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Abstract

Low-precision networks, with weights and activations
quantized to low bit-width, are widely used to accelerate
inference on edge devices. However, current solutions are
uniform, using identical bit-width for all filters. This fails
to account for the different sensitivities of different filters
and is suboptimal. Mixed-precision networks address this
problem, by tuning the bit-width to individual filter require-
ments. In this work, the problem of optimal mixed-precision
network search (MPS) is considered. To circumvent its diffi-
culties of discrete search space and combinatorial optimiza-
tion, a new differentiable search architecture is proposed,
with several novel contributions to advance the efficiency
by leveraging the unique properties of the MPS problem.
The resulting Efficient differentiable MIxed-Precision net-
work Search (EAMIPS) method is effective at finding the
optimal bit allocation for multiple popular networks, and
can search a large model, e.g. Inception-V3, directly on Im-
ageNet without proxy task in a reasonable amount of time.
The learned mixed-precision networks significantly outper-
Sform their uniform counterparts.

1. Introduction

Deep neural networks have state-of-the-art performance
on computer vision tasks such as visual recognition [16,
26, 29, 30, 12], object detection [24, 19, 5], segmentation
[11, 6], etc. However, their large computation and memory
costs make them difficult to deploy on devices such as mo-
bile phones, drones, autonomous robots, etc. Low-precision
networks, which severely reduce computation and storage
by quantizing network weights and activations to low-bit
representations, promise a solution to this problem.

In the low-precision literature, all network weights and
activations are usually quantized to the same bit-width
[14,23, 35,4, 37, 34]. The resulting uniform low-precision
networks have been preferred mostly because they are well
supported by existing hardware, e.g. CPUs, FPGAs, etc.
However, uniform bit allocation does not account for the
individual properties of different filters, e.g. their location
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Figure 1. Differentiable architecture of the proposed mixed-
precision network search module.

on the network, structure, parameter cardinality, etc. In
result, it can lead to suboptimal performance for a given
network size and complexity. Mixed-precision networks
[1, 18, 17, 33, 32, 31, 9] address this limitation, enabling
the optimization of bit-widths at the filter level. They are
also becoming practically relevant, with the introduction
of hardware that supports mixed-precision representations.
For example, the NVIDIA AMP! can choose between dif-
ferent floating point representations during training.
Nevertheless, the problem of optimizing bit allocation
for a mixed-precision network is very challenging. Since
a network of L layers and IV candidate bit-widths can have
N different configurations, it is usually impossible to man-
ually craft the optimal solution, and automatic bit allocation
techniques are required. While this is well aligned with
recent progresses in automatic neural architecture search
(NAS) [38, 39, 3, 2, 20], there are several important differ-
ences between generic NAS and mixed-precision network
search (MPS). First, NAS relies extensively on a proxy task
to overcome the extremely high computational demands of
searching for the optimal network architecture on a large
dataset, such as ImageNet. It is common to search for a
module block on a small dataset (such as CIFAR-10) and
stack copies of this module as the final architecture. How-

Ihttps://devblogs.nvidia.com/nvidia-automatic-mixed-precision-
tensorflow



ever, this type of proxy task is very ineffective for MPS, due
to 1) the layer importance difference, e.g. layers closer to
input and output typically require higher bit-width; and 2)
the (likely large) difference between optimal bit allocations
for CIFAR-10 and ImageNet. Second, higher bit-widths
usually lead (up to overfitting) to mixed-precision networks
of higher accuracy. Hence, the sole minimization of clas-
sification loss usually has a trivial solution: to always se-
lect the candidate of highest bit-width. Third, while general
NAS requires candidate operators that are heterogeneous in
structure, e.g. convolution, skip connection, pooling, etc.,
MPS only involves homogeneous operators and very similar
representations, e.g. convolutions of different bit-widths.
These unique properties of MPS suggest the need for search
techniques different than those of standard NAS.

