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Abstract
We connect a large class of Generative Deep Net-
works (GDNs) with spline operators in order to
derive their properties, limitations, and new op-
portunities. By characterizing the latent space
partition, dimension and angularity of the gener-
ated manifold, we relate the manifold dimension
and approximation error to the sample size. The
manifold-per-region affine subspace defines a lo-
cal coordinate basis; we provide necessary and
sufficient conditions relating those basis vectors
with disentanglement. We also derive the out-
put probability density mapped onto the gener-
ated manifold in terms of the latent space density,
which enables the computation of key statistics
such as its Shannon entropy. This finding also
enables the computation of the GDN likelihood,
which provides a new mechanism for model com-
parison as well as providing a quality measure for
(generated) samples under the learned distribution.
We demonstrate how low entropy and/or multi-
modal distributions are not naturally modeled by
DGNs and are a cause of training instabilities.

1. Introduction
Deep Generative Networks (DGNs), which map a low-
dimensional latent variable z to a higher-dimensional gen-
erated sample x, have made enormous leaps in capabilities
in recent years. Popular DGNs include Generative Adver-
sarial Networks (GANs) (Goodfellow et al., 2014) and their
variants (Dziugaite et al., 2015; Zhao et al., 2016; Durugkar
et al., 2016; Arjovsky et al., 2017; Mao et al., 2017; Yang
et al., 2019); Variational Autoencoders (Kingma & Welling,
2013) and their variants (Fabius & van Amersfoort, 2014;
van den Oord et al., 2017; Higgins et al., 2017; Tomczak
& Welling, 2017; Davidson et al., 2018); and flow based
models such as NICE (Dinh et al., 2014), Normalizing Flow
(Rezende & Mohamed, 2015), and their variants (Dinh et al.,
2016; Grathwohl et al., 2018; Kingma & Dhariwal, 2018).
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While DGNs are easy to describe and analyze locally in
terms of simple affine operators and scalar nonlinearities, a
general framework for their global structure has remained
elusive. In this paper, we take a step in the direction of a
better theoretical understanding of DGNs constructed using
continuous, piecewise affine nonlinearities by leveraging
recent progress on max-affine spline operators (MASOs)
(Balestriero & Baraniuk, 2018b). Our main contributions
are as follows;

[C1] We characterize the piecewise-affine manifold struc-
ture of the generated samples, including its intrinsic dimen-
sion (Section 3), which sheds new light on the impact of
techniques like dropout (Section 3.3) and provides practio-
nioners with sensible design principles for constructing a
desired manifold.

[C2] We characterize the local coordinates of the gener-
ated manifold and the inverse mapping from data points
x back to latent variables z (Section 4.1), which provides
new necessary and sufficient conditions for disentanglement,
interpretability and new links between DGNs and adaptive
basis methods (Section 4.2). By characterizing the angles
between adjacent local affine regions, we demonstrate how
weight sharing in a DGN heavily constrains the curvature of
the generated manifold despite the fact that the DGN might
be tremendously overparameterized (Section 4.3).

[C3] We provide a DGN input-output formula that enables
us to derive the analytical probability density on the gen-
erated manifold that is induced by the latent space (Sec-
tion 5.1). We use this result to derive Normalizing Flows
(NMFs) form first principles and highlight how the DGN
design, x 7→ z (most NMFs) versus z 7→ x (DGNs) allow
for either fast likelihood computation and slow sampling or
vice-versa (Section 5.2). Finally, the Shannon entropy of the
output density provide a new lens through which to study
the difficulty of generating multidimensional, low-entropy
distributions using DGNs (Section 5.3).

Reproducible code for the various experiments and figures
is be provided on Github1.

1https://github.com/RandallBalestriero/
GAN.git
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2. Background
Deep Networks. A deep (neural) network (DN) is an op-
erator fΘ with parameters Θ that maps the input z ∈ RS
to the output x ∈ RD by composing L intermediate layer
mappings f`, ` = 1, . . . , L, that combine affine and simple
nonlinear operators such as the fully connected operator
(simply the affine transformation defined by the weight ma-
trix W` and bias vector b`), convolution operator (with
circulentW`), activation operator (applying a scalar non-
linearity such as the ubiquitous ReLU), or pooling operator.
Precise definitions of these operators can be found in (Good-
fellow et al., 2016). We will omit Θ for conciseness unless
it is needed.

We precisely define a layer f` as comprising a single non-
linear operator composed with any (if any) preceding linear
operators that lie between it and the preceding nonlinear
operator. Each layer f` transforms its input feature map
v`−1 ∈ RD`−1 into an output feature map v` ∈ RD` with
the initializations v0 := z,D0 = S, and vL := x, DL = D.
In this paper, we focus on DGNs, where S < D, z is in-
terpreted as a latent representation, and x is the generated
data, e.g, a time-serie or image. The feature maps v` can be
viewed equivalently as signals, flattened column vectors, or
tensors depending on the context.

