An explicit mean-covariance parameterization for
multivariate response linear regression

Aaron J. Molstad'? Guangwei Weng?, Charles R. Doss?, and Adam J. Rothman?
1Department of Statistics and Genetics Institute, University of Florida
2School of Statistics, University of Minnesota

Abstract

We develop a new method to fit the multivariate response linear regression model that
exploits a parametric link between the regression coefficient matrix and the error covariance
matrix. Specifically, we assume that the correlations between entries in the multivariate error
random vector are proportional to the cosines of the angles between their corresponding re-
gression coefficient matrix columns, so as the angle between two regression coefficient matrix
columns decreases, the correlation between the corresponding errors increases. We highlight
two models under which this parameterization arises: a latent variable reduced-rank regression
model and the errors-in-variables regression model. We propose a novel non-convex weighted
residual sum of squares criterion which exploits this parameterization and admits a new class
of penalized estimators. The optimization is solved with an accelerated proximal gradient de-
scent algorithm. Our method is used to study the association between microRNA expression
and cancer drug activity measured on the NCI-60 cell lines. An R package implementing our
method, MCMVR, is available online.

Keywords: covariance matrix estimation, genomics, measurement error, multivariate regres-
sion, non-convex optimization, reduced-rank regresssion

1 Introduction

Some regression analyses have more than one response and these responses are typically asso-
ciated. When these responses are numerical variables, it is common to apply the multivariate

response linear regression model. Let y; € R? be the observed response for the ith subject, and let

*Correspondence: amolstad@ufl.edu



x; € RP be the observed predictor for the ith subject. In the multivariate response linear regression

model, y; is a realization of the random vector

YZ:/’I’*—Fﬁ;Il—i_E’LJ Z:177n7 (1)

where j1, € R? is the unknown intercept, 5, € RP*? is the unknown regression coefficient matrix,
and €, ..., ¢, are independent copies of a mean zero random vector with covariance matrix >.,.
Chapter 7 of Pourahmadi (2013) gives a detailed overview of modern shrinkage methods that fit
(1). We review a subset of these methods here.

Several shrinkage estimators of /3, have been proposed through penalized least squares. If the
penalty separates across the columns of the optimization variable, then the estimate of 3, can be
computed with ¢ separate penalized least-squares regressions, e.g. lasso-penalized least squares.
Other penalized least-squares methods assume rows of 3, are zero (Obozinski et al., 2011; Peng
et al., 2010), assume S, is low rank (Izenman, 1975; Yuan et al., 2007), or assume both (Chen and
Huang, 2012).

Under the additional assumption that the €;’s are multivariate normal, (1) can be fit by minimiz-
ing a penalized negative Gaussian log-likelihood. These likelihood-based methods simultaneously
estimate Y, and 3, (Izenman, 1975; Rothman et al., 2010; Yin and Li, 2011). There also exist
methods with two steps: they first estimate ¥ ! and then plug this estimate into a penalized nor-
mal negative log-likelihood to estimate (3, (Perrot-Dockes et al., 2018). There are also methods
that add an assumption that the predictor and response are (p + ¢)-variate normal and develop es-
timators based on the inverse regression (Molstad and Rothman, 2016) or based on estimating the
joint covariance matrix (Lee and Liu, 2012).

We focus on methods that fit (1) by assuming that the error covariance matrix X, and the re-
gression coefficient matrix [, are parametrically connected. One example is the envelope model,

which assumes that the columns of 3, are in a subspace spanned by eigenvectors of >, with small



corresponding eigenvalues (Cook and Zhang, 2015). Focusing on precision matrix estimation,
Pourahmadi (1999) proposed a joint mean-covariance model based on an autoregressive interpre-
tation of the Cholesky factor. In this manuscript, we consider a more explicit parametric connection

between X, and fS,: we propose to fit (1) under the assumption that

5. x B + 021, 2)

where 02, € (0,00) is unknown. This parametrization links the angle between the jth and kth
columns of 3, and the correlation between the jth and kth responses; the motivation is that in some
applications, two responses that depend on predictors in a similar way will also depend on unmea-
sured factors in similar ways. One setting in which this assumption may hold is the multivariate
regression of cancer drug activity on microRNA expression profiles measured on the National Can-
cer Institute (NCI)-60 cell lines. In particular, because variation in cancer drug activity has been
shown to be partly explained by -omic factors other than microRNA expression (Chen and Sun,
2017), it may be reasonable to assume that two drugs which depend on microRNA expression in
a similar way also depend on unmeasured -omic factors (e.g., somatic mutations) in similar ways.
In Section 7, we show that assuming (2) in this application leads to improved prediction accuracy
and fitted models which may provide new biological insights about cancer drug activity.
Formally, (2) implies that for each (j, k) € {1,...,¢}? the cosine of the angle between the
jth and kth column of S, is proportional to the (j, k)th entry in X, so as the angle between the
jth and kth column of 3, decreases, the correlation between the corresponding errors increases.
For example, if 3., = 0 (e.g., the jth and kth responses depend on different predictors), then
it may be natural to assume that the jth and kth errors are uncorrelated since the jth and kth
responses relate to the p predictors in distinct ways. If 3,3, were instead relatively large, then it
may be natural to assume that the jth and kth errors are positively associated since the jth and kth

responses relate to the p predictors in similar ways.



