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Abstract

Ensemble methods that average over a collec-
tion of independent predictors that are each
limited to a subsampling of both the exam-
ples and features of the training data com-
mand a significant presence in machine learn-
ing, such as the ever-popular random forest,
yet the nature of the subsampling effect, par-
ticularly of the features, is not well under-
stood. We study the case of an ensemble of
linear predictors, where each individual pre-
dictor is fit using ordinary least squares on
a random submatrix of the data matrix. We
show that, under standard Gaussianity as-
sumptions, when the number of features se-
lected for each predictor is optimally tuned,
the asymptotic risk of a large ensemble is
equal to the asymptotic ridge regression risk,
which is known to be optimal among lin-
ear predictors in this setting. In addition
to eliciting this implicit regularization that
results from subsampling, we also connect
this ensemble to the dropout technique used
in training deep (neural) networks, another
strategy that has been shown to have a ridge-
like regularizing effect.

1 INTRODUCTION

Ensemble methods (Breiman, 1996; Amit and Geman,
1997; Josse and Wager, 2016) are an oft-used strategy
employed successfully in a broad range of problems
in machine learning and statistics, in which one com-
bines a number of weak predictors together to obtain
one powerful predictor. This is accomplished by giving
each weak learner a different view of the training data.
Various strategies for changing this training data view
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Figure 1: Example (rows) and feature (columns) sub-
sampling of the training data used in the ordinary least
squares fit for one member of the ensemble. The i-th
member of the ensemble is only allowed to predict us-
ing its subset of the features (green). It must learn its

parameters β̂(i) by performing ordinary least squares
using the subsampled examples of y (red) and the sub-
sampled examples (rows) and features (columns) of the
data matrix X (blue, crosshatched).

exist, among which many are simple sampling-based
techniques in which each predictor is (independently)
given access to a subsampling of the rows (examples)
and columns (features) of the training data matrix,
such as bagging (Breiman, 1996; Bühlmann and Yu,
2002). Another noteworthy technique is boosting (Fre-
und and Schapire, 1997; Breiman, 1998), in which
the training data examples are reweighted adaptively
according to how badly they have been misclassified
while building the ensemble. In this work, we consider
the former class of techniques—those that train each
weak predictor using an independent subsampling of
the training data.

Ensemble methods based on independent example and
feature subsampling are attractive for two reasons.
First, they are computationally appealing in that they
are massively parallelizable, and since each member
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of the ensemble uses only part of the data, they are
able to overcome memory limitations faced by other
methods (Louppe and Geurts, 2012). Second, ensem-
ble methods are known to achieve lower risk due to
the fact that combining several different predictors re-
duces variance (Bühlmann and Yu, 2002; Wager et al.,
2014; Scornet et al., 2015), and empirically they have
been found to perform very well. Random forests
(Breiman, 2001; Athey et al., 2019; Friedberg et al.,
2018), for example, ensemble methods that combine
example and feature subsampling with decision trees
by choosing the most useful feature from a random
subset of the features at each branch of the tree, re-
main among the best-performing off-the-shelf machine
learning methods available (Cutler and Zhao, 2001;
Fernández-Delgado et al., 2014; Wyner et al., 2017).

Let X ∈ Rn×p be the training data matrix consist-
ing of n examples of data points each having p fea-
tures. While there exist theoretical results on the ben-
efits of example (row) subsampling (Bühlmann and Yu,
2002), the exact nature of the effect of feature (column)
subsampling on ensemble performance remains poorly
understood. In this paper, we study the prototypical
form of this problem in the context of linear regression.
That is, given the data matrix X and target variables
y ∈ Rn, we study the ensemble β̂ens = 1

k

∑k
i=1 β̂

(i),

where each β̂(i) is learned using ordinary least squares
on an independent random subsampling of both the
examples and features of the training data. This sub-
sampling is illustrated in Figure 1. We show that un-
der such a scheme, the resulting predictor of this en-
semble performs as well as the ridge regression (Hoerl
and Kennard, 1970; Friedman et al., 2001) predictor fit
using the entire training data, which is known to be
the optimal linear predictor under the data assump-
tions that we consider. Further, the asymptotic risk
of the ensemble depends only on the amount of fea-
ture subsampling and not on the amount of example
subsampling, provided each individual ordinary least
squares problem is underdetermined. Our main result
in Theorem 3.6 can be summarized as follows:

Theorem 3.6 (informal statement). When the fea-
tures and underlying model weights both follow i.i.d.
Gaussian distributions, the optimal asymptotic risk
for an ensemble of ordinary least squares predictors is
equal to the optimal asymptotic ridge regression risk.

We can interpret this result as an example of implicit
regularization (Mahoney, 2012; Neyshabur et al., 2014;
Gunasekar et al., 2017; Arora et al., 2019). That is,
while the individual ordinary least squares subprob-
lems are completely unregularized, the ensemble be-
haves as if it had been regularized using a ridge re-
gression penalty. Recently, there has been much inter-
est in investigating the implicit regularization effects

of commonly used heuristic methods, particularly in
cases where they enable the training of highly over-
parameterized models that generalize well to test data
despite having the capacity to overfit the training data
(Zhang et al., 2017; Belkin et al., 2018). Examples of
heuristic techniques that have been shown to have im-
plicit regularization effects include stochastic gradient
descent (Hardt et al., 2016) and dropout (Srivastava
et al., 2014). Incidentally, we show a strong connection
between the ensemble of ordinary least squares predic-
tors and dropout, which is known to have a ridge-like
regularizing effect (Wager et al., 2013), and we make
this link via stochastic gradient descent.

Contributions We summarize our contributions as
follows: [C1] We prove that when the amount of fea-
ture subsampling is optimized to minimize risk, an en-
semble of ordinary least squares predictors achieves
the same risk as the optimal ridge regression predictor
asymptotically as n, p → ∞ (see Section 3). [C2] We
demonstrate the converge of the ensemble risk to the
optimal ridge regression risk via simulation (see Sec-
tion 4.1). [C3] We reveal a connection between the or-
dinary least squares ensemble and the popular dropout
technique used in deep (neural) network training (see
Section 4.3) and from the insight gained from this con-
nection develop a recipe for mitigating excess risk un-
der suboptimal feature subsampling via simple output
scaling (see Section 4.4).

2 ENSEMBLES OF ORDINARY
LEAST SQUARES PREDICTORS

We consider the familiar setting of linear regression,
where there exists a linear relationship between the
target variable y ∈ R and the feature variables x ∈
Rp—i.e., y = 〈x,β〉, where β ∈ Rp is the model pa-
rameter vector. The goal of a machine learning al-
gorithm is to estimate these parameters given n i.i.d.
noisy samples

{
x(i), y(i)

}n
i=1

. The noise relationship is
given by

y = Xβ + σz, (1)

where [X]ij = [x(i)]j , [y]i = y(i), and [z]i = z(i), where
z(i) are i.i.d. zero-mean random variables with unit
variance independent of X. We assume a Gaussian
N (0,Σ) distribution on x, and for the results in this
paper, we assume Σ = Ip.

