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Abstract
The reliability of cloud services can be significantly under-
mined by correlated failures due to shared service dependen-
cies, even when the services are already replicated across ma-
chines. State-of-the-art failure prevention systems can proac-
tively audit a service before its deployment to detect risks
for correlated failures, but their auditing speeds are too slow
for frequent service updates. This paper presents CloudCa-
nary, a system that can perform real-time audits on service
updates to identify the root causes of correlated failure risks,
and generate improvement plans with increased reliability.

CloudCanary achieves this with two primitives, SNAPAUDIT

and DEPBOOSTER. SNAPAUDIT leverages two insights to
achieve high accuracy and efficiency: a) service updates typ-
ically affect only a small part of the service stack, allowing
the majority of previous auditing results to be reused; and
b) structural reliability auditing tasks can be reduced to a
Boolean satisfiability problem, which can then be solved ef-
ficiently using modern SAT solvers. DEPBOOSTER, on the
other hand, can generate improvement plans efficiently by
reducing the required reasoning load, using novel techniques
such as model counting. We demonstrate in our experiments
that CloudCanary can perform audits over large deployments
200× faster than state-of-the-art systems, and that it consis-
tently generates high-quality improvement plans within min-
utes. Moreover, CloudCanary can yield valuable insights over
real-world traces collected from production environments.

1 Introduction
High reliability is an essential requirement for cloud services.
To enhance reliability, cloud providers typically replicate
states and functionality across multiple servers, under the
assumption of failure independence [33, 34, 54].

Reality, however, is more complicated. The complex, multi-
layered nature of network/software stacks in cloud services
may conceal underlying interdependencies between seem-
ingly independent components, such as network switches and
software modules. Failures of these common service depen-
dencies can lead to correlated failures despite replication,
causing service downtime [11, 25, 39, 70]. For example, a
faulty top-of-rack (ToR) switch would affect all replicas in
the same rack [18], and a buggy software component could
propagate failures across all service instances it supports [38].
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Such incidents have repeatedly made the headlines: in one of
the Rackspace outage events [9], glitches in two core switches
caused multiple servers to be inaccessible, leading to signif-
icant service disruption; in another incident, a single faulty
data collector in Amazon EBS brought down the Relational
Database service in an entire availability zone [3].

A number of previous efforts have focused on diagnosing
the root causes of correlated failures [14,23,47,58]. While this
is useful, post-failure diagnostics typically involves prolonged
failure recovery time [12, 64], as even the best of diagnostic
tools cannot prevent service outages. Such outages can be
quite costly: on average, a single datacenter outage can cause
an economic loss of $740,357 [4].

More recent proposals aim to proactively prevent correlated
failures by auditing the structural reliability of cloud services
before deployment [22, 70, 71]. At a high level, these systems
collect a comprehensive set of structural dependency data in
cloud services, and construct a system-wide fault graph to
encode the dependencies. They then identify potential risks
for correlated failures from the fault graph.

However, state-of-the-art auditing systems are designed to
perform audits at service initialization, not for conducting
real-time audits throughout the service lifetime. Runtime au-
dits are necessary, because existing work has shown that many
dependencies potentially causing correlated failures are intro-
duced by network and software updates (e.g., reconfigurations
and upgrades) during service runtime [39]. For example, a
Gmail service upgrade configured microservice replicas to
share the same vulnerable component, which later rendered
user data unavailable for many hours [5]. Existing systems
are impractical for real-time audits for two reasons.

• First, they are too slow in analyzing cloud-scale deploy-
ments in real time. For example, a state-of-the-art sys-
tem takes ∼35 hours to analyze a 30,528-component ser-
vice [70], making it only possible to perform a few audits
per week. This cannot match the update frequency in to-
day’s clouds—for instance, Google reported 58 updates per
week, roughly one update every three hours [37].
• Second, these tools can only alert the operator to corre-

lated failure risks, but do not offer further support to find
effective improvement plans. Thus, the operator needs to
either manually reason about improvements to the exist-
ing deployment, or use automated tools to generate a plan
from scratch [22, 70]. The former is error-prone, and the
latter may result in a plan that requires considerable service
reconfiguration. Moreover, both are inefficient.



In other words, although the operator may have enough lead

time to perform audits at service initialization, the high

turnaround time of existing systems prohibits their use in

real-time auditing during service runtime.

We present CloudCanary, a system that can efficiently and

accurately a) alert the operator to the root causes of correlated

failure risks introduced by service updates, and b) generate

a set of improved deployment plans with higher reliability.

CloudCanary achieves this using two primitives—SNAPAUDIT

and DEPBOOSTER—to help prevent correlated failures during

service runtime in a timely manner.

Contribution #1. SNAPAUDIT (§3) can efficiently and accu-

rately identify root causes for correlated failures in a given

service snapshot. The design of SNAPAUDIT addresses two

challenges. The first is how to rapidly analyze a fault graph

representing the service update snapshot. To address this

challenge, we propose an incremental auditing algorithm to

identify a set of differential fault graphs, which represents

the “delta” between the service snapshots before and after

an update. Based on the insight that service updates usually

affect a small part of service stacks [37, 49, 60], extracting

differential fault graphs enables us to avoid the need to re-

analyze the entire fault graph from scratch. Second, although

differential fault graphs are already smaller than the over-

all fault graph, analyzing each of them is still NP-hard and

time-consuming [63]. We therefore propose an approach that

speeds up the fault graph analysis by transforming a differen-

tial fault graph into a Boolean formula, and then solving the

formula using a high-performance MinCostSAT solver [35].

Contribution #2. DEPBOOSTER (§4), on the other hand, helps

the operator improve a risk-prone deployment. It allows the

operator to specify a reliability goal (e.g., the failure proba-

bility needs to be lower than a certain threshold), and then

generates a set of alternative improvement plans that meet

the specification. DEPBOOSTER also addresses two challenges.

First, there are infinitely many potential improvement plans

to be checked for their capability to satisfy the specified

goal. To overcome this challenge, we utilize network compres-
sion [17]—a technique that can simplify a datacenter network

by collapsing symmetric network structures and slicing away

irrelevant parts—to significantly reduce the number of states

we need to check. Second, even after compression, it still

takes a long time to check whether a candidate deployment

meets the specified goal. We further propose a novel algorithm

based on model counting [20] for efficient checks.

To the best of our knowledge, CloudCanary is the first

practical system capable of preventing correlated failure risks

in service updates. We have built a CloudCanary prototype

and evaluated it with a set of real-world scenarios (§6). Our

results show that SNAPAUDIT can identify correlated failure

root causes in a 1,183,360-component service within 8 min-

utes, 200× faster than the state-of-the-art systems, and that

DEPBOOSTER can find high-quality improvement plans within

minutes.

Figure 1: An update that affects the Cinder DB deployment,

where the path Agg2→Core2 is shifted to Agg2→Core1 due

to an ECMP configuration change.

