
A Universal Session Type for Untyped

Asynchronous Communication

Stephanie Balzer1

Carnegie Mellon University, USA

Frank Pfenning2

Carnegie Mellon University, USA

Bernardo Toninho3

NOVA LINCS, Universidade Nova de Lisboa, Portugal

Abstract

In the simply-typed ⁄-calculus we can recover the full range of expressiveness of the untyped
⁄-calculus solely by adding a single recursive type U = U æ U . In contrast, in the session-typed
fi-calculus, recursion alone is insufficient to recover the untyped fi-calculus, primarily due to
linearity: each channel just has two unique endpoints. In this paper, we show that shared channels
with a corresponding sharing semantics (based on the language SILLS developed in prior work) are
enough to embed the untyped asynchronous fi-calculus via a universal shared session type US. We
show that our encoding of the asynchronous fi-calculus satisfies operational correspondence and
preserves observable actions (i.e., processes are weakly bisimilar to their encoding). Moreover,
we clarify the expressiveness of SILLS by developing an operationally correct encoding of SILLS
in the asynchronous fi-calculus.

2012 ACM Subject Classification Theory of computation æ Process calculi, Theory of compu-
tation æ Linear logic

Keywords and phrases Session types, sharing, fi-calculus, bisimulation

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2018.30

1 Introduction

Session types [20, 22, 23] prescribe the protocols of message exchange between processes that
interact along channels. The recent discovery of a Curry-Howard isomorphism between linear

logic and the session-typed fi-calculus [8, 9, 42, 38] has given message-passing concurrency a
firm logical foundation. Programming languages [40, 19] building on this isomorphism not
only guarantee session fidelity (i.e., protocol compliance) but also a form of global progress,
since the process graph forms a tree and is acyclic by construction.

While the linear logic session framework allows for persistent servers through the expo-
nential modality (i.e., replicated sessions that may be used an arbitrary number of times), it
enforces a strict separation between server instances by means of a copying semantics [8, 42].
For instance, interactions between a client and a server cannot affect future client-server
interactions. Thus, this session discipline fundamentally excludes programming scenarios that
require sharing of server resources such as shared databases or shared output devices. This
observation triggered the realization that linear session-typed calculi lag behind the untyped

1
NSF Grant No. CCF-1718267: “Enriching Session Types for Practical Concurrent Programming”

2
NSF Grant No. CCF-1718267: “Enriching Session Types for Practical Concurrent Programming”

3
NOVA LINCS (Ref. UID/CEC/04516/2013)

© Stephanie Balzer, Frank Pfenning, and Bernardo Toninho;

licensed under Creative Commons License CC-BY

29th International Conference on Concurrency Theory (CONCUR 2018).

Editors: Sven Schewe and Lijun Zhang; Article No. 30; pp. 30:1–30:18

Leibniz International Proceedings in Informatics

Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

30:2 A Universal Session Type for Untyped Asynchronous Communication

asynchronous fi-calculus in expressiveness and the question of whether the full expressiveness
of the untyped asynchronous fi-calculus could be recovered in such a logical setting [42].

In this paper, we answer this question positively. In prior work we have introduced
manifest sharing [3], a modal-typing discipline that orchestrates the coexistence of linear and

shared channels while maintaining session fidelity, at the expense of generalized deadlock-
freedom. In this work we show that manifest sharing recovers the expressiveness of the
untyped asynchronous fi-calculus. Given our language SILLS [3, 4] that supports manifest
sharing, we provide an encoding of the untyped asynchronous fi-calculus into SILLS, showing
that our encoding satisfies operational correspondence and that fi-calculus processes are
weakly bisimilar to their SILLS encodings. To clarify the expressiveness of SILLS, we moreover
develop an encoding in the other direction, embedding SILLS into the asynchronous (polyadic)
fi-calculus and satisfying operational correspondence.

Key to our encoding of the untyped asynchronous fi-calculus into SILLS is the representa-
tion of a fi-calculus channel as a recursive shared session type US, reminiscent of the encoding
of the untyped ⁄-calculus into the simply-typed ⁄-calculus via the type U = U æ U . While
the addition of a single recursive type is sufficient to recover the expressiveness of the untyped
⁄-calculus in the simply-typed ⁄-calculus, our result reveals that both shared and recursive
session types are necessary to achieve the analogous result in the session-typed fi-calculus.

The contributions of this paper are:
A proof that our encoding of the untyped asynchronous fi-calculus into SILLS is opera-
tionally sound and complete and preserves observable actions (i.e., processes are weakly
bisimilar to their encoding);4

A formulation of a weak bisimulation between a labelled transition system for the
asynchronous fi-calculus and a multiset rewriting system for closed terms of SILLS;
Evidence of the instrumental role shared channels take in the expressiveness of session-
typed process calculi;
An encoding of SILLS into the untyped asynchronous polyadic fi-calculus, satisfying
operational correspondence.

Paper Structure. Section 2 provides the necessary background on SILLS. Section 3 intro-
duces the encoding of the untyped asynchronous fi-calculus into SILLS and states and proves
operational and observational correspondence (i.e., preservation of reductions and observable
actions). Section 4 develops an encoding of SILLS into the untyped asynchronous polyadic
fi-calculus, satisfying operational correspondence. Section 5 summarizes related work, and
Section 6 concludes the paper. Proofs are given in a companion technical report.

2 Manifest Sharing with Session Types

In this section, we provide an introduction to manifest sharing [3] and the programming
language SILLS [3, 4], to the extent necessary for the development in this paper. Session

types [20, 22, 23, 8, 40, 9, 42, 38] prescribe the protocols of message exchange between
processes that interact along channels. For example, the recursive linear session type

queue A = N{enq : A (queue A, deq : ü{none : 1, some : A ¢ queue A}}

4
A preliminary version of our encoding of the untyped asynchronous fi-calculus into SILLS has been

published in [3] for illustration purposes, but without proof.

S. Balzer, F. Pfenning, and B. Toninho 30:3

Table 1 Overview of session types in SILLS together with their operational meaning.

Session type Process term
current cont current cont Description
cL : ü{l : AL} cL : ALh cL.lh ; P P provider sends label lh along cL

case cL of l ∆ Q Qh client receives label lh along cL

cL : N{l : AL} cL : ALh case cL of l ∆ P Ph provider receives label lh along c

cL.lh ; Q Q client sends label lh along cL

cL : AL ¢ BL cL : BL send cL dL ; P P provider sends channel dL : AL along cL

yL Ω recv cL ; QyL [dL/yL] QyL client receives channel dL : AL along cL

cL : AL (BL cL : BL yL Ω recv cL ; PyL [dL/yL] PyL provider receives channel dL : AL along cL

send cL dL ; Q Q client sends channel dL : AL along cL

cL : Πx:AS.BL cL : BL send cL dS ; P P provider sends channel dS : AS along cL

yS Ω recv cL ; QyS [dS/yS] QyS client receives channel dS : AS along cL

cL : ÷x:AS.BL cL : BL yS Ω recv cL ; PyS [dS/yS] PyS provider receives channel dS : AS along cL

send cL dS ; Q Q client sends channel dS : AS along cL

cL : 1 - close cL - provider sends “end” along cL

wait cL ; Q Q provider receives “end” along cL

cL : ¿S
LAS cS : AS cS Ω detach cL ; PxS [cS/xS] PxS provider sends “detach cS” along cL

xS Ω release cL ; QxS [cS/xS] QxS client receives “detach cS” along cL

cS : øS
LAL cL : AL cL Ω acquire cS ; QxL [cL/xL] QxL client sends “acquire cL” along cS

xL Ω accept cS ; PxL [cL/xL] PxL provider receives “acquire cL” along cS

defines the protocol of how to interact with a provider of a queue data structure that contains
elements of some variable type A. In a session-typed interpretation of intuitionistic linear
logic, session types are expressed from the point of view of the providing process, with the
channel along which the process provides the session behavior being defined by the session
type. This choice avoids the explicit dualization of a session type present in the original
presentations of session types [20, 22] and those based on classical linear logic [42]. We adopt
an equi-recursive [11] interpretation for recursive session types, silently equating a recursive
session type with its unfolding and requiring types to be contractive [16].