Our ensemble consists of k linear predictors each fit
using ordinary least squares on a submatrix of X, and
the resulting prediction is the average of the outputs.
Equivalently, our ensemble is defined by its estimate
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of the parameters

β̂ens ,
1

k

k∑

i=1

β̂(i), (2)

where β̂(i) is the parameter estimate of the i-th mem-
ber of the ensemble. To characterize the estimates
β̂(i), we first introduce some notation. Let the se-
lection matrix S corresponding to a subset of indices
S ⊆ [p], where [p] = {1, . . . , p}, denote the the p× |S|
matrix obtained by selecting from Ip the columns cor-
responding to the indices in S, where Ip denotes the
p × p identity matrix. With this definition of selec-
tion matrices, for S ⊆ [p] and T ⊆ [n], we have that
T>XS is the matrix of size |T | × |S| obtained from X
by selecting (subsampling) the rows and columns in-
dicated by sets T and S. Returning to the ensemble,
let S , (Si)

k
i=1 and T , (Ti)

k
i=1 denote the collection

of feature subsets and example subsets, respectively,
where each Si ⊆ [p] and each Ti ⊆ [n]. Then, assum-
ing |Si| < |Ti|, for each member of the ensemble we
let

β̂
(i)
Si

= arg min
β′

∥∥T>i (XSiβ
′ − y)

∥∥
2
, (3)

β̂
(i)
Sc
i

= 0, (4)

where Sci = [p] \ Si denotes the complement of the set
Si. This can alternatively be written in closed form as

β̂(i) = Si
(
T>i XSi

)†
T>i y, (5)

where (·)† denotes the Moore–Penrose pseudoinverse.
Thus, the closed-form expression for the ensemble pa-
rameter estimate is given by

β̂ens =
1

k

k∑

i=1

Si
(
T>i XSi

)†
T>i y. (6)

3 ENSEMBLE RISK

We define the risk of a linear predictor as the expected
squared error of a prediction of the target variable on
an independent data point x:

R(β′) , Ex

[
〈x,β − β′〉2

]

= 〈β − β′,Σ (β − β′)〉 . (7)

For any predictor of the form β′ = f(X)y, for some f :
Rn×p → Rp×n, we can rewrite parameter estimation
error as

β − β′ = (Ip − f(X)X)β − σf(X)z. (8)

Then by the independence of X and z and some al-
gebra, we can decompose the risk into the so-called
“bias” and “variance” components

Ez [R(β′)] =
〈
ββ>, (Ip − f(X)X)>Σ(Ip − f(X)X)

〉
︸ ︷︷ ︸

bias(β′)

+ σ2 〈f(X),Σf(X)〉︸ ︷︷ ︸
variance(β′)

. (9)

For the ensemble, we obtain for the bias and variance

bias(β̂ens) =
1

k2

k∑

i,j=1

biasij(β̂
ens) (10)

variance(β̂ens) =
1

k2

k∑

i,j=1

varianceij(β̂
ens), (11)

where

biasij(β̂
ens) =

〈
ββ>,

(
Ip − Si

(
T>i XSi

)†
T>i X

)>

×Σ
(
Ip − Sj

(
T>j XSj

)†
T>j X

)〉
, (12)

varianceij(β̂
ens) = σ2

〈
Si
(
T>i XSi

)†
T>i ,

ΣSj
(
T>j XSj

)†
T>j

〉
. (13)

Thus, evaluating the risk of the ensemble is a matter
of evaluating these pairwise interaction terms.

To begin evaluating the above terms, we need to intro-
duce additional assumptions. Specifically, we assume
that the subsets are independent and that all indices
are equally likely to be included in each subset.

Assumption 3.1 (finite subsampling). The subsets
in the collections S and T are selected at random such
that |Si| < |Ti| − 1 and that the following hold:

• Pr(j ∈ Si) = |Si|/p for all j ∈ [p],

• Pr(m ∈ Ti) = |Ti|/n for all m ∈ [n],

• The subsets S1, S2, . . . , Sk, T1, T2, . . . , Tk are con-
ditionally independent given the example subset
sizes (|Ti|)ki=1.

A simple sampling strategy that satisfies these as-
sumptions is to fix |Si| and |Ti| such that |Si| < |Ti|−1
and select subsets uniformly at random of the given
sizes. Another strategy is to construct the subsets by
flipping a coin for each index, rejecting any resulting
subsets that fail to satisfy |Si| < |Ti| − 1.

With Assumption 3.1, we are now equipped to evalu-
ate the pairwise interaction terms. The following two
lemmas enable us to characterize the bias and vari-
ance components of the risk in the finite-dimensional
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setting. The proofs of these lemmas are exercises in
linear algebra and conditional expectations and can be
found in the Appendix.

With some slight abuse of notation, we allow ES,T to
denote the expectation taken with respect to the choice
of indices in the subsets, but not their sizes. In other
words, ES,T indicates the conditional expectation over
S and T , conditioned on the subset sizes indicated by
the context.

Lemma 3.2 (bias). Assume that Σ = Ip and that
Assumption 3.1 holds. Then

EX,S,T

[
biasij(β̂

ens)
]

=





|Sc
i∩S

c
j |

p

(
1 +

|Si∩Sj |
n−|Si∩Sj |−1

)
‖β‖22 if i 6= j,

|Sc
i |
p

(
1 + |Si|

|Ti|−|Si|−1

)
‖β‖22 if i = j.

(14)

Lemma 3.3 (variance). Assume that Σ = Ip and that
Assumption 3.1 holds. Then

EX,S,T

[
varianceij(β̂

ens)
]

=

{
σ2|Si∩Sj |

n−|Si∩Sj |−1 if i 6= j,
σ2|Si|

|Ti|−|Si|−1 if i = j.

(15)

One observation that we can make already from these
results is that the example subsampling only affects
the terms where i = j. Assuming that the subsampling
procedure is the same for each i, so that for large k the
i 6= j terms are sure to dominate the sum, this means
that in the limit as k → ∞, the effects of example
subsampling are non-existent. We note that this is a
result of the assumption that |Si| < |Ti|, and that if we
were to have |Si| > |Ti|, then we would observe effects
of example subsampling when i 6= j, which we discuss
further in Section 5.2.

We now turn our attention to the setting where n, p→
∞ in order to better reason about the results con-
tained in these lemmas. We introduce the following
additional assumption.

Assumption 3.4 (asymptotic subsampling). For
some α, η ∈ [0, 1], the subsets in the collections S and

T are selected randomly such that |Si|/p a.s.−−→ α as

p→∞ and |Ti|/n a.s.−−→ η as n→∞ for all i ∈ [k].

This assumption is easily satisfied. For example, in
the sampling strategy where we fix |Si| and |Ti|, we
can choose |Si| = bαpc and |Ti| = bηnc. For the coin-
flipping strategy, we can select feature subsets with a
coin of probability α and example subsets with a coin
of probability η.

