SURVEY ON GEOMETRIC LANGLANDS AND NON-ABELIAN
HODGE THEORY IN CHARACTERISTIC p

TSAO-HSIEN CHEN

ABSTRACT. In this report, we give a survey on new results on geometric Langlands
correspondence and non-abelian Hodge theory in characteristic p.

1. INTRODUCTION

In this survey article we discuss new results on geometric Langlands correspondence
in characteristic p and non-abelian Hodge theory for smooth projective curves in char-
acteristic p. We also discuss applications of those results to quantization of Hitchin’s
integrable system. The main references are [BB, BT, CZ1, CZ2].

The article is organized as follows. In §2 we recall some facts about reductive groups,
connections on torsors, D-modules in characteristic p, and Azumaya property of sheaf
of crystalline differential operators in characteristic p. In §3 we discuss the construc-
tion of Hitchin maps, p-Hitchin maps, and abelian duality for Hitchin maps. In §4 we
discuss results on non-abelian Hodge theory for algebraic curves in characteristic p. In
85 we discuss geometric Langlands correspondence in characteristic p. In §6 we discuss
applications to quantization of Hitchin’s integrable system.

2. PRELIMINARIES

2.1. Notations related to reductive groups. Let GG be a reductive algebraic group
over k of rank . We denote by G its Langlands dual group over k. We denote by g
(resp. by §) the Lie algebra of G' (resp. G). Let T denote the abstract Cartan of G with
its Lie algebra t. The counterparts on the Langlands dual side are denoted by T, f. We
denote by W the abstract Weyl group of G, which acts on T and T

From now on, we assume that the char k = p is zero or p { |[W|. We fix a W-
invariant non-degenerate bilinear form (, ):tx t — k and identify t with t using ( , ).
This invariant form also determines a unique G-invariant non-degenerate bilinear form
g X g — k, still denoted by (, ). Let g ~ g* be the resulting G-equivariant isomorphism.
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2.2. Notations related to stacks and Frobenius. We fix a smooth projective curve
C of genus at least two! over an algebraically closed field k of characteristic p. Let
w = wc denote the canonical line bundle of C. Let S be a Noetherian scheme and
Z — S be an algebraic stack over S. If p > 0, we denote by Frg : S — S be the
absolute Frobenius map of S. We have the following commutative diagram

7 F%/s%(s)ﬂgr/s 7
\}L Frg ,\JS’

where the square is Cartesian. We call 2°(%) the Frobenius twist of 2~ along S, and
Fois: X = X (9) the relative Frobenius morphism. If the base scheme S is clear,
2 ) is also denoted by 2" for simplicity and Fy /s is denoted by Fy- or F.

Let 2~ — S be a smooth algebraic stack over S. We write T'(:Z7/S) for relative
tangent stack on 2" and T* (%2 /S) relative cotangent stack on 2". We denote by T4/
and Q7 /s the sheaves of sections of T'(Z"/S) and T*(2"/S) respectively, and Oy the
structure sheaf of 2.

2.3. D-modules. Let X be a smooth scheme over k. We denote by Dy the sheaf of
crystalline differential operators. Recall D is the sheaf of algebra generated by Oy and
T subject to the relations vivy — vovy = [v1, Vo] for vy, vy € Tx, and vf — fv = v(f) for
v € Tx and f € Ox. By definition, a D-module on X is a sheaf of D x-module which is
quasi-coherent as O y-module. It follows from the definition of Dy that a D-module is
just a quasi-coherent O y-module N equipped with a flat connection, that is, a k-linear
map

V: Tx — El’ldk(N)

satisfying V(f -v) = v df + fV(v) for f € Ox,v € Tx and V([v,w]) = [V(v), V(w)]
for v,w € Tx.

2.4. Azumaya property of Dy in positive characteristic and p-curvatures. If
chark = 0, Dy is simple, that is, it has no proper two-sided ideals. If chark > 0, the
center Z(Dx) of Dx (resp. the centralizer Zy, (Dx) of Ox in Dy) is freely generated
by elements of the form f? (resp. f), f € Ox and v? — o), v € T, where v/ is the
p-th restricted power of the vector field v. The center Z(Dx) (resp. the centralizer
Zoy(Dx)) is canonically isomorphic to the structure sheaf Op-x/ (resp. Oxx, 7x).
Thus Dx can be regraded as a quasi-coherent sheaf of algebra on T*X’. We have the
following fundamental observation: recall that an Azumaya algebra on a scheme is a
locally free sheaf A of Ox-algebra, such that the fiber of A at every geometric point is
isomorphic to a matrix algebra.