In this work, we leverage the above properties to propose
an efficient MPS framework based on several contributions.
First, to enable search without proxies, the proposed frame-
work is based on the differentiable search architecture of
Figure 1, motivated by the popular DARTS [20] approach
to generic NAS. Second, to avoid the trivial selection of the
highest bit-width, learning is constrained by a complexity
budget. The constrained optimization is reformulated as
a Lagrangian, which is optimized to achieve the optimal
trade-off between accuracy and complexity. Third, to cir-
cumvent the expensive second-order bi-level optimization
of DARTS, a much simpler and effective optimization is
proposed, where both architecture and network parameters
are updated in a single forward-backward pass. Fourth, by
exploiting the linearity of the convolution operator, the ex-
pensive parallel convolutions of Figure | are replaced by
an efficient composite convolution, parameterized by the
weighted sum of parallel weight tensors. This ensures the
training complexity remains constant, independently of the
size of search space, enabling the training of large networks.

Together, these contributions enable an efficient MPS
procedure with no need for proxy tasks. This is denoted
as Efficient differentiable MlIxed-Precision network Search
(EAMIPS) and can, for example, search the optimal mixed-
precision Inception-V3 [30] of 93 filters, on ImageNet, in
8 GPU days. Extensive evaluations of EAMIPS on multiple
popular networks of various sizes, accuracies, properties,
etc., including AlexNet, ResNet, GoogleNet and Inception-
V3, show that it outperforms uniform low-precision solu-
tions by a large margin. Beyond demonstrating the effec-
tiveness of EAMIPS, this vast set of results also establishes
solid baselines for the growing area of mixed-precision net-
works. To facilitate future research, all code is released at
https://github.com/zhaoweicai/EdMIPS.

2. Related Work

Uniform low-precision: Low-precision networks have re-
cently become popular to speed-up and reduce model size

of deep networks [14, 23, 35, 4, 37, 34, 36]. [14, 23] pi-
oneered the joint binarization of network weights and ac-
tivations, using a continuous approximation to overcome
the non-differentiability of quantization. This, however, en-
tailed a significant accuracy loss. [35, 4] later achieved ac-
curacies much closer to those of full-precision networks.
The HWGQ-Net [4] approximated the ReL.U by a half-wave
Gaussian quantizer, and proposed a clipped ReLU function
to avoid the gradient mismatch. LQ-Net [34] and PACT [7]
tried to learn the optimal step size and clipping function on-
line, respectively, achieving better performance. However,
these are all uniform low-precision networks.

Bit allocation: Optimal bit allocation has a long history in
neural networks [15, 1, 18]. [15, 1] proposed the exhaustive
checking of filter sensitivities on a per layer basis, following
simulation-based word-length optimization methods from
signal processing [28]. [18] proposed an analytical solution
to fixed-point quantization that seeks the optimal bit-width
allocations across network layers by optimizing signal-to-
quantization-noise-ratio (SQNR). [17] frames precision al-
location as the sequential allocation of bits of precision to
the weights of one layer, until a bit budget is exhausted.
These techniques precede NAS [38] and are less powerful,
less applicable to practical network design, or both.
Neural architecture search: NAS is a popular approach to
automated search of neural network architectures [38, 39, 3,
2, 20]. However, the large and discrete nature of the search
space make NAS very expensive. [38] proposed a rein-
forcement learning (RL) technique that requires 1,000 GPU
days to search for an architecture on CIFAR-10. Subse-
quent works have tried to reduce these extraordinary levels
of computation. [3, 2, 10] start by learning a supernet, con-
taining all possible module choices, and find the best sub-
net within this supernet. Differentiable architecture search
(DARTS) [20] relaxes the discrete search space into a con-
tinuous one, enabling the optimization by gradient descent.
Mixed Precision: Recently, [33, 32, 31] formulated MPS
as an instance of NAS. Some of these techniques [33, 31]
are based on RL and thus not very efficient. [32] relies on
DARTS but requires a proxy task, due to the linear mem-
ory/computation on the cardinality of candidate pool, and
samples dozens of architectures during search. Compared
to these approaches, EAMIPS is simpler, more efficient, ef-
fective, and applicable to a much broader set of networks.

3. Low-Precision Neural Network

In this section, we briefly review some preliminary con-
cepts on low-precision neural network.