Under this assumption, and additionally assuming
without loss of generality that ‖β‖2 = 1, if n, p → ∞

such that p/n→ γ and η > αγ, the quantities in (14)
and (15) converge almost surely as follows:

EX,S,T

[
biasij(β̂

ens)
]

a.s.−−→





(1− α)2
(

1 + α2γ
1−α2γ

)
if i 6= j,

(1− α)
(

1 + αγ
η−αγ

)
if i = j,

(16)

and

EX,S,T

[
varianceij(β̂

ens)
]
a.s.−−→

{
σ2α2γ
1−α2γ if i 6= j,
σ2αγ
η−αγ if i = j.

(17)

We are now equipped to state our asymptotic risk re-
sult for the ensemble of ordinary least squares pre-
dictors. Denote for an ensemble satisfying Assump-
tions 3.1 and 3.4 with parameters α, η, and k the lim-
iting risk

Rens
α,η,k , lim

n,p→∞
EX,z,S,T

[
R(β̂ens)

]
. (18)

From (10) and (11), we know that both the bias and
variance components of the limiting risk are the aver-
ages of k2 terms, and from (16) and (17), we know that
the k(k− 1) terms where i 6= j will take one value and
the remaining k terms where i = j will take another.
Thus we have the limiting bias

lim
n,p→∞

EX,S,T

[
bias(β̂ens)

]

=
k − 1

k

(
(1− α)2

1− α2γ

)
+

1

k

(
η(1− α)

η − αγ

)
(19)

and limiting variance

lim
n,p→∞

EX,S,T

[
variance(β̂ens)

]

=
k − 1

k

(
σ2α2γ

1− α2γ

)
+

1

k

(
σ2αγ

η − αγ

)
. (20)

Upon careful examination of these quantities, we ob-
serve that in fact both the limiting bias and the limit-
ing variance are decreasing in k, and thus the ensemble
serves not only as a means to reduce variance (as is well
understood), but also to reduce bias. We defer further
discussion to Section 4.2. Adding the limiting bias and
variance together yields the following result.

Theorem 3.5 (limiting risk). Assume that Σ = Ip
and ‖β‖2 = 1 and that Assumptions 3.1 and 3.4 hold.
Then in the limit as n, p → ∞ with p/n → γ, for
η > αγ, we have almost surely that

Rens
α,η,k =

k − 1

k

(
(1− α)2 + σ2α2γ

1− α2γ

)

+
1

k

(
η(1− α) + σ2αγ

η − αγ

)
. (21)
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Here we see again more explicitly that for large k, the
effect of example subsampling vanishes. This leaves us
with the large-ensemble risk

Rens
α , lim

k→∞
Rens
α,η,k

=
(1− α)2 + σ2α2γ

1− α2γ
. (22)

We note that while the large-ensemble risk depends
only upon α, we cannot realize this risk with an en-
semble if η ≤ αγ. Our remaining results concern the
large-ensemble risk and therefore assume that η = 1
for simplicity, but we caution the reader that some of
these results may not be valid for some smaller values
of η, depending on σ and γ.

Because α is an algorithmic hyperparameter, it can be
tuned to minimize the risk. If we do so, then what we
obtain is the perhaps surprising result that the opti-
mal large-ensemble risk of the ordinary least squares
predictor is equal to the limiting risk of the ridge re-
gression predictor under our assumptions. The ridge
regression predictor with parameter λ is defined as

β̂ridge
λ , arg min

β′
‖Xβ′ − y‖22 + λ‖β′‖22

=
(
X>X + λIp

)−1
X>y. (23)

We formally state this result in the following theorem,
which leverages the recent analysis of the limiting risk
of ridge regression by Dobriban and Wager (2018).1

The proof is found in the Appendix.

Theorem 3.6. Assume that Σ = Ip and β ∼
N (0, p−1Ip) and that Assumptions 3.1 and 3.4 hold
with η = 1. Then in the limit as n, p → ∞ with
p/n→ γ, we have almost surely that

inf
α<γ−1

Rens
α = inf

λ
R
(
β̂ridge
λ

)
. (24)

The implication of Theorem 3.6 is quite strong. Under
the assumption of the theorem that true parameters β
have a Gaussian distribution with covariance p−1Ip,
the ridge regression predictor (the maximum a poste-
riori estimator for this setting) is the predictor with
the lowest expected risk of all predictors of the form
β′ = f(X)y. To see this, note that if we take the ex-
pectation of (9) with respect to β, we find that the
optimal f(X) must satisfy the first order optimality
condition

Σf(X)(XX> + pσ2Ip) = ΣX>, (25)

1We note that results on MMSE estimation error from
the wireless communication community (see, e.g., Tulino
and Verdú, 2004) predate the more general result of Do-
briban and Wager (2018), and that these apply to the
Σ = Ip setting we consider, where risk is equal to esti-
mation error.
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Figure 2: Approximate limiting risk (averaged over 50
trials with n = 200, σ = 1) when using η = 1 (solid)
and η = 1.1 × αγ (dotted). For each value of γ, both
ensembles converge to the theoretical optimal ridge re-
gression risk (dashed).

which for invertible Σ yields the optimally tuned ridge
regression predictor. Thus, in the Σ = Ip setting, the
optimally tuned ensemble achieves the optimal risk for
any linear predictor.

A curious result obtained during the proof of this the-
orem is the following corollary relating the optimal
large ensemble risk to the optimal choice of the hyper-
parameter α.

Corollary 3.7. Assume that Σ = Ip and ‖β‖2 = 1
and that Assumptions 3.1 and 3.4 hold with η = 1.
Then in the limit as n, p→∞ with p/n→ γ, we have
almost surely that

Rens
α∗ = 1− α∗, (26)

where α∗ = arg minα<γ−1 Rens
α .

4 DISCUSSION

4.1 Convergence

In practice, any ensemble will have only a finite num-
ber of members. Therefore, it is important to un-
derstand the rates at which the risk of the ensem-
ble converges to large-ensemble risk in (22). From
Theorem 3.5, it is clear that as a function of k, the
limiting risk converges to the large-ensemble risk at a
rate O(1/k). However, as the choice of η approaches
αγ, this rate becomes slower. In Figure 2, we plot2

the convergence in k of the limiting risk to the large-
ensemble risk for η = 1 (using all examples) and for

2See https://github.com/dlej/ensemble-ols.
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Figure 3: Approximate limiting risk (averaged over
100 trials with n = 200, p = 400) when using α = α∗
(top) and α = arg minα′ R

ens
α′,η,k (bottom). As k in-

creases, in both cases the risk converges to the theo-
retical optimal ridge regression risk (black dashed).

η = 1.1× (αγ) (near to as small as possible while still
having |Si| < |Ti|). We plot these curves for σ = 1 and
for three different values of γ, using n = 200, which
is sufficient to realize the convergence in n and p. We
choose α = α∗, the minimizer of the large-ensemble
risk. What we observe is that, indeed, for both choices
of η, the risks converge to the optimal ridge risk. As
expected, however, with the smaller choice of η the risk
converges nearly an order of magnitude more slowly.