2 Overview
In this section, we first motivate our problem further (§2.1).

Then, we describe the state-of-the-art auditing systems and

their limitations (§2.2 and §2.3). Finally, we present the archi-

tecture of CloudCanary (§2.4).

2.1 Motivation
Cloud operators ensure service reliability by replicating im-

portant state and functionality. Suppose that an operator de-

ploys Cinder DB (a block storage system in OpenStack) in her

datacenter, and that she replicates Cinder DB across multiple

servers to increase reliability. Unbeknownst to this operator,

the replicated Cinder DB instances may share deep dependen-

cies, such as certain network or software components [3, 9].

The failures of such latent common dependencies can lead

to a correlated failure across the entire system, undermining

the use of replication. Such common dependencies are often

called a risk group—a (small) number of components whose

simultaneous failure results in a correlated failure.

To prevent correlated failures, the operator needs a tool to

check for risk groups in a service deployment and generate

improvement plans. For instance, if a risk group only contains

one element, e.g., a shared switch, it may potentially become

a single point of failure. In this case, the operator may want to

improve the deployment so that even the smallest risk group

contains more than one element. In a similar spirit, if the

estimated probability for correlated failures is above a thresh-

old, the operator may want to find a functionally equivalent

deployment with a lower failure probability.

Suppose that a service never goes through updates, then

the above tasks only need to be performed once at service ini-

tialization. However, this is rarely the case in today’s clouds,

as most services experience frequent updates in their lifetime,

and risk groups can be introduced in any of the updates [39].

Figure 1 shows an example: if the network path Agg2→Core2

is shifted to Agg2→Core1 (e.g., due to a change to the ECMP



configuration), such an update will introduce a new risk group

σ ={Core1}, the fault of which will result in a correlated fail-

ure across both Cinder DB instances. Therefore, checking

for risk groups and generating improvement plans need to be

performed continuously in real time.

2.2 Starting Basis: Fault Graphs
Operators already apply a set of “golden standards” for in-

creasing service reliability, such as rack-aware replica place-

ment [8], geo-replication [1], canary tests [10], but achieving

a comprehensive understanding of failure risks is a task that

needs to be automated. To this end, several state-of-the-art au-

diting systems [22, 70, 71] have been proposed to proactively

check for correlated failures. They do so using a common

abstraction called a fault graph [63], which represents the

structural dependencies of a service.

Fault graph. A fault graph is a layered DAG representing the

logical relationships between component faults within a given

system [63]. Figure 2 shows the fault graph of the example

service in Figure 1. The fault graph has two types of nodes:

fault events and logic gates. The leaf nodes in a fault graph

are basic faults, which are the smallest units of failures under

consideration, e.g., the failure of a switch or software library.

The root node in a fault graph represents a target service fault,
which indicates the failure of the entire service. The rest of

the nodes are intermediate faults, which describe how basic

faults may cause larger service disruptions.

The fault propagation is encoded by layers of logic gates in

between. If a component fails, the corresponding fault node

outputs a 1 to its parent node, which could be either an AND
or OR gate; otherwise the fault node outputs a 0. For an OR
gate, if any of its children fail, a fault propagates upwards;

for an AND gate, it only propagates a fault upwards if all of its

children fail. Faulty nodes could be further associated with

weights that encode the failure probabilities. Each non-leaf

node has an input gate that connects its lower-layer faults, but

leaf nodes, i.e., basic faults, do not have an input gate.

Fault graph generation. State-of-the-art auditing systems

(e.g., INDaaS [70], reCloud [22]) have used existing data

acquisition tools to automatically collect the structural de-

pendency data needed for generating fault graphs. These

tools cover a variety of dependency data, including network

path dependencies [56, 70, 77], software component call

flows [69, 73–75], and micro-service execution dependen-

cies [24, 61]. Then, these auditing systems invoke various

fault graph synthesis algorithms [51, 70–72] to automatically

build fault graphs based on the acquired dependency data.

Large-scale fault graph generation has been shown to be

efficient—for example, INDaaS generates a 70,656-leaf fault

graph within minutes [70].

Commercial data centers also deploy a variety of such

profiling tools to track inter-service dependency, although

the specific tools would differ from company to company.

For instance, the Maelstrom [61] system at Facebook collects

Figure 2: A fault graph representing the post-update ser-

vice snapshot shown in Figure 1. Path 1, Path 2, and

Path 3 represent the links Agg1→Core1, Agg2→Core1, and

Agg2→Core1, respectively. Dashed boxes are logical compo-

nents that do not exist physically.

service dependency data and uses it for failure mitigation.

Later in our evaluation, we have also collected dependency

data from a production data center using tools that are already

in active deployment.

2.3 State of the Art and Limitations
State-of-the-art systems, such as INDaaS [70], reCloud [22],

and RepAudit [71], can perform structural reliability audits

on fault graphs to detect risk groups. They then output the

identified risk groups to the operator to alert her to the risk.

For instance, they may identify {Core1} to be a risk group,

because its failure would cause the entire service to fail. How-

ever, existing systems all focus on one-shot audits at service

initialization. They cannot handle real-time audits during ser-

vice runtime due to the following two reasons.

Inefficient risk group auditing. Since detecting risk groups

is NP-hard [63], existing auditing systems either perform an

exhaustive search, which scales poorly to large deployments,

or use heuristics, which sacrifices accuracy. For instance, IN-

DaaS [70] takes ∼35 hours to analyze a 30,528-component

service. Such speeds cannot match the frequency of network

and software updates in today’s clouds—for instance, Google

reported 58 network updates per week [37].

Lack of support for generating improvement plans. Exist-

ing systems offer no support for the operator to automatically

generate improvement plans. As a result, even after perform-

ing hours-long audits, the operator still needs to reason about

improvement plans if the current service snapshot does not

meet her reliability requirements. Existing systems such as

INDaaS [70] and reCloud [22] can compute deployment plans

from scratch, but such plans may differ considerably from



Table 1: Key techniques in CloudCanary.

Objective Key techniques Section(s)
Reusing previous audit results Caching + Cache refreshes 3.1 + 3.4

Avoiding full-blown Cartesian products Reduction to DNF (Disjunctive Normal Form) conversion 3.1

Incremental auditing Differential fault graphs 3.2

Efficient auditing Reduction to minimum-cost SAT 3.3

Avoiding large-scale Markov chains Reduction to model counting 4.2

Handling non-uniform probabilities Adding virtual leaf nodes 4.2

Reducing the search space Network compression + Search heuristics 4.3

Figure 3: The workflow and architecture of CloudCanary with

two novel primitives: SNAPAUDIT and DEPBOOSTER.

the current snapshots and require non-trivial reconfiguration.

Moreover, these systems are also inefficient to use in service

runtime with high update frequency.

Therefore, although the two tasks can be performed with

looser time constraints at service initialization, services with

frequent updates demand better support for efficient audits

and improvements in real time.