3.1. Deep Neural Network

Deep networks implement many filtering operators,

y = fla(z)) = W xa(z), (1)
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Figure 2. The Inception module in GoogLeNet.

where filter f is parameterized by weight tensor W (which
can be expressed in full or low-precision), x is the filter in-
put, a a non-linear activation function (e.g. ReLU in full-
or HWGQ [4] in low-precision networks), y the filter out-
put and * the convolution or matrix-vector multiplication
operator. The L network filters F' = {f1, fo, -, f.} are
learned by minimizing the classification risk R g [F'] defined
by the cross-entropy loss function on a training set. The
overall complexity of a neural network is mostly dictated
by the complexity of (1). By quantizing both weights and
activations to low bit-width, the expensive float-point op-
erations of (1) can be replaced by efficient bit operations
(e.g. XNOR and bit-count), substantially reducing model
size and computation [23, 4].

3.2. HWGQ Network

A mixed-precision network can have arbitrary weight
and activation bit-widths. Many quantization techniques
have been proposed [14, 23, 35, 4, 37, 34]. In this work,
we start from the HWGQ-Net [4], one of the state-of-the-
art low-precision networks in the literature. Although the
HWGQ-Net only uses binary weights, its activation quanti-
zation technique can be used to produce weights of higher
precision. This starts by pre-computing the optimal quan-
tizer

Q) =qi, if x€ (titiy1] 2

for a Gaussian distribution of zero mean and unit variance,
using Lloyd’s algorithm [21, 22]. Since the network weight
distributions are always close to zero-mean Gaussians of
different variance o2, the optimal quantization parameters
can then be easily obtained by rescaling the pre-computed
quantization parameters [27], i.e. using the quantizer

Q(z) = 0gi,

To be hardware-friendly, all quantizers are uniform.

Zf xr € (O'ti,a'ti+1]. 3)

3.3. Filter Sensitivity

The allocation of the same bit-width to all network lay-
ers, known as uniform bit allocation, can be very subopti-
mal, since different filters have different bit-width sensitivi-
ties. Figure 3 illustrates this point for the popular Inception
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Figure 3. The filter sensitivity in the Inception module.

module of GoogLeNet [29] whose architecture is shown in
Figure 2. This has four parallel branches and six learnable
filters in total. To check their sensitivities, we started by
training a uniform 2-bit GoogLeNet baseline on ImageNet.
We then trained another model, changing a single filter of
the Inception module to 4-bit, throughout the network. This
experiment was repeated for all six filters. The changes
in accuracy and computation of the whole network, with
respect to the baseline, reflect the differences in bit-width
sensitivity of the six filters. Figure 3 shows that “chlx1” is
the most sensitive filter, as the bit-width increase improves
network accuracy by more than 2% with only a 25% com-
putation increase. “ch3x3red” and ‘“ch5x5” have compu-
tation similar to “chIx1” but are less sensitive, especially
“ch5x5”. On the other hand, the computation of “ch3x3”
skyrockets to 125% for a much smaller gain of 1.3% in ac-
curacy, which is close to that of the inexpensive “ch3x3red”
and “pool_proj”. Finally, “ch5x5red” has minor changes
in accuracy and computation. These observations suggest
that mixed-precision networks could substantially outper-
form uniform networks.

4. Mixed-Precision Network

In a mixed-precision network, bit-width varies filter by
filter. The problem is to search a candidate pool B of bit-
widths for the optimal bit-width for each filter in the net-
work. This can be implemented by reformulating (1) as

ng

ny
y=> offi | Y olaj(@) |, &)
i=1 j=1
s.t. Zof‘ = 1,20? =1,0% 0% €{0,1},

where 1y and n, are the cardinalities of bit-width pool B
for weights and B° for activations. The goal is to find the
optimal bit-width configuration {o},, 03} for the whole net-

work. Since the search space is discrete and large, it is usu-
ally infeasible to hand-craft the optimal solution.