Table 1 provides an overview of SILLS’s session types and their operational reading. For
each type constructor, Table 1 lists the points of view of the provider and client of the given
type, in the first and second lines, respectively. For each connective, its session type before
the exchange (Session type current) and after the exchange (Session type cont(inuation))
is given. Likewise, the implementing process term is indicated before the exchange (Process
term current) and after the exchange (Process term continuation). Table 1 shows that
the process terms of a provider and a client for a connective come in matching pairs. Both
participants’ view of the session changes consistently.

For the linear session type queue A specified above, we have the following protocol: a
process providing a service of type queue A gives a client the choice to either enqueue (enq)
or dequeue (deq) an element of type A. Upon receipt of the label enq, the providing process
expects to receive a channel of type A to be enqueued and recurs. Upon receipt of the label
deq, the providing process either indicates that the queue is empty (none), in which case it
terminates, or that there is a channel stored in the queue (some), in which case it dequeues
this element, sends it to the client, and recurs.

Linearity restricts session type queue A to a single client. If we want the queue to be used
in a classical consumer-producer scenario, where we have multiple producers and consumers

CONCUR 2018

30:4 A Universal Session Type for Untyped Asynchronous Communication

qÕ Ω acquire q ;
qÕ.enq ;
send qÕ x ;
q Ω release qÕ

Figure 1 A client of a shared queue.

accessing the queue, we can use the following shared session type instead:

queue AS = øS
LN{enq : Πx : AS.¿S

Lqueue AS,

deq : ü{none : ¿S
Lqueue AS, some : ÷x : AS.¿S

Lqueue AS}}

For ease of reading, we typeset shared session types and channels in programs in red and
bold font as opposed to linear session types and channels, which we typeset in black and
regular font. Session type queue AS now describes the session offered by a shared process.
Since a shared process can have multiple clients that refer to the process by a shared channel,
state-altering communication with a shared process must only happen once exclusive access
to the process has been obtained. Otherwise, session fidelity would be endangered. To this
end, SILLS imposes an acquire-release discipline on shared processes, where an acquire yields
exclusive access to a shared process, if the process is available, and a release relinquishes
exclusive access. As a result, processes can alternate between linear and shared, where a
successful acquire of a shared process turns the process into a linear one, and conversely, a
release of a linear process turns the process into a shared one.

A potential producer process can now interact with a process that implements session
type queue AS according to Figure 1, assuming that q is of type queue AS and x is of type AS.
The statement qÕ Ω acquire q, yields, if successful, the queue’s linear channel qÕ along which
the producer process can enqueue the element. The statement q Ω release qÕ releases the
now linear queue process providing along qÕ, giving turn to another producer or consumer
process, and yields the queue’s shared channel q. As indicated by Table 1, there exist the
dual notions of an accept and detach for an acquire and release, respectively, denoting the
matching statements by a provider.

A key contribution of manifest sharing is not only to support acquire-release as a
programming primitive but also to make it manifest in the type system. Generalizing the
idea of type stratification [35, 6, 36], session types are stratified into a linear and shared layer
with two adjoint modalities going back and forth between them:

AS , øS
LAL

AL, BL , AL ¢ BL | 1 | ü{l : AL} | ÷x : AS.BL | AL (BL | Πx : AS.BL | N{l : AL} | ¿S
LAS

The modal operator ¿S
LAS shifting down from the shared to the linear layer is then interpreted

as a release (and, dually, detach) and the operator øS
LAL shifting up from the linear to the

shared layer as an acquire (and, dually, accept). As a result, we obtain a type system where
a session type dictates any form of synchronization, including the acquisition and release of
a shared process.

Returning to the shared session type queue AS defined above, we can see that any exchange
of labels or channels with the queue is now guarded by a preceding acquire, and that the
queue must be released before it recurs. The shared session type further deviates from its
linear version in that it contains shared elements, as the entire queue is shared, and by
recurring in the empty case of a dequeueing request, as there are now multiple clients.

We briefly discuss the typing and the dynamics of acquire-release. The typing and the
dynamics of the residual linear connectives are standard. As is usual for an intuitionistic

S. Balzer, F. Pfenning, and B. Toninho 30:5

proc(cL, xL Ω acquire aS ; QxL), proc(aS, xL Ω accept aS ; PxL)

≠æ proc(cL, [aL/xL] QxL), proc(aL, [aL/xL] PxL), unavail(aS)

proc(cL, xS Ω release aL ; QxS), proc(aL, xS Ω detach aL ; PxS), unavail(aS)

≠æ proc(cL, [aS/xS] QxS), proc(aS, [aS/xS] PxS)

Figure 2 Multiset rewriting rules for acquire-release.

interpretation, each connective gives rise to a left and a right rule, denoting the use and
provision, respectively, of a session of the given type:

(T-øS
LL)
Γ, xS : øS

LAL; ∆, xL : AL „Σ QxL :: (zL : CL)

Γ, xS : øS
LAL; ∆ „Σ xL Ω acquire xS ; QxL :: (zL : CL)

(T-øS
LR)

Γ; · „Σ PxL :: (xL : AL)

Γ „Σ xL Ω accept xS ; PxL :: (xS : øS
LAL)

(T-¿S
LL)

Γ, xS : AS; ∆ „Σ QxS :: (zL : CL)

Γ; ∆, xL : ¿S
LAS „Σ xS Ω release xL ; QxS :: (zL : CL)

(T-¿S
LR)

Γ „Σ PxS :: (xS : AS)

Γ; · „Σ xS Ω detach xL ; PxS :: (xL : ¿S
LAS)

The typing judgments Γ „� P :: (xS : AS) and Γ; ∆ „� P :: (xL : AL) indicate that process P

provides a service of session type A along channel x, given the typing of services provided by
processes along the channels in typing contexts Γ (and ∆). Γ and ∆ consist of hypotheses
on the typing of shared and linear channels, respectively, where Γ is a structural and ∆ a
linear context. To allow for recursive process definitions, the typing judgment depends on a
signature Σ that is populated with all process definitions prior to type-checking. The adjoint
formulation forbids a shared process from depending on linear channels [3, 35]. Thus, when a
shared session accepts an acquire and shifts to linear, it starts with an empty linear context.

Operationally, the dynamics of SILLS is captured by multiset rewriting rules [10], which
denote computation in terms of state transitions between configurations of processes. Multiset
rewriting rules are local in that they only mention the parts of a configuration they rewrite.
For acquire-release we have the rules of Figure 2.
Configuration states are defined by the predicates proc(cm, P) and unavail(aS). The former
denotes a process with process term P providing along channel cm, the latter a placeholder
for a shared process providing along channel aS that is currently not available. The above
rule exploits the invariant that a process’ providing channel a can come at one of two modes,
a linear one, aL, and a shared one, aS. While the process is linear, it provides along aL, while
it is shared, along aS. When a process shifts between modes, it switches between the two
modes of its offering channel. This channel at the appropriate mode is substituted for the
variables occurring in process terms.