Max-Affine Spline Deep Networks. A K-dimensional
max-affine spline operator (MASO) concatenates K inde-
pendent max-affine spline (MAS) functions, with each MAS
formed from the point-wise maximum of R affine mappings
(Magnani & Boyd, 2009; Hannah & Dunson, 2013). Given
an input vector u, the output of a MASO is given by

MASO(u; {Ar, br}Rr=1) = max
r=1,...,R

Aru+ br, (1)

where Ar ∈ RD`×D`−1 are the slopes and br ∈ RD`

are the offset/bias parameters ∀r and the maximum is
taken coordinate-wise. Note that a MASO is a continuous
piecewise-affine (CPA) operator (?).

The key background result for this paper is that the layers
of DNs (DGNs) constructed from piecewise affine operators
(e.g., convolution, ReLU, and max-pooling) are MASOs
Balestriero & Baraniuk (2018b;a); hence a DN (DGN) is a
composition of MASOs. For example, a layer comprising
a fully connected operator with weightsW` and biases b`
followed by a ReLU activation operator has parameters
R = 2,A1 = W`,A2 = 0, b1 = b`, b2 = 0.

The piecewise-affine spline interpretation provides a power-
ful global geometric interpretation of a DN (DGN) in which
it partitions its input space RL into polyhedral regions (the
set Ω) and then assigns a different, fixed affine transforma-
tion to each region. The partition regions are built up over
the layers via a subdivision process and are closely related
to Voronoi and power diagrams (Balestriero et al., 2019).

3. The Generated Manifold of a DGN
In this section we study the properties of the mappingGΘ :
RS → RD of a deep generative network (DGN) comprising
L piecewise-affine MASO layers.

3.1. Input Space Partition and Region Mapping

While our approach holds for arbitrary piecewise affine
layers, for concreteness of exposition, we will focus on non-
linearities with R = 2 (e.g., ReLU, leaky ReLU, absolute
value). In all such cases, the state of the nonlinearity can
be encoded as a value from {α, 1} with α = 0 for ReLU,
α = −1 for absolute value and α > 0 for leaky-ReLU. At
layer `, observing an input v`−1 defines the state of the layer
nonlinearities and in turn defines the “piece” of the layer
MASO used to produce the output v`. We call the nonlin-
earity’s state its code q`(v`−1) ∈ {α, 1}D` ,v`−1 ∈ RD`−1

with

[q`(v`−1)]i =

{
α, [W`v`−1 + b`]i ≤ 0

1, [W`v`−1 + b`]i > 0
(2)

leading to the simple forward formula for the layer

f`(v`−1) = diag(q`(v))(W`v + b`). (3)

We concatenate the per-layer codes into q(z) =

[q1(z)T , . . . , qL(z)T ]T ∈ {α, 1}
∏L

l=1Dl with z ∈ RS the
DGN input and q`(v`−1) abbreviated as q`(z).

Definition 1. A partition region ωk of the DGN input
space partition Ω is defined as the input space region for
which the MASO states q(·) are identical

ωk =
{
z ∈ RS : q(z) = k

}
, ∀k ∈ {α, 1}

∏L
`=1D` , (4)

Ω =
{
ωk,k ∈ {α, 1}

∏L
`=1D`

}
\ ∅. (5)

Note that ∪ω∈Ω ω = RS and ∀(ω, ω′) ∈ Ω2, ω 6= ω′, ω◦ ∩
ω
′◦ = ∅, with (·)◦ the interior operator (Munkres, 2014).

SinceG is formed from a composition of MASOs, it is itself
a CPA with a fixed affine mapping over each region ω ∈ Ω.

As a result, the generatorG maps each S-dimensional con-
vex latent space region ω ∈ Ω to the convex affine subspace
G(ω) ⊂ RD as

∀ω ∈ Ω, G(ω) = {Aωz + bω, z ∈ ω} ⊆ RD, (6)

withAω and bω obtained by composing (3) and distributing
the terms; we will call this the generated manifold.

Proposition 1. A DGN G comprised of MASO layers is
a CPA operator with input space partition Ω given by (5).
Each region ω ∈ Ω is a convex polytope in RS that is affinely
mapped to the affine subspace G(ω) (recall (6), a convex
polytope in RD given by (6). (Proof in Appendix C.1.)
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Analytically, the form of (6) can be obtained directly by
composing the per layer mappings from (3), distributing
and rearranging the terms into the slope and bias terms of
the affine mapping. Computationally, the affine parameters
Aω, bω can be obtained efficiently in one of the two fol-
lowing ways. On the one hand, if one possesses an input z
belonging to the desired region ω, then we simply perform

Aω = ∇zG(z), bω = G(z)−Aωz. (7)

On the other hand, in the case where one has access to the
code q(ω) of the region (as opposed to a point in the region),
one can directly impose the nonlinearity states (defined by
q(ω)) on the DGN mapping. Once the nonlinearities are
fixed, one can feed an arbitrary input z ∈ RS and compute
the affine parameters as in (7) on the fixed DGN.

