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Abstract

The problem of learning an image classifier that allows
detection of out-of-distribution (OOD) examples, with the
help of auxiliary background datasets, is studied. While
training with background has been shown to improve OOD
detection performance, the optimal choice of such dataset
remains an open question, and challenges of data imbal-
ance and computational complexity make it a potentially
inefficient or even impractical solution. Targeted at bal-
ancing between efficiency and detection quality, a dataset
resampling approach is proposed for obtaining a compact
yet representative set of background data points. The re-
sampling algorithm takes inspiration from prior work on
hard negative mining, performing an iterative adversar-
ial weighting on the background examples and using the
learned weights to obtain the subset of desired size. Exper-
iments on different datasets, model architectures and train-
ing strategies validate the universal effectiveness and effi-
ciency of adversarially resampled background data. Code
is available at https://github.com/JerryYLi/
bg-resample-ood.

1. Introduction

While modern deep neural networks (DNN) achieve or
surpass human-level accuracy on image recognition tasks,
they are also notorious for producing overconfident deci-
sions on misclassified examples [| |, 32], or even inputs that
do not belong to any training class [26, 2]. This is problem-
atic for many applications where a) inputs may come from
a different distribution than the training data, and b) relia-
bility of prediction is an important concern. Ideally, DNNs
should be able to discriminate “outliers” from regular test
data (from the training distribution), i.e. to detect out-of-
distribution (OOD) examples [13].

Recently, various approaches have been proposed to ad-
dress OOD detection in the context of DNNs that out-
put class probabilities from a softmax layer. Most of this
work focuses on improved training through input prepro-
cessing and/or additional loss functions [19, 24, 31, 6, 34].
A less explored alternative is to introduce auxiliary back-
ground data, sampled outside the training set, for which
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the classifier is forced to produce low-confidence outputs
[22, 7, 14]. This has been proved effective, substantially
improving OOD detection quality with no training enhance-
ments other than application of a simple uniformity loss to
the background data. On the other hand, a large background
dataset, often tens of times the size of the in-distribution
(ID) training set, is required. This implies non-trivial in-
creases in storage space and time complexity.

In this work, we consider the problem of optimally com-
pressing a background dataset for OOD purposes. The goal
is to, starting from a large pool of background data, identify
a compact subset of similar OOD detection performance,
i.e. such that a model trained on the subset has identical
OOD performance to one trained on all the data. The trade-
offs involved in the selection of a good background dataset
are illustrated in Figure 1, where orange points represent the
ID dataset, open circles the pool of background data, and
gray examples the selected subset of OOD examples (OOD
dataset). Also shown as a shaded area is the decision rule
implemented by the optimal classifier for discrimination of
ID vs. OOD data (dark for ID, light for OOD).

When the OOD dataset is small, as in Figure la, train-
ing is efficient but leads to an inaccurate classifier, since
the OOD dataset only covers a small region of background
space. High classifier accuracy can be achieved with a very
large OOD dataset, as shown in Figure 1b, but this inef-
ficient in computation and memory. A final possibility is
to start from the large pool of background data and sample
a subset of examples. The simplest form of sampling, il-
lustrated in Figure lc, is to choose samples independently,
using a uniform distribution over the background pool. This
is likely better than the approach of (b) but still suboptimal
in terms of classifier accuracy.

In this work, we seek to develop a sampling strategy
that achieves the optimal trade-off between efficiency and
OOD detection accuracy. For this, we draw inspiration
from hard negative mining in the object detection literature
[8, 10], treating OOD detection as a binary classification
problem with extremely imbalanced positive (ID) vs. neg-
ative (OOD) classes. In particular, we propose a dataset
resampling scheme that aims to selecting challenging back-
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(d) Adversarially resampled dataset: Accurate and efficient.