3 Recovering the Untyped Asynchronous fi-calculus in SILLS

We now detail our encoding of the asynchronous fi-calculus into SILLS, show that it satisfies
operational correspondence and that processes are weakly bisimilar to their SILLS encodings.

3.1 Encoding the Untyped Asynchronous fi-calculus in SILLS

The essence of linear session-typed process calculi – treating channels as stateful resources
– is fundamental in facilitating reasoning about session-typed programs and to guarantee
strong properties, such as session fidelity and possibly deadlock-freedom. However, where
channels in linear session-typed process calculi connect exactly one sending process with
one receiving process, in the untyped fi-calculus they may connect multiple sending and

CONCUR 2018

30:6 A Universal Session Type for Untyped Asynchronous Communication

empty : {US}
c Ω empty =

cÕ Ω accept c ;

case cÕ of
| ins æ x Ω recv cÕ

;

c Ω detach cÕ
;

e Ω empty ;

c Ω elem Ω x, e
| del æ cÕ.none ;

c Ω detach cÕ
;

c Ω empty

elem : {US Ω US, US}
c Ω elem Ω x, d =

cÕ Ω accept c ;

case cÕ of
| ins æ y Ω recv cÕ

;

c Ω detach cÕ
;

e Ω elem Ω x, d ;

c Ω elem Ω y, e
| del æ cÕ.some ;

cÕ Ω nd_pick Ω x, d

nd_pick : {÷x:US. ¿S
L US Ω US, US}

cÕ Ω nd_pick Ω x, d =

ndc Ω nd_choice ;

case ndc of
| yes æ send cÕ x ;

c Ω detach cÕ
;

wait ndc ;

fwd c d
| no æ dÕ Ω acquire d ;

dÕ.del ;

case dÕ of
| none æ d Ω release dÕ

;

send cÕ x ;

c Ω detach cÕ
;

wait ndc ;

fwd c d
| some æ y Ω recv dÕ

;

d Ω release dÕ
;

send cÕ y ;

c Ω detach cÕ
;

wait ndc ;

c Ω elem Ω x, d

nd_choice : {ü{yes : 1, no : 1}}
d Ω nd_choice =

c Ω coin_head ;

f Ω coin_flipper Ω c ;

cÕ Ω acquire c ;

case cÕ of
| head æ c Ω release cÕ

;

d.yes ;

wait f ;

close d
| tail æ c Ω release cÕ

;

d.no ;

wait f ;

close d

Figure 3 Processes empty and elem implementing a fi-calculus channel with auxiliary processes.

See Figure 4 for processes coin_head, coin_tail, and coin_flipper and session type coin.

receiving processes, giving rise to non-determinism. For example, the fi-calculus process
c(x).P | cÈaÍ | c(y).Q, made up of three parallel components, where the first and third seek
to input along channel c and the second outputs the name a along c, may reduce to either
[a/x] P | c(y).Q or c(x).P | [a/y] Q.

In purely linear session-typed process calculi, on the other hand, message exchange
is completely deterministic, even in the presence of replicated or persistent sessions (this
argument is made precise through a typed contextual equivalence for intuitionistic linear
logic sessions in [34]). The addition of sharing to session-typed calculi – and with it non-
determinism – suggests that it should now be possible to faithfully encode the untyped
fi-calculus. In previous work we have postulated this conjecture by providing an encoding
of the untyped asynchronous fi-calculus into SILLS [3], without any further proof. We now
refine the encoding and prove it operationally and behaviorally correct.

The basic idea of our encoding is to represent a fi-calculus process by a linear SILLS
process and a fi-calculus channel by a shared SILLS process. Reminiscent of the encoding
of the untyped ⁄-calculus into the typed ⁄-calculus, we type fi-calculus channels with a
universal recursive shared session type US:

US = øS
L N{ins : Πx:US. ¿S

L US, del : ü{none : ¿S
L US, some : ÷x:US. ¿S

L US}}

Similar to the type queue AS of Section 2, the type US represents a buffer that stores elements,
but with the elements being of type US themselves and without maintaining any order.
Figure 3 shows the processes empty and elem that implement session type US. In SILLS, we
declare the type of a defined process X with X : {A Ω A1, . . . , An}, indicating that the
process provides a service of type A, using channels of type A1, . . . , An. The definition of
the process is then given by x Ω X Ω y1, . . . , yn = P , where P is the body of the process
with occurrences of channels y1 : A1, . . . , yn : An. A new process X providing along channel
x is spawned with an expression of the form x Ω X Ω y1, . . . , yn ; Qx, where Qx is the
continuation binding x. We refer to Table 1 for the meaning of the process terms.

S. Balzer, F. Pfenning, and B. Toninho 30:7

coin = øS
L ü {head : ¿S

Lcoin,
tail : ¿S

Lcoin}}
coin_head : {coin}
c Ω coin_head =

cÕ Ω accept c ;

cÕ.head ;

c Ω detach cÕ
;

c Ω coin_tail

coin_tail : {coin}
c Ω coin_tail =

cÕ Ω accept c ;

cÕ.tail ;

c Ω detach cÕ
;

c Ω coin_head

coin_flipper : {1 Ω coin}
d Ω coin_flipper Ω c =

cÕ Ω acquire c ;

case cÕ of
| head æ c Ω release cÕ

;

close d
| tail æ c Ω release cÕ

;

close d

Figure 4 Processes coin_head, coin_tail, and coin_flipper and session type coin, upon which

process nd_choice in Figure 3 relies.

The buffer is implemented as a sequence of elem processes, ending in an empty process.
The recursive process elem provides a buffer sequence along channel c and uses a channel
x : US (the buffer element at the current position in the sequence) as well as a channel
d : US (the next elem of the sequence). Process empty, on the other hand, provides an empty
buffer sequence along channel c, without using any other channels. Both processes insert the
received element at the head of the buffer sequence in the ins case, but handle the del case
differently. Whereas process empty responds with label none, process elem responds with
label some, followed by sending and deleting an arbitrary element from the buffer. Process
elem achieves arbitrary deletion by recurring as process nd_pick. Process nd_pick, in turn,
uses process nd_choice to nondeterministically choose between sending and deleting the
element at the current position in the sequence (case yes) or, possibly recursively, propagating
the deletion request to the next element in the sequence (case no). While linear session-typed
calculi are deterministic, non-determinism arises in SILLS from the acquisition of shared
channels, since it is unknown which client among all those competing to acquire a shared
process will succeed. Process nd_choice uses this fact and achieves non-determinism by
reading a coin that it shares with process coin_flipper (see Figure 4). Both processes then
try to acquire the coin concurrently, which switches sides when read, with the result that the
value read by nd_choice depends on the order in which the coin is acquired.