4.1. Complexity-Aware Learning

In general, networks of higher bit-width have higher ac-
curacy. Hence, the simple minimization of classification
loss has the trivial solution of always selecting the highest
possible bit-width. To avoid this, we resort to complexity-
aware learning, seeking the best trade-off between classifi-
cation accuracy and complexity. This is a constrained opti-
mization problem, where classification risk R g[F] is mini-
mized under a bound on complexity risk Ro[F,

F* = argm}nRE[F] s.t.  Re[F] < 7, 5)

which can be solved by minimizing the Lagrangian
LIF] = RelF] +nRc[F], (©)

where 7 is a Lagrange multiplier that only depends on ~.
Under this constrained formulation, the optimal bit alloca-
tion is no longer trivial. The complexity is user-defined,
and could address computation, memory, model size, en-
ergy, running speed, or other aspects. It has the form

RolF] =Y e(f). (7)
feF
where ¢(f) is the cost of filter f.
4.2. Model Complexity

A popular practice is to characterize complexity by the
number of floating-point operations (FLOPs) of filter f,

o(f) = |flwzha/s?, (8)

where | - | denotes cardinality, w, and h, are the spatial
width and height of the filter input x, and s the filter stride.
In low-precision networks, where filter f and activation
function a have low bit-width, this cost can be expressed
in bit operations (BitOps),

c(f) = bpba|flwih, /5%, ©)

where by and b, are the bit-widths of weights and activa-
tions, respectively. Since only relative complexities matter
for the search, the overall network complexity is normalized
by the value of (8) for the first layer to search.

4.3. Relaxed Mixed-Precision Network

The binary nature of the search space of {04, 0} makes
the minimization of (6) a complex combinatorial problem.
As suggested by [20], a much simpler optimization is pos-
sible by relaxing the binary search space into a continuous
one, through the reformulation of (4) as

nyr s
y=> 70 [ D wla(x) ], (10)
i=1 j=1

s.t. Zma = 1,Z7r? =1,7% 7% €[0,1].

The constraints 7,77 € [0, 1] can then be eliminated by
introducing a set of real configuration parameters {«, 3}
and defining

N exp(a;) B _oxp(B)) (11)

T eplan)” 0T S exp(Br)

This leads to the architecture of Figure 1. The complexity
measure of (9) is finally defined as

c(f) = E[bsE[ba]| flwshe /s, (12)

where
ng Ngq
Elbs) =Y by, Elba =Y lba,  (13)
i=1 j=1

are the bit-width expectations for weights and activations,
respectively. This relaxation enables learning by gradi-
ent descent in the space of continuous parameters {a, 5},
which is much less expensive than combinatorial search
over the configurations of {0, 05}

4.4. Efficient Composite Convolution

While efficient, differentiable architecture search is not
without limitations. A common difficulty for general NAS
is the linear increase in computation and memory with the
search space dimension [20, 2]. If there are ten candidate
operators for a layer, they all need to be applied to the same
input, in parallel. This makes the search impossible for
large networks, e.g. the ResNet-50, Inception-V3, etc., and
is usually addressed by resorting to a proxy task.

Unlike general NAS, where the candidate operators are
heterogeneous [38, 20, 2], e.g. convolution, skip connec-
tion, pooling, etc., the candidate operators of MPS are ho-
mogeneous, namely replicas of the same filter with different
bit-widths. This property can be exploited to avoid the ex-
pensive parallel operations. The weighted sum of parallel
convolutions, as shown in Fi%ure 1, given the weighted ac-

tivation sum a(x) = 7%, 7 a;(x), can be rewritten as

nyg

y=y_ 7 fi(@x) = 7 (Qi(W,)  al))
i=1 i=1

= (Z ngi(wi)> «a(z) = f(a(z)) (14)
i=1

where f is the composite filter parameterized by weight ten-
sor

ny
W =) 7mQi(W,). (15)

i=1
Hence, rather that ny convolutions between the different
Q;(W;) and the common activation a(z), the architecture



of Figure 1 only requires one convolution with the compos-
ite filter of (15). This enables constant training time, inde-
pendently of the number of bit-widths considered per filter,
and the training of large networks become feasible.

