To see this, we observe that for such a pair (E,∇) , the direct image of \mathcal{L} along $W: S_{b^p} \to S'_{b'}$ is locally free of rank p on $S'_{b'}$ and therefore is a splitting of \mathcal{D}_C on $S'_{b'}$. This defines the desired isomorphism from $\operatorname{LocSys}_{G,b'}^{reg}$ to $\mathscr{H}_{b'}$. The isomorphism

$$\mathfrak{C}_{b'}: \mathscr{H}_{b'} \times^{\mathscr{P}'_{b'}} \mathrm{Higgs}'_{G,b'} \to \mathrm{LocSys}_{G,b'}$$

will send an object $(E', \phi') \in \operatorname{Higgs}'_{G,b'}$, regarded as a coherent sheaf $\mathcal{F}_{(E',\phi')}$ on $S'_{b'}$, and an object $\mathscr{H}_{b'}$, which is a splitting module (V,i) of $\mathcal{D}_C|_{S'_{b'}}$, to the tensor product $\mathcal{F}_{(E',\phi')} \otimes V$.

5. Geometric Langlands correspondence in characteristic p

Let C be a smooth projective curve over \mathbb{C} . Let G be a reductive algebraic group over \mathbb{C} and let \check{G} be its Langlands dual group. Geometric Langlands conjecture (GLC), proposed by Beilinson and Drinfeld, is a conjectural equivalence between derived category of quasi-coherent sheaves on $\operatorname{LocSys}_{\check{G}}$ and derived category of \mathcal{D} -modules on Bun_G . In the paper [BB], the authors proved a characteristic p version of geometric Langlands conjecture in the case $G = GL_n$. In the joint work with Xinwen Zhu [CZ1], we generalized the methods in [BB] to arbitrary semi-simple group and proved a characteristic pversion of geometric Langlands conjecture for arbitrary semi-simple groups.

We now describe the result in more details. Let G be semi-simple group over an algebraically closed field k whose characteristic p is positive and does not divide the

order of the Weyl group of G and let \check{G} be its Langlands dual group, defined over k. Let C be a smooth projective curve over k and let ω_C denote the canonical bundle of C. We will identify the Hitchin base B and the corresponding open subset B^0 for G and \check{G} using the W-invariant form (,). We denote by

$$\operatorname{Higgs}_{G}^{0} = \operatorname{Higgs}_{G} \times_{B} B^{0}, \operatorname{LocSys}_{\check{G}}^{0} = \operatorname{LocSys}_{\check{G}} \times_{B'} (B^{0})',$$

the preimage of $(B^0)'$ along the Hitchin map and p-Hitchin map respectively. The open subset Higgs $_G^0$ (or rather its Frobenius twist) defines a localization

$$\mathcal{D}$$
-mod(Bun_G)⁰

of the category $\mathcal{D}\text{-mod}(\operatorname{Bun}_G)$ of $\mathcal{D}\text{-modules}$ on Bun_G , that is, $\mathcal{D}\text{-mod}(\operatorname{Bun}_G)^0$ is the category of $\mathcal{D}^0_{\operatorname{Bun}_G}$ -modules on $(\operatorname{Higgs}_G^0)'$, where $\mathcal{D}^0_{\operatorname{Bun}_G}$ is the restriction of $\mathcal{D}_{\operatorname{Bun}_G}$, the sheaf of Azumaya algebra of differential operators on $T^*\operatorname{Bun}_G'\cong\operatorname{Higgs}_G'$, to the open set $(\operatorname{Higgs}_G^0)'$.

The following theorem is proved in [CZ2], which can be viewed as a generic version of geometric Langlands correspondence in positive characteristic.

Theorem 5.1. [CZ2, Theorem 5.0.4] For a choice of a square root κ of ω_C , we have a canonical equivalence of bounded derived categories

$$\mathfrak{D}_{\kappa}: D^b(\mathfrak{D}\operatorname{-mod}(\operatorname{Bun}_G)^0) \simeq D^b(\operatorname{QCoh}(\operatorname{LocSys}_{\check{G}}^0)).$$

Remark 5.2. In the case $G = GL_n$, the theorem above was first proved in [BB]. In [G], the author extends the equivalence in [BB] over the locus of B' where the corresponding spectral curves are integral.