Figure 1: (a)-(c): Conventional approach for training outlier-aware classifiers. The performance grows with the size of background data,
but as does computational complexity and storage requirement. (d): Proposed dataset resampling scheme, which achieves both accuracy

and efficiency. represent in-distribution data, g

ray ones are background examples; shaded area denote the decision boundary

of trained OOD detector (within which the model predicts in-distribution).

ground images, which are frequently misclassified as in-
distribution. As shown in Figure 1d, these are likely to
be examples in the ID vs. OOD border. The proposed re-
sampling is based on the assignment of a resampling score
to each background example, derived from an adversarial
reweighting objective that gives higher priority to hard neg-
atives. Resampling scores are then determined by a new ad-
versarial algorithm that minimizes this objective by iterat-
ing between two gradient descent steps: 1) Classifier update
given reweighted data and 2) weight updates given the new
classifier. The learned weights are finally used to determine
sampling probabilities to perform example selection.

It is shown that training on the obtained subset of back-
ground data leads to similar or higher OOD detection accu-
racy than using the full background data, while significantly
reducing storage space needed per training episode. Experi-
ments also confirm that the proposed adversarial resampling
finds datasets of better trade-off between detection quality
and training efficiency than uniform example subsampling.
This is observed consistently across scenarios with different
model architectures, training pipelines and ID datasets.

2. Related Work

Self Awareness. A number of active research areas have
focused on the design of self-aware networks. These
are networks that “know when they don’t know.” Self-

awareness includes open set recognition, which adds un-
known classes to a traditional classification problem [2];
confidence calibration, which matches the network output
with the true likelihood [11]; and—to be studied in this
work—out-of-distribution (OOD) detection, which aims to
identify test inputs that come from a distribution different
from that seen at training time.

Out-of-distribution detection. The first procedure for

OOD detection on deep network classifiers was presented
in [13], using the maximum softmax score as an indicator
of the likelihood that the input image comes from the same
distribution as the training set. Without additional training,
the softmax score proved effective for simple in-distribution
data (like MNIST [21]) and trivial out-of-distribution exam-
ples (like uniform noise). However, the detection quality is
far from ideal for more complicated data.

Follow-up work has targeted to improve OOD detec-
tion performance by various training enhancements, in-
cluding input perturbations [19, 24], temperature scaling
[24], and network ensembles [19, 31]. Another line of ap-
proaches uses background examples that do not belong to
the training set, as surrogates for the unknown OOD exam-
ples at test time. In this case, the classifier is trained with
the additional objective of producing uniform (hence low-
confidence) softmax scores for background inputs. Back-
ground examples can be obtained from either an auxiliary
dataset [7, 14] or using a generative model [22]. In particu-
lar, [14] showed that large-scale datasets, like Tiny-Images
[29] and ImageNet [27], are surprisingly effective as back-
ground data, enabling classifiers to learn to discriminate
OOD inputs from in-distribution ones.

Training with background data. The use of background
data for training has been a standard practice in the design
of object detectors, which recognize image patches as fore-
ground (positive) or background (negative) [&, 10, 9]. Due
to the imbalance between positive and negative classes, the
selection of background patches is crucial for high detec-
tion accuracy, and the technique of hard negative mining is
commonly used to prioritize background examples that are
misclassified as foreground [5, 8].

Dataset resampling. Dataset resampling is the technique
of undersampling or upsampling examples in a dataset. It is
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Figure 2: Training pipeline with background examples.

traditionally used to combat class imbalance [3], but can be
extended to achieve a wide range of goals. One of the com-
pelling applications is compressing a dataset by discard-
ing examples with minimal influence on the performance
of trained models [20, 30]. Example selection is also useful
for speeding up training by prioritizing informative samples
[16], improving test accuracy by discarding examples with
noisy labels [1], or removing bias from the data [23].

3. Background Data for OOD Detection

In this section, we discuss the effect of auxiliary back-
ground data on the capacity of a trained model to detect
out-of-distribution text examples, and motivate the idea of
resampling the background dataset.