Proposition 2.1. [BMR] Dx is an Azumaya algebra of rank p*¥™X on T*X'.

IThis assumption should not be essential. We impose it to avoid the DG structure on moduli spaces.
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Since Zo (Dx) ~ Oxx,,r+x/, any D-module N carries an action of Ox ., r-xs. Such
an action is the same as a section s € I'(X, FriQ% ® Endy, (NV)). As we noted before
N can be considered as a quasi-coherent sheaf on X with a flat connection V : Ty —
Endg(N) and the map ¥y : Tx — (Fry).Endy, (IV) corresponding to s, via adjunction,
is given by

Uy : Tx — (Frx),Endg, (N),v — V(v)P — V(o).

The map ¥y is known as the p-curvature of the connection.

2.5. Connections on G-torsors. Let E be a G-torsor on a smooth scheme X over k.
We have the Atiyah sequence (or Atiyah algebroid)

0—ad(E) > Tp 3Ty -0

associated to E. Here ad(F) is the adjoint bundle for £ and T is the Lie algebroid of
infinitesimal symmetries of F consisting of pairs (v, 0), where v € Tx is a vector field on
X and ¥ € Tg is a G-invariant vector field on E that lifts v.

A connection on F is a section V : Tx — T r of 0. A connection V is called flat, or

integrable, if V commutes with the natural Lie brackets on Tx and TE The connections
on E form a Hom(Ty,ad(E)) = I'(X,ad(F) ® Q%)-torsor. Note that when X = C'is a
smooth curve, all connections on a G-torsor is flat.

Example 2.2. Assume G = GL, (k). There is an equivalence between the category of
G-torsors and rank n bundles on X given by £ — N := E x% k™. Then under the
equivalence above a connection V on E corresponds to k-linear map

Vy:Tx — Endk(N)

satisfying Vy(f-v) =v®df + fV(v) for f € Ox,v € Tx. If the connection is flat then
we have Vy([v,w]) = [Vn(v), Vy(w)] for v,w € Tx, hence by Example 2.3, a D-module
structure on N. It is not hard to see that the assignment (E,V) — (N, Vy) defines an
equivalence between the category of flat connections on G L,-torsors and the category
D-modules on X which are locally free (as Ox-module) of rank n.

Example 2.3. Let V be a connection on a G-torsor E. Choose a local trivialization of
E we can write the connection V as a differential operator

d+ A, Acg®Ol.

Here A is called the connection matrix for V with respect to the trivialization.

2.6. p-curvatures of connections on G-torsors. Assume chark = p > 0. The p-
curvature of a connection V on G-bundle FE is the following map

Tx — ad(E),v = Uy (v) := V(v)? — V(")
here -» and - are the p-th restrict Lie algebra structures on T and Ty respectively.
According to [Bo, K], the map Wy is p-linear, that is Uy (fv) = fPUg(v). Hence one
can view the p-curvature as a Ox-linear map

\IIV : TX — (Frx)*ad(E)
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By adjunction, the p-curvature gives rise to a section s € ['(X, Fri Q% @ ad(E)).

Example 2.4. Assume G = GL,, and X = Spec(k[z]) is the affine line. Let V=d+ A
be a connection on the trivial G-bundle, where A = A, ® dz € M, (k[z]) ® dz is the
connection matrix. Then we have

To(d.) = (0. + AP = (8. + APV A, € M, (k[2).

The results in §2 can be generalized to the setting of smooth algebraic stacks, see
(BB, BD, CZ2].

3. HITCHIN MAP AND p-HITCHIN MAP

In this subsection, we recall the definition of Hitchin map and p-Hitchin map following
N, CZ1].