While the choice of α = α∗ will result in optimal risk
for large enough ensembles, for finite k this choice can
in some cases be undesirable. For instance, consider
the setting where η = 1 and γ > 1. Then as σ → 0,
α∗ → γ−1 (see expressions for α∗ in the Appendix).
This obviously yields the optimal large-ensemble risk,
by definition, but for any finite k, the limiting risk
tends to infinity for this choice of α. However, if we
know what the size of our ensemble will be, we can
tune α to the limiting risk for finite k instead of the
large ensemble risk. In general, this means choosing

an α smaller than α∗. In Figure 3, we demonstrate
the convergence in k to the large-ensemble risk as a
function of σ for α = α∗ and for α = arg minα′ R

ens
α′,η,k.

We plot these curves for γ = 2 and σ ∈ [0.1, 10], using
n = 200. While for both choices of α we see conver-
gence in k for each σ, as σ → 0, the risk is very large
for α = α∗. For α adapted to the choice of k, however,
this effect is mitigated.

4.2 Bias and Variance Decrease with
Ensemble Size

We return here to the observation made in Section 3
that the limiting bias and variance are both decreasing
in k. Thus, although there is a bias–variance tradeoff
in α, there is no such tradeoff with k. This can be
seen by comparing the i = j and i 6= j terms in each
case. In the case of bias, for the bias to be decreasing,
it must be that

(1− α)2

1− α2γ
<
η(1− α)

η − αγ . (27)

Since α2γ < 1 and η > αγ, after some algebra, this
reduces to

γ(α− 1) < η(1− αγ). (28)

Because α ≤ 1, the left-hand side is non-positive, and
since α < γ−1, the right-hand side is strictly positive.
Thus this inequality always holds, and the bias is de-
creasing.

In the case of variance, for the variance to be decreas-
ing, we must have

α2γ

1− α2γ
<

αγ

η − αγ . (29)

Again since α2γ < 1 and η > αγ, this reduces to

αη < 1. (30)

So, unless both α = 1 and η = 1, in which case every
member of the ensemble is the ordinary least squares
predictor fit using the entire training data, the variance
is decreasing.

4.3 Dropout and Ridge Regression

There is an interesting connection between the ordi-
nary least squares ensemble with η = 1 and the pop-
ular dropout technique (Srivastava et al., 2014) used
in deep (neural) network training, which consists of
randomly masking the features at each iteration of
(stochastic) gradient descent. To draw this connec-
tion, define

`i(β
′) =

∥∥XSiS
>
i β
′ − y

∥∥2

2
. (31)
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Then our ensemble member parameter estimates are
minimizers of this loss function.

β̂(i) = arg min
β′

`i(β
′) s.t. β′Sc

i
= 0. (32)

For each i, the i-th member of the ensemble is able to
solve its subproblem independently of the other mem-
bers. As a result, we can consider the ensemble to be
a model with

∑k
i=1 |Si| parameters that are eventually

averaged to reduce them down to p parameters. If we
were to instead constrain ourselves so that we were al-
lowed to use only p parameters, such that we could not
optimize each member of the ensemble independently,
we might try to optimize them jointly by minimizing
the average loss. That is,

β̂ = arg min
β′

1

k

k∑

i=1

`i(β
′). (33)

If we go a step further and let k →∞ and optimize this
loss using stochastic gradient descent where at each it-
eration we use the gradient of an individual `i selected
at random, then our ensemble becomes equivalent to
the predictor learned using dropout. It is well-known
that dropout with linear regression has a very strong
connection to ridge regression (Srivastava et al., 2014);
specifically, we find that

β̂ =
1

α

(
X>X +

1− α
α

diag(X>X)

)−1

X>y. (34)

In the case of Σ = Ip, n
−1diag(X>X) will converge

to Ip as n, p → ∞, in which case dropout and ridge
regression are equivalent up to a rescaling. We discuss
the case where Σ 6= Ip in Section 5.1.

4.4 Scaled Ensembles

Our ensemble combines the individual predictors by
simple averaging. However, in light of the fact that
dropout is only equivalent to ridge regression up to
a rescaling of the output, it is worth considering the
effect of using an equally-weighted linear combination
but using different weights from 1/k in constructing
the ensemble predictor. That is, we consider the risk
of the µ-scaled predictor β̂ens

µ = (µ/k)
∑k
i=1 β̂

(i). A
simple calculation, proved in the Appendix, shows
that under the assumptions of Theorem 3.5 the large-
ensemble risk of the µ-scaled predictor is given by

Rens
α,µ = µ2Rens

α + (1− µ)2 + 2µ(1− µ)(1− α). (35)

Hence, it is possible to minimize the risk of β̂ens
µ over

the choice of parameter µ. This results in

µ∗ =
α

Rens
α + 2α− 1

(36)
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Figure 4: µ-scaled large-ensemble risk (theoretical,
γ = 0.5) when using µ = 1 (solid) and µ = µ∗ (dot-
ted). For both the setting where we use fewer fea-
tures than optimal with α = α∗/2 (blue) and the fixed
α = 1/2 setting (red), we see significantly improved
risk by scaling.

as the optimal choice for µ and

Rens
α,µ∗ = 1− α2

2α− 1 +Rens
α

(37)

as the achieved risk for the optimally-scaled ensemble.
Note that as a result of Corollary 3.7, Rens

α∗ = 1 − α∗.
Therefore, for ensembles with optimally-tuned α = α∗
we have µ∗ = 1, and any scaling in constructing the en-
semble predictor will not further improve the achieved
risk. However, it is easy to see that when α > α∗
(the ensemble members select more features than is
optimal), µ∗ < 1, and the risk is improved by adding
extra shrinkage to the ensemble predictor. Similarly,
if α < α∗, (the ensemble members select less features
than is optimal), µ∗ > 1, and the risk is improved by
inflating the ensemble predictor. We illustrate the im-
provement in risk to be had in Figure 4, where we plot
the risk with (µ = µ∗) and without (µ = 1) optimal
scaling for two choices of α—one where we always se-
lect half as many features as optimal (α = α∗/2), and
one where we always use half of the available features
(α = 1/2).

5 FUTURE DIRECTIONS

5.1 Non-Identity Covariance

Of course, it is important to understand the behav-
ior of the ordinary least squares ensemble in the case
where Σ 6= Ip when considering applications of the
method to real data. As discussed in Section 3, pro-
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vided Σ is invertible, ridge regression remains the op-
timal linear predictor, and whether the ensemble (or
extensions thereto) still achieves the optimal risk in
this setting remains an open question.

By inspection of the closed-form solution of dropout
in (34), we see that it is no longer equivalent (as
n, p → ∞) to ridge regression in this setting and is
therefore no longer optimal. We believe that this is
likely the case for the ensemble as well. However, if
we extend the coin-flipping strategy for feature sub-
set selection to one where we have a collection of coin
with probabilities α ∈ [0, 1]p, one for each feature, we
can extend the result in (34) to obtain the closed-form
dropout solution

β̂ = A−1
(
X>X + (Ip −A) A−1diag(X>X)

)−1
X>y,

(38)

where A = diag(α). We prove this result in the Ap-
pendix. Thus, if α is chosen such that

1− αj
αj

=
λ

n[Σ]jj
, (39)

then the corrected dropout estimator

β̃ = Aβ̂ (40)

is equivalent to ridge regression with parameter λ as
n, p → ∞. This leads us to believe that the optimal
ensemble in the Σ 6= Ip setting should also use non-
uniform feature sampling, and extending our analysis
to this case is an interesting area for future work.