2.4 Our Approach: CloudCanary
We propose CloudCanary to achieve the above goals. Figure 3

shows CloudCanary’s workflow. For a given service snapshot

S, CloudCanary collects its dependency data and constructs a

fault graph using existing dependency acquisition and fault

graph generation modules [70]. The key innovation in Cloud-

Canary is its two primitives SNAPAUDIT and DEPBOOSTER.

SNAPAUDIT can extract risk groups from S, and DEPBOOSTER

can generate improvement plans, both in a matter of minutes.

Table 1 highlights the key techniques we have used and the

objectives they are designed to achieve.

SNAPAUDIT. To accelerate auditing, SNAPAUDIT uses two in-

sights. First, since service updates typically just affect a small

subset of dependencies [37, 49, 60], there is no need to audit

from scratch for each update. Rather, SNAPAUDIT performs

a complete fault graph analysis at service initialization, and

aggressively reuses cached results to perform incremental au-
diting afterwards. Second, we use a novel encoding to reduce

fault graph analysis to a minimum cost Boolean Satisfiability
(SAT) solving problem, and leverage modern SAT solvers for

fast auditing. This insight is driven by the fact that modern

SAT solvers can solve complex Boolean formulas efficiently

with accuracy guarantees.

DEPBOOSTER. The second primitive automatically gener-

ates improvement plans to meet a reliability goal, e.g., the

minimal risk group containing more than k elements, or the

failure probability being lower than α. If naïvely done, as-

sessing the failure probability requires solving a long Markov

chain [63], and searching through all possible plans further

exacerbates the inefficiency. We use a novel reduction to

model counting to compute the failure probability, as well as

a combination of network compression and search heuristics
to reduce the search space.

3 The SNAPAUDIT Design
This section details the design of SNAPAUDIT that identifies

the minimal risk groups in a given service snapshot. Figure 4

presents the key algorithms of SNAPAUDIT: FIRSTAUDIT is

only executed once at service initialization. INCAUDIT per-

forms incremental auditing for the subsequent snapshots dur-

ing service runtime. For a given service snapshot, the input of

FIRSTAUDIT or INCAUDIT is a fault graph G representing its

underlying dependency structure, and the output is ΣG which

contains the top-k minimal risk groups of G.

Minimal risk group. A risk group is minimal if the removal

of any of its constituent elements makes it no longer a risk

group. For instance, in Figure 2, there are two minimal risk

groups: σ1 ={Core1} and σ2 ={Agg1∧Agg2}. On the other

hand, σ3 ={Agg1∧Core1} is also a risk group but is not a

minimal risk group, because the failure of Core1 alone can

cause the entire service to fail. Moreover, we can characterize

a risk group’s criticality by its cardinality, e.g., σ1 is more

critical than σ2 because |σ1|= 1 < |σ2|= 2—it takes two fail-

ures in σ2 to take down the service but only a single failure in

σ1. The top-k risk groups of a given fault graph G are a ranked

list of minimal risk groups by size or by failure probability.

e.g., ΣG = {σ1,σ2}. Extracting minimal risk groups in a fault

graph is NP-hard [63, 72].

3.1 The First Audit
At service initialization, we use FIRSTAUDIT to compute the

risk groups from scratch. FIRSTAUDIT not only audits the over-

all fault graph G, but also every subgraph in G, thus enabling

subsequent audits (performed by INCAUDIT) to reuse the re-

sults for these subgraphs. All audit results are recorded in a

key-value cache Σ, where the key corresponds to a particu-

lar subgraph, and the value is its top-k minimal risk groups.

FIRSTAUDIT builds a unique identifier for each subgraph by

constructing a Merkle Hash Tree [53], and uses the root node’s

hash as the identifier of the entire subgraph. This allows for a



function FIRSTAUDIT(G)

if isleaf(G) then
ΣG ←{G}

for c ∈ G.children do
if Σc = /0 then

Σc ← FIRSTAUDIT(c)

ΣG ← MERGE(G)

return ΣG

function MERGE(G)

c1, · · · ,ck ← G.children
if G.gate = AND then

ΣG ← DNF(Σc1
∧·· ·∧Σck )

else
ΣG ← DNF(Σc1

∨·· ·∨Σck )

return ΣG

function INCAUDIT(G)

Π ← GETBORDER(G)

for t ∈ Π, t.children /∈ Π do
for c ∈ t.children,Σc = /0 do

Σc ←MINCOSTSAT(c)

ΣG ←MERGEALL(G)

return ΣG

function GETBORDER(G)

while BFS(G) with Q do
n ← Q.Pop()
if Σn = /0 then

if c∈ n.child, Σc 
= /0 then
L.append(n)

Q.Push(n.children)
return L

Figure 4: The key functions in SNAPAUDIT: FIRSTAUDIT and MERGE (§3.1), INCAUDIT and GETBORDER (§3.2).

Figure 5: Merging risk groups for AND/OR gates.

more compact encoding of the subgraphs in the cache, given

that the number of subgraphs in G is very large. For exam-

ple, in Figure 5(a), the key of the subgraph rooted at B is

h(B) = h(h(E)||h(F)), where h is a hash function and || de-

notes concatenation. Indexing Σ by B’s key would return

ΣB = {{A3},{A4},{A1∧A2}}.

To generate Σ for both G and its subgraphs, a strawman

solution is to directly call existing auditing systems such as

INDaaS [70]. However, as discussed in §2.3, these systems

are quite slow because their fault graph analysis algorithms

scale poorly. Here, any inefficiency would be amplified sev-

eral times over, because we are computing the minimal risk

groups for each subgraph in G. To address this problem, we

propose a completely different approach to computing the

minimal risk groups, using high-performance Boolean for-

mula translation toolchains such as Z3 [27] and Velev [62].

Overall, our FIRSTAUDIT algorithm starts with the leaf

nodes, and recursively ascends to upper layers, until it reaches

the root node of G. The base case for FIRSTAUDIT is to com-

pute the minimal risk group list Σn for a leaf node n, where it

simply returns Σn = {{n}}. In the inductive case, FIRSTAUDIT

processes an intermediate node n with children n1, · · · ,nk by

calling MERGE on n and combining results for all its chil-

dren. If n’s children are connected by an OR gate, we have

Σn = Σn1
∪·· ·∪Σnk ; otherwise, if n’s children are connected

by an AND gate we have Σn = Σn1
×·· ·×Σnk , where × denotes

Cartesian product. Figure 5 shows a concrete example.

Reduction to DNF conversion. A naïve MERGE over an AND
gate requires a full-blown Cartesian product between risk

groups, which leads to state explosion. If the size of each Σni

is |Σ|, merging k of them would result in a set of size |Σ|k;

after s merges, the size would further grow to |Σ|ks. To solve

this problem, our insight is that MERGE can be achieved by a

DNF (Disjunctive Normal Form) conversion, which can be

efficiently computed using modern solvers [27]. A Boolean

formula is in DNF if it is a disjunction of conjunctive clauses.