3.1. Hitchin map. Let k[g] and k[t] be the algebra of polynomial function on g and
t. By Chevalley’s theorem, we have an isomorphism k[g]® ~ k[{|'V. Moreover, k[f]"V is
isomorphic to a polynomial ring of [ variables uq,...,u; and each u; is homogeneous in
degree ¢;. Let ¢ = Spec(k[t]'"V). Let

X:g—¢

be the map induced by k[c] ~ k[g]® < k[g]. This is G x G,,-equivariant map where
G acts trivially on ¢, and G,, acts on ¢ through the gradings on k[t|'V. Let £ be an
invertible sheaf on C' and £* be the corresponding G,,,-torsor. Let gz = g x®» £* and
¢z = ¢ X% £* be the G,,-twist of g and ¢ with respect to the natural G,,-action.

Let Higgss , = Sect(C, [g¢/G]) be the stack of section of [g;/G] over C, i.e., for each
k-scheme S the groupoid Higgsg ;(S) consists of maps over C:

hE#) Cx S — [gL/G]

Equivalently, Higgs ;(S) consists of a pair (E, ¢) (called a Higgs bundle), where E is a
G-torsor over C' x S and ¢ is an element in I'(C' x S,ad(E) ® £).

Let Bg e = Sect(C, ¢z) be the scheme of sections of ¢, over C, i.e., for each k-scheme
S, Bg,c(S) is the set of sections over C

b:C xS —cg.
This is called the Hitchin base of G.
The natural G-invariant projection y : g — ¢ induces a map
[Xe] t [9c/G] = e,
which in turn induces a natural map
hae : Higgsg o = Sect(C, [9c/G]) — Sect(C,¢) = Bac.

We call hg @ Higgsg . — Bg, the Hitchin map associated to £. We denote by

Higgsq o i= halﬂ(b) the fiber of the Hitchin map over b.
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If the group G is clear from the content, we simply write Higgs., B, and hg for
Higgse ¢, Bo.c, and hg . We are mostly interested in the case £ = w. For simplicity,
from now on we denote B = Bg,,, Higgs = Higgs.; , and h = h¢ ., etc.

For a choice of a square root L£'/2 there is a section egi2 : By — Higgs, of hg :
Higgs, — B, induced by the Kostant section kos : ¢ — g. Sometimes, we also call €;1/2
the Kostant section of the Hitchin fibration.

Example 3.1. Consider the case G = GL,,. The stack of Higgs bundles Higgs, consists
of pair (F, ¢), where E is a rank n bundle on C' and ¢ is a O¢-linear map ¢ : F — E®R L.
The Hitchin base is equal to By = &7, T'(C, L") and the Hitchin map is given by taking
the characteristic polynomial of ¢

hL : nggsL — BL‘n (Ea ¢) - (bl((b)a 7bn<¢)>7

where b;(¢) := Tr(A%¢) € T'(C, L£).

3.2. The universal centralizer group schemes. Consider the group scheme I over
g consisting of pairs

I={(g,x) e Gxg|Ady(x) =z}
We define J = kos*I, where kos : ¢ — g is the Kostant section. This is called the
universal centralizer group scheme of g (see Proposition 3.2).

The following proposition is proved in [N] (see also [DG]).

Proposition 3.2. [N, Lemma 2.1.1] There is a unique morphism of group schemes
a:x*J —=1CGxg, which extends the canonical isomorphism x*J|gres =~ 1

greg -

All the constructions above can be twisted. Namely, there are G,,-actions on I, J.
Moreover, the G,,-action on I can be extended to a G x G,,-action given by (h,t)-(z,g) =
(t - hah™, hgh™'). The natural morphisms J — ¢ and I — g are G,,-equivariant, and
therefore we can twist everything by the G,,-torsor £* to get J; — ¢z, Iz — g where
Jeg = J xC®m L% and Iy = I x® £* . The group scheme I over g, is equivariant under
the G-action, hence it descends to a group scheme [I;] over [g;/G].

3.3. Symmetries of Hitchin fibration. Let b : S — B; be an S-point of B, corre-
sponding to a map b : C' x S — ¢¢. Pulling back J; — ¢, along this map, we obtain a
smooth group scheme J, = 0*J over C' x §.