Given the buffer abstraction, encoded fi-calculus processes in SILLS simply amount
to “producers” and “consumers” of shared channels of type US. Any such process can
communicate along a fi-calculus channel by acquiring the corresponding SILLS channel of
universal type. We are now ready to give the encoding of the untyped asynchronous monadic
fi-calculus [30, 37] into SILLS. The syntax of the asynchronous fi-calculus is [5]:

P , 0 | cÈaÍ | c(x).P | ‹c P | P1 | P2 | !P

0 denotes an inactive process. cÈaÍ represents an asynchronous send of channel a along
channel c. c(x).P amounts to a guarded input, where the channel received along c is bound
to x in the continuation P . ‹c P introduces a new channel c that is bound in P . P1 | P2

denotes parallel composition of P1 and P2, and !P replication of P (i.e., an unbounded
number of copies of P in parallel). We assume a standard reduction and labelled transition
semantics, but where replication involves an explicit reduction (and · transition) instead of
expansion through structural congruence: !P ≠æ P |!P . Moreover, we enforce that structural
congruence is only applied at the top-level of processes.

Our encoding, shown in Figure 5, yields for each fi-calculus process P a corresponding
linear process JPK in SILLS, satisfying the typing judgment: ΓF ; ΓB; ΓI ; · „� JPK :: (·). We
use an empty succedent to denote that the process does not provide any session. Since all
communication is going to happen along fi-calculus channels, i.e., the shared SILLS processes
of type US, the linear SILLS processes representing fi-calculus processes merely become clients

CONCUR 2018

30:8 A Universal Session Type for Untyped Asynchronous Communication

J0K = ·
JcÈaÍK = x Ω snd Ω c ;

send x a ;

wait x ; ·
Jc(x).PK = y Ω poll_rcv Ω c ;

z Ω recv y ;

wait y ;

[z/x] JPK
J‹x PK = y Ω empty ;

[y/x] JPK
JP1 | P2K = _ Ω JP1K ;

JP2K
J!PK = Rec!P where

Rec!P = _ Ω JPK ;

Rec!P

snd : {(Πx:US. 1) Ω US}
d Ω snd Ω c =

x Ω recv d ;

cÕ Ω acquire c ;

cÕ.ins ;

send cÕ x ;

c Ω release cÕ
;

close d

poll_rcv : {(÷x:US. 1) Ω US}
d Ω poll_rcv Ω c =

cÕ Ω acquire c ;

cÕ.del ;

case cÕ of
| none æ c Ω release cÕ

;

d Ω poll_rcv Ω c
| some æ x Ω recv cÕ

;

c Ω release cÕ
;

send d x ;

close d

Figure 5 Translation of untyped asynchronous fi-calculus processes into SILLS and auxiliary

processes snd and poll_recv (empty : {US} is defined in Figure 3).

of those processes, without providing any behavior outright. In our earlier encoding [3], we
have translated fi-calculus processes into linear SILLS processes of type 1, since the notion
of a non-providing linear process is not present in SILLS. Our current encoding avoids the
spurious exchange of wait messages required by type 1 and constitutes a return to the original
interpretation of linear logic [8], where processes terminate silently. In the above typing
judgment, we moreover subdivide the context Γ into three parts, to keep track of the free (ΓF)
and bound (ΓB) fi-calculus channels as well as of channels that are only used internally to the
encoding (ΓI). When an encoded process reduces, new linear channels may be generated, for
example, the providing channel of process nd_choice, which are all internal to the encoding.

The inactive process 0 is encoded as the empty SILLS process. The encoding of an output
JcÈaÍK is implemented by spawning a new linear SILLS process snd of type Πx:US. 1 with
access to the buffer implementing channel c. The encoding then sends the channel a to
the spawned process snd, waiting for snd to acquire the buffer c, insert a, and terminate.
The encoding of an input Jc(x).P K is implemented by spawning a new linear SILLS process
poll_rcv of type ÷x:US. 1 with access to the buffer implementing channel c. The encoding
then waits for the spawned process poll_rcv to send back a channel and terminate, after
which it continues at P , substituting the received channel for x. Process poll_rcv repeatedly
checks, in a potentially infinite loop, if the buffer c contains an element. If so, it deletes it
from the buffer, passes it on, and terminates. New name creation (J‹x PK) simply spawns a
new buffer, offering on some fresh name x. Parallel (JP1 | P2K) composition is embodied by a
spawning of the processes P1 in parallel with the executing process P2. Finally, replication
(J!PK) is implemented by a loop that spawns copies of the replicated process.

To make our encoding more tangible, we derive the initial SILLS configuration obtained
from translating the process JcÈaÍ | c(x).0K according to the rules in Figure 5:

aS, cS ; · ; · ; · ✏� proc(_, yL Ω poll_rcv Ω cS; zS Ω recv yL; wait yL; ·),
proc(_, yL Ω snd Ω cS; send yL aS; wait yL; ·),
buf(aS | yL Ω accept aS; PyL), buf(cS | yL Ω accept cS; PyL)

To the left, we list the contents of the contexts ΓF ; ΓB; ΓI ; ∆, to the right the process
configuration. For readability we use the short-form buf(a | Pa) to represent a sequence of
empty-terminated elem processes denoting an entire buffer, with Pa standing for the next

S. Balzer, F. Pfenning, and B. Toninho 30:9

statements to be executed. The above configuration will reduce, according to the semantics
of SILLS, until it halts in a state that consists of buffers representing the fi-calculus channels,
coin_head processes for any nondeterministic choices made, and unavail predicates for any
shared channels that are not available. On the other hand, any linearly spawned processes
that are internal to the encoding and not part of a buffer will have terminated.

Asynchrony of fi-calculus outputs is achieved in our encoding by the introduction of the
buffers, which temporarily store outputs until there is a process that is willing to receive.
As a matter of fact, our buffers can be thought of manifestations of the “ether” to which
asynchronous outputs are sent in the untyped asynchronous fi-calculus! Our encoding is
thus reminiscent of the encoding of the untyped asynchronous fi-calculus into an untyped
synchronous fi-calculus with bags [5]. In fact, unlike the fi-calculus where synchronous and
asynchronous calculi have different expressive power [33], in the session-typed setting we
can easily and selectively implement one in the other either by using double shifts to force
acknowledgments [35] or by spawning single-message processes to achieve asynchrony [3]. The
only significant point in SILLS is that acquire/accept interactions must be a synchronization
point. As we discuss in Section 3.3, crucial to the correctness of our encoding is also the
removal of buffer elements non-deterministically. This guarantees that at no point in a
reduction is the order between outputs determined. The use of nondeterministic deletion is
another improvement over our earlier encoding [3], which uses non-deterministic insertion.

An interested reader may wonder whether asynchronous messages could not be encoded
directly as processes, rather than storing them temporarily in a buffer until their receipt.
After all, this is exactly what the syntax of the asynchronous fi-calculus enforces! Non-
determinism would then be achieved by the operational dynamics of the multiset rewriting
rules, eliminating the need for the explicit encoding of non-deterministic buffers. Since every
fi-calculus channel c is mapped to a shared SILLS channel cS, this hypothetical encoding would
require the ability to have multiple processes offering along the same shared channel (either
the sender or the receiver sides of the communication). This is not allowed by the typing
discipline, which crucially enforces that every process offers along a unique channel. Thus, an
explicit representation of buffers is key, which then requires the encoding of non-deterministic
bags to mimic the semantics of asynchrony in a precise way.

3.2 Operational Correspondence

We now develop an operational correspondence result for our encoding of the untyped
asynchronous fi-calculus. Operational correspondence results are standard desiderata for
encodings of process calculi [18], showing that the computational features of the source
language are preserved by the encoding in a precise sense. Following the terminology of [18],
we aim to establish operational completeness (i.e., that fi-calculus reductions are mimicked
by the encoding) and soundness (i.e., that computations of encoded processes can be mapped
back to those of the source terms) of our encoding.