In (15), each candidate operator has its own weight ten-
sor W;. During training, the gradients arriving at a layer are
distributed to the different branches. In result, filters of low
probability 7* receive few gradient updates and could be
under-trained. For example, a branch of 7% = 0.1 will only
receive 10% of the overall gradients. A more robust solu-
tion is to share weights across all filters by making W; = W
and redefining the composite filter of (15) as

ng
W= 7 Qi(W). (16)

i=1

In this case, while the gradients are still distributed to each
branch, they are all accumulated to update the universal
weight tensor W. This eliminates the potential for under-
fitting, and the size of search model can also remain con-
stant independent of the search space. Note that this weight
sharing requires a universal W representative enough for
multiple quantizers of different bit-widths. While this has
not been shown in the low-precision network literature
[35, 4, 37, 34], it is less of a problem for MPS since 1)
the parallel branches learn similar and potentially redundant
representations at different bit-widths; 2) what matters for
MPS is to optimize the bit allocation, not the weight tensor.

4.5. Search Space

The design of the search space is critical for NAS. Un-
like NAS, which has an open-set search space, the search
space of MPS is well-defined and limited to a relatively
small number of possibilities per filter and activation, e.g.
bit-widths in {1,...,32}. Previous works [32, 10] have
coupled weight and activation bit-widths, e.g. defining
pairs (1,4), (2,4), etc. This results in |B%| x |B?| parallel
branches per filter. To reduce complexity, [32, 10] manually
pruned |B%| x |B?| to a small subset, e.g. six pairs, which
is suboptimal. Instead, we decouple weight and activation
bit-widths, using |3%| and |B#| parallel branches for weight
and activations, respectively, as shown in Figure 1. This de-
coupling maintains the search space at full size |B%| x |B?|,
but significantly reduces computation and memory. Since 1)
many works [34, 7] have shown that a bit-width of 4 suffices
for very good performance; 2) very low-precision networks,
e.g. using 2 bits, are the most challenging to develop; and
3) 1-bit activations are usually insufficient for good perfor-
mance [ 14, 23, 35, 4], we use a search space with

2
J

B ={1,2,3,4}, B° ={2,3,4}. (17)

4.6. Learning

This leads to the learning procedure for MPS. EAMIPS
optimizes the Lagrangian of (6) with respect to the archi-
tecture parameters {c, 8} of (11) and the weight tensors W
of (16) over the search space of (17). Both W and {«, 8}
are learned by gradient descent. This is modeled as a bi-
level optimization problem [&] in [20]. However, this is too
complex, even impractical, for searching large models (e.g.
ResNet and Inception-V3) on large datasets (e.g. ImageNet)
without a proxy task. To avoid this, we consider two more
efficient optimization approaches. The first, which is used
by default, is vanilla end-to-end backpropagation. It treats
the architecture {«, 5} and filter W parameters equally, up-
dating both in a single forward-backward pass. The second
is an alternating optimization of two steps: 1) fix {a, 8} and
update W; 2) fix W and update {«, §}. It has twice the com-
plexity of vanilla backpropagation. Our experiments show
that these strategies are efficient and effective for MPS.

4.7. Architecture Discretization

Given the optimal architecture parameters {a*, 5*}, the
mixed-precision network must be derived by discretizing
the soft selector variables 7 of (11) into the binary selec-
tors o required by (4). Two strategies are explored.

The first is a “winner-take-all” approach, used by default,
in which only the branch with the highest 7 is selected and
the others removed, by defining

« 1 if 1 = argmax; 7,
% = { 0, otherwise. (18)
This results in a deterministic architecture, which is not af-
fected by the details of the distribution of 7, only the relative
ranking of its values.
The second is a sampling strategy. Since each 7 is a
categorical distribution, hard selectors o; can be sampled
from a multinomial distribution

O ~ Multinomial(n, 7). (19)

with one trial n = 1. This defines a random architecture
with expected BitOps as defined in (13). The user can then
sample multiple architectures and choose the one with the
best trade-off between accuracy and complexity, as in [32].
However, in our experience, the variance of this random ar-
chitecture is very large, making it very inefficient to find
the best network configuration. Alternatively, it is possi-
ble to sample from (19) with multiple trials, e.g. n = 50,
and choose the architecture with the highest counts. This
produces architectures closer to that discovered by “winner-
take-all”, converging to the latter when n — oo.