Let P¢y, be the Picard category of J,-torsors over C' x S. The assignment b —
2, defines a Picard stack over B, denoted by P¢ . Let us fix b € Bg(S), and let
(E,¢) € Higgsq 4, corresponding to the map hpgy : C x S — [gc/G]. Observe that the
morphism x*J — I in Proposition 3.2 induces [xz|*J; — [Iz] of group schemes over
lg:/G]. Pulling back to C x S using hg 4, we get a map

(3.1) apg Ty — Wy [I) = Aut(E, ¢) C Aut(E),

which allows us to twist (£, ¢) € Higgsg o, by a Jp-torsor. This construction defines an
action of Zg , on Higgs, , over Bg.
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Let Higgs; %, be the open stack of Higgs; ; consisting of (£, ¢) : C' — [g,/G] that fac-
tors through C' — [(g7%):/G]. If (E, ¢) € Higgs; %, then ag 4 above is an isomorphism.
The Kostant section €g1/2 : By — Higgsg o factors through eg1/2 © By — Higgs %, Fol-
lowing [N, §4], we define BY as the open sub-scheme of B, consisting of b € B (k) such
that the image of the map b : C — ¢ intersects the discriminant divisor transversally.
The following proposition can be extracted from [DG, DP, NJ:

Proposition 3.3. We have the following:

(1) The stack Higgsy % is a P -torsor, which can be trivialized by a choice of a
Kostant section 621/2.

(2) One has Higgs;%, x5, By = Higgsg ; X5, By and the Hitchin map hy : Higgs, —
By is smooth over BY.

Example 3.4. We give examples of fibers Higgs, , and &, in the case G = G'L,. We
keep the notation in Example 3.1. We first recall the construction of spectral curves.
Let Tot(L") be the total space of the line bundle £°. Consider the map

iy : Be x Tot(£) = Tot(£"), (by, ..o bn,v) = Y (=1)'b; @ 0™ "
i=1

Recall By = @7 ,I'(C, £%). The universal spectral curves, denoted by S, is the scheme-
theoretic pre-image of the zero section in Tot(L™) under the map 4. It is a closed
subscheme S of B; x Tot(£L) and we have a natural projection map

S—)BLXO

with is finite flat of degree n. For any b € B, we let .S, be the fiber over b under the
projection map S — Bg. We call S, the spectral curve associated to b. We have b € B?
if and only if S, is smooth. We have &, ~ Pic(S,) the Picard stack of line bundles on
the spectral curve. For b € B such that the corresponding spectral curve .9, is integral,
we have Higgs, , =~ Pic(S;), the stack classifying torsion-free coherent sheaves that are
generically of rank 1, and ., ~ Pic(S,) acts on Higgs, , by tensoring.

3.4. Abelian duality. Let P¢ and P ; be the Picard stacks in §3.3 for G and G
respectively. Let (P¢)Y := Hom(P¢ ., BG,,) be the dual Picard stack (see [CZ2,
Appendix A] for more details about duality of Picard stacks). The W-invariant (,)
form on t (fixed in the beginning of §2) induces isomorphisms Bg s ~ B, and the
corresponding open subset Bg’ o BOGV7 ¢~ We have the following abelian duality theorem.

Theorem 3.5. [CZ2, DP] Assume that the characteristic chark = p is zero or p > 0
with p{ |W|. There is a canonical isomorphism of Picard stack

(Pac) sy, , ~ Pelsy -

Example 3.6. In the case of G = GL,, we have &¢|p0 = Pic(S/B2) and Theorem
3.5 amounts to the well-known autoduality Pic(S)" =~ Pic(Sy) of Picard stack of line

bundles on smooth spectral curves S.
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Remark 3.7. In the case p = 0, Theorem 3.5 is the main theorem of [DP] (for G = SL,,
see [HT]). As mentioned by the authors, transcendental arguments are used in [DP] in
an essential way, and therefore cannot be applied directly to the case when p > 0 . The
argument in [CZ2] works for any algebraically closed field k& of characteristic zero or

p > 0 with p1 |[W].

Remark 3.8. In [A], the author extends the autoduality in Example 3.6, hence Theorem
3.5 for GL,, to integral spectral curves Sj.

3.5. p-Hitchin map. In this section we assume p > 0. Let LocSys. be the stack of
G-local system on C| that is, for every scheme S over k, LocSys.(S) is the groupoid

of all G-torsors E' on C x S together with a connection V : Toyg/s — 1. For any
(E,V) € LocSys; let

Uy :Te — Friad(E), v— V(v)? — V()

be its p-curvature (see §2.6). We regard Uy as a section Uy € I'(C,ad(E) ® wP) and
call such a pair an F-Higgs field. The assignment (F,V) — (F,Vy) defines a map
Ve @ LocSysg — Higgsg ,»- Combining this map with f,», we get a morphism from
LocSysg to By:

hy : LocSysg — Bur.