As is the case in most encodings, some of the computation steps in the image of our
encoding are purely administrative artifacts, and thus may not have a counterpart in
the source. Specifically, the encoding of fi-calculus channels as buffers introduces quite
a few such “spurious” steps. Rather than relating source and image of the encoding at
every step [5, 18], we introduce the notion of an administrative transition, and then state
operational correspondence modulo such administrative transitions.

Given the nature of the asynchronous fi-calculus, in which outputs are sent into the “ether”
and synchronization only happens upon receipt, we deem the interactions leading to the
insertion into a buffer as administrative and only the removal itself relevant. This treatment

CONCUR 2018

30:10 A Universal Session Type for Untyped Asynchronous Communication

is consistent with the existing literature. In the encoding of the untyped asynchronous
fi-calculus into an untyped synchronous fi-calculus with bags [5], output prefixes are equated
with one-element bags, and synchronization amounts to directly reading from these bags.
We define relevant and administrative transitions in the image of our encoding as follows:

I Definition 1 (Relevant and Administrative Transitions of Encoding). We say that a relevant
transition, written ≠ær, is a standard transition between SILL configurations such that:
Ω, proc(dL, xS Ω recv cL ; QxS) ≠æ ΩÕ, proc(dL, [aS/xS] QxS), for some Ω, ΓF , ΓB, ΓI , aS, cS, and
dL such that aS œ ΓF fi ΓB, cS œ ΓF fi ΓB, and dS œ ΓI .

An administrative transition, written ≠æa, is a transition defined by the standard
transition relation between SILL configurations, but excluding a relevant transition. We write
=∆a for the reflexive transitive closure of ≠æa, and write =∆r for =∆a≠ær=∆a.

Inspecting our encoding (Figure 3 and Figure 5), we can see that a relevant transition
amounts to the receive action in the some branch in process poll_rcv, which synchronizes
with the buffer to receive a channel. The parameters of the above definition uniquely identify
this synchronization point: process poll_rcv is a linear process providing along a linear
channel dL that is internal to the encoding (dL œ ΓI), and both the received channel aS and
the offering channel cS of the buffer are either free our bound names of the original fi-calculus
process (aS œ ΓF fi ΓB and cS œ ΓF fi ΓB).

Equipped with these two notions of transition, we can establish operational soundness
and completeness. Their statements rely on the definition Jfn(P)K, which stand for a config-

uration of empty buffer processes of the form buf(cS1 | yL Ω accept cS1 ; QyL), . . . , buf(cSn |
yL Ω accept cSn ; QyL), where fn(P) = {c1, . . . , cn} denotes the set of free names in P . The
definition allows us to compose an encoded fi-calculus process with the appropriate buffer
representations for all its free channel names.

I Theorem 2 (Operational Correspondence).

Completeness. For all P ≠æ P Õ
, there exists Ω1, Ω2 such that Jfn(P)K, proc(_, JPK) =∆r

Ω1, Ω2 or Jfn(P)K, proc(_, JPK) =∆a Ω1, Ω2, with Jfn(P Õ)K, proc(_, JP ÕK) =∆a Ω2.

Soundness. For all P and Jfn(P)K, proc(_, JPK) =∆r Ω, there exists a P Õ, Ω1, Ω2 such that

P ≠æ P Õ
and Ω = Ω1, Ω2 and Jfn(P Õ)K, proc(_, JP ÕK) =∆a Ω2.

For operational completeness, we identify each individual fi-calculus reduction with either
one relevant transition (possibly preceded or followed by several administrative transitions),
or, for the fi-calculus reduction corresponding to forking a parallel replica (i.e., !P ≠æ P |!P),
with one administrative transition. For operational soundness, we match relevant transitions
of encoded processes with one process reduction. In both settings we identify the artifacts of
the encoding (coin processes and unavail channels) through the configuration Ω1.

We note that the encodings of continuations eventually “catch up” (via administrative
transitions) with the configuration that results from the relevant transition, instead of
having a more immediate identification through the encoding. This treatment is due to
the distinction between processes (static entities) and configurations (runtime entities) in
SILLS, a distinction not present in the fi-calculus, where processes are the runtime entities.
For instance, parallel composition in SILLS is achieved via an explicit spawning construct,
whose semantics is to administratively transition to a configuration with the spawned process
executing in parallel.

S. Balzer, F. Pfenning, and B. Toninho 30:11

3.3 Observational Correspondence

In the previous section we have established that our encoding preserves reductions in the fi-
calculus in a strong sense, by identifying precisely the transitions in the operational semantics
of SILLS that correspond to reductions in the fi-calculus processes in a way that is consistent
with standard results on the nature of asynchrony of the untyped asynchronous fi-calculus.

We now go further and relate observable actions (i.e., labelled transitions) in the fi-calculus
with their corresponding observables in SILLS configuration rewrites. The key challenge
here is to identify what those observables in SILLS are because of the significant differences
between the semantic frameworks of the fi-calculus and SILLS. Whereas the fi-calculus adopts
an open-world view of observable actions with an unspecified environment (the “ether”),
SILLS adopts a closed-world view of a configuration of processes that are composed to form a
complete program that can be run.

To clarify, consider the fi-calculus process cÈaÍ | c(x).P , where both c and a are free
names. This process can interact with the environment through its free names by taking
any of the following three observable actions: the output along c, the input along c, or the
· -action, corresponding to the synchronization between these dual actions. Now consider
the SILLS encoding of JcÈaÍ | c(x).P K. It results in a complete configuration consisting of
the encoding of the process together with an explicit encoding of the free names c and a

in terms of the buffers offering along c and a. Given this setup, any potential action on
the fi-calculus side will result in a series of actual computational steps on the SILLS side,
affecting the buffers as prescribed by the protocol of type US. In such a closed-world setting,
trying to exactly mimic potential actions seems unnatural, if not impossible.

However, it is still the case that we want to relate fi-calculus behavior with SILLS behavior
in a precise sense. To reconcile the open-world view of a labelled transition semantics with
the closed-world view of computational steps, we note that the encoding already accounts for
this issue by essentially implementing “the environment” through the channel encodings that
must be composed with the processes at the top-level. Thus, what we deem to be observable

when we consider a configuration made up of encoded fi-calculus processes and corresponding
channel encodings are precisely the inputs and outputs to and from buffers. Conversely, any
steps in a SILLS configuration that do not involve any inputs or outputs to and from buffers,
we deem to be unobservable.

I Definition 3 (Unobservable Transitions of Configuration). Given a configuration Ω we say
that there is an unobservable transition from Ω to ΩÕ, written Ω ≠æun ΩÕ, iff Ω ≠æ ΩÕ where
the transition does not involve any of the two reductions below:

Ω0, proc(dL, xS Ω recv cL ; PxS) ≠æ ΩÕ
0
, proc(dL, [aS/xS] PxS)

Ω0, proc(dL, send cL eS ; P) ≠æ ΩÕ
0
, proc(dL, P)

for some Ω0, ΩÕ
0
, ΓF , ΓB, ΓI , aS, cS, dL and eS such that aS, eS, cS œ ΓF fi ΓB, and dS œ ΓI . We

write Ω =∆un ΩÕ to stand for the reflexive transitive closure of ≠æun.