We can extend (6) to the entire domain of the generator via

G(supp(pz)) =
⋃
ω∈Ω

G(ω ∩ supp(pz)), (8)

with pz the probability distribution on the latent space that
generates z, and whereG(supp(pz)) denotes the image of
G by considering all inputs z ∈ supp(pz) with nonzero
probability, e.g., RS if the latent distribution is a Gaussian,
and the S-dimensional hypercube if it is a standard Uniform
distribution. Thus, the generated manifold (8) combines the
per-region affine transformations of the input space partition
per (6). With this formulation, we now characterize the
intrinsic dimension of the per-region and overall manifold
mapping ofG.

3.2. Generated Manifold Intrinsic Dimension

We now turn into the intrinsic dimension of the per-region
affine subspacesG(ω)) that comprise the generated mani-
fold. In fact, as per (8), its dimension depends not only on
the latent dimension S but also on the per layer parameters.

Lemma 1. The intrinsic dimension of the affine subspace
G(ω)) (recall (8)) has the following upper bound

dim(G(ω)) ≤ min
(
S,min

`

(
rank (diag(q`(ω))W`)

))
.

(Proof in Appendix C.2.)

We make three observations. First, we see that the choice of
the nonlinearity (i.e., the choice of α) and/or the choice of
the per-layer dimensions (i.e., the “width” of the DGN) are
the key elements controlling the upper bound of dim(G).
For example, in the case of ReLU (α = 0) then dim(G(ω))
is directly impacted by the number of 0s in the codes q`(ω)
of each layer in addition of the rank ofW`; this sensitivity
does not occur when using other nonlinearities (α 6= 0).
Second, “bottleneck layers” impact directly the dimension

Figure 1. Demonstration of a GAN
DGN trained on a circle dataset.
Each line is the learned piecewise
linear manifold generated by the
DGN; each color corresponds to
a different realization of dropout
noise. Dropout turns a DGN into
a finite ensemble of DGNs with the
same or lower intrinsic dimension.

of the subspace and thus should also be carefully picked
based on the a priori knowledge of the target manifold in-
trinsic dimension. Third, we obtain the following condition
relating the per-region dimension to the bijectivity and sur-
jectivity of the mapping. The latter should be avoided in
DGNs, since it implies that multiple different latent vectors
will generate the same output sample.

Proposition 2. A DGN is bijective on ω iff dim(G(ω)) =
S, ∀ω ∈ Ω and surjective iff ∃ω ∈ Ω s.t. dim(G(ω)) < S.
A DGN is bijective on supp(pz) iff it is bijective for each
region ω ∈ Ω andG(ω) ∩G(ω′) = ∅, ∀ω 6= ω′. (Proof in
Appendix C.3.)

3.3. Application: Effect of Dropout/Dropconnect

Noise techniques, such as dropout (Wager et al., 2013) and
dropconnect (Wan et al., 2013), alter the per-region affine
mapping in a very particular way that we now characterize.

Dropout and dropconnect techniques apply a multiplica-
tive binary noise onto the feature maps and/or the weights;
the multiplicative noise ε` ∈ {0, 1}D` is typically an iid
Bernoulli random variable. (Isola et al., 2017). To charac-
terize how this noise impacts the DGN mapping, denote the
generatorG equipped with random dropout/dropconnect by
G̃, and the generator in which the noise realization is fixed
by G(z|ε) = Aω(ε)z + bω(ε) where ε concatenates the
random variables of each layer. Given the mapping form
(recall (3)) with per layer parametersW`, b`, the presence
of dropout noise leads to the following noisy input-output
mapping on a region ω (recall (6)) as

G(z|ε) =

(
1∏

`=L

diag(q`(ω)� ε`)W`

)
z

+

L∑
`=1

(
`+1∏
`′=L

diag(q`′(ω)� ε`′)W`′

)
b`, (9)

where � is the Hadamard product and z ∈ ω. (See Ap-
pendix G for the dropconnect formula.) Thus, the noisy
generator actually combines all the above mappings for
each noise realisation via

G̃(supp(pz)) =
⋃

ε∈supp(pε)

G(supp(pz)|ε). (10)
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Figure 2. Impact of dropout and dropconnect on the dimension of the noisy generator affine subspaces G(ω|ε), ∀ω (recall (10)). We
depict two “drop” probabilities 0.1 and 0.3 for a generator G with S = 6, D = 10, L = 3 and varying width D1 = D2 ranging in
{6, 8, 10, 12, 24, 48} (x-axis); note that the architecture limits the dimension to S = 6. The boxplot represents the distribution of the
per-region affine subspace dimensions for 2000 sampled regions over 2000 different noise realizations ε. We make two observations.
First, dropconnect tends to preserve the latent dimension S even when the width D1, D2 is close to S. Second, the dropout-induced
collection of generators tends to have degenerate dimension (much smaller than S) until the width is twice the latent space dimension
(D` ≥ 2S). As a result, while dropout turns a generator into a collection of generators, those generators will have degenerate dimension
unless G is much wider that S.