OOD Formulation. Following [7, 14] we assume a training
set-up where data batches are sampled from two datasets,
the in-distribution training set D and background data D
(alternatively denoted by outlier exposure set Dog in [14]).
Classifier 6 is then trained to meet two objectives: maximize
classification performance on D, while preventing overcon-
fident predictions on Dy. This involves a trade-off as illus-
trated in Figure 2. While the first goal requires very confi-
dent predictions (posterior distributions of low entropy) for
in-distribution data, the second requires predictions of very
low confidence (high entropy distributions) for OOD data.
This is captured by the objective function

L(0;D,Dy) = Lin(0; D) + aLouw(6; Dy), (D

where

Liy(0; D)

| Z Las(f(x:0),y) (2

(m y)ED

is a classification loss for in-distribution examples, and

Z Luni(f(z:0))  3)

(T y)EDy

out (9 Db

a loss that penalizes high-confidence class predictions on
background examples. The hyperparameter o controls the
trade-off between the two objectives.

Losses. Unless otherwise noted, we use the standard cross-
entropy loss for in-distribution examples

Lcls(f(m;g)vy) = _Ingy(x;g)a 4

and the Kullback-Leibler divergence to a uniform class pos-
terior distribution for out-of-distribution inputs

Luni(f(x;6)) ———ZlogkaG) log K. (5)

Probabilistic interpretation. Assuming that datasets D
and D, are sampled from the task distribution px y (z,y)
and background distribution gx (x) respectively, (1) can be
interpreted as an empirical estimate of

L0:;p,q) = Ex ymp(.,) [Las(f(X;0);Y)]
+ B x g () [Luni (f(X50))].
For the specific losses of (4) and (5), the optimal classifier

under (1) is (see supplementary material for derivation)

file) = sk |0+ 220D )

a smoothed version of class probabilities py| x by averaging
towards uniformity. The smoothing degree is controlled by

(6)

B px ()
)= @) + agx @) ®

This can be interpreted as the posterior probability that x is
sampled from the task distribution p, given the prior belief
that the ratio of in-distribution to background data is 1 :
a. Hence, OOD detection reduces to the binary problem of
learning c(x). The k-way probability distribution py|x (k |
) in (7) is learned by standard classification algorithms.
Generalization behavior. The procedure above has been
shown unreasonably effective for OOD detection [22, 7,

]. Models trained to produce low confidence class pre-
dictions on training background data D, generalize well to
OOD test data D,,, even when Dy, and D,, come from vastly
different domains (e.g. natural images in D; and noise in
D,). While this generalization ability is not fully under-
stood, empirical studies have shown that a diverse set of
training background data is important for good test-time
performance [14]. On the other hand, it has been shown
that proximity between Dy and D is critical as well [22, 7].
This poses a challenge, since it is usually difficult to find a
background dataset that is simultaneously diverse and close
to D. In this work, we propose to achieve this goal by se-
lecting examples from large-scale datasets.

4. Background Data Resampling

In this section, we introduce an objective for the opti-
mal resampling of background data for OOD detection, and
present a solution based on adversarial reweighting.



4.1. Resampling Objective

Motivated by the observation that training OOD detec-
tors with a very large background dataset Dy, is effective yet
inefficient, we propose to sample a subset of examples Dj
from Dy, that simultaneously satisfies

1. Efficiency: Total number of selected examples should
not exceed a percentage v € (0,1) of the original
dataset size, i.e.

IDy| < 7Dy 9

~ is denoted as the sample rate.

2. Effectiveness: The estimate of the optimal classifier
parameters under objective (1) produced with subset
D; and denoted

6*(D;) = argmin L(0; D, D}), (10)
0
should be as close as possible to that obtained from all
background examples,

0* = argmin L(0; D, Dy). an
6

The effectiveness of D; is defined as

L(0*;D,Dy)
(0*(Dy); D, Dy)

E(Dy) = 12
(Dy) T (12)
Since &£(Dj) only depends on Dj through
L(6*(D;); D, Dy), it is equivalent to optimize the for-
mer or the latter. Hence, the two goals above can be met by
solving the following constrained optimization problem

Df = argmin  F [L(0*(Dy); D, Dy)] ,
D; CDy (13)

subjectto  |D;| < v|Dy|.

where F is a function discussed in Section 4.3. This, how-
ever, is a combinatorial problem whose complexity grows
rapidly with the size of background dataset | D, |, making it
impractical to find the exact solution. We next propose an
alternative solution based on learning to reweight examples.