5.2 Beyond Ordinary Least Squares:
Ensembles of Interpolators

Throughout this work we have assumed that the mem-
bers of the ensemble solve their subproblems using or-
dinary least squares, which yields the unique solution
that minimizes the squared error given |Ti| observa-
tions of |Si| variables, and this uniqueness requires
that |Ti| be no less than |Si|. In the case where
|Ti| < |Si|, there are infinitely many solutions that
minimize the squared error. However, we could in
this case opt to regularize the solution to solve this
problem. While analysis of the effect of regularizing
the solution of the subproblems in the ensemble is be-
yond the scope of this work, we comment briefly on
what would happen if we were to simply use the same
solution presented in (5)—i.e., use the pseudoinverse
solution, which has the smallest `2 norm of all solu-
tions to the least squares problem. In this case, when
η = 1, the learned predictor would be an interpolator
(Belkin et al., 2018; Hastie et al., 2019) of the train-
ing data, and such methods have recently become in-
creasingly of interest given the ability of deep (neural)

network methods to have extremely good test perfor-
mance while having (nearly) zero training error (Zhang
et al., 2017; Belkin et al., 2019).

Specifically, it becomes immediately clear that in this
setting, the effect of the choice of η does not vanish
as k → ∞. Lemma 3.3 can easily be extended to this
setting, since the roles of Si and Ti in (13) can simply
be reversed, and as n, p→∞, we obtain

EX,S,T

[
varianceij(β̂

ens)
]
a.s.−−→

{
σ2η2

γ−η2 if i 6= j,
σ2η
αγ−η if i = j.

(41)

Thus, the variance component of the large-ensemble
risk in this setting is equal to σ2η2/(γ − η2) and does
not depend upon α. In future work, we plan to ex-
tend our analysis for the bias component of the large-
ensemble risk to this setting, and we expect that in
this case the bias will depend on both α and η.

5.3 Optimal Ensemble Mixing

In the ordinary least squares ensemble, we have used
equal weighting when taking the average of our predic-
tors. Instead, we could extend the idea presented in
Section 4.4 to consider unequal weighting parameter-
ized by µ ∈ Rk, giving us the ensemble parameter esti-
mate β̂ens

µ =
∑k
i=1 µiβ̂

(i). While equal weighting gives
us optimal risk in the setting where β ∼ N (0, p−1Ip),
where ridge regression is optimal, under other distribu-
tional assumptions on β, such as sparsity, where ridge
regression is not optimal, unequal weighting has the
potential to yield better ensembles.

Using the sparsity example, consider β such that
‖β‖0 = s � p, and suppose that for some i, Si = Sβ,
where Sβ = {j : βj 6= 0}. For simplicity, assume that
η = 1, so that Ti = [n] for all i. In this case, any
predictor that uses the remaining p−s features injects
noise into its predictions, so the best predictor uses
only the s features in Sβ. Under the i.i.d. Gaussian
noise assumption, the predictor with lowest risk is in
fact

β̂ = arg min
β′:β′

Sc
β

=0

‖y −Xβ′‖2 = β̂(i), (42)

where i is such that Si = Sβ. Thus an optimal weight-
ing µ is given by

µi =

{
1
C if Si = Sβ,

0 otherwise,
(43)

where C = | {i : Si = Sβ} |. This optimal weighting is
decidedly non-uniform, and this raises the question of
what schemes could be employed, either adaptively or
non-adaptively, to minimize risk, and how they would
fit into this analysis framework.



Daniel LeJeune, Hamid Javadi, Richard G. Baraniuk

Acknowledgements

We would like to thank Ryan Tibshirani for help-
ful discussions and the anonymous reviewers for
their helpful feedback. This work was supported
by NSF grants CCF-1911094, IIS-1838177, and IIS-
1730574; ONR grants N00014-18-12571 and N00014-
17-1-2551; AFOSR grant FA9550-18-1-0478; DARPA
grant G001534-7500; and a Vannevar Bush Faculty
Fellowship, ONR grant N00014-18-1-2047.

References

Y. Amit and D. Geman. Shape quantization and recog-
nition with randomized trees. Neural Computation,
9(7):1545–1588, 1997.

S. Arora, N. Cohen, W. Hu, and Y. Luo. Implicit regu-
larization in deep matrix factorization. In Advances
in Neural Information Processing Systems 32, pages
7413–7424. 2019.

S. Athey, J. Tibshirani, and S. Wager. Generalized
random forests. The Annals of Statistics, 47(2):
1148–1178, Apr. 2019.

M. Belkin, D. J. Hsu, and P. Mitra. Overfitting or per-
fect fitting? Risk bounds for classification and re-
gression rules that interpolate. In Advances in Neu-
ral Information Processing Systems 31, pages 2300–
2311. 2018.

M. Belkin, D. Hsu, S. Ma, and S. Mandal. Reconciling
modern machine-learning practice and the classical
bias–variance trade-off. Proceedings of the National
Academy of Sciences, 116(32):15849–15854, 2019.

L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, Aug. 1996.

L. Breiman. Arcing classifier (with discussion and a
rejoinder by the author). The Annals of Statistics,
26(3):801–849, June 1998.

L. Breiman. Random forests. Machine Learning, 45
(1):5–32, Oct. 2001.
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A USEFUL LEMMAS

The following two lemmas will be useful in deriving the bias and variance terms of the ensemble risk. Their
proofs can be found in Section F.

Lemma A.1. Let S ⊆ [p] be a subset with corresponding selection matrix S, and let Sc be the selection matrix
corresponding to Sc. Then for a random matrix X ∈ Rn×p with rows independently drawn from N (0, Ip) such
that n > |S|, and for any random function f : Rn×|S| → Rn×|S| that f(XS) and XSc are independent,

EXSc

[
S>X†

]
= (XS)

†
(44)

and

EXSc

[
Sc>X>f(XS)S>X†

]
= 0. (45)

Lemma A.2. Let T1, T2 ⊆ [n] be independent random subsets with corresponding selection matrices T1,T2 such

that E
[
TjT

>
j

]
=
|Tj |
n In. Then for random matrices X ∈ Rn×pX ,Y ∈ Rn×pY independent of T1 and T2 with

independent and identically distributed rows such that X>TjT
>
j X and Y>TjT

>
j Y are invertible, and for any

matrix A ∈ RpX×pY ,

ET1,T2

[(
T>1 X

)†
T>1

((
T>2 X

)†
T>2

)>]
=
(
X>X

)†
(46)

and

ET1,T2

[((
T>1 X

)†
T>1

)>
A
(
T>2 Y

)†
T>2

]
=
(
X†
)>

AY†. (47)

B PROOF OF LEMMA 3.2 (BIAS)

To compute the bias, we need to evaluate terms of the form

EX,S,T

〈
ββ>,

(
Ip − Si

(
T>i XSi

)†
T>i X

)> (
Ip − Sj

(
T>j XSj

)†
T>j X

)〉
. (48)