2 A new class of regression coefficient matrix estimators

Lety=n"'Y" y;andz =n"1> "  a; DefineY € R"* to have ith row (y; — )’ and define
X € R™? to have ith row (z; —T)’. Suppose that the ¢;’s are g-variate normal and X, = o2, 3., +
02,1, where o2, and o2, are positive constants that represent the proportionality assumption in (2).

Then two times the negative log likelihood (up to constants) evaluated at (3, 0%, 03) is
tr {n ' (Y — XB) (o188 +031,) (Y — XB)'} + logdet (6748 + 031,) , 3)

where tr and det are the trace and determinant. A likelihood-based estimator of 3, would require
minimization over three optimization variables: 3, 0%, and ¢2. The scaling factor optimization
variable o7 makes the function defined by (3) difficult to minimize because it scales 3’3 in both
the trace and determinant terms. This optimization is made more difficult when one penalizes the
entries of 5. Moreover, since our goal is to estimate [3,, ideally, estimation of nuisance parameters
o2, and o2, could be avoided entirely. Additional details about maximum likelihood estimation
using (3) are given in Section 4 of the Supplementary Material.

Instead, to estimate 3, with the assumption in (2), we propose the class of estimators

377,\ = arg min {.E(B) + %Pen(ﬁ)} , “4)

BERPXY

where Pen(-) is a user-specified penalty function; 7 and )\ are positive tuning parameters; and

Fr(B)=tr{n (Y = XB)(BB+7L) (Y —XB)}. (5)

The function defined in (5) is similar to (3), except that the scaling factor o2 and the log determinant
term are removed. This function generalizes the function proposed in Gleser and Watson (1973),

which we discuss further in Section 3.



We do not require a particular form for Pen(-), but the algorithm we propose in Section 4 to
solve (4) will be most effective when the proximal operator of Pen(-) can be computed efficiently.
In addition, a global minimizer for (4) is only guaranteed to exist when Pen(-) is coercive (see
Remark 1 in Section 4.1).

The function F is especially flexible due to the tuning parameter 7. In particular, when 7 —
oo, the matrix 3’3 + 71, becomes diagonally dominant and so F, tends to the unweighted residual
sum of squares. This has two main benefits: statistically, the theoretical properties of any penalized
least squares estimator apply to (4) by allowing 7 — oo at a sufficient rate; practically, this gives
practitioners the ability to determine whether, and to what extent, (2) holds in a data-driven fashion.
In particular, if (2) does not hold, then our tuning parameter selection criterion, described in Section
1 of the Supplementary Material, should select 7 sufficiently large so that Eﬂ A 1s effectively the
same as the penalized least squares estimator. Viewed in this way, the tuning parameter 7 is best
thought of as analogous to the tuning parameter needed to specify the Huber loss function (Huber,
1964).

We do not intend that 7 be interpreted as a ratio of unknown error variances. Were inference
about 3, or variance parameters in (3) the goal of the practitioner, our method may not be appro-

priate since we treat the variances as nuisance parameters.

3 Models connected to the parametric link

3.1 Errors-in-variables models

The parameterization in (2) holds under a multivariate response “errors-in-variables” linear regres-
sion model. Consider the special case of (1) where for a latent (non-random) predictor z; € RP for

the th subject, y; is assumed to be a realization of
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where the €;’s are independent and identically distributed with E(€;) = 0, Cov(€;) = 21, for i =
1,...,n. Suppose we cannot measure z; exactly fori = 1, ..., n. Instead, we observe a realization
of X; = z; + U; where the U,’s are independent and identically distributed with E(U;) = 0 and

Cov(U;) = ¢%,1, fori =1,...,n; and U; is independent of ¢;. It follows that

Yi = p. + Bozi + 6 = o + B.X; — BU; + 6.

Because we do not observe the realization of Uj;,

COV(YZ' | Xz = ZEZ) = ﬂ;COV(UZ)ﬁ* + COV(E) 0.8 6;6* + Uiej!p

where 02, = ~2/02 .

Fitting errors-in-variables models is a classical problem in low-dimensional multivariate statis-
tics. If one were willing to make distributional assumptions (e.g., normality) about the ¢; and
U, then one could obtain maximum likelihood estimators by maximizing the joint likelihood for
(X1,Y1),...,(X,,Y,) and treating the z;’s as unknown parameters. Alternatively, one could fit
the model that is conditional on the observed values of X;,...,X,,. Gleser and Watson (1973)
established an interesting connection between these two approaches in the low-dimensional case.
In particular, Gleser and Watson (1973) showed that in the special case where 02, = 72 and ¢ = p,
the estimator obtained by maximizing the log-likelihood for the joint distribution of the predictor
and response was equivalent to the estimate obtained by maximizing the weighted residual sum of

squares:

tr{n ' (Y = XB)(B'B+ 1) (Y = XB)'}, (6)

which is similar to the negative log-likelihood when Y; | X; = x; is multivariate normal. However,
when 02, and 2 are unequal, (6) may perform poorly.