4.2. Example Reweighting

Since the resampling objective of (13) is combinatorial,
we seek a differentiable relaxation based on a set of continu-
ous example weights. Formally, we assign to each example
z; € Dy a weight w; > 0. By interpreting this weight as
the relative frequency of z; in the resampled subset D, the
OOD detection loss after reweighting can be written as

Luud0iw) = Y Lun(f(a:0)

b (z,y)eD}

. Dy (14)
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The optimal parameter set of (10) is then
0*(w) = argminL(0;D,w) (15)
0

= argmin Liy(6; D) + aLow(0; w) (16)
0

and the optimization of (13) becomes

w* = argmin F [L(6"(w); D, Dy)], (17)
w
under the size constraint that we leave for later discussion
in Section 4.3. This problem can be solved by alternatingly
optimizing for w and 6* (w), i.e. iterating between (16) and
the solution of (17) given 6*(w):

) — arg min [Lm(a; D) + aLou(b; w“*l))} (18)
%

w® = argmin F {Lin(tﬁ)(t); D)+ aLom(F)(t), w)] (19)
The parameter update step of (18) consists of the design
of a classifier given the reweighted dataset, using a com-
bination of the cross entropy loss of (4) and the OOD de-
tection loss of (14), and solved by backpropagation. Given
suitable F, the weight update step of (19) is a continuous
function of w and can also be solved by backpropagation.

4.3. Adversarial Resampling

A natural choice for F is the identity. In this case, (17)
is equivalent to maximizing the effectiveness £(D;) of the
resampled dataset, given in (12). Hence, the steps of (18)
and (19) collaborate to find the most effective background
dataset. While intuitive, our experience is that this solu-
tion is too greedy and converges to poor local minima in a
few iterations. To see this, assume that the parameter up-
date step produced a solution §(*). The weight update step
then seeks to minimize Lom(G(t), w). Under the constraint
of sampling rate +y, the optimal solution to this problem is to
assign all weight mass to the v|Dj| examples x; of lowest
Lyi(f(z:,0)), i.e. the examples of most uniform posterior
distribution under the classifier of parameters #®). These
are likely to be the examples z; farthest away from the re-
gion of support of the ID dataset D. At step ¢t + 1 they are
unlikely to have large effect on the optimization of (18), be-
cause they already have a small OOD loss Ly (6; w®=1)).
Hence, there is little incentive for §(tT1) to differ much from
6*) and the optimization converges in a few iterations. In
summary, the problem is that the collaborative nature of
the two steps does not force the optimization to explore the
space of background datasets, or even select background ex-
amples that overlap with the ID dataset.

This observation motivated us to consider an alterna-
tive adversarial sampling strategy, where the weight up-
date step attempts to minimize the efficiency of the back-
ground dataset. This can be easily enforced by selecting
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Figure 3: Graphical illustration of proposed adversarial resampling procedure. Following Fig. 1,

Update w(®

Update 9(t+1)

are background data, with darker shades representing higher resampling weights.

Algorithm 1: Adversarial resampling, batch version.