First, we note that since SiS
>
i + SciS

c
i
> = Ip,

Ip − Si
(
T>i XSi

)†
T>i X = Ip − Si

(
T>i XSi

)†
T>i X

(
SiS

>
i + SciS

c
i
>
)

(49)

= Ip − SiS
>
i − Si

(
T>i XSi

)†
T>i XSciS

c
i
> (50)

=
(
Ip − Si

(
T>i XSi

)†
T>i X

)
SciS

c
i
>. (51)

So, we can equivalently evaluate

EX,S,T

〈
ββ>,SciS

c
i
>
[
Ip −X>Ti

(
S>i X>Ti

)†
S>i

] [
Ip − Sj

(
T>j XSj

)†
T>j X

]
ScjS

c
j
>
〉
. (52)

It suffices to evaluate the expectation of the second argument of the inner product:

EX,S,T

[
SciS

c
i
>
[
Ip −X>Ti

(
S>i X>Ti

)†
S>i

] [
Ip − Sj

(
T>j XSj

)†
T>j X

]
ScjS

c
j
>
]

= EX,S,T

[
SciS

c
i
>X>Ti

(
S>i X>Ti

)†
S>i Sj

(
T>j XSj

)†
T>j XS>i ScjS

c
j
>

− SciS
c
i
>X>Ti

(
S>i X>Ti

)†
S>i − Sj

(
T>j XSj

)†
T>j XScjS

c
j
> + SciS

c
i
>ScjS

c
j
>
]
. (53)
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The second and third terms are zero in expectation. To see this for the second term, observe that Sci
>X> and

S>i X> are independent and each zero-mean. An analogous argument applies to the third term. The fourth term
is equal to

|Sci ∩ Scj |
p

Ip. (54)

We now consider the case where i 6= j. To evaluate the first term, we first apply Lemma A.2. This simplifies the
expression to

EX,S

[
SciS

c
i
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XS>i ScjS

c
j
>
]
. (55)

Now let Si∩j , Si\j , Sj\i, and Sci∪j denote the selection matrices corresponding to the sets Si∩Sj , Si \Sj , Sj \Si,
and Sci ∩Scj , respectively. Without loss of generality, consider when Sci =

[
Sj\i Sci∪j

]
and Scj =

[
Si\j Sci∪j

]
. Then

the matrix inside this expectation is of the form

Sci

[
A B
C D

]
Scj
>, (56)

where

A = S>j\iX
> (S>i X>

)†
S>i Sj (XSj)

†
XSi\j (57)

B = S>j\iX
> (S>i X>

)†
S>i Sj (XSj)

†
XSci∪j (58)

C = Sci∪j
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XSi\j (59)

D = Sci∪j
>X>

(
S>i X>

)†
S>i Sj (XSj)

†
XSci∪j . (60)

In the case of B and C, because XSci∪j is independent of the remainder of the factors, EX [B] and EX [C] are
equal to 0. By applying the second claim of Lemma A.1, we observe that EX [A] is also equal to 0. This leaves

EX [D] = EX

[
Sci∪j

>X>EXSj\i

[(
S>i X>

)†
S>i Si∩j

]
EXSj\i

[
S>i∩jSj (XSj)

†
]

XSci∪j

]
(61)

= EX

[
Sci∪j

>X>
(
XSi∩jS

>
i∩jX

>)†XSci∪j

]
. (62)

We can evaluate the expectation of the pseudoinverse on its own since XSi∩j and XSci∪j are independent. This
matrix has a generalized inverse Wishart distribution with scale matrix In and |Si ∩ Sj | degrees of freedom,
which yields

EX

[(
XSi∩jS

>
i∩jX

>)†] =
|Si ∩ Sj |

n(n− |Si ∩ Sj | − 1)
In. (63)

This leaves

EX

[
Sci∪j

>X>
( |Si ∩ Sj |
n(n− |Si ∩ Sj | − 1)

In

)
XSci∪j

]
=

|Si ∩ Sj |
n− |Si ∩ Sj | − 1

I|Sc
i∩Sc

j |. (64)

Then the expectation in (55) becomes

ES
[ |Si ∩ Sj |

(n− |Si ∩ Sj | − 1)
Sci

[
0 0
0 I|Sc

i∩Sc
j |

]
Scj
>
]

=
|Si ∩ Sj ||Sci ∩ Scj |
p(n− |Si ∩ Sj | − 1)

Ip, (65)

and combing with (54), we have that the bias is equal to

|Sci ∩ Scj |
p

(
1 +

|Si ∩ Sj |
n− |Si ∩ Sj | − 1

)
‖β‖22. (66)

When i = j, by a similar argument, without the need to apply Lemma A.2, it follows that the bias is equal to

|Sci |
p

(
1 +

|Si|
|Ti| − |Si| − 1

)
‖β‖22. (67)
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C PROOF OF LEMMA 3.3 (VARIANCE)

To compute the variance, we need to evaluate the terms of the form

EX,T

〈
Si
(
T>i XSi

)†
T>i ,Sj

(
T>j XSj

)†
T>j

〉
. (68)

Let S be the selection matrix corresponding to the set Si ∩ Sj . Then

E
〈
Si
(
T>i XSi

)†
T>i ,Sj

(
T>j XSj

)†
T>j

〉

= E
〈
S>Si

(
T>i XSi

)†
T>i ,S

>Sj
(
T>j XSj

)†
T>j

〉
(69)

= E
〈
E
XSi\Sj

[
S>Si

(
T>i XSi

)†]
T>i ,EXSj\Si

[
S>Sj

(
T>j XSj

)†]
T>j

〉
(70)

= E
〈(

T>i XS
)†

T>i ,
(
T>j XS

)†
T>j

〉
. (71)

The equality (71) is the result of two applications of Lemma A.1.

In the case that i 6= j, an application of Lemma A.2 simplifies the above to

tr
(
EX

[(
S>X>XS

)−1
])

=
|Si ∩ Sj |

n− |Si ∩ Sj | − 1
. (72)

The equality comes from
(
S>X>XS

)−1
having an inverse Wishart distribution with scale matrix I|Si∩Sj | and n

degrees of freedom.

When i = j, we obtain a similar result directly without needing Lemma A.2. The above simplifies to

tr
(
EX

[(
S>i X>TiT

>
i XSi

)−1
])

=
|Si|

|Ti| − |Si| − 1
. (73)

D PROOF OF THEOREM 3.6

We first introduce the result due to Dobriban and Wager (2018). We note again, as we noted in the main text,
that in the setting of Σ = Ip, where the optimal ridge regression risk is equal to the estimation error of the
minimum mean squared error (MMSE) estimator, results on the value of this quantity predate the result of
Dobriban and Wager (2018). We refer the reader, for example, to the wireless communication literature (see,
e.g., Tulino and Verdú, 2004). However, Dobriban and Wager (2018) have developed the first results on ridge
regression risk for general Σ, and their clean theorem statement is simple and straightforward to use, even in
the Σ = Ip case.