Like (6), our proposed weighted residual sum of squares criterion defined in (5) is similar to



the negative-log likelihood when one assumes ¢;’s are multivariate normal. Unlike the function in
(6), our proposed criterion defined in (5) replaces 5’3 + I, with 5’8 + 71,. The introduction of the
tuning parameter 7 allows practitioners to account for the relationship between 72 and o2, using
cross-validation.

Although the proposed criterion . is similar to the normal negative log-likelihood, it is not a

valid likelihood function. However, we can justify its use based on the following result:

Theorem 1. Suppose (Y, X) are generated from the multivariate response errors-in-variables

model. If T = 72 /o2, then E{V F,(B.)} = 0, that is, our estimator is Fisher consistent.

We prove Theorem 1 in the Section 2 of the Supplementary Material. Note that we assume no
particular distribution for the U; or €;.

In Section 4 of the Supplementary Material, we compare estimates based on .. to the maxi-
mum likelihood estimator (MLE) (based on (3)) in low-dimensional settings. We show that with
the tuning parameter 7 chosen by cross-validation, the unpenalized version of (4) performs sim-
ilarly to the MLE under various data generating models. This provides some evidence that little

efficiency is lost using ;. as an estimation criterion relative to the negative log-likelihood.

3.2 Latent variable reduced-rank regression model

Our parameterization also arises from a particular latent variable reduced-rank regression model
(Velu and Reinsel, 2013). This model assumes that the measured response for the ¢th subject is a
realization of

Y=+ AZi+a, (i=1...,n), (7)

where A, € R with r < min(p, q), and €, ..., €, are independent and identically distributed

with mean zero and covariance 721,. In addition,

7



where B, € R"*? is a semiorthogonal matrix, the x; € RP are the nonrandom values of the
predictor for the 7th subject, and Uy, . . ., U, are independent and identically distributed with mean

zero and covariance o2, I,.. It follows that

so that the regression coefficient matrix is 5, = Bl A, € RP*9 with rank(f,) = r. It is straightfor-

ward to verify that together, (7) and (8) imply the mean-covariance parameterization in (2).

4 Computation

Although F is not convex, it is differentiable and has Lipschitz continuous gradient over bounded

sets. We formalize these properties in the following proposition.

Proposition 1. When 7 > 0,

VE(B) = =20 55 (Y — XB) (Y — XB)Q5;" — 20 X'V Q5! + 207 XX 5O
where Qg = '8 + 11,. Moreover, N F is Lipschitz over the set D,, = {3 : f € RP* ||B]|r < K}
where 0 < Kk < oo, where || - || is the Frobenius norm.

We prove both parts of Proposition 1 in Section 2 of the Supplementary Material.

Remark 1. Because (5) is bounded below (since the trace of the product of two non-negative
definite matrices is non-negative), as long as the penalty function is coercive, i.e., Pen(3) — oo

as || B||r — oo, a global minimizer of (4) over RP* exists and is in Dy, for some finite k.

Given the properties established in Proposition 1 and Remark 1, we can use a proximal gradient

descent algorithm to obtain a critical point of (4) (Li and Lin, 2015). Since JF, has a Lipschitz



continuous gradient over the bounded set D,,, there exists a positive constant L such that

Fo(6) < o)+t {VEBY(5 ~ D)} + 515~ Bl ©

forall 3 € D, and B € D,. Thus, the right hand side of (9) is a majorizing function of F, at 3
(i.e., the right hand side of (9) is greater than or equal to F. for all 5 € D, with equality when
g = E). Hence, applying the majorize-minimize principle (Lange, 2016), we use an algorithm

whose iterates minimize the majorizing function at the previous iterate:

) — ang i { 7, (30 + e (V7 (595~ 5} + 15 - 5O + 2pen(s) |
BERPXA 10
where t, is a positive step-size parameter; and 1) and ) are the (k + 1)th and kth iterates of
the optimization variable corresponding to 3, respectively. This way, for sufficiently large ¢, we
are guaranteed that 7, (8 +1) 4+ 2Pen(8*+1) < F,(8*)) 4+ 2Pen(8®) for all k.

The iterate in (10) can be written in the more familiar notation:
B = Prox;—12pe, {B® — ' VF.(BW)},

where, using the notation from Parikh et al. (2014), Prox; denotes the proximal operator of the

function f:

. 1
Proxs(y) = arg min {5\]1’ —yl%+ f(x)} :

The proximal operator can be computed efficiently for a broad class of convex and non-convex
penalty functions. In Table 1 of the Supplementary Material, we provide closed form solutions
of four proximal operators corresponding to convex penalties used in multivariate response linear
regression. For example, if one used the L; norm as a penalty, the proximal operator is simply the

soft-thresholding operator.



With an appropriate choice of step size parameter ¢, for each £, iterates generated from (10) are
guaranteed to monotonically decrease the objective function value. However, this is not sufficient
to ensure that the iterates converge to a critical point. In our implementation, we use an accelerated
variation of the proximal gradient descent algorithm proposed by Li and Lin (2015) specifically
designed for solving non-convex optimization problems which ensures that iterates converge to a
critical point of (4).