Input: ID dataset D, background dataset Dy, pre-trained
classifier 6, learning rate ng, 7., loss coefficient
«, total iterations 1T’
Initialize: w® « [1, ..., 1],0© « 0;
fort =0,...,7T —1do
Compute ID loss lf"t) — Lin(e(t);D);
Compute OOD loss 1) + Low(8®; w®);
Update classifier
0U+D 9 — 1y (li(rf) 4 alf,ﬁZ);
Update weights
WD w® 4,V 0 150

Output: Resampling weights w®,

F|[L] = —L, leading to the procedure of Algorithm 1 (based
on batch gradient descent; see supplementary for practical
SGD optimization). In this case, as shown in Figure 3, given
6", the optimal solution of (19) is to assign most weight to
the examples of largest OOD loss. These are the exam-
ples that have the least entropic posterior distribution and
are most likely to be close to the ID dataset D or even over-
lap it. Hence, at step ¢t + 1, there is a strong incentive to
modify the parameters of the classifier, so as to minimize
the OOD loss component of (18). In result, the optimiza-
tion is forced to explore the space of background datasets,
choosing a background dataset of significant example diver-
sity and examples on the boundary between the ID data D
and the background data. It should be noted that this be-
havior is similar to that of hard negative mining techniques
used to tackle the imbalance between positive and negative
examples in object detection [5, 8, 10, 9].

It is also important to note that, under the adversar-
ial strategy, there are no trivial solutions to (19), and the
reweighting can be computed independently of the target
sampling rate . Once the optimal resampling weights
{wl}lzli‘ are found, the resampled dataset D} s obtained by
selecting each example x; independently with probability

p; =min | 1, V(D] w; |, (20)
ijj

leading to an expected dataset size of E[|D;|] = >, p; <
~| Dy | that satisfies the efficiency constraint of (9).

In-dist.

# train / # test

pts denote ID examples, gray ones

CIFAR-10 [ 18]
CIFAR-100 [18]
Tiny ImageNet!

50,000/ 10,000
50,000/ 10,000
100,000 / 10,000

Out-of-dist. # test Ref.
Gaussian - [13, 24,22, 31, 6, 14]
Uniform - [13,24,31,6]

Textures [4] 5,640 [14]

LSUN [33] 10,000 [24, 22,31, 6, 14]

SVHN [25] 26,032 [22,7, 14]

Places [30] 328,500 [14]

Table 1: In-distribution and out-of-distribution datasets for exper-
imental evaluation. Most are common choices in prior work.

5. Experiments

In this section we present an experimental evaluation of
the proposed dataset resampling method.

5.1. Experimental Setup

Datasets. The OOD data for test-time evaluation is a pool
of datasets that do not overlap the in-distribution data used
to train the classifier. Since no universal protocol exists for
selecting the training dataset and OOD test sets, we use
the combination of noise and natural image datasets sum-
marized in Table 1. As shown in the table, most of these
datasets have been used in previous works.

Among the works that used background data for training,
there is also no agreement upon the selection of background
dataset Dp: When training a CIFAR-10 classifier, [22] used
SVHN as Dy, while [7] used CIFAR-100, and [14] Tiny
Images. We chose to instead use the ILSVRC’12 dataset
[27]. This was mostly for its diversity, making the back-
ground dataset a better representative of unseen OOD data.
We show in Section 5.2 that using ILSVRC as background
data does indeed enable superior detection performance on
test-time OOD datasets.

Models. We use a 40-layer Wide Residual Network (WRN)
[35], in alignment with previous work on OOD detec-
tion [13, 24, 31, 6]. The model is pre-trained on the in-
distribution dataset D for 100 epochs, and fine-tuned on
both D and the background data Dy, for another 50 epochs,
using the loss of (1). The initial learning rate is set to 0.1
for pre-training and 0.001 for fine-tuning, and is reduced by
10 times every 30 epochs. Like [14], we use o = 0.5 to

lhttps ://tiny-imagenet .herokuapp.com/
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Baseline

SVHN 99.99

CIFAR-100 79.93 85.09

Background Data

Tiny Images  85.02 85.20 91.11 90.45 97.45 87.47

ILSVRC'12 91.82 89.59 97.88 98.76 94.03 98.25
-0

Gaussian
Uniform
Textures
LSUN
SVHN
Places

Test Out-of-distribution Data

Figure 4: Detection AUPR% using different background datasets.
In-distribution dataset is CIFAR-10.

balance classification cross-entropy loss Li, and OOD de-
tection loss Loy This ensures good separation of ID and
0OOD examples, without significantly affecting the classifi-
cation accuracy on the test set (by ~ 1%).