Proposition 3. Multiplicative binary dropout/dropconnect
transforms the generator G into the union of generators
given by (10), each with per-region dimension between 0
and maxω dim(G(ω)). (Proof in Appendix C.4.)

From the above, we see that the multiplicative binary noise
does not make the generator G̃ dense in its output space,
but rather turnsG into a collection of piecewise linear gen-
erators, each corresponding to a different realization of ε
as depicted in Fig. 1. Furthermore, each noise realization
produces a generator with a possibly different per-region
dimension being upper bounded by the dimension of the
original generator G. Also, each induced generator has a
possibly different input space partition based on the noise
realisation. On the one hand, this highlights a potential
limitation of those techniques for narrow models (D` ≈ S)
for which the noisy generators will tend to be degenerate
(per-region dimension smaller than S), implying surjectivity
(recall Prop. 2). On the other hand, when used with wide
DGNs (D` � S) much more noisy generators will main-
tain the same affine subspace dimension that the original
generator. The latter is crucial when S is picked a priori to
match exactly the true intrinsic dimension. We illustrate the
above in Fig. 2.

3.4. Application: Optimal Dimension and Training
Error Increase

We now emphasize how the DGN dimension S̃ ,
maxω dim(G(ω)) impacts the training error loss and train-
ing sample recovery. We answer the following question:
Can a generator generate N training samples from a con-
tinuous S∗ dimensional manifold if S̃ < S∗? Denote the
empirical error measuring the ability to generate the data
samples by E∗N = minΘ

1
N

∑N
n=1 minz ‖GΘ(z) − xn‖.

We now demonstrate and empirically validate that if S̃ < S∗

then E∗N increases with N for any data manifold.

M
in

im
um

er
ro
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DGN latent dimension S, (S∗ in red)

Figure 3. Error E∗ (y-axis) for a linear manifold
with S∗ = 5, for increasing dataset size N ∈
{100, 120, 140, 160, 180, 200, 300, 400, 500, 1000} (blue to
green) for different latent space dimension S ∈ {1, 2, 3, 4, 5, 6, 7}
(x-axis) which forces S̃ < S, the E∗ = 0 line is depicted in
black. This demonstrates, as per Thm. 1, that whenever S̃ < S∗,
the training error E∗ increases with the dataset size N and is 0
otherwise whenever S̃ ≥ S∗.

Theorem 1. Given the true intrinsic dimension of an ar-
bitrary manifold S∗, any finite DGN with S̃ < S∗ will
have increasing error E∗ with the dataset size N as in
∃` ∈ {0, . . . , L} : D` < S∗ =⇒ ∀N > 0, ∃N ′ > N :
E∗N ′ > E∗N . (Proof in Appendix C.11.)

In general, it is clear that, for smooth manifolds, E∗ in-
creases with N since the DGN is piecewise linear. However,
the above result extends this to any manifold, even when
the data manifold is as simple as a linear manifold (trans-
lated subspace). We empirically validate this phenomenon
in Fig. 3 for the simple case of a linear manifold. (The
experimental details are given in Appendix F.)

It is clear that a direct implication of Thm. 1 is that there
does not exist a finite architecture with D` < D for some `
and parameter Θ such that a MASO DGN would be bijec-
tive with RD. The above results are key to understand the
challenges and importance of the design of DGN starting
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with the width of the hidden layers and latent dimensions in
conjunction with the choice of nonlinearities and constraints
onW` of all layers.

4. Manifold Local Coordinates and Curvature
We now turn to the study of the local coordinates of the
affine mappings comprising a DGN’s generated manifold.
We then study the coupling between the affine mappings of
adjacent regionsto characterize the curvature/angularity of
the generated manifold.

4.1. Local Coordinate Systems and Inverse Mapping

Recall from (8) that a DGN is a CPA operator. Inside re-
gion ω ∈ Ω, points are mapped to the output space affine
subspace which is itself governed by a coordinate system
or basis. For the remaining of the section we assume that
dim(G(ω)) = S, ∀ω ∈ Ω and thus the columns ofAω are
linearly independent. For cases where dim(G(ω)) < S
then the following analysis also applies by considering a
lower dimensional latent space S′ < S and the correspond-
ing sub-network that only depend on the kept latent space
dimensions.

Lemma 2. A basis for the affine subspaceG(ω) (recall (6))
is given by the columns ofAω .