Consider the case shown in Figure 5(b), where we have ΣE =
{{A3},{A1∧A2}} and ΣF = {{A4},{A1∧A3}}. We need

to compute ΣB = ΣE ×ΣF , which can be transformed to a

Boolean formula: φ = ΣE ∧ΣF = ((A1∧A2)∨A3)∧ ((A1∧
A3)∨A4). By using Z3, we can quickly compute the DNF of

φ, getting (A1∧A3)∨(A1∧A2∧A4)∨(A3∧A4). As a result,

ΣB contains three minimal risk groups: {A1,A3}, {A3,A4},

and {A1,A2,A4}. Note that only DNF transformation can

output all the minimal risk groups within one-run, and other

solvers, e.g., MinCostSAT, do not support such a capability.

3.2 Subsequent Audits
All subsequent audits are performed using INCAUDIT, which

reuses the results in Σ generated by FIRSTAUDIT. As

shown in Figure 4, INCAUDIT has three steps: GETBORDER,

MINCOSTSAT, and MERGEALL. Given a fault graph G,

INCAUDIT first uses GETBORDER to identify the differential

fault graphs, and then invokes MINCOSTSAT to extract risk

groups from each differential fault graph. Finally, INCAUDIT

uses MERGEALL to merge the results for the differential fault

graphs and those for the unchanged subgraphs, getting the

final result ΣG (i.e., G’s minimal risk groups).

GETBORDER. This step identifies a set of special border
nodes that delineates the changed and unchanged portions of

the fault graph. Concretely, a node n with children n1, · · · ,nk
is called a border node if a) at least one of n1 −nk’s key has a

hit in Σ (i.e., Σni 
= /0), and b) at least one of them has a miss

in Σ (i.e., Σn j = /0). If all n’s children have been previously

audited, or none of them has been audited, then n is not a

border node. For instance, in Figure 6, A and B are border

nodes, but C–F are not.

To identify border nodes, we traverse G in a breadth-first

order from the root. For each traversed node n, we check

whether n has a hit in Σ. If n has a hit, we can reuse its result

because 1) n is not a border node, and 2) n’s subgraph has

not changed. If n misses in Σ (e.g., A in Figure 6), we check

its children. If any of n’s children has a hit in Σ (e.g., D in

Figure 6), we record n as a border node, and recurse and

process n’s children in order to find more border nodes.

We then extract differential fault graphs based on the border

nodes and analyze such subgraphs from scratch, starting from

the bottom border node. A node is a bottom border node if

a) it is a border node, and b) none of its subgraphs contains



Figure 6: A service update where a subgraph C is added to

the fault graph; this changes the keys for subgraphs rooted at

A and B. In the updated fault graph, A and B are border nodes,

B is the bottom border node, and D–F are unchanged. The

subgraph rooted at C is a differential fault graph, which we

invoke MINCOSTSAT on to obtain ΣC. The results for ΣD, ΣE ,

and ΣF have already been cached in Σ.

more border nodes. For example, in Figure 6, the only bottom

border node is B; A is a border node, but not a bottom border

node. We identify the bottom border nodes’ children who

miss in Σ (e.g., C in Figure 6) as the roots of differential fault

graphs, and analyze such subgraphs from scratch.

MINCOSTSAT. To analyze a differential fault graph, GΔ,

from scratch, a straightforward approach is to directly invoke

FIRSTAUDIT. However, unlike the first audit at service initial-

ization, which could be performed at leisure, INCAUDIT is

frequently invoked during service runtime; thus, efficiency

is much more critical. Thus, rather than audit all subgraphs

in GΔ, we only audit GΔ itself. We achieve this by reducing

this single audit to a minimum-cost SAT problem, which can

be efficiently solved using modern SAT solvers. This step is

denoted by MINCOSTSAT. For example, in Figure 6, because

the subgraph rooted at C is a differential fault graph, we in-

voke MINCOSTSAT to compute its minimal risk groups, i.e.,
ΣC. We detail this MINCOSTSAT reduction in §3.3.

MERGEALL. After we use MINCOSTSAT to compute the risk

groups for all differential fault graphs, we need to recompute

the risk groups of G. Our insight is that we already have

results for the siblings of these differential fault graphs (e.g.,
D, E, and F in Figure 6), and we could directly use the DNF

conversion in MERGE (§3.1), to obtain the risk groups for

the entire G. Specifically, we generate a Boolean formula

φ by only combining all the border nodes’ children using

their respective logic gates. Then, we transform φ into DNF,

obtaining ΣG. For example, in Figure 6, we first generate

φ = (ΣC ∨ ΣE ∨ ΣF)∧ ΣD, and then transform it into DNF,

getting the recomputed ΣA.

3.3 The MinCostSAT Solving
We now detail the design of MinCostSAT function, which can

efficiently and accurately extract minimal risk groups from a

given fault graph.

At a high level, a minimum-cost SAT problem [35] takes as

input a Boolean formula φ with n Boolean variables b1, b2, . . .,
bn, and a cost vector {wi|wi ≥ 0,1≤ i≤ n}. The goal is to find

a satisfying assignment to these variables such that φ evaluates

to True, and simultaneously minimizing the following value:

W = ∑n
i=1 wibi.

We design the MINCOSTSAT function to compute the top-k
risk groups. Initially, we transform an input fault graph into a

Boolean formula φ, and initialize the cost of all the Boolean

variables to one. For example in Figure 7, the fault graph

at the left-hand can be transformed into (Agg1 ∨ Core1) ∧
(Core1 ∨ Agg2). We then use a MinCostSAT solver to find

the top-k critical risk groups through k rounds. Without loss

of generality, for the i-th round, we identify the i-th smallest

risk group in three steps: 1) we input the current formula φi
and its cost vector into the MinCostSAT solver to generate the

satisfying assignment with the minimal cost, 2) we obtain a

risk group by extracting all the True literals from the resulting

assignment, denoted as ψ. and 3) we use a conjunction to

connect the current φi and the negation of ψ, generating a new

φi+1 = φi ∧¬ψ for the next round.

3.4 Further Speedups
Since SNAPAUDIT heavily relies on the cache Σ for efficient

audits, we propose two additional techniques to achieve fur-

ther speedups. First, the results obtained during INCAUDIT can

also be cached in Σ, so that Σ would grow over the service

lifetime and the hit rate would improve. Second, INCAUDIT

does not audit the subgraphs of a GΔ, but the subgraphs may

be needed for subsequent audits. We therefore run a back-

ground process that periodically invokes FIRSTAUDIT over the

more recent snapshot to refresh the cache. However, we have

omitted these techniques from the pseudocode for brevity.

4 The DEPBOOSTER Design
Identifying risk groups is a useful first step, but the opera-

tor still needs to reason about ways to increase the service

reliability. Rather than ask the operator to achieve this manu-

ally, CloudCanary offers a second primitive, DEPBOOSTER, to

generate improvement plans in an automated fashion.