Criteria. Following [13, 24, 14] we use the maximum score
at the output of the softmax layer of classifier to decide on
ID vs. OOD and report the detection performance, measured
using three different criteria:

o FPRYS: Detection false positive rate at 95% true pos-
itive rate, i.e. the proportion of ID data misclassified
as OOD, for detection threshold such that 95% of the
OOD examples are detected. Lower is better. Note that
we are treating OOD data as positive here.

e AUROC: Area under ROC curve, which plots the true
positive rate against false positive rate as detection
threshold increases from O to 1. Higher is better.

e AUPR: Area under precision-recall (PR) curve.
Higher is better. Also known as average precision, we
use AUPR in alignment with AUROC metric.

The sizes of OOD datasets differ greatly, creating a variable
ratio between positive and negative classes. This makes
the AUPR metric not directly comparable across datasets
(whereas FPR95 and AUROC remain relatively invariant).
To compensate for this we follow [14], which randomly
downsamples all OOD datasets to 20% of the ID dataset
size, with 5 repetitions per dataset, and report the average
OOD detection performance. Since the standard deviation
of most measurements is small, we leave it out of the main
text; see supplementary material for more details.

5.2. OOD Detection with Background Data

We start by investigating the effect of background
datasets on test time OOD detection accuracy. Using
CIFAR-10 as ID dataset D, we consider four choices of
background data D,: SVHN, CIFAR-100, Tiny Images, and
ILSVRC’12. We expect larger datasets to lead to better re-
sults, as they are more diverse and likely to cover the wide
spectrum of data unseen in D. Figure 4 compares the trained
models in terms of OOD AUPR. Several conclusions can be

Background D, FPR95 | AUROCT AUPR T

None [13],v=0 31.45 90.72 62.77
Full, v = 100% 2.21 99.41 95.06
Random, v = 10% 2.85 99.14 92.92
Resampled, v = 10% 1.94 99.37 94.16

(a) In-distribution D = CIFAR-10.

Background D, FPR95 | AUROCT AUPR7T
None [13],v=0 54.81 76.71 33.98
Full, v = 100% 8.51 97.03 81.16
Random, v = 10% 11.08 96.08 76.17
Resampled, v = 10% 6.40 97.76 83.75

(b) In-distribution D = CIFAR-100.

Background D, FPROS | AUROC} AUPR 1
None [13],y =0 62.41 72.01 30.73
Full, v = 100% 3.77 99.39 97.70
Random, v = 10% 8.17 98.19 95.22
Resampled, v = 10% 1.25 99.64 98.86

(c) In-distribution D = Tiny ImageNet.

Table 2: OOD detection performance (in %) on CIFAR-10,
CIFAR-100 and Tiny ImageNet, using different background data
for training. Results are averaged over 6 test OOD sets in Table 1;
see supp. material for individual measures.
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Figure 5: 5 most & least frequent background classes after resam-
pling for CIFAR-10 (left) and CIFAR-100 (right).

drawn. First, all models trained with background data im-
prove over the baseline (no background data) for at least
one of the background datasets. Second, Tiny Images and
ILSVRC’ 12 perform the best. This confirms the hypothesis
that large-scale background datasets improve OOD detec-
tion. Third, the classifier trained with ILSVRC’12 back-
ground data performed the best in 5 of 6 test sets, achieving
an average AUPR of 95.06%. For this reason, ILSVRC is
used as source of background data in the remaining exper-
iments. It should be noted, however, that the performance
gains cannot be explained uniquely by dataset size. For ex-
ample, the model trained on 80 million Tiny Images has an
average AUPR of 89.45%. This is lower than that of the
model trained on the 1.28 million examples of ILSVRC’12.