5. Experiments

EdMIPS was evaluated with ImageNet [25], top-1 and
top-5 classification accuracy. Previous MPS works [32, 31]
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Figure 4. Architecture evolution of ResNet-18 during search. The curves shown per layer index represent the probabilities of the two
bit-widths. Layers indexes are as in PyTorch, where 7/12/17 are residual connections. Left: n = 0.001 in (6). Right: n = 0.002.

used ResNet-18 or MobileNet [13]. However, these are rel-
atively simple networks, that stack replicas of a single mod-
ule block, and for which heuristics can be used to hand-craft
nearly optimal bit allocation. For example, the depth-wise
layers of MobileNet should receive more bits than the point-
wise ones. On the other end of the spectrum, GoogLeNet
[29] and Inception-V3 [30] are complex combinations of
different modules and too complicated to optimize by hand.
Since this is the case where MPS is more useful, beyond
the small and simple AlexNet and ResNet-18, we have also
tested EAMIPS on larger and more complicated ResNet-50,
GooglLeNet and Inception-V3. These experiments establish
broad baselines for future studies in MPS.

5.1. Implementation Details

All experiments, followed standard ImageNet training
on PyTorch?, with the following exceptions. For simplicity,
all auxiliary losses were removed from the GoogleNet and
Inception-V3. EAMIPS used a learning rate of 0.1 for net-
work parameters W, and 0.01 for architecture parameters
{a, f}. All network parameters were initialized as usual,
and all architecture parameters were set to 0.01, treating all
candidates equally. The search model was trained for 25
epochs, with learning rates decayed by 10 time at every 10
epoches. After training the search model, the classification
model was derived by the “winner-take-all” strategy of Sec-
tion 4.7. Next, the classification models were trained for
50 (95) epochs, with learning rate decayed by 10 times at
every 15 (30) epochs, to allow exploration (the final com-
parison with the state-of-the-art). All models were trained
from scratch. For network quantization, we followed [4] but
enabled scaling in all BatchNorm layers.

5.2. Architecture Evolution

Sometimes, it is mysterious why and how an architec-
ture is found by NAS. Due to the differentiability of Ed-

Zhttps://github.com/pytorch/pytorch

MIPS, the soft architecture evolves gradually during search,
as shown in Figure 4. For clarity, we only show the evolu-
tion of a ResNet-18 with search space of {2,4} bit. Some
interesting observations follow from the left part of Figure
4. First, the use of (6) with complexity penalty n = 0.001
is shown to avoid the trivial solution (highest bit-width al-
ways selected). Candidates of lower bit-width are selected
for many layers. Second, nearly all layers choose 2 bits in
the early epochs, where the network parameters are not yet
trained and the complexity penalty dominates. As network
parameters become stronger, the error penalty is more likely
to overcome the complexity penalty, and 4-bit candidates
start to be selected. Third, weights and activations can have
different optimal bit allocations. For example, 4-bits are
selected for the weights of layers 5/6/8, whose activations
are assigned 2-bits. Fourth, since the complexity penalty of
residual connections (layers 7/12/17) is much smaller than
3x3 convolutions, they are allocated 4-bits early on. Fi-
nally, both candidates are equally strong for some layers,
e.g. 9/13 for weights and 1 for activations. In these cases,
the model is not confident on which candidate to choose.