Proposition D.1 (from Dobriban and Wager, 2018, Theorem 2.1). Assume that Σ = Ip and β ∼ N (0, p−1Ip).
Then in the limit as n, p→∞ with p/n→ γ, we have almost surely that

inf
λ
R(β̂ridge

λ ) =
1

2


γ − 1

γ
− σ2 +

√(
σ2 − γ − 1

γ

)2

+ 4σ2


 . (74)

We note that this expression is equal to σ2(R∗(1/σ2, γ) − 1) in the notation of Dobriban and Wager (2018),
where this transformation is necessary because we assume ‖β‖2 = 1 rather than σ = 1 and because we evaluate
the noise-free risk.

The minimizer of the large ensemble risk should satisfy the first-order optimality condition, so we begin by taking
its derivative.

dRens
α

dα
=

(−2(1− α) + 2σ2αγ)(1− α2γ)− ((1− α)2 + σ2α2γ)(−2αγ)

(1− α2γ)2
(75)

=
−α2γ + (γ(σ2 + 1) + 1)− 1

(1− α2γ)2
. (76)
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Thus the minimizer α∗ should satisfy

α2
∗γ − α∗(γ(σ2 + 1) + 1) + 1 = 0. (77)

From here, it is simply a matter of cumbersome algebra to show that the choice

α∗ =
γ(σ2 + 1) + 1−

√
(γ(σ2 + 1) + 1)2 − 4γ

2γ
(78)

is the valid root of this quadratic expression and is such that Rens
α∗ = infλR(β̂ridge

λ ). We here show a slightly
more interesting approach, leading to Corollary 3.7. First, we start from (77) and add a root of α∗ = 0, and
then we proceed to manipulate the resulting equation.

α∗(α
2
∗γ − α∗(γ(σ2 + 1) + 1) + 1) = 0 (79)

α∗ − α2
∗(γ(σ2 + 1) + 1) = −α3

∗γ (80)

2α∗ − α2
∗(γ(σ2 + 1) + 1) = α∗(1− α2

∗γ) (81)

2α∗ − α2
∗(γ(σ2 + 1) + 1)

1− α2
∗γ

= α∗. (82)

Continuing from this last equation,

α∗ =
2α∗ − α2

∗(γ(σ2 + 1) + 1)

1− α2
∗γ

(83)

=
2α∗ − σ2α2

∗γ − α2γ − α2 + 1− 1

1− α2
∗γ

(84)

=
1− α2γ − (1− 2α∗ + α2

∗)− σ2α2
∗γ

1− α2
∗γ

(85)

= 1− (1− α∗)2 + σ2α2
∗γ

1− α2
∗γ

(86)

= 1−Rens
α∗ . (87)

Thus, if α∗ is a root of (77) or α∗ = 0, then Rens
α∗ = 1− α∗. We proceed by checking the larger root of (77), but

before doing so, we derive the following equality:

(γ(σ2 + 1) + 1)2 − 4γ = (γ(σ2 + 1) + 1)2 − (4γ2(σ2 + 1) + 4γ) + 4γ2 + 4σ2γ2 (88)

= (γ(σ2 + 1) + 1− 2γ)2 + 4σ2γ2 (89)

= (γ(σ2 − 1) + 1)2 + 4σ2γ2. (90)

Now, we observe for the larger root (which we denote as α′∗) that

α′∗ =
γ(σ2 + 1) + 1 +

√
(γ(σ2 − 1) + 1)2 + 4σ2γ2

2γ
(91)

≥ 1

2

(
σ2 + 1 +

1

γ
+

∣∣∣∣σ2 − 1 +
1

γ

∣∣∣∣
)

(92)

=

{
σ2 + 1

γ if 1
γ > 1− σ2

1 if 1
γ ≤ 1− σ2.

(93)

Thus the only case where α′∗ is a valid hyperparameter choice (that is, α∗ ≤ min
{

1, γ−1
}

) is when σ2 = 0 and
γ = 1, in which case α∗ = 1 is a double root of (77). So it suffices to evaluate the smaller root even in that case.
Now that we know that α′∗ is not conatined in [0,min

{
1, γ−1

}
] (except in the aforementioned special case) and

that by inspection of Rens
α the asymptote at α = γ−1/2 is not contained in this interval, if we can show that the

smaller root (which we denote simply as α∗) of (77) is contained in this interval, then we know that it is the
minimizer of Rens

α .
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For the smaller root, it is clear from (78) that α∗ ≥ 0. We show by a series of equivalences that α∗ ≤ 1/γ:

α∗ =
1

2


σ2 + 1 +

1

γ
−
√(

σ2 − 1 +
1

γ

)2

+ 4σ2


 ≤ 1

γ
(94)

⇐⇒ σ2 + 1− 1

γ
≤
√(

σ2 − 1 +
1

γ

)2

+ 4σ2 (95)

⇐⇒
(
σ2 + 1− 1

γ

)2

≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (96)

⇐⇒
(
σ2 − 1 +

1

γ

)2

+ 4σ2 − 4
σ2

γ
≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (97)

⇐⇒
(
σ2 − 1 +

1

γ

)2

+ 4σ2 − 4
σ2

γ
≤
(
σ2 − 1 +

1

γ

)2

+ 4σ2 (98)

⇐⇒ 0 ≤ σ2

γ
. (99)

The last inequality is always true. Further, we note that every equivalence here still holds under strict inequalities,
so for σ > 0, we have that α∗ < γ−1. By a similar argument, we can show that α∗ ≤ 1 and that α∗ < 1 if and
only if σ > 0. By the form of the derivative in (76), we know that α∗, as the smaller root, is a local minimum,
and therefore it must be the minimum of Rens

α on [0,min
{

1, γ−1
}

]. Evaluating the risk at α∗, we have

Rens
α∗ = 1− α∗ (100)

= 1− 1

2


σ2 + 1 +

1

γ
−
√(

σ2 − 1 +
1

γ

)2

+ 4σ2


 (101)

=
1

2


1− σ2 − 1

γ
+

√(
σ2 − 1 +

1

γ

)2

+ 4σ2


 (102)

=
1

2


γ − 1

γ
− σ2 +

√(
σ2 − γ − 1

γ

)2

+ 4σ2


 (103)

= inf
λ
R(β̂ridge

λ ). (104)

E PROOFS OF DISCUSSION RESULTS

E.1 Proof of Equation (35) (µ-scaled Risk)

Under the assumption that Σ = Ip, the µ-scaled risk is given by

R(µβ̂ens) =
∥∥∥β − µβ̂ens

∥∥∥
2

2
(105)

=
∥∥∥(1− µ)β + µ(β − β̂ens)

∥∥∥
2

2
(106)

= (1− µ)2‖β‖22 + 2(1− µ)µ
〈
β,β − β̂ens

〉
+ µ2

∥∥∥β − β̂ens
∥∥∥

2

2
(107)

Examining the inner product, we find that

EX,z,S,T

[〈
β,β − β̂ens

〉]
=
〈
β,EX,z,S,T

[
β − β̂ens

]〉
(108)

=

〈
β,EX,S,T

[
Ip −

1

k

k∑

i=1

Si
(
T>i XSi

)†
T>i X

]
β

〉
, (109)
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where the equation (109) holds because E[z] = 0. Because the subsamplings are identically distributed, we have

EX,S,T

[
Ip −

1

k

k∑

i=1

Si
(
T>i XSi

)†
T>i X

]
= Ip − EX,S,T

[
Si
(
T>i XSi

)†
T>i X

]
(110)

= Ip − EX,S,T

[
Si
(
T>i XSi

)†
T>i X

(
SiS

>
i + SciS

c
i
>
)]

(111)

= Ip − ES
[
Si
(
T>i XSi

)†
T>i XSiS

>
i

]
(112)

= Ip − ES
[
SiS

>
i

]
(113)

= (1− α)Ip, (114)

where the equation (112) holds because E[XSci ] = 0. Thus

EX,z,S,T [R(µβ̂ens)] = (1− µ)2‖β‖22 + 2(1− µ)µEX,z,S,T

[〈
β,β − β̂ens

〉]
+ µ2EX,z,S,T

[∥∥∥β − β̂ens
∥∥∥

2

2

]
(115)

= (1− µ)2 + 2(1− µ)µ(1− α) + µ2Rens
α , (116)

where the last equality holds because 〈β,β〉 = ‖β‖22 = 1.