I Definition 4 (Observable Transitions of Configuration). Given a configuration Ω we define
a notion of an observable transition Ω –≠æ ΩÕ, stating that configuration Ω performs action
– and transitions to configuration ΩÕ, with – ::= cÈaÍ | c(a) | (‹a)cÈaÍ | · as follows:

Ω cÈaÍ≠æ ΩÕ if c, a œ ΓF , Ω = Ω1, proc(dL, send c a; P), Ω2, for some Ω1, P , Ω2 and dS œ ΓI
and Ω ≠æ ΩÕ with ΩÕ = ΩÕ

1
, proc(dL, P), ΩÕ

2
, for some ΩÕ

1
, ΩÕ

2
.

Ω (‹a)cÈaÍ≠æ ΩÕ if c œ ΓF , a œ ΓB, Ω = Ω1, proc(dL, send c a; P), Ω2, for some Ω1, P , Ω2 and
dS œ ΓI and Ω ≠æ ΩÕ with ΩÕ = ΩÕ

1
, proc(dL, P), ΩÕ

2
, for some ΩÕ

1
, ΩÕ

2
.

CONCUR 2018

30:12 A Universal Session Type for Untyped Asynchronous Communication

Ω c(a)≠æ ΩÕ if c œ ΓF , a œ ΓF fi ΓB, Ω = Ω1, proc(dL, x Ω recv c; Px), Ω2, for some Ω1, P, Ω2

and d, with dS œ ΓI and Ω ≠æ ΩÕ with ΩÕ = ΩÕ
1
, proc(dL, [a/x] Px), ΩÕ

2
, for some ΩÕ

1
, ΩÕ

2
.

Ω ·≠æ ΩÕ if all of the following:
1. c œ ΓB, a œ ΓF fi ΓB, Ω = Ω1, proc(dL, send c a; P), Ω2, for some Ω1, P , Ω2 and dS œ ΓI

and Ω ≠æ ΩÕÕ with ΩÕÕ = ΩÕ
1
, proc(dL, P), ΩÕ

2
, for some ΩÕ

1
, ΩÕ

2
, ΩÕÕ;

2. ΩÕÕ =∆un ΩÕÕÕ with ΩÕÕÕ = ΩÕÕ
1
, proc(dL, x Ω recv c; Qx), ΩÕÕ

2
, for some ΩÕÕ

1
, Q, ΩÕÕ

2
and d,

with dS œ ΓI and ΩÕÕÕ ≠æ ΩÕ with ΩÕ = ΩÕÕÕ
1

, proc(dL, [a/x] Qx), ΩÕÕÕ
2

, for some ΩÕÕÕ
1

, ΩÕÕÕ
2

.
We write Ω –=∆ ΩÕ for Ω =∆un ΩÕÕ –≠æ ΩÕÕÕ =∆un ΩÕ.

The several observable transitions mirror the fi-calculus labelled transitions, but where
the role of the environment is replaced with the respective channel implementations. The
first three cases define, respectively, output of a free name, output of a bound name, and
input of a name (using the techniques of Definition 1 to track names). To account for
synchronizations (· -actions) in the fi-calculus, we model the three steps that are required to
perform a full communication in the encoding: an output action of a free or bound name to a
buffer, followed by some sequence of unobservable transitions (needed to complete the several
intermediate stages of the encoding), and an input action from the same buffer. With the
right definition of observable in place, we define the natural notion of (weak) bisimulation
between a fi-calculus process and a SILLS configuration.

I Definition 5 (Weak Bisimulation). A relation R between asynchronous fi-calculus processes
and SILLS configurations is a weak bisimulation if and only if, whenever PRΩ:

If P
–≠æ P Õ and – ”= · then Ω –=∆ ΩÕ and P ÕRΩÕ

If P
·≠æ P Õ then Ω =∆un ΩÕ or Ω ·=∆ ΩÕ and P ÕRΩÕ

plus the symmetric cases. We say that P is weakly bisimilar to Ω, written P ¥ Ω iff there
exists a weak bisimulation R such that PRΩ.

I Theorem 6 (Observational Correspondence). Let P be an asynchronous fi-calculus process.

We have that P ¥ Ω, proc(_, JPK), where Ω is a configuration made up of process encodings

for the free names of P , with (non-empty) arbitrary contents.

The expert reader may wonder how our use of a weak bisimulation captures asynchrony in
the appropriate way, noting that a weak asynchronous bisimulation is necessary to accurately
relate the asynchronous fi-calculus and synchronous fi-calculus with bags [5]. Would it then
not be the case that we could use queues or stacks as buffers and replicate our bisimulation
argument? Our argument holds precisely because of the non-deterministic (i.e., bag-like)
nature of our buffer implementations. Otherwise, out-of-order message reception – a defining
characteristic of asynchrony – would not be simulated correctly by our encoding. In this
sense, our bisimulation is implicitly asynchronous by implementing the environment in terms
of buffers that enforce non-deterministic removals.

4 Simulating Shared Session Types in the fi-calculus

In this section, we close the loop and provide an encoding of SILLS process terms into the
asynchronous polyadic fi-calculus. The extension to the polyadic fi-calculus is necessary to
send along with the actual channel a fresh continuation channel that must be used for the
next exchange in the protocol. This continuation-passing-style encoding (similar to that of
Dardha et al. [13]) ensures that messages are received in the order specified by the protocol.

S. Balzer, F. Pfenning, and B. Toninho 30:13

The resulting encoding is summarised in Figure 6. To simplify our encoding, we use
a type-directed expansion of forwarding corresponding to the standard identity expansion
in the sequent calculus. The resulting programs no longer use forwarding as a primitive,
but implement it by processes that forward messages from client to provider and vice versa.
Observational correctness of this expansion has been shown for the linear fragment [7]
and with recursive types [17]. The strong logical underpinnings lead us to conjecture that
observational correctness extends to sharing as well.

The general pattern of the encoding is to translate a positive type [35] to an output
and a negative type [35] to an input with matching bindings. In case of a linear output or
input, a fresh continuation channel is provided in addition to the actual channel to be sent
or received, respectively. This channel is then used in the process continuation (in parallel)
in place of the original channel, guaranteeing that the session discipline is not disturbed by
out-of-order messages. To encode the acquire-release discipline of SILLS, we must preserve
the shared mode of a channel throughout the translation. To this end, we indicate a linear
SILLS channel by a pair pxL, xSq, where the left and right projections yield the linear mode xL

and shared mode xS, respectively. A release then restores the session to the shared channel.
To ensure a blocking semantics for an acquire, the encoding of an acquire and accept forces
synchronization via the channel w. The encoding of choice makes use of a selection channel
per choice, used to indicate the choice outcome and unlock the appropriate continuation.
For simplicity, and without loss of generality, we limit the encoding to binary internal and
external choice. Process definitions are encoded as top-level replicated processes:

For each (xL Ω p Ω yLi , wSj = PxL,yLi ,wSj
) œ Σ:

!(p(yLi , ySi , wSj , z).‹xL,xS (zÈxL, xSÍ | J[pyLi , ySiq/yLi , pxL, xSq/xL]PxL,yLi ,wSj
K))

For each (xS Ω p Ω ySi = PxS,ySi
) œ Σ: !(p(ySi , z).‹xS (zÈxSÍ | JPxS,ySi

K))

The name of the definition is used as a channel that the encoding of the spawn construct uses
to access new instances of the definition (generated via replication). The process receives the
sessions that are needed to execute the definition and a channel z, used to send back the
pair of (fresh) channels xS and xL used by the encoding of the definition body.