5.3. Effect of Complexity Constraint

When a stronger complexity constraint is enforced,
lower bit-widths are more likely to be chosen. This can
be observed by comparing the left (n = 0.001) and right
(n = 0.002) of Figure 4. For layers preferring lower bit-
width, this preference is reinforced by stronger 7. For ex-
ample, in layers 1-4 for weights and 2-6 for activations,
EdMIPS converges to lower bit-widths much faster. For
layers preferring lower bit-width at the start but switch-
ing to more bits at the end, e.g. 5/10/15 for weights and
10/15/16 for activations, more epochs are required to reach
the crossing point. The stronger complexity constraint can
also change the final decisions. For example, for weights at
layers 6/8/11 and activations at layers 18-19, the decisions
switch from 4- to 2-bit. These results show that the optimal
architecture depends on the complexity constraint.
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5.4. Comparison to Uniform Bit Allocation

Figure 5 shows that EdAMIPS networks substantially
outperform the uniform HWGQ-Net versions of AlexNet,
ResNet-18/50, GoogLeNet, and Inception-V3. Note that
the HWGQ-Net has fairly high baselines. Since the learned
model is bounded by the weakest (W1A2) and strongest
(W4A4) models in the search space, the improvements are
small on both ends, but substantial in between. For exam-
ple, the EAMIPS models improve the uniform 2-bit HWGQ-
Net by about 0.9 point for AlexNet, 0.8 point for ResNet-
18, 2.8 points for GoogLeNet, 1.5 points for ResNet-50 and
1.7 points for Inception-V3. This is strong evidence for the
effectiveness of EAMIPS.

5.5. Learned Optimal Bit Allocation

To understand what EAMIPS learns, we visualize the op-
timal bit allocation of each layer in Figure 6, for AlexNet,
ResNet-18 and GoogLeNet, with roughly the same BitOps
as the uniform 2-bit models. On AlexNet, whose FC layers
are lighter and closer to the output, they receive higher bit-
width. The layers closer to the input, e.g. 1st for weights
and 2nd for activations, also receive relatively higher bit-
width. On ResNet-18, the cheap residual connections usu-
ally receive the largest bit-width. The first block of layers
in each stage, e.g. 5-6th, 10-11th, and 15-16th, also has
relatively higher bit-width. GoogLeNet is a more compli-
cated network, and so is its bit allocation. The most expen-
sive “ch3x3” layers frequently receive the lowest bit-width,
but not always. Higher bit-widths are allocated to “ch3x3”
layers closer to the output. On the other hand, “ch5x5red”
is very cheap, and usually receives the highest bit-width.
Although “ch1x1” is the second most expensive filter, it is
frequently allocated higher bit-width. This reflects its high-
est sensitivity, shown in Figure 3. Finally, “ch3x3red” and

“ch5x5” have similar computation, but the former is much
more sensitive. Hence, it receives higher bit-width alloca-
tions. Note the difficulty of hand-crafting the optimal bit
allocation for this complex network.

5.6. Ablation Studies

ResNet-18 is used for ablation experiments. The default
EdMIPS model is denoted as “mixed” in Figure 7 (a).
Relaxation: Figure 7 (a) shows that the relaxed models of
(10) (trained for 50 epochs), only have slightly higher ac-
curacy than their discretized counterparts, i.e. architecture
discretization has little performance cost.

Filter Sharing vs. Non-Sharing: In the default model, all
parallel candidates share the weight tensor of (16). Figure
7 (a) shows that this is as effective as learning the individ-
ual weight tensors of (15). This is also confirmed by the
comparison of their relaxed counterparts, indicating that the
unshared parallel branches are somewhat redundant.

Sampling: Four architectures were sampled from the ar-
chitecture distribution of the model close to 2-bit of Fig-
ure 5, using both the categorical and multinomial sampling
discussed in Section 4.7, with close BitOps to the uniform
2-bit model. Figure 7 (a) shows that categorical sampling
architectures have large accuracy variance, sometimes even
underperforming the uniform baseline. Better performance
and lower variance are obtained with multinomial sampling.

Learning Strategy: Figure 7 (a) shows that there is little
difference in accuracy between the default model, which
uses single pass optimization, and a model trained with the
alternating optimization of Section 4.6. Since the latter has
twice the learning complexity, single pass optimization is
used by default on EDMIPS.