The complete algorithm is sketched in Algorithm 1. We implement this algorithm, along with
a number of auxiliary functions, in the the R package MCMVR, which is available for download at

github.com/ajmolstad/ MCMVR.

Algorithm 1: Initialize 3© = D = 30 = 5O 0 — o) — 1 and set k = 0.

—

Compue 5101 25 (3% ) 1 (<522) (30— 900).
2. Compute B(Hl) — Proxiglipen {E(k) — f;1V5]:T(§(k))} )
3. Compute [**1) ¢ Prox,1ap,, { 8% — 'V F (8%} .

4. Set a1V « (1 4+ V1 + 4a2®) /2.

—(k+1) —(k+1))

5. Set 1) { p Fr(B

_(k"'l))

+2Pen(B" ) < Fo(D0+D) 4 2Pen(D(*+D)

&+ . otherwise

6. Set k < k + 1, and return to Step 1.

Step sizes t; and {; from Algorithm 1 are chosen using backtracking line searches for both
Step 2 and Step 3 of Algorithm 1. See Algorithm 2 of the Supplementary Material to Li and Lin
(2015) for the exact version of the algorithm we implement. An application of Theorem 1 of Li and
Lin (2015) ensures that the iterates generated by our algorithm are bounded and that the sequence
of iterates converge to a critical point of (4). In Section B of the Supplementary Material, we
describe how to select tuning parameters by cross-validation, and how to determine a reasonable

set of candidate tuning parameter values.
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5 Generalizations

In Section 3 of the Supplementary Material, we discuss an extension of our method to settings
where only a subset of the response vectors are observed. In the remainder of this section, we
describe how to modify our method to deal with covariates unrelated to 32, and how to standardize

predictors for model fitting.

5.1 Covariates unrelated to >_.

An important generalization of our estimator includes a set of measured covariates v; € R”* such
that

Y, =p. + 0w +nvi+e, (i=1,...,n),

and the unknown coefficient matrix 7, € R**? is not parametrically related to ¥, o< 3.3, + 0% 1,.
When our method is motivated through the errors-in-variables model, this may occur when some
covariates or confounders are measured without error, e.g., z; is some -omic profile measured with
error and v; are clinical/demographic variables.

Leto =n"'Y "  v;. Define V € R"** to have ith row (v; — ) and suppose V has full rank.

For this scenario, we propose the class of penalized estimators:

o) = _angmin o o = V= XA/ = V= XB)F5-+ 71} + ZPen(s)].

BERPX4,nERF>¥q

Using the first order conditions for i and letting Py = I, — V(V'V)~1V’, we replace Y with

Y = PvY, X with X = Py X, and solve a modified version of our estimator:

B’T,)\ = arg min {tr {n_l(ff — Xﬁ)’(ff — Xﬂ)[ﬁ’ﬁ + T]q]_l} + %Pen(ﬁ)} ,

ﬁe]RPXq

sothat i,y = (V'V)"'V/(Y —X 3,.,). Thus computing our estimator with the additional covariates

11



can be done immediately from Algorithm 1 and ( BT’ s T2 ) Will satisfy the first order conditions

fOI' (BT,)\, 777—,)\).

5.2 Predictor standardization and dependent measurement errors

An important property in regression coefficient matrix estimation is invariance under changes in
scale of the predictor. Of course, our method is not invariant as the scale of the predictors affects
the magnitude of entries in [3,, which affects the weight in the weighted residual sum of squares
criterion we propose. However, we can easily generalize our estimator to allow for standardiza-
tion, and in the context of the errors-in-variables model, allow for dependent measurement errors
(assuming their covariance were known).

The generalized version of F we propose is

Hra(8) = {n™ (Y = XB)(Y -~ XB) (808 + 7L, }

where & € RP*P is some user-specified, symmetric and nonnegative definite weight matrix. No-
tice, were one to standardize predictors so that columns of X had columnwise average zero and
unit standard deviation, we could write X3 = X3 where 5 = S~ and S € RP*? has the inverse
standard deviations of the predictors on its diagonal and zeros elsewhere. Thus, if & = 5’9, it

follows that

tr{n (Y = XB)(Y ~ XBFSSB+ 1)} = Fo(B)

where 8 = 98.

If the model from Section 3.1 were assumed to hold, then this generalization could also be
used in the case that measurement errors (i.e., the U; from Section 3.2) have covariance X,
which is known or can be estimated reliably from external data. In this case, it would follow that

Cov(Y; | Xi = @) = B0+ + 721, so that a more appropriate weighted residual sum of

12



squares would be H, 5., .
The same computational approach developed in Section 4 of the main manuscript can be used

since H . ¢ is differentiable and has Lipschitz continuous gradient over D,.