Operational Correspondence. To establish the operational correctness of our encoding, we
consider an asynchronous semantics for SILLS. While operational completeness would not be
affected by a synchronous semantics, soundness would require reasoning up-to observational
equivalence. Since the expressiveness of SILLS has been shown to be orthogonal to the choice
of synchrony or asynchrony, we opt for the latter for the sake of simplicity. The semantics
spawns single-message outputting processes using a continuation-passing style to achieve
type-safe asynchrony [3].

Recalling that in SILLS static entities are distinct from runtime entities, we lift the
encoding to configurations, where the channels along which processes offer their session
behavior are represented as bound names:

J·K = 0 Jproc(c, P), ΩK = (‹cS, cL)(JP K | JΩK) Junavail(cS), ΩK = JΩK

We can now show that SILLS transitions are always matched by a synchronization in the
fi-calculus (and vice-versa) rather straightforwardly, given the direct nature of the encoding.

I Theorem 7 (Operational Correspondence). Let ≠æ+
be the transitive closure of ≠æ:

Completeness. If P is a well-typed, forwarding-free SILLS process and proc(a, P) ≠æ+ Ω
then JP K ≠æ+ JΩK.

Soundness. For all well-typed, forwarding-free SILLS configurations Ω such that JΩK ≠æ+ Q,

there exists a configuration ΩÕ
such that Ω ≠æ+ ΩÕ

and Q =∆ JΩÕK.

CONCUR 2018

30:14 A Universal Session Type for Untyped Asynchronous Communication

JxL Ω p Ω pyLi , ySiq, wSj ; QxLKSpawnLL = ‹z (pÈyLi , ySi , wSj , zÍ | z(xL, xS).J[pxL, xSq/xL] QxLK)

JxS Ω p Ω ySi ; QxSKSpawnLL/SS = ‹z (pÈySi , zÍ | z(xS).JQxSK)

JyL Ω acquire xS; QyLK
øS

LL = ‹yL,w (xSÈyL, xS, wÍ | w().J[pyL, xSq/yL] QyLK)

JyL Ω accept xS; PyLK
øS

LR = xS(yL, yS, w).(wÈ Í | [pyL, ySq/yL] JPyLK)

JyS Ω release pxL, xSq; QySK
¿S

LL = xL(yS).JQySK

JxS Ω detach pxL, xSq; P K¿S
LR = xLÈxSÍ | JP K

Jwait pxL, xSq; QK1L = xL().JQK

Jclose pxL, xSqK1R = xLÈ Í

JyL Ω recv pxL, xSq; PyLK¢L/(R = xL(yL, yS, zL, zS).J[pzL, zSq/pxL, xSq, pyL, ySq/yL]PyLK

Jsend pxL, xSq pyL, ySq; P K¢R/(L = ‹zL (xLÈyL, yS, zL, xSÍ | J[pzL, xSq/pxL, xSq] P K)

JyS Ω recv pxL, xSq; PySK÷L/ΠR = xL(yS, zL, zS).J[pzL, zSq/pxL, xSq] PySK

Jsend pxL, xSq yS; P K÷R/ΠL = ‹zL (xLÈyS, zL, xSÍ | J[pzL, xSq/pxL, xSq] P K)

JpxL, xSq.case(P, Q)KüL/NR = ‹yinl, yinr (xLÈyinl, yinrÍ |
yinl(zL, zS).J[pzL, zSq/pxL, xSq] P K |
yinr(zL, zS).J[pzL, zSq/pxL, xSq] QK)

JpxL, xSq.inl; P KüR1 /NL1 = ‹zL (xL(yinl, yinr).yinlÈzL, xSÍ | J[pzL, xSq/pxL, xSq] P K)

JpxL, xSq.inr; QKüR2 /NL2 = ‹zL (xL(yinl, yinr).yinrÈzL, xSÍ | J[pzL, xSq/pxL, xSq] QK)

Figure 6 Translation of SILLS process terms into the asynchronous, polyadic fi-calculus.

5 Related Work

Encodings of Asynchrony. Encodability results are a standard benchmark for expressiveness
of fi-calculi [18]. For the asynchronous fi-calculus [21], encodings into various formulations of
synchronous fi-calculi exist [5], as well as impossibility results [33] regarding the ability to
adequately encode certain forms of choice in an asynchronous setting.

Our encoding of the asynchronous fi-calculus is reminiscent of the encoding of the
asynchronous fi-calculus in a fi-calculus with bags by Beauxis et al. [5], shown to be in
tight correspondence via an asynchronous bisimilarity. Their framework considers buffers as
primitives in the target calculus, whereas we encode the bag-like behavior of buffers explicitly
as SILLS processes that adhere to a particularly typed protocol, making our encoding more
primitive, but adding several administrative reductions to encoded processes due to the
sharing discipline and the implementation of nondeterminism when reading from a buffer.
This fact, combined with the restrictive (typed) usage of buffers in our setting allows us
to reason using a weak bisimilarity rather than a more involved asynchronous bisimilarity.
Beauxis et al. also consider an encoding of their calculus with bags in the asynchronous
fi-calculus. The general structure of the encoding is similar to our encoding of SILLS in
the asynchronous fi-calculus, modulo the richer syntax of SILLS, which introduces more
communication actions in the image of the encoding. We note that our encoding is greatly
simplified by linearity and by the fact that SILLS does not employ mixed choice [31].

S. Balzer, F. Pfenning, and B. Toninho 30:15

Linear Logic and Session Types. The propositions-as-types correspondence between linear
logic and session types introduced by Caires and Pfenning [8, 9] initiated an ongoing line
of research exploring the logical reading of sessions along various axes [42, 24, 34, 35, 2].
Starting with [8], which translates the linear session language into a fi-calculus (which is
more expressiveness than the source language), various works on encodings in this logical
setting have been proposed [39, 41, 29, 28]. These study encodings between session-typed
processes and functional languages, since the considered session languages are not powerful
enough to express general fi-calculus behaviors. Recent works [2, 12] attempt to address these
limitations in expressiveness by allowing composed processes to share more than one linear
channel, but still do not allow for the sharing available in SILLS, crucial to our encoding. We
also highlight the work of Dardha and Pérez [14] comparing session-typed processes arising
from linear logic and those from the Kobayashi-style typings [26, 25, 32] for the fi-calculus.
They observe that the degree of sharing determines an expressiveness hierarchy for typed
processes and develop encodings from the latter into the former (not preserving the degree
of sharing). In this sense, our encoding of asynchronous fi-calculus completely preserves the
sharing of channels, at the cost of allowing deadlocks when acquiring shared channels.

Session-Typed Behavioral Theory. The behavioral theory of session-typed processes has
been studied in both the multiparty [27] and the linear logic settings [7, 34, 1]. Our notion
of observation is related to the observed communication semantics of Atkey [1], which must
also address the challenge of observing actions within a “closed-world” framework. However,
their system is based on classical linear logic and does not have sharing, making the precise
relationship with our formulation of observable on shared names unclear.

Substructural Logical Reasoning. The work of Deng et al. [15] studies a natural notion
of logical preorder between linear logic contexts using process calculi techniques such as
simulation preorders. While the study of the relationship between contexts can be seen as a
study of multiset rewriting of configurations, the process calculus induced by their reading of
linear logic is a fairly different formalism from SILLS. For instance, their labelled transition
system cannot be reasonably used as a labelled transition system for SILLS since it cannot
represent the equivalent of channel passing, nor does it make use of the deep inspection of
multiset rewriting terms needed for our semantics and reasoning.