4.1 The DEPBOOSTER Workflow
DEPBOOSTER offers the operator an interface to specify “reli-

ability goals”, and assesses if the current deployment meets

the goals. If not, DEPBOOSTER generates improvement plans

with increased reliability. These goals are specified as spec =
req∧ action∧ cons. req is a requirement parameter. It can

be a) rcg > t, which means the smallest risk groups in the

deployment should contain more than t elements, b) fp < α,

which means the failure probability should be lower than some

threshold α, or c) a combination of both. While DEPBOOSTER

currently only supports constraints like failure probability and

the size of risk groups, more constraints, e.g., key paths, are

easily added.



Figure 7: Transforming G by adding virtual leaf nodes.

DEPBOOSTER first assesses whether rcg > t and fp < α
already hold on the current snapshot. (Computing whether

rcg > t is achieved using SNAPAUDIT, which we described

in §3; we defer the algorithm for computing whether fp <
α to §4.2.) If both predicates hold, DEPBOOSTER reports so

and terminates. Otherwise, it uses the strategies in action
and the constraints in cons to generate improvement plans.

action specifies an extensible set of basic actions to generate

improvement plans with. Currently, DEPBOOSTER supports

1) mov{r, A→B}, which moves a service replica r from a

node A to another node B; 2) add{r, A}, which instantiates

an additional replica r on node A; and 3) link{A, B}, which

adds a network link between network components A and B.

DEPBOOSTER then performs a search for improvement plans

based on the basic actions. cons contains positive and negative

constraints which specify that certain components must or

must not be used in an improvement plan.

Example. We now provide a concrete example based

on the scenario in Figure 1. Here, the operator provides

DEPBOOSTER with a goal: spec = {rcg > 1∧ fp < 0.08} ∧
{mov} ∧ {Agg3}, which specifies that a) the smallest risk

groups should contain more than one elements, and b) the fail-

ure probability should be lower than 0.08. If the current snap-

shot does not meet either of these two goals, DEPBOOSTER

will generate a set of improvement plans. Moreover, the spec
requires DEPBOOSTER to generate improvement plans by only

moving replicated instances from the current replica servers

to other servers. Finally, any improvement plan must still

use the switch Agg3, as specified in cons. For this speci-

fication, DEPBOOSTER has generated two potential plans: a)

mov{CinderDB, S1->S4}, and b) mov{CinderDB, S2->S4}. In

other words, if we migrate the Cinder DB instance on S1 or

S2 to S4, then new deployment would meet the desired goals.

4.2 Computing Failure Probability

We now describe how DEPBOOSTER computes the failure

probability of a service snapshot. A strawman solution would

be to derive the failure probability of the root node from these

of the leaf nodes step by step, which is equivalent to comput-

ing the conditional probability of a Markov chain [63]. As we

will show later, this is a time-consuming operation over large

Figure 8: DEPBOOSTER searches through combinations of

AND/OR gates to approximate a given probability.

deployments, infeasible to be performed in real time. Instead,

DEPBOOSTER uses two techniques to address this.

Technique #1: Model counters. DEPBOOSTER sidesteps the

need for Markov chain computation by encoding this into a

model counting problem. Suppose that the Boolean formula

of the fault graph G is φ. A model counter [20] can find M—

the number of satisfying assignments of φ. Assuming for now

that all leaf nodes have a failure probability of exactly 1
2 ,

then the failure probability of G is simply M/2n, where n is

the number of leaf nodes in G. Since model counting does

not need to compute the solutions themselves, but only the

number of satisfying assignments, this is much more efficient

than solving a Markov chain.

Technique #2: Virtual leaf nodes. However, another chal-

lenge arises: in practice, not all leaf nodes have the same

failure probability, and such a probability is typically much

lower than 1
2 . We address this by adding “virtual nodes” in

the fault graph and reducing the problem again into the plain

version of model counting. At a high level, we achieve this

by substituting a node with failure probability of p with a

subtree of virtual nodes, where all virtual nodes have a failure

probability of 1
2 , and the failure probability of the entire vir-

tual subtree evaluates to p with a user-defined precision ε. For

instance, in the example shown in Figure 7, our goal would

be to transform the node with p = 5
8 (i.e., Core1 fault) into

a virtual subtree.

Figure 8 shows the solution space that DEPBOOSTER

searches through to find a combination of gates that approxi-

mates a given failure probability. At any point in the search,

the path from the root to a node n represents the current com-

bination of gates. These gates further connect virtual nodes of

failure probability 1
2 (not shown in the figure). For instance,

the path from the root to node 5 consists of an AND gate and

then an OR gate, so the formula would be (v1 AND v2) OR
v3, where v1-v3 are virtual nodes with a failure probability

of 1
2 . The failure probability of n5 can then be computed

as p(n5) = (( 1
2 × 1

2 )+
1
2 )− ( 1

2 × 1
2 )× 1

2 = 5
8 . Our algorithm

performs a BFS over the solution space, and constructs a com-

bination of gates based on the path from the root to the current

node. If |p(n j)− p|< ε holds for the current node, the search

stops and we use the current combination to approximate

a given probability. This transformation converts the fault

graph G to a larger fault graph G′ with (roughly) the same



Figure 9: An example state-space tree.

failure probability that can be solved by model counters—i.e.,
p = M′/2n′ , where M′ is the model counter output for G′ and

n′ is the number of leaf nodes in G′.

4.3 The DEPBOOSTER Algorithm
If the current deployment already meets the reliability goals,

DEPBOOSTER directly terminates. Otherwise, it generates im-

provement plans by searching through a state-space tree. Each

node in this tree represents one concrete move in action, and

a path from the root to a leaf represents an improvement plan.

Since there could be a large number of possible improve-

ment plans, DEPBOOSTER uses two techniques to accelerate

the search. Below, we use Figure 9 as an example to illus-

trate how DEPBOOSTER generates improvement plans for our

running example in §4.1.

Technique #3: Network compression. We use the observa-

tion that datacenter network topologies tend to be highly sym-

metric, and can be “simplified” to equivalent topologies much

smaller in size [17]. This enables DEPBOOSTER to perform

the search on the smaller networks, and then map the solution

back onto the original topologies. Driven by this observation,

DEPBOOSTER transforms the input network topology D to a

simplified topology d while preserving its original connec-

tivity and reachability. Briefly, this is achieved by collapsing

symmetric network structures (i.e., routers and paths) and slic-

ing away irrelevant structures. For instance, Figure 9 shows

how the symmetric branch at S2 has been pruned. We refer

interested readers to the original paper [17] for proofs.

Technique #4: Iterative deepening. DEPBOOSTER then gen-

erates the state-space tree Td based on the simplified topology

d. It never materializes Td in its entirety, but only explores it

step by step. Concretely, DEPBOOSTER performs an Iterative

Deepening Depth-First Search (IDDFS) [46] on Td starting

from the root. For each traversed node n, DEPBOOSTER checks

whether n or any of n’s children violates the specified con-

straints. If any constraint is violated, then the corresponding

branches are pruned. For example, in Figure 9, the branch

mov(S2 -> S3) under mov(S1 -> S3) is pruned because mov-

ing Cinder DB instances on S1 and S2 to S3 violates the con-

straint that Agg3 must be used in the new deployment. For

the remaining nodes, DEPBOOSTER runs INCAUDIT and the

failure probability computation approach (designed in §4.2)

to check whether the size of risk groups and failure proba-

bility meet the specified goals. For instance, in Figure 9, we

do not need to check any branches below the state mov(S1 ->
S4), since moving the Cinder DB instance on S1 to S4 has

already satisfied the specified goals.