6 Simulation studies

6.1 Data generating models and performance metrics

We compare the performance of our method to relevant competitors under three distinct data gen-
erating models. Under the first two models, when conditioning on the observed predictors, the
mean and covariance of the response are the same in both models. However, the two models differ
in a fundamental way: in the first model, we observe a corrupted version of the “true” predictor so
that conditioning on the observed predictor, the model in (1) and (2) holds. In the second model,
we observe the “true” predictor and the covariance has the parameterization in (2). In the third
model we consider, there are “errors-in-variables” but the covariance parameterization (2) does not
hold.

In the following, for one hundred independent replications with p = 200 and ¢ = 50, we gen-

erate n = 100 independent copies of (Y, X).

— Model 1: We first generate n independent copies of Z ~ N, (0,X,) where the (j, k)th en-

try of X, equals 0.5=*I_ Then, conditional on Z = z, we generate a realization of X and Y,

Y=0z2+¢ X=2z2+1,

where U ~ N,(0,02,1,,) and € ~ N,(0,~72I,) so that E(Y | X = z) = Slz and Cov(Y | X =

Y *U

r) = 02,80 + 721, with v = 3 and o2, varying across settings.
— Model 2: We first generate n independent copies of X ~ N, (0, 3, x) where the (7, k)th entry of

13



Y. x equals 0.7V =% Then, conditional on X = x, we generate a realization of
Y = fla+e, (an

where € ~ N, (0,02, 0.5, + 721,) with v? = 3 and o2, varying. Note that Model 2 differs from

Model 1 as under Model 1, the covariance of the measured predictors X is Y, x = X,z + afulp.

— Model 3: We first generate data in the same manner as Model 1 except where U ~ N,(0, 02,1,
and € ~ N, (0,723, ) where [S.p];r = 0.7 1(j # k) + 1(j = k), where 02, = 0.50, and where
2 is varying across settings.

To generate 3., we randomly construct three active sets of three variables each: let a; =
{ag1,ar2,ar3} C {1,...,p} for k = 1,2,3 with N3_,a;, being empty. Then, forl = 1,...,q,
we randomly choose & € {1,2,3} with probability 1/3 each, and set either [3.], ) = —2 or
[B<l(a.)4 = 2. with equal probability for j = 1,...,3. We also select three additional elements
of [B,]., to be —1 or 1. That is, each column of /3, has six nonzero entries: three entries have
magnitudes 2 and three entries have magnitudes 1. Under this construction, (., is approximately
block diagonal with three blocks of similar size.

We consider multiple performance metrics. The first we consider is model error (Breiman and
Friedman, 1997) for the observed predictor: ||Eié(2 (B — B.)]|%. Following Datta and Zou (2017),
when data are generated from Model 2, we also measure the latent model error, i.e, model error un-
der the unobserved predictor Z: ||E>1k/22 ( B— B.)||%. Latent model error would be relevant if the true
predictor may be observed in future studies. In addition, for both models we also measure (squared)
Frobenius norm error: || B—B, |%, and out-of-sample prediction error: ||Yr — X1 |%/qnz. To com-
pute the out-of-sample prediction error, in each replication we generate an independent test set of
size ny = 1000, where Y7 € R"7*? and X1 € R"7*P, using the same data generating model as
in the training data. It is important to note that out-of-sample prediction error and model error are

distinct metrics. Model error measures how well an estimator predicts the mean function, whereas

14



prediction error measures sum of squared residuals on a testing set. We also measure true and false

positive identification of nonzero entries in 3, to assess variable selection accuracy of the methods.

6.2 Competing methods

We compare our method to two versions of the method proposed by Datta and Zou (2017), two
versions of the L;-penalized least squares estimator, and a two-step convex approximation to (4).
Throughout, let [Al; = 3, [A; | for a matrix or vector A, and let A. ; denote the jth column of
A.

For the case that ¢ = 1 and data are generated from an errors-in-variables model (e.g., Model
2), Datta and Zou (2017) proposed the convex-conditioned lasso estimator. Their estimator can be
naturally extended to the multivariate setting: they replace X and Y in the least squares criterion
with versions adjusted to account for the measurement error. Assuming that o2, were known, the

estimator of Datta and Zou (2017) modifies the unbiased sample covariance matrix:

Y = arg min H§ — S1||max, Where S=nlX'X - o2 1, (12)
S51>0

Then the multivariate response generalization of their estimator is

arg min {tr (ﬁ’iﬂ — 2B’p) + )\Pen(ﬁ)} , (13)

ﬁeRqu

where p = n~'X'Y, which can be solved using penalized least squares. When APen(/3) is re-
placed by Z?Zl A;Pen(p. ;), the estimator in (13) is equivalent to performing ¢ separate convex-
conditioned lasso estimation problems. The estimator in (13) would not be equivalent to ¢ separate
estimators if only one tuning parameter were used for all ¢ regressions, or any of the penalties from
Table 1 of the Supplementary Material other than the L; norm was used. We now formally state

the competitors we consider:

15



— CoCo-1: The estimator defined in (13) with APen() = A|/|; and A chosen by five-fold cross-
validation, using the modified cross-validation procedure (averaged over the ¢ responses) proposed

in Datta and Zou (2017). We treat the value of afu as known.