Theorem 5.1 follows from the non-abelian Hodge theory in Theorem 4.1, and the following twisted version of Theorem 3.5: let $\mathscr{H}_{\check{G}} \to B'$ be the $\mathscr{P}'_{\check{G}}$ -torsor of harmonic bundles for the dual group \check{G} introduced in (4.1) and we define $\mathscr{H}_{\check{G}}^0 := \mathscr{H}_{\check{G}} \times_{B'} (B^0)'$. Let $i_{\kappa} : \mathscr{P}'_{G}|_{(B^0)'} \simeq (\mathrm{Higgs}_{G}^0)'$ be the isomorphism induced by the Kostant section ϵ_{κ} associated to κ (see §3.3). It is shown in [CZ1, §4] that the the Azumaya algebra $\mathcal{A} := i_{\kappa}^{*}(\mathcal{D}_{\mathrm{Bun}_{G}})$ on $\mathscr{P}'_{G}|_{(B^0)'}$ has a canonical multiplicative structure compatible with the multiplication on the Picard stack $\mathscr{P}'_{G}|_{(B^0)'}$ and we define

$$\mathscr{S}_G^0 \to (B^0)'$$

to be the $(\mathscr{P}'_G)^{\vee}$ -torsor classifying mutiplicative splittings of the Azumaya algebra \mathscr{A} relatively over $(B^0)'$ (see [CZ2, Appendix A] for the notions of multiplicative structure on an Azumaya algebra over a Picard stack and multiplicative splittings).

Theorem 5.3. [CZ1, Theorem 1.2.2] There is an isomorphism $(\mathscr{P}'_G)^{\vee}|_{(B^0)'} \simeq \check{\mathscr{P}}'_{\check{G}}|_{(B^0)'}$ -torosrs

$$\mathscr{S}_G^0 \simeq \mathscr{H}_{\check{G}}^0.$$

To complete the proof of Theorem 5.1, we first observe that Theorem 4.1 and the Kostant section $\epsilon_{\kappa}: B' \to \operatorname{Higgs}'_{\check{G}}$ induce an isomorphism

(5.1)
$$\mathscr{H}_{\check{G}}^{0} \simeq \mathscr{H}_{\check{G}}^{0} \times^{\mathscr{P}_{\check{G}}'} (\mathrm{Higgs}_{\check{G}}^{0})' \simeq \mathrm{LocSys}_{\check{G}}^{0}$$

over $(B^0)'$. On the other hand, a twisted version of Fourier-Mukai transform (see [CZ2, Appendix A]) implies

(5.2)
$$D^{b}(\mathfrak{D}\operatorname{-mod}(\operatorname{Bun}_{G})^{0}) \simeq D^{b}(\operatorname{QCoh}(\mathscr{S}_{G}^{0})).$$

All together we arrive the desired equivalence

$$D^b(\mathfrak{D}\operatorname{-mod}(\operatorname{Bun}_G)^0) \overset{(5.2)}{\simeq} D^b(\operatorname{QCoh}(\mathscr{S}_G^0)) \overset{\operatorname{Thm}}{\simeq} \overset{5.3}{\simeq} D^b(\operatorname{QCoh}(\mathscr{H}_{\check{G}}^0)) \overset{(5.1)}{\simeq} D^b(\operatorname{QCoh}(\operatorname{LocSys}_G^0)).$$

6. Quantization of Hitchin's intergrable systems

In the last section we give a report on the recent work of R.Bezrukavnikov and R.Travkin [BT] on quantization of Hitchin's integrable systems.

We assume $G = GL_n$. Let Bun = Bun_G be the moduli stack of rank n-bundles on C and Bun^d be the component of rank n-bundles of degree d. Let ω_{Bun} be the canonical bundle on Bun. We fixed a square root $(\omega_{\text{Bun}})^{1/2}$ of ω_{Bun} and we write $\mathcal{D}_{(\omega_{\text{Bun}})^{1/2}}$ for the sheaf of $(\omega_{\text{Bun}})^{1/2}$ -twisted differential operators on Bun (see [BD, §2]). Let Op denote the space of marked opers. Recall that a marked oper consists of the data $(E, \nabla, \{E_i\}_{i=1,\dots,n}, \phi)$ where (E, ∇) is a rank n bundle on C with a flat connection, $0 \subset E_1 \subset \dots \subset E_n = E$ is a complete flag, $\phi : E_1 \simeq \omega_C^{(n-1)/2}$, such that 1) $\nabla(E_i) \subset E_{i+1} \otimes \omega_C$ and 2) the induced map $gr(\nabla) : E_i/E_{i-1} \to E_{i+1}/E_i \otimes \omega_C$ is an isomorphism (see [BT, Appendix] or [B] for more details).

Theorem 6.1. [BT, Theorem 1] Assume char k = p is zero or $p \neq 2$.

- (1) For every $d \in \mathbb{Z}$ we have a canonical isomorphism $\Gamma(\operatorname{Bun}^d, \mathfrak{D}_{(\omega_{\operatorname{Bun}})^{1/2}}) \simeq \Gamma(\operatorname{Op}, \mathfrak{O})$.
- (2) Let $x \in \operatorname{Op}$ be a marked oper with underlying flat connection (E, ∇) . Let $f_x : \Gamma(\operatorname{Op}, \mathcal{O}) \to k$ be the corresponding homomorphism of k-algebra. Then the D-module

$$\operatorname{Aut}_x := (\mathfrak{D}_{(\omega_{\operatorname{Bun}})^{1/2}} \otimes_{\Gamma(\operatorname{Op},0),f_x} k) \otimes \omega_{\operatorname{Bun}}^{-1/2}$$

is a Hecke-eigen D-module on Bun with respect to (E, ∇) (see [BD, §5] for the notion of Hecke-eigen D-modules).