In other words, the columns ofAω form the local coordinate
space, and each latent space dimension moves a point in
this region by adding to it the corresponding slope column.
Prior leveraging this result for latent space characterization,
we derive an inverse of the generatorG that maps any point
from the generated manifold to the latent space. This in-
verse is well-defined as long as the generator is injective,
preventing that ∃z1 6= z2 s.t. G(z1) = G(z2). Assuming
injectivity, the inverse ofG on a regionG(ω) in the output
space is obtained by

G−1
ω (x) =

(
AT
ωAω

)−1
AT
ω (x− bω), ∀x ∈ G(ω), (11)

leading toG−1
ω (G(ω)) = ω, ∀ω ∈ Ω. Note that the inverse(

AT
ωAω

)−1
is well defined asAω is full column rank since

we only consider a generator with S̃ = S. We can then
simply combine the region-conditioned inverses to obtain
the overall generator inverse.

Lemma 3. The inverse mapping of an injective DGN is the
CPA operator mappingG(supp(pz)) 7→ supp(pz) given by
G−1(x) =

∑
ω∈ΩG

−1
ω (x)1{x∈G(ω)}. (Proof in Appendix

C.5.)

4.2. Application: Adaptive Basis and Disentenglement

As mentioned in the above section,Aω forms a basis of the
affine subspaceG(ω). The latent vector v combines them
to obtain the subspace which is then shifted by the bias bω .

le
ar

ne
d
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al

FC GAN CONV GAN FC VAE CONV VAE

Figure 4. Visualization of a single basis bector [Aω].,k with ω at
initialization and after learning obtained from a region ω contain-
ing the digits 7, 5, 9, and 0 respectively, and this for GAN and
VAE models made of fully connected or convolutional layer (see
Appendix B for details). By visual inspection, one can observe that
the depicted basis vector encodes right rotation, cedilla extension,
left rotation, and upward translation respectively. In addition, we
observe how the basis vectors are smoother for VAE-based models
which why they tend to generate blurred samples.

This process is performed locally for each region ω, in a
manner similar to an “adaptive basis” (Donoho et al., 1994).

In this context, we aim to characterize the subspace basis
in term of disentanglement, i.e., the alignment of the ba-
sis vectors with respect to each other. While there is not
a unique definition, a disentangled basis should provide a
“compact” and interpretable latent representation z for the
associated x = G(z). In particular, it should ensure that a
small perturbation of dimension d of z implies a transfor-
mation independent from a small perturbation of dimension
d′ 6= d (Schmidhuber, 1992; Bengio et al., 2013). That is,
〈G(z) −G(z + εδd),G(z) −G(z + εδd′)〉 ≈ 0 with δd
a one-hot vector at position d and length Z (Kim & Mnih,
2018). A disentangled representation is thus considered
to be most informative as each latent dimension imply a
transformation that leaves the others unchanged (Bryant &
Yarnold, 1995). For example, rotating an object should not
alter its vertical or horizontal translation and vice-versa

Proposition 4. A necessary condition for disentan-
glement is to have “near orthogonal” columns as
〈[Aω].,i, [Aω].,j〉 ≈ 0, ∀i, 6= j, ∀ω ∈ Ω. (Proof in Ap-
pendix C.6.)

Figure 4 visualizes one of the basis vectors of four different
DGNs trained on the MNIST dataset with S = 10. Inter-
pretability of the transformation encoded by the dimension
of the basis vector can be done as well as model compari-
son such as blurriness of VAE samples that is empirically
observed across datasets (??). We also provide in Table 1
the value of ‖Qω − I‖2 with Qω ∈ [0, 1]S×S the matrix
of cosine angles between basis vector of Aω for 10,000
regions sampled randomly and where we report the average
over the regions and the maximum. Finally, this process is
performed over 8 runs, the mean and standard deviation are
reported in the table. We observe that there does not seem
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Table 1. Depiction of the cosine similarity summed over pairwise
different columns of Aω . Measure of 0 means that the basis vec-
tors are orthogonal, improving disentanglement (recall Prop. 4).
The first line represent the maximum of this quantity over 10000
sampled regions ω, the second line represents the average; the
std of those quantities is given for 8 runs. We see that training
increases disentanglement, and fully connected models offer in-
creased disentanglement as compared to convolutional models.

FC GAN CONV GAN FC VAE CONV VAE

in
it. 8.84 ± 0.07 3.2 ± 0.33 5.23 ± 0.29 3.5 ± 0.27

4.41 ± 0.26 1.84 ± 0.08 2.25 ± 0.08 1.74 ± 0.06

le
ar

n 1.36 ± .08 1.72 ± 0.07 1.32 ± 0.07 1.77 ± 0.11
0.9 ± 0.03 1.12 ± 0.03 0.89 ± 0.03 1.15 ± 0.03

to be a difference in the degree of disentanglement different
GAN and VAE; however, the topology, fully connected vs.
convolution, plays an important part, favoring the former. To
visually control the quality of the DGN, randomly generated
digits are given in Fig. 13 in the Appendix; we also provide
more background on disentanglement in Appendix E.