DEPBOOSTER can be configured to a) produce improvement

plans with the smallest number of actions, b) find the first t
improvement plans, and c) run until a timeout occurs. In the

running example, we have used b) to find four improvement

plans: 1) mov{CinderDB, S1->S4}, 2) mov{CinderDB, S2-
>S4}, 3) mov{CinderDB, S1->S3}, mov{CinderDB, S2->S4},

and 4) mov{CinderDB, S2->S3}, mov{CinderDB, S1->S4}.

The first two plans correspond to those shown in §4.1.

5 Limitations and Discussions
We discuss three high-level limitations of CloudCanary and

potential ways to address them.

Quality of inputs. CloudCanary takes two types of inputs

as given: a) dependencies, and b) failure probabilities; so it

would be limited by the accuracy of the inputs (see §6.5 for a

concrete example). For instance, an operator might not know

that two upstream ISPs share the same undersea fiber, and that

a fiber cut would bring down both networks; or an operator’s

estimate of the failure probabilities might not be perfectly

accurate. In such cases, CloudCanary cannot automatically

identify these inaccuracies. However, CloudCanary can bene-

fit from advances in dependency collection systems or failure

estimation algorithms: enhancement to CloudCanary’s inputs

always leads to improved utility.

Dependency granularity. CloudCanary is also limited by

the dependency granularity of its data acquisition system; it

currently cannot reason about more fine-grained dependen-

cies such as configuration files. If a misconfigured component

handles two upper-layer services differently, the current ver-

sion of CloudCanary would not be able to identify that. This

is somewhat akin to the previous limitation, and could benefit

from a similar solution—e.g., enhancing the fault graphs to

capture configuration files.

Non-deterministic failures. The logic gates in CloudCa-

nary’s fault graph are deterministic, which assumes that if

two services depend on a common component, the failure of

the component would affect both services. This assumption

does not capture well non-deterministic and/or partial failures,

e.g., when a bit flip in switch TCAM only affects a subset

of services but not others. Modeling such behaviors might

require extensions to the fault graph abstraction, which we

leave as future work.

6 Evaluation
Our evaluation aims to answer three high-level questions: (1)

How efficient and accurate is CloudCanary in identifying

the risk groups? (2) How quickly can CloudCanary generate

improvement plans? and (3) How well can CloudCanary shed

light on failure risks in real-world traces?



Table 2: The configuration of our deployments.
Deploy. A Deploy. B Deploy. C

# Switch ports 24 64 128
# Core routers 144 1,024 4,096
# Agg switches 288 2,048 8,192
# ToR switches 288 2,048 8,192
# Virtual machines 3,456 65,536 524,288
# Libraries/Microservices 4,492 79,824 638,592
Total # of components 8,668 150,480 1,183,360

Prototype implementation. We have developed a CloudCa-
nary prototype using a mix of C++, Python, and open-source
software libraries. Our system consists of three components:
a) fault graph generator, b) SNAPAUDIT, and c) DEPBOOSTER.
The fault graph generator uses NSDMiner [56] and TS [24] to
acquire network and software dependency data, and uses IN-
DaaS [70] to parse and generate fault graphs. Our SNAPAUDIT

prototype uses a) a high-performance MinCostSAT solver,
Maxino [6], for solving the Boolean formulas that encode the
fault graphs, b) the Z3 solver [27] for DNF conversion, and
c) a fault graph parser based on pyeda [7] to optimize the
encoding and transformation of formulas. Our DEPBOOSTER

prototype uses a scalable open-source SAT model counter,
ApproxMC [2], to compute failure probabilities.

6.1 Experimental Setup
We have emulated a datacenter network with a Clos
topology [59], and installed Apache Hadoop 3.2.0 and
ZooKeeper 3.4.0 as the cloud services. In the performance ex-
periments, we varied the service size from 8,668 to 1,183,360
software and network components using up to 524 k virtual
machines, as shown in Table 2. We also used a real failure
probability distribution trace for network devices in our exper-
iments. All machines have an Intel Xeon E5-1620 v2 Quad
Core HT 3.7 GHz CPU and 16 GB memory.

Baseline systems. Table 3 presents the three state-of-the-art
auditing systems that we have used as the baseline to compare
CloudCanary against. Among these systems, INDaaS [70] is
more accurate than RepAudit [71] and reCloud [22], but the
latter two are faster. This is because the minimal risk group al-
gorithm in INDaaS relies on an exhaustive search, which can
produce 100% accurate results but scales poorly. RepAudit
and reCloud trade accuracy for efficiency: the former uses a
simple MaxSAT solving that cannot guarantee that the identi-
fied risk groups are minimal1, and the latter uses sampling for
approximation, which may miss risk groups. Furthermore, we
have included a fourth baseline that we call ProbINDaaS [70],
which is a randomized version of INDaaS that also relies on
sampling for efficiency. We note that reCloud uses a more
advanced sampling algorithm (i.e., dagger sampling) than
ProbINDaaS (i.e., Monte Carlo), and that reCloud can addi-

1MaxSAT solving means: given an SAT formula with weight one to each
clause, find truth values for its variables that maximize the combined weight
of the satisfied clauses.

Table 3: All evaluated systems and their comparisons.
System Accurate? Efficient? Imp. Plans?

INDaaS [70] X × ×
ProbINDaaS [70] × X– ×

reCloud [22] × X– ×
RepAudit [71] X– X– ×
CloudCanary X X X

tionally provide the ability to generate a deployment from
scratch to meet a reliability goal. Unlike all these baseline
systems, CloudCanary can generate improvement plans based
on the current deployment, and it performs incremental audit-
ing while preserving accuracy. As shown later, CloudCanary
achieves 100% accuracy while outperforming all baselines.

6.2 Performance: SNAPAUDIT

We start by evaluating the performance of SNAPAUDIT using
the deployments in Table 2 (A: small, B: medium, C: large).
For each deployment, we measured a) the time each system
took to audit the service from scratch, and b) the time to audit
an updated snapshot when 10% of the hosts and links have
been affected. All audits asked for top-50 risk groups.

Efficiency. At service initiation, we observe that INDaaS is
the slowest, taking up to ∼5811 minutes on the largest de-
ployment. The two probabilistic approaches ProbINDaaS and
reCloud (both with 107 sampling rounds) also perform poorly
due to the large search space. RepAudit outperforms other
baselines and is slightly (∼1.3×) faster than SNAPAUDIT’s
FIRSTAUDIT. However, this is expected, because RepAudit
only audits the overall fault graph, whereas FIRSTAUDIT au-
dits both the overall fault graph and its subgraphs to create
reusable results for subsequent audits.