In the case when the characteristic of k is zero, Theorem 6.1 is the main result of the work of Beilinson-Drinfeld [BD] on quantization of Hitchin's integrable system and Hecke eigensheaves. The construction in [BD] used local to global argument and results on representation theory of affine Lie algebras at critical level. The proof of Theorem 6.1 in [BT] is quite interesting and different from the one in [BD]: they first establish the result when the characteristic of k is positive using the generic geometric Langlands correspondence in characteristic p in Theorem 5.1 and then formally deduce the characteristic zero case.

Remark 6.2. Since the stack Bun is not *good* in the sense of [BD, $\S 1$], one has to use a modified version of Bun^d in the statement of Theorem 6.1 (see [BT, $\S 2$] or [BB, $\S 4.6$]). We ignore this technical details here.

References

- [A] D. Arinkin. Autoduality of compactified Jacobians for curves with plane singularities. J. Algebraic Geom. 22 (2013), 363-388.
- [B] J. Barlev. Opers. Seminar note, available at http://www.math.harvard.edu/ gaitsgde/.
- [BB] R. Bezrukavnikov, A. Braverman. Geometric Langlands conjecture in characteristic p: The GL_n case. Pure Appl. Math. Q. 3 (2007), no. 1, Special Issue: In honor of Robert D. MacPherson. Part 3, 153-179.
- [BT] R. Bezrukavnikov, R.Travkin. Quantization of Hitchin integrable system via positive characteristic. Preprint, arXiv:1603.01327.
- [BD] A. Beilinson, V. Drinfeld. Quantization of Hitchin's integrable system and Hecke eigensheaves. Preprint, available at http://www.math.uchicago.edu/mitya/langlands/.
- [BMR] R. Bezrukavnikov, I. Mirkovic, D. Rumynin. Localization of modules for a semisimple Lie algebra in prime characteristic (with an appendix by R. Bezrukavnikov and S. Riche). Ann. of Math. (2) 167 (2008), no. 3, 945-991.
- [BNR] Arnaud Beauville, M. S. Narasimhan, and S. Ramanan. Spectral curves and the generalised theta divisor. J. Reine Angew. Math. 398 (1989), 169-179.
- [Bo] J.B. Bost. Algebraic leaves of algebraic foliations over number fields. Publ. Math. Inst. Hautes Étud. Sci. No. 93 (2001), 161-221.
- [CZ1] T.H Chen, X. Zhu. Non-abelain Hodge theory for algebraic curves in characteristic p. Geometric and Functional Analysis, Volume 25 (2015), 1706-1733.
- [CZ2] T.H. Chen, X. Zhu. Geometric Langlands in prime characteristic. Compositio Math, Volume 153, Issue 2 February 2017, 395-452.
- [DG] R. Donagi, D. Gaitsgory. The gerbe of Higgs bundles. Transformation groups Volume 7, Number 2, 109-153.
- [DP] R. Donagi, T. Pantev. Langlands duality for Hitchin systems. Invent. Math. 189 (2012) 653-735.
- [G] M. Groechenig. Moduli of flat connections in positive characteristic. Math. Res. Lett. 23 (2016), no. 4, 989-1047.
- [HT] T. Hausel and M. Thaddeus. Mirror symmetry, Langlands duality, and the Hitchin system. Invent. Math., 153 (1):197-229, 2003.
- [JP] K. Joshi, C. Pauly. Hitchin-Mochizuki morphism, Opers and Frobenius-destabilized vector bundles over curves. Priprint, arXiv:0912.3602.
- [K] N. Katz. Nilpotent connections and the Monodromy Theorem. Publ. Math. Inst. Hautes Étud. Sci. No. 39 (1970), 175-232.
- [LP] Y. Laszlo, C. Pauly. On the Hitchin morphism in positive characteristic. Internat. Math. Res. Notices 2001, no. 3, 129–143.
- [N] B.C. Ngô. Le lemme fondamental pour les algèbresde Lie. Publ. Math. Inst. Hautes Étud. Sci. No. 111 (2010), 1-169.
- [OV] A. Ogus, V. Vologodsky. Nonabelian Hodge theory in characteristic p, Publ. Math. Inst. Hautes Étud. Sci. No. 106 (2007), 1-138
- [S] C. Simpson. Higgs bundles and local systems. Publ. Math. Inst. Hautes Étud. Sci. No. 75 (1992), 5-95.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CHICAGO, CHICAGO, IL, 60637

E-mail address: tsaohsien@uchicago.edu