4.3. Generated Manifold Curvature

We now study the curvature or angularity of the generated
mapping. That is, whenever S̃ < D, the per-region affine
subspace of adjacent region are continuous, and joint at
the region boundaries with a certain angle that we now
characterize.

Definition 2. Two regions ω, ω′ are adjacent whenever they
share part of their boundary as in ω ∩ ω′ 6= ∅.
The angle between adjacent affine subspace is character-
ized by means of the greatest principal angle (Afriat, 1957;
Bjorck & Golub, 1973) and denote θ. Denote the per-region
projection matrix of the DGN by

P (Aω) = Aω(AT
ωAω)−1AT

ω (12)

whereAT
ωAω ∈ RS×S and P (Aω) ∈ RD×D. We now as-

sume that dim(G) = Z ensuring thatAT
ωAω is invertible.2

Theorem 2. The angle between adjacent (recall Def. 2)
region mappings θ(G(ω),G(ω′)) is given by

sin
(
θ(G(ω),G(ω′))

)
= ‖P (Aω)− P (Aω′)‖2, (13)

∀ω ∈ Ω, ω′ ∈ adj(ω). (Proof in Appendix C.7.)

Notice that two special cases of the above theorem emerge.
When S = 1, the angle is given by the cosine similarity
between the vectorsAω andAω′ of adjacent regions. When
S = D − 1 the angle is given by the cosine similarity
between the normal vectors of the D − 1 subspace spanned
byAω andAω′ respectively.

2The derivation also applies if dim(G) < Z by replacing Aω

with A′ω (recall Lemma 2).

Figure 5. Piecewise linear continuous 1-
D manifold learned by a GAN DGN (in
black) from a collection of data points
(in blue). The breakpoints between ad-
jacent regions are depicted by dots of
color proportional to the angle. The
manifold starts at the green box and pro-
ceeds clockwise. Figure 11 in the Ap-
pendix contains additional examples.

We illustrate the angles in a simple case D = 2 and Z = 1
in Fig. 5. It can be seen how a DGN with few parameters
produces angles mainly at the points of curvature of the
manifold. We also provide many additional figures with
different training settings in Fig. 10 in the Appendix as well
as repetitions of the same experiment with different random
seeds.

4.4. Application: Angle Distribution of a DGN with
Random Weights

We can use the above result to study the distribution of
angles of different DGNs with random weights and study
the impact of depth, width, as well Z and D, the latent and
output dimensions respectively. Figure 6 summarizes the
distribution of angles for several different settings.

Two key observations emerge. First, the codes of adjacent
regions q(ω), q(ω′) share a large number of their values
(see Appendix D for details) implying that most of the DGN
parameters are shared in their composition to produceAω

and Aω′ . In turn, this weight sharing correlates adjacent
hyperplanes, such that their angles are much smaller than
if randomly picked form one another. The random case (in
blue in Fig. 6) favors aggressively large angles as opposed
to the ones of DGNs. Second, the distribution moments
depend on the ratio S/D rather that those values taken
independently. In particular, as this ratio gets smaller, as the
angle distribution becomes bi-modal with an emergence of
high angles. That is, the manifold is “flat” overall except
in some parts of the space where high angularity is present.
This effect is strengthened with wider DGNs. Notice that
this large ratio S/D is the one encountered in practice where
it is common to have S ≈ 100 and D > 800.

The above experiment demonstrates the impact of width and
latent space dimension into the angularity of the DGN output
manifold and how to pick its architecture based on a priori
knowledge of the target manifold. Under the often-made
assumptions that the weights of overparametrized DGN do
not move far from their initialization during training (Li &
Liang, 2018), these results also hint at the distribution of
angles after training.
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Figure 6. Histograms of the largest principal angles for DGNs with
two hidden layers, S = 16 and D = 17, D = 32, D = 64
respectively and varying width D` on the y-axis. Three trends to
observe: When the width becomes large, the distribution becomes
more bimodal and greatly favors near 0 angles; when the output
space dimension becomes large, there is an increase in the number
of angles near orthogonal; the amount of weight sharing between
the parameters Aω and Aω′ of adjacent regions ω and ω′ allow
to greatly constrain the angles to be small, as opposed to the
distribution of angles between random subspaces (Absil et al.,
2006) depicted in blue. Hence despite the large amount of regions,
most will be aligned with each other leading to an overall well
behave manifold. Additional figures are available in Fig. 10 in the
Appendix.

5. Density on the Generated Manifold
The study of DGNs would not be complete without con-
sidering that the latent space is equipped with a density
distribution pz from which z are sampled in turn leading to
sampling ofG(z). Thus, we now study how this density is
spread over the output space, covering the generated mani-
fold and highlighting some key properties such as density
conentration, entropy computation and training instabilities.

5.1. Analytical Output Density

Given a distribution pz over the latent space, we can explic-
itly compute the output distribution after the application of
G, which lead to an intuitive result exploiting the piecewise
affine property of the generator.