We then updated the three deployments by randomly
adding or removing 10% hosts and links, and ran the four au-
diting systems on the resulting deployments A′–C′. Figure 10
shows the turnaround time (X-axis) versus audit accuracy
(Y-axis). As we can see, SNAPAUDIT’s INCAUDIT consistently
outperforms INDaaS, ProbINDaas, reCloud, and RepAudit for
all subsequent audits. On deployment B, INCAUDIT is faster
than the second fastest system RepAudit by 200×.

Accuracy. Moreover, SNAPAUDIT always has an accuracy
of 100% across deployments—the same with INDaaS—
but RepAudit only has 96%, 83%, and 68% in deploy-
ment A′–C′, respectively. ProbINDaaS and reCloud are even
less accurate. Here, an inaccurate audit in RepAudit, re-
Cloud, and ProbINDaaS means that a) some risk groups
are missing from the output, and b) some risk groups gen-
erated by these systems are not minimal. For instance,
SNAPAUDIT outputs Σ = {{A},{B},{C,D}} as the top-3 risk
groups. An inaccurate system, however, may output Σ′ =
{{A,E},{C,D,E},{C,D,F}}, where {B} is missing and the
rest of the risk groups are not minimal. Therefore, even a low
inaccuracy rate (e.g., 100%−96%=4%) means that human
operators need to manually inspect the results to identify re-
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(a) Deployment A′.
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(b) Deployment B′.
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(c) Deployment C′.
Figure 10: Performance evaluation of CloudCanary, INDaaS, reCloud (with 107 rounds of sampling) and ProbINDaaS (with 107

rounds of sampling), and RepAudit in one of the update snapshots.
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Figure 11: SNAPAUDIT microbenchmarks.

dundancy and reason about the possibility of unidentified risk
groups—a task that is time-consuming to perform at runtime.

Microbenchmarks. To further understand the performance
improvements of the incremental auditing algorithm in
SNAPAUDIT, we have performed a set of microbenchmarks
to break down the speedups. We used RepAudit as the base-
line, as it performs faster than other systems and is closest
to SNAPAUDIT in its use of SAT solvers. For each of the de-
ployments A′–C′, we measured the execution times for four
scenarios: a) SNAPAUDIT with all optimizations turned on, b)
SNAPAUDIT without the fast DNF conversion, c) SNAPAUDIT

further without caching previous results, and d) RepAudit. Fig-
ure 11 shows that, without any optimization, SNAPAUDIT per-
forms very similarly with RepAudit; the slight speedup comes
from the differences in the SAT formulations. The fast DNF
conversion led to speedups of 2×–40×, and reusing cached
results led to speedups of 4×–8×. These results demonstrate
that the optimization techniques in SNAPAUDIT can signifi-
cantly accelerate incremental auditing.

Degrees of update. A third observation is that the time IN-
DaaS, ProbINDaas, reCloud, and RepAudit took on each sub-
sequent audit is roughly the same with that on their first audits,
because they perform each audit from scratch. SNAPAUDIT’s
INCAUDIT, on the other hand, is significantly faster on subse-
quent audits than its first audit.

To further evaluate how the degree of updates affects the
auditing time of SNAPAUDIT, we tested updates that affect
10%–50% of the components in deployment C, and used
SNAPAUDIT to audit these five updates. As shown in Figure 12,
the turnaround time of CloudCanary increases roughly lin-
early with the update percentage. This is good news, because
a complete overhaul of a deployed service is rare. Most up-
dates only affect a small part of the service, and they can reap
the benefits of CloudCanary easily. On the contrary, since
RepAudit never used any incremental algorithm, the RepAu-

dit performance in Figure 10 reflects the update that affects
the majority of the deployment.

6.3 Performance: DEPBOOSTER

We now evaluate the performance of DEPBOOSTER for com-
puting failure probabilities and generating improvement plans.
For the first task, our baseline systems are INDaaS and RepAu-
dit, both of which solve a Markov chain to obtain the proba-
bility. For the second task, our baseline systems are reCloud
and RepAudit, although they are not designed to generate
improvement plans directly.

Failure probability computation. Figure 13 shows the time
DEPBOOSTER, reCloud (with 107 sampling rounds) and the
baseline system (Markov chain computation) took to compute
the failure probability of each deployment. For DEPBOOSTER,
we set the precision per leaf node to be 10−4 (defined in
§4.2) when adding virtual leaf nodes. As shown in Fig-
ure 13, DEPBOOSTER achieves a speedup of two to three or-
ders of magnitude compared to reCloud and the baseline. On
the largest deployment, DEPBOOSTER only took 2.5 minutes,
whereas the baseline and reCloud took more than 10 hours.
In terms of the failure probability precision, we found that
DEPBOOSTER approximates the probability of the baseline
system (which does not use any approximation) with an er-
ror of 10−3 for all tested deployments, whereas the error in
reCloud is 10−2 for all tested deployments.

Improvement plan generation. Next, we evaluate the perfor-
mance of DEPBOOSTER, using reCloud as the baseline. Each
deployment hosted the service instances on 50% of the servers,
and the query asked for improvement plans to reduce the fail-
ure probability to under 0.008 using the mov strategy. Fig-
ure 14 shows the results. We can see that DEPBOOSTER fin-
ished within 30 minutes across deployments, and outperforms
reCloud and RepAudit by at least one order of magnitude.
DEPBOOSTER can do better for two reasons. First, the model
counter-based failure probability computation (§4.2) speeds
up the result checking for each candidate solution. In fact,
Figure 13 can also be looked as the microbenchmark evalu-
ation for DEPBOOSTER, because the bottleneck operation of
DEPBOOSTER is failure probability computation. Second, the
pruning technique (§4.3) reduces the number of solutions
searched; thus, we can observe few failure probability com-
putations are needed.
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6.4 Case Study
To better understand how the auditing (in)efficiency affects
real-time updates, we have performed a case study that em-
ulates a series of network and software updates. They con-
sisted of 52 updates over the span of one week—we col-
lected the update frequency and distribution from a large-
scale cloud provider. We adapted six of these updates from
realistic update scenarios [37, 48, 57] and from the Apache
issue tracker [13]. All other updates were randomly generated
and each of them affected 10% nodes in the deployment. This
set of experiments was conducted over a deployment with
576 64-port core routers, 1,152 64-port aggregation switches,
1,152 64-port top-of-rack switches, and 27,648 servers.

Figure 15 shows the results for the first six updates, which
we adapted from existing work.

• Snapshot S0. At service initialization, the operator set up
the entire service, and performed an audit from scratch
using the four auditing systems.
• Snapshot S1: Small updates [48]. The first update

changed 1% of network links.
• Snapshot S2: Large updates [57]. The second update

changed 20% servers and 20% links based on a network
update trace, and it is designed as “pressure test”.
• Snapshots S3 and S4: Frequent updates [37]. The subse-

quent two updates occurred within a short interval of seven
hours, designed as another pressure test.
• Snapshots S5 and S6: Software version updates. The

final two updates were to software dependencies, where
ZooKeeper was updated from version 3.4.0 to 3.4.6, and
then to 3.4.8. They were designed to test the systems’ abil-
ity to identify software-level risk groups.