Observe that the pullback along F : C' — C” induces a natural map F? : B’ — By,
where the superscript denotes the Frobenius twist.

Theorem 3.9. [CZ2, Theorem 3.1 and Proposition 3.5] We have the following:

(1) The p-curvature morphism l~1p : LocSysg — B,r factors through a unique mor-
phism
h, : LocSysg — B'.
We called this map the p-Hitchin map.

(2) There is a canonical action &' x g LocSys — LocSyse of the Picard stack &'
on LocSys.

Remark 3.10. In the case of G = GL,, part (1) of Theorem 3.9 is the main theorem
of [LP].

Example 3.11. Consider the case G = GL,. Let (£,V) € LocSysg;,, here £ is a
line bundle on C' and V : L — £ ® w is a flat connection. The p-curvature of V is a
section Uy € I'(C,wg). By [K], the section is Wy is flat with respect to the canonical
connection coming from the Frobenius pullback wf ~ Ffwer, hence by Cartier descent,
we have Uy = Ff(a) for a 1-form a € I'(C”, wer). The p-Hitchin map is given by

hy, : LocSysq,, = B' =T(C' wer), (£,V) = a.

The action of (£') € P, =~ Pic(C’) on LocSysgy, v is given by (£,V) — (L ®
F: L'V ® Viean), where Vi, is the canonical connection on Fg, L’ coming from the

Frobenius pullback.
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4. NON-ABELIAN HODGE THEORY IN CHARACTERISTIC p.

Let G be a reductive group over an algebraically closed field k of positive characteristic
p. Let C be a smooth projective curve over k. In a joint work with X. Zhu [CZ1], we
use Hitchin map and p-Hitchin map to give a description of the moduli space of flat
G-bundles in terms of the moduli space of G-Higgs bundles over the Frobenius twist C’
of C. This extends the work of [BB] and [G] in the case of GL,, and can be regarded as
the non-abelian Hodge theory for algebraic curves.

Let me describe the result in more detail. Let Higgs, be the moduli stack of G-Higgs
bundles on C' and let
h : Higgs, — B
denote the Hitchin fibration, on which the Picard stack &2 — B of J-torsors acts. Here
J is the group scheme of regular centralizer over C' x B. Let LocSys, be the moduli
stack of G-flat connections on C. Recall the p-Hitchin map

h, : LocSysg; — B’
in §3.5. To relate Higgs. to LocSys., we introduce a characteristic p analogue of moduli
stack of harmonic bundles, which we denote by %, as introduced by Simpson in [S].

By definition, the stack .7 classifies (relative) splittings of a certain J'-gerbe over B’
(see [CZ1, §3.2]). We show that ¢ is naturally a stack over B’

(4.1) He — B

Moreover, there is a canonical action of &7, on % and under this action the stack J7;
becomes a & -torsor. We write 7, for the fiber over b’ € B’. We will give examples of
the stack 7% (in the case when G = GL,,) in Example 4.5.

The following theorem is proved in [CZ2].
Theorem 4.1. [CZ2, Theorem 1.2] Over B’, there is a canonical isomorphism
¢ : 4 x 7 Higgsy, — LocSysg, -
Here € : st x7c Higgsy, is the twist of Higgsy, by the PL-torsor .

Since the Picard stack Z7(, is smooth, the Z-torsor .7 can be trivialized étale
locally and the theorem above implies the following

Corollary 4.2. There is an étale cover U of B, such that LocSysg X /U is isomorpshic
to Higgsy, X pU.

Remark 4.3. In the case G = GL,, this corollary is one of the main theorems of [G],
which extends a result of [BB] that establishes the above isomorphism over (B)'.

Remark 4.4. The relation between our work and the construction of A. Ogus and V.
Vologodsky in [OV] (in the curve case) is as follows. The construction of [OV] amounts
to the restriction of € to 0 € B’. Namely, upon a choice of a lifting of C' to Ws(k),
¢ admits a canonical trivialization, and thus € induces an isomorphism between the
moduli of nilpotent G-Higgs bundles Higgs/G?O over C'" and the moduli LocSysg , of flat

G-local systems with nilpotent p-curvatures.
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Example 4.5. We give a description of the isomorphism € in the case when G = GL,,.
For simplicity, we fix b’ € B’. We first describe the fibers Higgs, ,, LocSysg,, and 72
in this case.