Convergence Speed: Figure 7 (b) summarizes the evolu-
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Figure 7. (a) ablation experiments on ResNet-18; (b) complexity evolution on ResNet-18 (dashed lines are expected complexities of (13));

(c) savings by efficient composite convolution of Section 4.4.

tion of network complexity as a function of 7, for the five
ResNet-18 models of Figure 5. The search usually con-
verges quickly, with minor changes in architecture com-
plexity after the 15th epoch. The accuracy of the corre-
sponding classification models (“models at 15th epoch”) is
shown in Figure 7 (a). They are comparable to those found
after 25 search epochs.

Search Space: Figure 7 (a) shows that no gain occurs over
the uniform model when a coarser search space ({1,4} bit
for weight and {2, 4} bit for activation) is used.

Efficient Composite Convolution: Figure 7 (c) summa-
rizes the practical savings achieved with the efficient com-
posite convolution of Section 4.4, with respect to the vanilla
parallel convolutions, in terms of computation, memory and
model size, for the search space of (17). The weight shar-
ing of (16) reduces model size by a factor of almost four.
Replacing the parallel convolutions results in 30-50% sav-
ings in computation and 20-40% in memory. These savings
make MPS much more practical. For example, the time
needed to search for the ResNet-18 on 2 GPUs decreased
from 35 to 18 hours, and the search for the Inception-V3
can be performed with 8 GPUs and 12GB of memory. In re-
sult, the complete search (e.g. 25 epochs) only increases by
~45% the training complexity of a uniform low-precision
ResNet-18 network. It should be mentioned that these prac-
tical savings are nevertheless smaller than theoretically pre-
dicted by (14), due to other practical cost bottlenecks, e.g.
weight/activation quantization, parallelization efficiency in
GPUs, network architecture, etc. Better implementations of
EdMIPS could enable further savings.

5.7. Comparison to state-of-the-art

Table 1 compares EAMIPS models to state-of-the-art
uniform low-precision networks, including HWGQ-Net [4]
and LQ-Net [34]. EAMIPS models, with similar BitOps to
the 2-bit uniform models, achieve top performance for all
base networks. Compared to the uniform HWGQ-Net, the
gains are particularly large (3 points) for the complicated

Table 1. Comparison to the state-of-the-art.

Model Ref | Full |HWGQ|LQ [34]|EdMIPS
bit-width 32 32 2 2 ~2
AlexNet Top-1| 57.1 | 59.2 | 58.6 57.4 59.1
Top-5| 80.2 | 81.7 | 80.9 80.1 81.0

ResNet-18 Top-1| 69.6 | 70.2 | 65.1 64.9 65.9
Top-5| 89.2 | 89.5 | 86.2 85.9 86.5
GoogLeNet Top-1| 73.3 | 727 | 64.8 - 67.8
Top-5| 91.3 | 91.0 | 86.3 - 88.0

ResNet-50 Top-1| 76.0 | 76.2 | 70.6 71.5 72.1
Top-5| 93.0 | 93.0 | 89.8 90.3 90.6

Top-1 . . 1. - 2.4

Inception-V3 P 7751 773 710 !

Top-5| 93.6 | 93.6 | 89.9 - 90.7

GoogleNet, a compact model very averse to quantization.
On the other hand, for the simplest model (AlexNet), the
2-bit EAMIPS model is already equivalent to the full pre-
cision network. These results show that EAMIPS is an ef-
fective MPS solution. Since 1) [31] only experiments on
MobileNet and uses latency as complexity indicator; 2)
[32] mainly focuses on ResNet-18/34 of higher bit-widths,
e.g. 4-bit; 3) neither of these works have released the code
needed to reproduce their results, we are unable to compare
to them. We believe that the release of EDMIPS code and
the solid baselines now established by Table 1 will enable
more extensive comparisons to future work in MPS.

6. Conclusion

We have proposed EAMIPS, an efficient framework for
MPS based on a differentiable architecture. EdMIPS has
multiple novel contributions to the MPS problem. It can
search large models, e.g. ResNet-50 and Inception-V3, di-
rectly on ImageNet, at affordable costs. The learned mixed-
precision models of multiple popular networks substantially
outperform their uniform low-precision counterparts and
establish a solid set of baselines for future MPS research.
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