E.2 Proof of Equation (38) (Generalized Dropout)

For k →∞, dropout minimizes the expected loss:

ESi [`i(β
′)] = ESi

[∥∥XSiS
>
i β
′ − y

∥∥2

2

]
. (117)

The expected loss is convex in β′, so we can find its minimizer by the first order optimality condition:

∇β′ESi
[`i(β

′)] = ESi

[
SiS

>
i X>

(
XSiS

>
i β
′ − y

)]
= 0 (118)

Thus,

β̂ =
(
ESi

[
SiS

>
i X>XSiS

>
i

])−1 ESi

[
SiS

>
i

]
X>y. (119)

Turning first to the inverse, consider that

[
ESi

[
SiS

>
i X>XSiS

>
i

]]
j`

=
[
X>X

]
j`

Pr(j ∈ Si, ` ∈ Si), (120)

and that

Pr(j ∈ Si, ` ∈ Si) =

{
αj if j = `,

αjα` otherwise.
(121)

This gives us

ESi

[
SiS

>
i X>XSiS

>
i

]
= AX>XA + diag(X>X)(A−A2), (122)

where A = diag(α). By a similar and simpler argument,

ESi

[
SiS

>
i

]
= A, (123)

which all together yields

β̂ =
(
AX>XA + diag(X>X)(Ip −A)A

)−1
AX>y (124)

= A−1
(
X>X + A−1diag(X>X)(Ip −A)

)−1
X>y. (125)
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F PROOFS OF LEMMAS A.1 and A.2

F.1 Proof of Lemma A.1

Without loss of generality, let
[
X1 X2

]
= X, such that X2 = XS. Let

[
Y1

Y2

]
= X† be a partitioning of the

pseudo-inverse of X in the same manner, such that Y2 = S>X† = S>
(
X>X

)−1
X>. Then the Gram matrix

can be written as

X>X =

[
X>1 X1 X>1 X2

X>2 X1 X>2 X2

]
, (126)

and using block matrix inversion, the inverse admits the form
(
X>X

)−1
=

[
A B
C D

]
. The relevant quantities are

C = −DX>2 X1

(
X>1 X1

)−1
(127)

D =
(
X>2 X2 −X>2 X1

(
X>1 X1

)−1
X>1 X2

)−1

(128)

=
(
X>2 ΠNull(X>1 )X2

)−1

, (129)

Where ΠNull(X>1 ) , In −
(
X>1
)†

X>1 denotes the projection onto the column space of X1. This gives

Y2 = CX>1 + DX>2 (130)

= DX>2

(
In −X1

(
X>1 X1

)−1
X>1

)
(131)

= DX>2 ΠNull(X>1 )

(
X2X

†
2 + ΠNull(X>2 )

)
(132)

= X†2 + DX>2 ΠNull(X>1 )ΠNull(X>2 ). (133)

Let U, U∗, and V be the matrices containing the left singular vectors of X2, ΠNull(X>2 ), and ΠNull(X>1 ), respec-
tively. Because the rows of X are independently drawn from a spherical Gaussian distribution, V has a uniform
distribution over orthogonal matrices in Rn×|Sc|. As such, EV

[
V>U∗|V>U

]
= 0. Then

EX1

[
DX>2 ΠNull(X>1 )ΠNull(X>2 )

]
= EV

[(
X>2 VV>X2

)−1
X>2 VV>U∗U

>
∗

]
(134)

= EV

[(
X>2 VV>X2

)−1
X>2 VEV

[
V>U∗

∣∣∣V>U
]

U>∗

]
(135)

= 0, (136)

which combined with (133) yields the first claim.

For the second claim, let V∗ denote the left singular vectors of X1, and observe that
EV

[
V>U∗|V>U,V∗

]
= 0. Then using similar arguments,

EX1

[
X>1 f(X2)S>X†

]

= EX1

[
X>1 f(X2)S>

(
X†2 + DX>2 ΠNull(X>1 )ΠNull(X>2 )

)]
(137)

= EX1

[
X>1 f(X2)S>

(
X†2 +

(
X>2 VV>X2

)−1
X>2 VEV

[
V>U∗

∣∣∣V>U,V∗

]
U>∗

)]
(138)

= EX1

[
X>1 f(X2)S>X†2

]
(139)

= 0. (140)
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F.2 Proof of Lemma A.2

Define ΠNull(X>) , In−
(
X>
)†

X>, the projection operator onto the null space of X>. Then for the first claim,

ET1,T2

[(
T>1 X

)†
T>1

((
T>2 X

)†
T>2

)>]

= ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1 T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(141)

= ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1

(
X
(
XX>

)†
X> + ΠNull(X>)

)
T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(142)

=
(
XX>

)†
+ ET1,T2

[(
X>T1T

>
1 X
)−1

X>T1T
>
1 ΠNull(X>)T2T

>
2 X

(
X>T2T

>
2 X
)−1
]

(143)

=
(
XX>

)†
+
|T1||T2|
n2

(
X>T1T

>
1 X
)−1

X>ΠNull(X>)X
(
X>T2T

>
2 X
)−1

(144)

=
(
X>X

)†
. (145)

The equality (144) follows due the fact that, because of the distributional assumption on the rows of
X, X>TjT

>
j X and TjT

>
j are conditionally independent given |Tj |. The equality (145) follows because

X>ΠNull(X>) = 0.

For the second claim,

ET1,T2

[((
T>1 X

)†
T>1

)>
A
(
T>2 Y

)†
T>2

]

= ET1,T2

[
T1T

>
1 X

(
X>T1T

>
1 X
)−1

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(146)

= ET1,T2

[((
X>
)†

X> + ΠNull(X>)

)
T1T

>
1 X

(
X>T1T

>
1 X
)−1

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(147)

= EΠ(T2)

[(
X†
)>

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

]
(148)

= EΠ(T2)

[(
X†
)>

A
(
Y>T2T

>
2 Y
)−1

Y>T2T
>
2

(
YY† + ΠNull(Y>)

)]
(149)

=
(
X†
)>

AY†, (150)

where the equations (148) and (150) follow by similar arguments to those used to show the first claim.