5.3. Background Data Resampling

While large-scale background datasets like ILSVRC’12
improve OOD detection, they require a non-trivial increase
in storage space relative to the ID training set. We next
evaluate the OOD detection of convnets trained on different
ID datasets. In all cases background examples are ILSVRC
images, but selected with different approaches:
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Figure 6: Correlation plots of ISLVRC resampling weights for different ID dataset pairs (left) and overlap between resampled data (right).

e No background data: The standard cross-entropy clas-
sifier baseline.

e Full background data: Optimizes the OOD detection
loss of (3) on all examples of D;. This requires the
most additional space & time complexity.

e Random selected background data: Optimizes (3) on
a random subset of 10% examples from Dj,.

e Resampled background data: Optimizes (3) on the
subset of examples from Dy, produced by the proposed
dataset resampling algorithm.

For a fair comparison, we perform example selection using
sampling rate vy = 0.1; the effect of varying ~ is discussed
in section 5.4. See supplementary material for further im-
plementation details of the resampling.

Detection quality. Table 2 summarizes the results averaged
over all OOD datasets (see supplementary for breakdown
by test set). Confirming the observations of [14], all meth-
ods that use background data substantially outperform the
standard cross-entropy classifier. When background data
is used, uniformly subsampling degrades the OOD detec-
tion accuracy of using full D,. The proposed resampling
method, however, does not suffer from the same perfor-
mance loss. Notably, on CIFAR-100 and Tiny ImageNet,
models trained with 10% background data even outperform
their counterparts trained on the full background. This is
likely due to the emphasis of resampling on examples close
to the in-distribution, forcing the network to learn a more
precise decision boundary.

Resampled data. Figure 5 shows the background classes
most upsampled and downsampled through the resampling
process. It can be observed that the proposed algorithm has
a clear preference towards classes semantically close to the
ID dataset: Of the five most frequent classes in the resam-
pled background data for CIFAR-10, tabby/Egyptian cat,
airliner and convertible are closely related to ID classes cat,
airplane and automobile respectively. This makes intuitive
sense as the model trained on CIFAR-10 is likely to pro-
duce high confidence outputs for these images, failing to
discriminate them from ID data.

Figure 6 shows the scatter plots for the weights learned
for pairs of ID datasets, as well as their rank correlation co-
efficients [28, 17]. We also visualize the ratio of overlap be-

tween the resampled datasets using both sets of weights as
the sampling rate ~ varies and compare it to chance level.
A large weight correlation implies that the optimal back-
ground datasets for the two training sets share more exam-
ples in common. This is a desirable property, as the resam-
pled dataset learned for one in-distribution task could be
used to train other datasets. Indeed, it can be observed that
the examples learned for CIFAR-100 were positively cor-
related with those for CIFAR-10 and Tiny ImageNet. We
will see in Section 5.5 that these examples do generalize as
background data across tasks.

5.4. Training on Resampled Datasets

Sampling rate. Having seen that it is possible to drastically
reduce the size of background data while maintaining the
OOD detection accuracy, we further reduce the sampling
rate to v = 0.01 to investigate the effectiveness of the pro-
posed approach under conditions where the storage budget
is very limited. Figure 7a illustrates the detection perfor-
mance as a function of the size of background dataset. The
models trained using both proposed and randomly resam-
pled data saw a drop in OOD detection performance as 7 is
further decreased, yet the advantage of adversarial resam-
pling over random selection remains significant.

Auxiliary OOD training. We note that all experiments
above have used the KL divergence to uniform distribu-
tion on the background data as training-time OOD detec-
tion loss (5), the standard approach adopted in [22, 7, 14].
Also canonically, OOD detection at test-time is performed
by thresholding the maximum softmax scores [13]. We now
evaluate the compatibility of the proposed resampled back-
ground datasets with alternative methods commonly used
for out-of-distribution detection:

e Entropy maximization replaces the uniformity loss of
(5) by the negative entropy of posterior probabilities
predicted by the classifier, given by Ley(f(z;0)) =

S frl(as0)log fio(:0).

e ODIN [24] uses two simple techniques at training time

to calibrate classifier predictions, namely temperature-
evk/T

= =K v, /T
=€

bation & = x + € sign(V, log maxy, si(T)).