— CoCo-q: The estimator defined in (13) with APen(3) replaced by >_7_, A;|5. ;|1 and the ),
each chosen by five-fold cross-validation, using the modified cross-validation procedure proposed

in Datta and Zou (2017) for j = 1,...,q. We treat the value of 02, as known.

— CV-CoCo-q, CV-CoCo-1: The same estimators as CoCo—q and CoCo-1, except o2, is un-
known and treated as a tuning parameter. We select both \ and the o2, value by five-fold cross-

validation, using the modified cross-validation procedure proposed in Datta and Zou (2017).

— Lasso—-q: The L;-penalized least squares estimator

1 -
arg mm{—llY—Xﬂﬂ?w+2Aj|ﬁ-,jl} (14)
perrxa | T =1

within tuning parameters \; chosen to minimize prediction error in five-fold cross-validation for

j =1,...,q separately.

— Lasso—1: The estimator defined in (14) except the tuning parameter \; = A forj = 1,...,¢
with A chosen to minimize prediction error averaged over the ¢ responses in five-fold cross-

validation.

— MC: The version of our estimator (4) with Pen(8) = |3|;, with tuning parameters A\ and 7
chosen using the five fold cross-validation procedure described in Section 1 of the Supplementary

Material.

The sixth competitor we consider, CA, is a two-step convex approximation to (4). Given a initial

estimator (3, we re-estimate [, using

B = arg min [tr {n—l(y — XB)(BB+TI) (Y — Xﬁ)’} + %w@ . (15)

BERPXa
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Figure 1: Log model error, log latent model error, and log prediction error for the eight candidate
methods over one hundred independent replications under Model 1.

The estimator defined in (15) is computed using the coordinate descent algorithm of Rothman et al.
(2010).

In our implementation of the estimator CA, we obtain f‘f using Lasso—q and select the tuning
parameters 7 and A to minimize prediction error in five-fold cross-validation. The estimator CA is
included to help illustrate the importance of simultaneous estimation of the covariance matrix and

regression coefficients under (2).

6.3 Results

Results for Models 1-3 are displayed in Figures 1-3, respectively. We first discuss results under
Model 2, which are displayed in Figure 2. As o2, increases for Model 2 we see that our proposed
method, MC, outperforms all competitors in terms of model error, Frobenius norm error, and pre-
diction error. Amongst the competitors, CoCo—1 is best when 0%, < 1. When 02, = 1, CoCo-1
performs similarly to Lasso—1 and the convex approximation of our method CA. Interestingly,
we see both Lasso—-1 and CoCo—1 outperform their counterparts which select tuning parameters

separately for each response. A similar result was observed in the simulations of Molstad and
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Figure 2: Log model error, log mean squared error, and log prediction error for the eight candidate
methods over one hundred independent replications under Model 2.

Rothman (2016).

In Figure 1, we display results for Model 1. Unlike in Model 2, however, we see that CV-CoCo-1
performs better than all other competitors even as o2, becomes large. Our method again outper-
forms all competitors when o2, is greater than 0.25. This is particularly notable for the latent
model error, where the CoCo variants outperform both Lasso variants.

For Models 1 and 2, although not displayed, we also considered the case that qu =0,1e.,(2)
does not hold. When o2, = 0 our method performed similarly to Lasso-1, as did the method
of Datta and Zou (2017). This result illustrates the property of (5) highlighted in Section 3: when
(2) does not hold, cross-validation should select a 7 large enough so that (5) is effectively least
squares.

In Figure 3, we display model error, latent model error, and prediction error results under Model
3. Recall that under Model 3, (2) does not hold: error correlations are not entirely determined by
B,. Nevertheless, we see that for all the values of 7*2 which we consider, MC performs best amongst
the competing methods. As 2 becomes larger, the distinction between methods becomes smaller.

This is intuitive given that a large v2 corresponds to a smaller signal to noise ratio.
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Figure 3: Log model error, log latent model error, and log prediction error for the eight candidate
methods over one hundred independent replications under Model 3.

Model selection results are displayed in Table 2 and 3 of the Supplementary Material. We see
that as crfu increases under Model 1 and 2, the true positive rate of our method, MC, tends to be
significantly higher than any of the competing methods. Interestingly, both CoCo-1 and CoCo—gq
have smaller false positive rates than MC when o2, > 0.50, but both have significantly smaller true
positive rates than MC. This may partly explain the difference in performance between the CoCo
methods and MC. Results are similar under Model 3.

In Section 5 of the Supplementary Material, we present results from an additional simulation
study under the latent reduced-rank regression model discussed in Section 3.2. We compare two
ridge regression variants, nuclear norm-penalized least squares, a nuclear norm-penalized variation
of CA, and our proposed estimator with Pen(3) equal to the nuclear norm of 3. Results are similar
to those under Model 1 and Model 2: our proposed estimator (4) outperforms the penalized least
squares variants in almost every replication when 2, > 0. In Section 7 of the Supplementary
Material, we also present simulation study results under a version of Model 3 with [E*E]j,k =
0.9k,

In Section 6 of the Supplementary Material, we consider an additional competitor, MC-Or,
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which is the estimator (4) with 7 = 72 /02, and \ selected by cross-validation. As was observed
with the CV-CoCo variants, this version of our method perform substantially worse that that which

treats 7 as a tuning parameter.