Let S}, C T*C" be the spectral curve for &', and Sy C T*C" X C be the pullback of
S}, which fits into the following Cartesian diagram

w
pr e S//

o

c — (.

Note that Sy is the spectral curve corresponding to b” = F*I/. The stack Higgsg, is
the space of Higgs fields (F’, ¢') with the characteristic polynomial ¥'. By the classical
BNR correspondence (see [BNR]), such a Higgs field defines a coherent sheaf Fz 4 on

y- The space LocSysg  consist of rank n vector bundles with a connection (£, V) on
C whose p-curvature Uy has the characteristic polynomial . Therefore, every object in
LocSysg y defines a coherent sheaf F(p gy on Spr. The stack 7, is the moduli stack of
splitting modules of the restriction to S}, of the Azumaya algebra of the ring of crystalline
differential operators D¢, that is, we have

Ay = {(V,i)|Va rank p bundle on S, i : End(V)) ~ Dcls, }.

The Picard stack Pic(S},) acts naturally on % by tensoring and under this action %
becomes a Pic(Sy,)-torsor. Note that . is isomorphic to the open substack LocSysj,
of LocSysg,, consisting of those (E, V), such that £ := Fg ) is an invertible sheaf
on Spr. To see this, we observe that for such a pair (F, V), the direct image of £ along
W : S — S}, is locally free of rank p on S;, and therefore is a splitting of D on Sj,.
This defines the desired isomorphism from LocSys; 9, to 7. The isomorphism

ap! .
Cy 2 Iy xTv Higgsy, ,y — LocSysg

will send an object (E',¢') € Higgsy,, regarded as a coherent sheaf F(pr 4y on Sy,
and an object 7, which is a splitting module (V,i) of D s1,, to the tensor product
?(E’,cb’) V.

5. GEOMETRIC LANGLANDS CORRESPONDENCE IN CHARACTERISTIC p

Let C' be a smooth projective curve over C. Let G be a reductive algebraic group
over C and let G be its Langlands dual group. Geometric Langlands conjecture (GLC),
proposed by Beilinson and Drinfeld, is a conjectural equivalence between derived cate-
gory of quasi-coherent sheaves on LocSyss and derived category of D-modules on Bung.
In the paper [BB], the authors proved a characteristic p version of geometric Langlands
conjecture in the case G = GL,,. In the joint work with Xinwen Zhu [CZ1], we general-
ized the methods in [BB] to arbitrary semi-simple group and proved a characteristic p
version of geometric Langlands conjecture for arbitrary semi-simple groups.

We now describe the result in more details. Let G be semi-simple group over an

algebraically closed field & whose characteristic p is positive and does not divide the
9



order of the Weyl group of G and let G be its Langlands dual group, defined over k.
Let C' be a smooth projective curve over k£ and let we denote the canonical bundle of C'.
We will identify the Hitchin base B and the corresponding open subset B? for G and G
using the W-invariant form (,). We denote by

Higgs?, = Higgs, x 3B, LocSys% = LocSysg x (B,

the preimage of (B°)" along the Hitchin map and p-Hitchin map respectively. The open
subset Higgs®, (or rather its Frobenius twist) defines a localization

D -mod(Bung)’

of the category D-mod(Bung) of D-modules on Bung, that is, D-mod(Bung)? is the
category of DY . -modules on (Higgsg;)', where DY is the restriction of Dpyp,, the
sheaf of Azumaya algebra of differential operators on T* Buny, = Higgsy,, to the open

set (Higgsy)'.

The following theorem is proved in [CZ2], which can be viewed as a generic version of
geometric Langlands correspondence in positive characteristic.

Theorem 5.1. [CZ2, Theorem 5.0.4] For a choice of a square root k of we, we have a
canonical equivalence of bounded derived categories

D, : D*(D-mod(Bung)?) ~ D*(QCoh(LocSysy)).

Remark 5.2. In the case G = GL,, the theorem above was first proved in [BB]. In [G],
the author extends the equivalence in [BB] over the locus of B’ where the corresponding
spectral curves are integral.