scaled softmax s (7T) and input pertur-
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Figure 7: Training with resampled background datasets.
Architectures In-distribution D
Background D WRN40 | WRN28 Resl8 Densel00 Background D CIFAR100 | CIFARIO  TinyImgNet
Random, v = 10% 76.17 86.71 74.38 74.72 Random, v = 10% 76.17 92.92 95.22
Transferred, v = 10% - 87.33 81.48 76.50 Transferred, v = 10% — 94.56 97.45
Native, v = 10% 83.75 86.05 80.75 74.95 Native, v = 10% 83.75 94.16 98.79
Random, v = 1% 63.84 81.53 74.46 66.96 Random, v = 1% 63.84 91.54 83.68
Transferred, v = 1% - 85.88 76.97 75.81 Transferred, v = 1% - 94.12 94.82
Native, v = 1% 80.54 85.68 78.28 76.93 Native, v = 1% 80.54 94.50 93.10

(a) AUPR% of new model architectures trained on CIFAR-100. All trans-
ferred background data are resampled for WRN40; while native ones are

resampled for their respective architectures.

(b) AUPR% of WRN-40 models trained on new datasets. All trans-
ferred background data are resampled for CIFAR-100; while native
ones are resampled for their respective ID datasets.

Table 3: Generalization capacity of resampled data across models (left) and in-distribution datasets (right).

e Objectosphere loss [7] aims at minimizing the feature
magnitude of background examples, which naturally
results in a uniform classifier output when the classifi-
cation layer has no bias term.

Figure 7b shows the OOD detection performance when
the model is trained and/or tested using the above ap-
proaches, again on full, random and resampled background
data learned earlier. The resampling method provides con-
sistent improvement over random sampling, proving to be a
reliable complementary to previously proposed algorithms.

5.5. Generalization in Retraining

One of the greatest advantage of having a compact and
representative set of background examples is that the stor-
age space and time complexity are greatly reduced. This
is especially relevant in the scenario where models are re-
trained multiple times, either with different architectures or
on a different dataset. Therefore, it would be desirable that
the resampled dataset remains effective when model archi-
tectures, training procedure, and ID datasets change. In the
following experiments we re-evaluate the OOD detection
quality of models under these changes, as a measure of gen-
eralization capacity of the resampled dataset.

Across model architectures. We start by considering
whether the weights learned with a WRN-40 [35] classifier
are effective for convnets with other architectures. Table
3a shows the OOD detection performance of these weights
for three alternative architectures: WRN-28, DenseNet-100
[15], and ResNet-18 [12]. The table shows that there is a
noticeable advantage of using resampled datasets over ran-
dom selection, even when retraining different networks. In
many instances, using the transferred background data from

WRN-40 even provides similar performance to when using
the optimal resampled dataset for the new model.

Across in-distribution datasets. The correlation plots of
Figure 6 suggest that resampled dataset for one ID dataset
may be helpful for training new datasets. Table 3b shows
the OOD detection performance of retrained models on
CIFAR-10 and Tiny ImageNet, using the resampled back-
ground data learned for CIFAR-100. Again, the weights
learned by the proposed algorithm demonstrated its robust-
ness across tasks, yielding comparable OOD detection per-
formance to native resampling. We find this result rather
inspiring, as it shows the potential of building a universal
background set of examples that can be used to augment an
arbitrary dataset to make it compatible for OOD detection.

6. Conclusion

We presented a resampling approach to select informa-
tive background examples from large-scale datasets for out-
of-distribution detection. Motivated by hard negative min-
ing in object detection, we developed an adversarial opti-
mization procedure that learns a set of weights for selecting
challenging background examples. Using a small sampling
rate, we were able to obtain compact resampled datasets that
are often as effective as using full background data, some-
times even improving OOD detection quality. The resam-
pling method was shown to work well in conjunction with
auxiliary training algorithms in the literature, and general-
izable across models and in-distribution tasks.
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