Identifying risk groups. Figure 15 shows that existing sys-
tems are too inefficient for real-time auditing. INDaaS was
only able to finish the auditing for S0 (at service initialization)
and S6, but failed for all other updates, because its turnaround
time exceeded the intervals between them. RepAudit and re-
Cloud took roughly eight and sixteen hours per snapshot, and
they finished S0, S2, and S6, which happened to be spaced
out from their previous updates by more than sixteen hours,
But they failed to finish for S3–S5, which came close to each
other. Recall that, as explained in §6.2, RepAudit and reCloud
achieve this speedup by trading accuracy for efficiency, so
operators still need to manually reason about missing and
non-minimal risk groups after audits.

CloudCanary achieves 100% accuracy in all tested cases,
outputting the same results with INDaaS on scenarios where
INDaaS was able to finish. However, for each real-time audit,
it only took 4.7–6.5 minutes, outperforming INDaaS by 290×,
reCloud by 250×, and RepAudit by 150×–200×. The only
case where CloudCanary was slightly slower than RepAudit
was at service initialization—when auditing S0, CloudCanary
needs to audit all subgraphs in the fault graph from scratch.

Generating improvement plans. We then ran DEPBOOSTER

to generate improvement plans for each snapshot. Since the
strategies in CloudCanary do not involve changes to soft-
ware components, we only evaluated S0–S4, where the re-
liability can be improved using CloudCanary’s mov strategy.
Our reliability goal was specified as spec = {rcg > 5∧ fp <
0.008}∧{mov}, and we assigned the failure probability of
each switch or server to be 0.002 [36]. For S0–S4, CloudCa-
nary generated improvement plans in 4.87, 2.32, 5.77, 7.12
and 6.29 minutes, respectively. In all cases, CloudCanary fin-
ished well before the next update arrived. Furthermore, in
order to test the effectiveness of our improvement, we in-
jected errors via a chaos-monkey-like way, randomly killing
four components, because our constraints set rcg > 5. We
observed that the improved deployments never failed.

Overall success rates: We now report results for all 52 up-
date snapshots. Our metric is the success rate of a system,
defined as r = m

n , where m is the number of updates for which
the system finished on time, and n is the total number of up-
dates. In other words, m− n is the number of updates that
cannot be handled due to an audit system’s high turnaround
time. Overall, INDaaS failed on almost all cases (r = 1.92%)
due to its inefficiency. reCloud and RepAudit are faster, but
still only had a success rate of 3.85%. CloudCanary, on the
other hand, achieved a success rate of 100%, finishing all
audits with an average turnaround time of 5.23 minutes.

6.5 Identifying Real Risk Groups
Finally, we evaluate the usability of CloudCanary using a real-
world update trace collected from a major service provider.
The trace contains 300+ updates to its infrastructure, including
software microservices, power sources, and network switches.
The operators that executed these updates have already been
trained with best practices for service reliability, but system-
atically understanding service dependencies is always a chal-
lenging task. For each update in this trace, we have used
CloudCanary to identify the top-5 risk groups, and obtained



Figure 15: Results on a deployment running Hadoop 3.2.0 and ZooKeeper 3.4.0 in a Clos-topology datacenter with 27,648 hosts
and 880 routers. Si are service updates, which potentially lead to new risk groups.

feedback from the operators. Upon their request, the numbers
below are presented as 50+, 10+, and so on, by rounding off
their last digits. A key highlight here is that operators have
confirmed that 50%+ of these risk groups were previously un-
known to them, and that some of them actually caused service
downtime in the past.

Microservices. We found 50+ risk groups in the microser-
vice updates. The operators have confirmed that 96% of them
could lead to correlated failures; the rest 4% are due to false
positives of the dependency collection tool (see §5 for dis-
cussion on quality of inputs). One particularly risky example
from the operators’ feedback is an update that routes all re-
quests to the same authentication service on a single machine.
If this machine fails, this would lead to a major outage. The
operators can fix this risk group by replicating the authentica-
tion service across multiple machines.

Power sources. We found 10+ risk groups in the power
sources. Operators have confirmed that all of them could
lead to correlated failures, and, in fact, 30%+ of them did
trigger service downtime in the past. As a highlight, one of
the updates assigned primary and backup power sources in
the same cluster to serve several racks hosting a critical ser-
vice. The cloud provider had experienced multiple hours of
downtime due to a failure of these power sources.

Network. CloudCanary reported 30+ risk groups, including
ToR/aggregation switches and shared fiber, all of which have
been confirmed by the operators. As an example, we found
that multiple data centers in the same city shared the same
fiber bundles, which presents a risk of correlated failures.
These risks can be prevented by adding redundant fiber bun-
dles across different cities.

7 Related Work

Structural reliability auditing. The most relevant to
CloudCanary are structural reliability auditing systems, IN-
DaaS [70], reCloud [22], and RepAudit [71], which can con-
struct fault graphs from dependency data and perform au-
dits to prevent correlated failures. INDaaS and CloudCanary
have higher accuracy than RepAudit and reCloud, because
the latter two use approximate algorithms to trade accuracy
for efficiency. Moreover, different from all existing work,

CloudCanary is designed to perform incremental auditing
over service updates.

Network/System verification. Failure prevention can also
be achieved by formal analysis, such as configuration ver-
ification [16, 19, 31, 32, 50, 55, 60, 68], and synthesis/re-
pair [29, 30, 48, 52, 65]. Some of these systems also use in-
cremental verification for speedup when performing analy-
sis [40, 43, 44]. Compared to these systems, CloudCanary has
a very different goal—it aims at preventing correlated fail-
ures resulting from common dependencies—and also involves
completely different algorithms as a result. On the contrary,
network verification and synthesis systems primarily focus on
reachability and performance properties, such as host-to-host
connectivity. Similarly, software misconfiguration detection
tools like PCheck [67] also focused on configuration logic,
rather than failures caused by common dependencies.

Post-failure diagnostics. Many diagnostic systems [14, 15,
21, 23, 26, 28, 41, 42, 45, 56, 58] and provenance systems [66,
76,77] have been proposed for failure troubleshooting. Cloud-
Canary aims at a different goal from these efforts.

8 Conclusion
We have presented CloudCanary, a system that can perform
real-time audits to prevent correlated failures in service up-
dates. Our system can compute the risk groups in a service
snapshot using cached results from previous audits, and it
can generate improvement plans with increased reliability.
It achieves this using a set of novel techniques, such as in-
cremental auditing and network pruning. CloudCanary out-
performs state-of-the-art systems by 200× and can generate
improvement plans for large deployments within several min-
utes. Moreover, it can yield valuable insights over real-world
traces from production environments.
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