7 Cancer drug activity data analysis

In this section, we use our method to analyze a dataset consisting of microRNA expression profiles
and cancer drug activity measurements on the NCI-60 cell lines (Shoemaker, 2006). The NCI-60
cell lines are a panel of 60 human tumor cancer cell lines representing leukemia, melanoma, and
numerous cancers coming from distinct tissue types: breast, central nervous system, colon, lung,
prostate, ovary, and kidney.

Modelling the relationship between -omic profiles and cancer drug activity is a topic of recent
interest: see Chen and Sun (2017) and references therein. The interaction between microRNA
expression (predictors) and cancer drug activity (response) is especially relevant given that mi-
croRNAs are believed to play a key role in the development of many cancers as they can act as
tumor suppressors or oncogenes (Peng and Croce, 2016). Previous studies have found significant
correlations between microRNA expression and activity in certain cancer drugs in these particular
cell lines (Liu et al., 2010).

The particular dataset we analyze is publicly available through the FRCC R package on CRAN
(Cruz-Cano and Lee, 2014). These particular data were originally obtained from the CellMiner
Database via http://discover.nci.nih.gov/cellminer). Following the analysis of Cruz-Cano and Lee
(2014), we restrict our attention to ¢ = 15 drugs (specifically, Topoisomerase II Inhibitors) be-
longing to the A118 drug dataset (http://dtp.cancer.gov). See Table 3 of Cruz-Cano and Lee (2014)
for more information about the particular drugs in the A118 dataset. The microRNA expression
profiles were measured on a Agilent Human microRNA Microarray and consist of p = 365 mi-

croRNAs which had sufficient expression in at least 10% of cell lines (Liu et al., 2010). According
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to the CellMiner Database, drug activity levels are defined as 50% growth inhibition (molar con-
centration), and microRNA expression levels are on the log-base-2 scale.

In the analysis of Cruz-Cano and Lee (2014), the authors used regularized canonical correlation
analysis (CCA) on this particular dataset to examine low dimensional linear combinations of both
microRNA expression and drug activity levels. Since CCA and reduced-rank regression are closely
related, we analyzed this dataset using our method with a nuclear norm penalty (Yuan et al., 2007):
see the bottommost row of Table 1 in the Supplementary Material for computational details and
references.

First, we performed five-fold cross-validation using the entire dataset (n = 60) to select tuning
parameters. In Figure 4(b), we display a heatmap of the squared prediction error averaged over
all 15 drug responses and five folds. Notably, the 7 selected by cross-validation is relatively small
(7 = 0.0231). For reference, when using nuclear norm-penalized least squares, the cross-validation
squared prediction error is effectively equivalent to our method when 7 = 10* (i.e., the bottom row
of Figure 4(b)). In Figure 4(a), we display the nuclear norm of the estimated regression coefficient
matrix as a function the tuning parameter A with 7 = 0.0231 fixed. Dashed vertical lines indicate
tuning parameter values where the estimated rank increases. The solid vertical line indicates the
tuning parameter value which minimized squared prediction error averaged over the five folds
and 15 responses. Let (7%, \*) denote the tuning parameter pair which minimized cross-validation
squared prediction error. From this plot, we see that the estimated rank of the regression coefficient
matrix was four in these data. When fitting the model using nuclear norm-penalized least squares,
the estimated rank is only three.

To interpret our estimated regression coefficient matrix Bﬂ A+, We examine the response factor
loadings for the four factors. That is, letting Bﬁ » = UDV’ be the singular value decomposition
of 37*7 A+» we plot the columns of V' in Figure 4(c). These can be interpreted as response factor
loadings since XUD € R™* can be interpreted as the low-dimensional microRNA expression

factors, so that V' € R9** can be interpreted as their loadings (i.e., V" is the regression coefficient
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Figure 4: (a) A trace plot displaying the nuclear norm of BT, » with 7 = 0.0231. Dashed vertical
lines denote a change in rank, i.e., the dashed vertical line with —log;,(\) ~ —1.5 denotes the
change from rank zero to rank one. The vertical dashed solid line denotes the value of A\ which
minimizes the cross-validation squared prediction error. (b) A heatmap displaying the squared
prediction error averaged across five folds and all 15 response for 25 candidate values of 7 and 50
candidate values of . (c) Plots of the responses’ factor loading values from the estimated regres-
sion coefficient matrix, i.e., columns of V' from the singular value decomposition 3« y» = UDV".
Solid points denote drugs which are effective for treating leukemia; transparent triangles denote
those effective for brain and spinal cancer and leukemia in mice; and the transparent diamonds
denote those for effective for breast cancer. Note that symbols for each drug are the same across
the three plots.
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matrix for the predictors XU D). In Figure 4(c), we display three two-dimensional pairs of the
response factor loadings V;, € R (k = 1,...,4). In these plots, responses represented by solid
points denote drugs which are effective for treating leukemia in humans, whereas transparent points
are effective for other types of cancer or leukemia in mice.