6 Concluding Remarks

In this paper, we gave an encoding of the untyped asynchronous fi-calculus into SILLS via
a universal shared session type US, proving its operational and observational correctness.
This result shows that the full expressiveness of the untyped asynchronous fi-calculus can
be recovered in session-typed process calculi. We also provide an operationally correct
encoding in the other direction to simulate shared session types in the fi-calculus. Given
their universality, session-typed calculi with manifest sharing become strong competitors over
traditional approaches since they not only guarantee protocol compliance in the presence
of non-determinism but also make sharing explicit in the type structure. For future work,
we wish to investigate a general behavioral theory of manifest sharing, as well as study
techniques to establish deadlock-freedom in the presence of shared channels.

CONCUR 2018

30:16 A Universal Session Type for Untyped Asynchronous Communication

References

1 Robert Atkey. Observed communication semantics for classical processes. In European

Symposium on Programming (ESOP), pages 56–82, 2017.
2 Robert Atkey, Sam Lindley, and J. Garrett Morris. Conflation confers concurrency. In

S. Lindley et al., editor, Wadler Festschrift, pages 32–55. Springer LNCS 9600, 2016.
3 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of

the ACM on Programming Languages (PACMPL), 1(ICFP):37:1–37:29, 2017.
4 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Technical

Report CMU-CS-17-106, Carnegie Mellon University, March 2017.
5 Romain Beauxis, Catuscia Palamidessi, and Frank D. Valencia. On the asynchronous

nature of the asynchronous fi-calculus. In Concurrency, Graphs and Models, volume 5065
of Lecture Notes in Computer Science, pages 473–492. Springer, 2008.

6 P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and models. In 8th

International Workshop on Computer Science Logic (CSL), volume 933 of Lecture Notes

in Computer Science, pages 121–135. Springer, 1994. An extended version appeared as
Technical Report UCAM-CL-TR-352, University of Cambridge.

7 Luís Caires, Jorge A. Pérez, Frank Pfenning, and Bernardo Toninho. Behavioral poly-
morphism and parametricity in session-based communication. In European Symposium on

Programming (ESOP), pages 330–349. Springer, 2013.
8 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21st

International Conference on Concurrency Theory (CONCUR), pages 222–236. Springer,
2010.

9 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session
types. Mathematical Structures in Computer Science, 26(3):367–423, 2016.

10 Iliano Cervesato and Andre Scedrov. Relating state-based and process-based concurrency
through linear logic. Information and Computation, 207(10):1044–1077, 2009.

11 Karl Crary, Robert Harper, and Sidd Puri. What is a recursive module? In ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI), pages 50–63,
1999.

12 Ornela Dardha and Simon J. Gay. A new linear logic for deadlock-free session-typed pro-
cesses. In Foundations of Software Science and Computation Structures (FoSSaCS), pages
91–109, 2018.

13 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Principles

and Practice of Declarative Programming (PPDP), pages 139–150, 2012.
14 Ornela Dardha and Jorge A. Pérez. Comparing deadlock-free session typed processes. In

EXPRESS/SOS, pages 1–15, 2015.
15 Yuxin Deng, Robert J. Simmons, and Iliano Cervesato. Relating reasoning methodologies

in linear logic and process algebra. Mathematical Structure in Computer Science, 26(5):868–
906, 2016.

16 Simon J. Gay and Malcolm Hole. Subtyping for session types in the fi-calculus. Acta

Informatica, 42(2–3):191–225, 2005.
17 Hannah Gommerstadt, Limin Jia, and Frank Pfenning. Session-typed concurrent contracts.

In A. Ahmed, editor, European Symposium on Programming (ESOP’18), pages 771–798,
Thessaloniki, Greece, 2018. Springer LNCS 10801.

18 Daniele Gorla. Towards a unified approach to encodability and separation results for process
calculi. Information and Computation, 208(9):1031–1053, 2010.

19 Dennis Griffith and Frank Pfenning. SILL. https://github.com/ISANobody/sill, 2015.
20 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concur-

rency Theory (CONCUR), pages 509–523. Springer, 1993.

S. Balzer, F. Pfenning, and B. Toninho 30:17

21 Kohei Honda and Mario Tokoro. An object calculus for asynchronous communication. In
5th European Conference on Object-Oriented Programming (ECOOP), Lecture Notes in
Computer Science, pages 133–147. Springer, 1991.

22 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium

on Programming (ESOP), pages 122–138. Springer, 1998.
23 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types.

In 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages

(POPL), pages 273–284. ACM, 2008.
24 Limin Jia, Hannah Gommerstadt, and Frank Pfenning. Monitors and blame assignment

for higher-order session types. In 43rd ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL), pages 582–594, 2016.
25 Naoki Kobayashi. A type system for lock-free processes. Inf. Comput., 177(2):122–159,

2002.
26 Naoki Kobayashi. A new type system for deadlock-free processes. In International Confer-

ence on Concurrency Theory (CONCUR), pages 233–247, 2006.
27 Dimitrios Kouzapas and Nobuko Yoshida. Globally governed session semantics. Logical

Methods in Computer Science, 10(4), 2014.
28 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In European

Symposium On Programming (ESOP), pages 560–584, 2015.
29 Sam Lindley and J. Garrett Morris. Talking bananas: structural recursion for session types.

In International Colloquium on Functional Progrmaming (ICFP), pages 434–447, 2016.
30 Robin Milner. Communicating and Mobile Systems: the fi-Calculus. Cambridge University

Press, 1999.
31 Uwe Nestmann. What is a "good" encoding of guarded choice? Inf. Comput., 156(1-2):287–

319, 2000.
32 Luca Padovani. Deadlock and lock freedom in the linear fi-calculus. In Computer Science

Logic – Logic in Computer Science (CSL-LICS), pages 72:1–72:10, 2014.
33 Catuscia Palamidessi. Comparing the expressive power of the synchronous and asyn-

chronous pi-calculi. Mathematical Structures in Computer Science, 13(5):685–719, 2003.
34 Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical relations

and observational equivalences for session-based concurrency. Information and Computa-

tion, 239:254–302, 2014.
35 Frank Pfenning and Dennis Griffith. Polarized substructural session types. In 18th In-

ternational Conference on Foundations of Software Science and Computation Structures

(FoSSaCS), pages 3–22. Springer, 2015.
36 Jason Reed. A judgmental deconstruction of modal logic. Unpublished manuscript, January

2009. URL: http://www.cs.cmu.edu/~jcreed/papers/jdml.pdf.
37 Davide Sangiorgi and David Walker. The fi-Calculus - A Theory of Mobile Processes.

Cambridge University Press, 2001.
38 Bernardo Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD

thesis, Carnegie Mellon University and New University of Lisbon, 2015.
39 Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed processes.

In 15th International Conference on Foundations of Software Science and Computational

Structures (FOSSACS), pages 346–360. Springer, 2012.
40 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and

sessions: a monadic integration. In 22nd European Symposium on Programming (ESOP),
pages 350–369. Springer, 2013.

CONCUR 2018

30:18 A Universal Session Type for Untyped Asynchronous Communication

41 Bernardo Toninho and Nobuko Yoshida. On polymorphic sessions and functions - A tale of
two (fully abstract) encodings. In European Symposium On Programming (ESOP), pages
827–855, 2018.

42 Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference

on Functional Programming (ICFP), pages 273–286. ACM, 2012.