Lemma 4. Denote by σi(Aω) the ith singular value ofAω .
Then, the volume of a region ω ∈ Ω denoted by µ(ω) is
related to the volume ofG(ω) by

µ(G(ω)) =
√

det(AT
ωAω)µ(ω) =

∏
i:σi(Aω)>0

σi(Aω)µ(ω).

(Proof in Appendix C.8.)
Theorem 3. The generator probability density pG(x) given
pz and a injective generatorG with per-region inverseG−1

ω

from (11) is given by

pG(x) =
∑
ω∈Ω

pz
(
G−1
ω (x)

)√
det(AT

ωAω)
1{x∈G(ω)}. (14)

(Proof in Appendix C.9.)

That is, the distribution obtained in the output space natu-
rally corresponds to a piecewise affine transformation of the
original latent space distribution, weighted by the change in
volume of the per-region mappings.

From the analytical derivation of the generator density dis-
tribution, we obtain its differential entropy, i.e., the Shannon
entropy for continuous distributions.

Corollary 1. The differential entropy of the output distribu-
tion pG of the DGN is given by

E(pG) = E(pz) +
∑
ω∈Ω

P (z ∈ ω) log(
√

det(AT
ωAω)).

(Proof in Appendix C.10.)

As the result, the differential entropy of the output distribu-
tion pG corresponds to the differential entropy of the latent
distribution pz plus a convex combination of the per-region
volume change. Two results emerge directly. First, it is
possible to optimize the latent distribution pz to better fit
the target distribution entropy as been done for example
in (Ben-Yosef & Weinshall, 2018). Second, whenever this
distribution is fixed, any gap between the latent and out-
put distribution entropy imply the need for high change in
volumes between ω andG(ω).

Gaussian Case. We now demonstrate the use of the above
derivation by considering practical examples for which we
are able to gain ingights into the DGN data modeling and
generation. First, consider that the latent distribution is set
as z ∼ N(0, 1) we obtain the following result directly from
Thm. 3.

Corollary 2. The generator density distribution pG(x)
given z ∼ N(0, I) is

pG(x) =
∑
ω∈Ω

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)√

(2π)S det(AT
ωAω)

1{x∈G(ω)}.

(Proof in Appendix C.12.)

The above formula is reminiscent of Kernel Density Esti-
mation (KDE) (Rosenblatt, 1956) and in particular adaptive
KDE (Breiman et al., 1977), where a partitioning of the data
manifold is performed on each cell (ω in our case) different
kernel parameters are used.

Uniform Case. We now turn into the uniform latent dis-
tribution case. Consider the following question: Suppose
we start from a uniform distribution z ∼ U(0, 1) on the
hypercube in RS , will the samples be uniformly distributed
on the manifold ofG?

Proposition 5. Given a uniform latent distribution v ∼
U(0, 1), the sampling of the manifoldG(supp(pz)) will be
uniform iff det(AT

ωAω) = c, ∀ω : ω ∩ supp(pz) 6= ∅, c >
0.
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σ1 = 0, σ2 ∈ {1, 2, 3} σ1 = 1, σ2 ∈ {1, 2, 3} σ1 = 2, σ2 ∈ {1, 2, 3}

Figure 7. Distribution of log(
√

det(AT
ωAω)) for 2000 regions ω

with a DGN with L = 3, S = 6, D = 10 and weights initialized with
Xavier; then, half of the weights’ coefficients (picked randomly)
are rescaled by σ1 and the other half by σ2. We observe that greater
variance of the weights increase the spread of the log-determinants
and increase the mean of the distribution.

5.2. Generative Deep Network Likelihood and
Normalizing Flows

Note from Thm. 3 that we obtain an explicit density distri-
bution. One possibility for learning thus corresponds to min-
imizing the negative log-likelihood (NLL) between the gen-
erator output distribution and the data. Recall from Thm. 3

that
√

det ((A+
ω )TA+

ω ) = (
√

det (AT
ωAω))−1; thus we

can write the log density from (14) over a sample xn as
L(xn) = log(pz(G−1(xn)))+log(

√
det(J(xn))), where

J(xn) = JG−1(xn)TJG−1(xn), J the Jacobian operator.
Learning the weights of the DGN by minimization of the
NLL given by −

∑N
n=1 L(xn), corresponds to the normal-

izing flow model. The practical difference between this
formulation and most NF models comes from having either
a mapping from x 7→ z (NF) or from z 7→ x (DGN case).
This change only impacts the speed to either sample points
or to compute the probability of observations. In fact, the
forward pass of a DGN is easily obtained as opposed to
its inverse requiring a search over the codes q itself requir-
ing some optimization. Thus, the DGN formulation will
have inefficient training (slow to compute the likelihood)
but fast sampling while NMFs will have efficient training
but inefficient sampling.

5.3. On the Difficulty of Generating Low
entropy/Multimodal Distributions

We conclude this section with the study of the instabilities
encountered when training DGNs on multimodal densities
or other atypical cases.