Theorem 5.1 follows from the non-abelian Hodge theory in Theorem 4.1, and the
following twisted version of Theorem 3.5: let ¢ — B’ be the &;-torsor of harmonic
bundles for the dual group G introduced in (4.1) and we define 0 := % xp (B).
Let i, : Z¢| oy ~ (Higgs2)" be the isomorphism induced by the Kostant section e,
associated to r (see §3.3). It is shown in [CZ1, §4] that the the Azumaya algebra
A 1= i (Dpung) o0 P4 |(poy has a canonical multplicative structure compatible with the
multiplication on the Picard stack &7(|poy and we define

Se— (B
to be the (Z;)"-torsor classifying mutiplicative splittings of the Azumaya algebra A

relatively over (B°) (see [CZ2, Appendix A] for the notions of multiplicative structure
on an Azumaya algebra over a Picard stack and multiplicative splittings).

Theorem 5.3. [CZ1, Theorem 1.2.2] There is an isomorphism (24) | oy =~ @é\(Boy-
torosrs
S~ HE.

To complete the proof of Theorem 5.1, we first observe that Theorem 4.1 and the
Kostant section ¢, : B’ — Higgs’c induce an isomorphism

(5.1) HY) = A x 7 (Higgsg,)' ~ LocSysy,
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over (B%)". On the other hand, a twisted version of Fourier-Mukai transform (see [CZ2,
Appendix A]) implies

(5.2) D*(D -mod(Bung)°) ~ D*(QCoh(#3)).
All together we arrive the desired equivalence

( Thm 5.3 (5.1)

DY(D-mod(Bung)?) = DY(QCoh(.#2)) """ DY(QCoh(2)) =) DY(QCoh(LocSysl)).

6. QUANTIZATION OF HITCHIN’S INTERGRABLE SYSTEMS

In the last section we give a report on the recent work of R.Bezrukavnikov and
R.Travkin [BT] on quantization of Hitchin’s intergrable systems.

We assume G = GL,,. Let Bun = Bung be the moduli stack of rank n-bundles on C'
and Bun? be the component of rank n-bundles of degree d. Let wpgyn be the canonical
bundle on Bun. We fixed a square root (wBun)l/ 2 of wpy, and we write D(waun)l/Q for

the sheaf of (wpy,)!/?-twisted differential operators on Bun (see [BD, §2]). Let Op
denote the space of marked opers. Recall that a marked oper consists of the data
(E,V,{E:}iz1,.n,¢) where (E,V) is a rank n bundle on C' with a flat connection, 0 C
E,C---CE, = Fisacomplete flag, ¢ : £y ~ wg_l)/2, such that 1) V(FE;) C Ei1 Quwe
and 2) the induced map gr(V) : E;/E;_1 — E;11/FE; ® we is an isomorphism (see [BT,
Appendix] or [B] for more details).

Theorem 6.1. [BT, Theorem 1] Assume chark = p is zero or p # 2.

(1) For every d € 7 we have a canonical isomorphism T'(Bun?, D(wpenyiz) = T'(0p, 0).
(2) Let x € Op be a marked oper with underling flat connection (E,V). Let f, :
['(Op,0) — k be the corresponding homomorphism of k-algebra. Then the D-

module

Aut, := (D(wBun)1/2 X1 (0p,9), f2 k’) ® wlgif

is a Hecke-eigen D-module on Bun with respect to (E,V) (see [BD, §5] for the
notion of Hecke-eigen D-modules).

In the case when the characteristic of k£ is zero, Theorem 6.1 is the main result of
the work of Beilinson-Drinfeld [BD] on quantization of Hitchin’s integrable system and
Hecke eigensheaves. The construction in [BD] used local to global argument and results
on representation theory of affine Lie algebras at critical level. The proof of Theorem
6.1 in [BT] is quite interesting and different from the one in [BD]: they first establish
the result when the characteristic of k is positive using the generic geometric Lang-
lands correspondence in characteristic p in Theorem 5.1 and then formally deduce the
characteristic zero case.

Remark 6.2. Since the stack Bun is not good in the sense of [BD, §1], one has to use a
modified version of Bun? in the statement of Theorem 6.1 (see [BT, §2] or [BB, §4.6)).

We ignore this technical details here.
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