Focusing on the leftmost panel of Figure 4(c), we see that the first factor loading (V;) sep-
arates three responses (N,N-Dibenzyldaunorubicin, Pyrazoloacridine, and Amonafide) from the
rest: these three drugs are effective for treating leukemia in mice and brain cancer (see Table 3
of Cruz-Cano and Lee (2014)). In this same plot, we see that loading two (V%) separates the drug
effective for breast cancer (Bisantrene hydrochloride) from the rest. Based on the two rightmost
plots, it seems factors three and four separate two (Anthrapyrazole derivative and Mitoxantrone)
and one (Etoposide), respectively, of the leukemia drugs from all other drugs. These findings are
mostly consistent with those in Cruz-Cano and Lee (2014) who performed CCA on these data. In
Figure 3 of the Supplementary Material, we display two-dimensional plots of the XU, which show
that cell lines cluster according to their cancer type.

To verify that our estimator also provides an improvement in prediction accuracy, we performed
additional cross-validation. For five hundred independent replications, we randomly selected five
cell lines to be testing cell lines and fit the model using nuclear norm-penalized least squares, (4)
with a nuclear norm penalty, and separate ridge regressions. Tuning parameters for all methods
were selected by five-fold cross-validation on the training data in each split. In Table 1, we display
the average and median mean squared prediction error (over the five testing cell lines) of our
method compared to nuclear norm penalized least squares, separate ridge regressions, and the null
model. We observe that in all but one drug, our method provides a substantial improvement in
prediction accuracy over the null model and separate ridge regressions. In the majority of drugs,
our method outperforms the nuclear norm penalized least squares estimator. Notably, the estimates
from our method had average rank 4.79, whereas the penalized least squares estimator had average

rank 2.90.
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Average MSPE Median MSPE
NN-MC NN-LS Ridge Null | NN-MC NN-LS Ridge Null
Doxorubicin | 27.60  27.59 3335 3407 | 1642 1741 2441 21.24
Amonafide | 4.29 4.45 5.11 4.60 3.54 3.51 3.79 3.42
M-AMSA | 3493 3570 4223 51.61 | 3398 3489 38.16 50.62
Anthrapyrazole derivative | 34.06  34.79  40.81 47.81 | 29.68 3049  36.69 4251
Pyrazoloacridine | 7.90 8.25 9.74 8.40 7.21 7.48 9.11 7.45
Bisantrene hydrochloride | 41.69 ~ 41.07 46.72 4299 | 17.51 17.64  21.64 19.98
Daunorubicin | 26.37 2638  34.00 35.11 | 20.13 2098  29.09 31.25
Deoxydoxorubicin | 27.36  27.37 3353 3321 | 20.68 20.80 26.70 20.90
Mitoxantrone | 38.44 3936  48.61 52.60 | 30.63 3272 4552 49.26
Menogaril | 33.06 3347  39.24 4131 | 2992 30.64 3476 34.59
N,N-Dibenzyldaunorubicin | 19.18  20.04  21.30 22.87 | 18.27 18.62 1854 18091
Oxanthrazole | 14.94  15.05 17.92 2029 | 12.84 12.89 15.83  17.78
Rubidazone | 20.47  20.51 2421 25.06 | 14.68 14.68  16.65 17.55
Teniposide | 34.52 3491 44.15 4656 | 27.01 27.06 3442 32.55
Etoposide | 32.30  31.57 38.02 4476 | 31.80 31.23 3525 4181

Drug

Table 1: Average and median (over 500 independent training testing splits) mean squared pre-
diction errors (x 100) for each of the fifteen drugs in the NCI-60 dataset we analyzed. Methods
considered were the nuclear norm least squares estimator (NN-LS), the nuclear norm penalized
version of (4) (NN-MC), fifteen separate ridge regressions (Ridge), and the null model, i.e., the
model assuming microRNA expression does not affect mean drug activity. Cells highlighted in
gray are those with the lowest MSPE amongst the considered methods.

8 Discussion

We have proposed and studied a particular parametric link between the mean and error covariance
in the multivariate response linear regression model. There are multiple important directions for

future research.

(a) There are many further extensions to the regression model we consider. For instance, as a
referee pointed out, the decomposition of S, into a low-rank matrix plus a sparse matrix is

ubiquitous, and thus, it would be useful to be able to apply our method in such settings.

(b) We have proposed a particular parametric link between the regression function and the error
covariance matrix. An alternative type of link is assumed in envelope modelling (Cook and
Zhang, 2015). But there may be other link(s) that prove useful, and this could be a fruitful

direction for future research to explore.
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(c) Our method is based on a sum-of-squares (Frobenius) criterion for estimating the regression
coefficients. However, heavy-tailed and contaminated data are often encountered in multivari-
ate response regression applications. In such cases our criterion will not be effective. It would
be useful to have alternatives for the Frobenius criterion, such as a Huberized-loss function,
or an L criterion function (which would connect the problem to median/quantile regression).
One difficulty in those settings is that the loss function, even without the added penalty, will
be either nonconvex or nondifferentiable, so a new algorithm for computing the minimizer

will need to be developed.
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