We demonstrated in Thm. 3 and Cor. 1 that the product of
the nonzero singular values of Aω plays the central role
to concentrate or disperse the density on G(ω). Let now
consider a simple case of mixture of Gaussians. It becomes
clear that the standard deviation of the modes and the inter-
mode distances will put constraints on the singular values
of the slope matrix Aω. However, imposing a large vari-
ance in the singular values of Aω for different regions ω
directly stress the parametersW` as they compose the slope
matrix. This is highlighted in Fig. 7 where we depict the
distribution of the log-determinants for different bimodal

#
re

gi
on

s
da

ta

Figure 8. Distribution of the log-determinant of the per-region map-
pings for different true distributions: two Gaussian with increasing
standard deviation (left to right). We observe how the concentra-
tion and inter-mode distance impacts greatly the distribution of the
log-determinant to allow the generator to fit the distribution, this
in turns increases the variance of the weights W`.

Figure 9. Example of a GAN DGN trained on a mixture of 25
Gaussians. On the left is depicted the latent space per-region log-
determinant (color coded) with values ranging from −6 to 4 in
log-scale (0.002 to 55 in linear scale). On the middle are depicted
the true sample (blue) and generated ones (oranges), and on the
right are depicted points sampled from the generator from regions
with low determinant (green) and large determinant (red). We
can observe that this failure case (poor approximation of the true
distribution) is due to the continuous properties of MASO DGNs,
which makes the generator move continuously between modes
while not being able to reduce enough the sampling probability
pG in between the modes. Additional examples are contained in
Fig. 14

distribution for the weightsW` showing the correlation be-
tween the variance of those parameters and the variance of
log-determinant over different regions.

We also illustrate the variation of the learned generator log-
determinant distribution across regions in Fig. 8, where we
trained a GAN DGN on two Gaussians for different scalings.
This further highlights the importance of the distribution of
the determinants that is reachable by a DGN which depends
on the architecture and parameter space. In conclusion,
for multimodal and low entropy distribution, the required
log-determinant for the DGN to approximate the true distri-
bution goes against some standard regularization techniques
such as Tikhonov, which (recall Fig. 7) pushes the generator
output density pG to be more uniform with higher entropy.
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SUPPLEMENTARY MATERIAL

A. Extra Figures
All the below pictures have been compressed to be uploaded on Arxiv.

A.1. Angles Histogram

S=2, D=3

S=8, D=9

S=2, D=4

S=8, D=16

S=2, D=8

S=8, D=32

S=4, D=5

S=16, D=17

S=4, D=8

S=16, D=32

S=4, D=16

S=16, D=64

Figure 10. Reproduction of Fig. 6. Histograms of the largest principal angles for DGNs with one hidden layer (first two rows) and two
hidden layers (last two rows). In each case the latent space dimension and width of the hidden layers is in the top of the column. The
observations reinforce the claims on the role of width and S versus D dimensions.
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A.2. Angles Manifold

Figure 11. Reproduction of Fig. 5 for various GDNs topologies. The columns represent different widths D` ∈ {6, 8, 16, 32} and the rows
correspond to repetition of the learning for different random initializations of the GDNs for consecutive seeds.
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A.3. More on MNIST Disentanglement

Figure 12. Randomly generated digits from the trained GAN (top) and trained VAE(bottom) models for the experiment from Fig. 4. Each
row represents a model that was training on a different random initialization (8 runs in total) which produced the result in Table 1.
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Figure 13. Randomly generated digits from the trained CONV GAN (top) and trained CONV VAE(bottom) models for the experiment
from Fig. 4. Each row represents a model that was training on a different random initialization (8 runs in total) which produced the result
in Table 1.
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A.4. More on Determinant Figures

Figure 14. Reproduction of Fig. 8 for multiple standard deviations and multiple random seeds. Each column represent a different standard
deviation of the two Gaussians σ ∈ {0.002, 0.01, 0.05, 0.1, 0.3, 1, 2} and each row is a run with a different seed. As can be seen in all
cases (except when lack of convergence) the distribution of the determinants support the claim and relate with the Entropy of the true
distribution (blue points).
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B. Architecture Details
We describe the used models below. The Dense(T) represents a fully connected layer with T units (activation function not
included). The Conv2D(I, J, K) represent I filters of spatial shape (J,K) and the input dilation and padding follow the
standard definition. For the VAE models the encoder is given below and for the GAN models the discriminator is given
below as well. FC GAN model means that the FC generator is used in conjonction with the discriminator, the CONV GAN
means that the CONV generator is used in conjonction with the discriminator and similarly for the VAE case.

FC generator CONV generator Encoder Discriminator
Dense(256) Dense(256) Dense(512) Dense(1024)
leaky ReLU leaky ReLU Dropout(0.3) Dropout(0.3)
Dense(512) Dense(8 * 6 * 6) leaky ReLU leaky ReLU
leaky ReLU leaky ReLU Dense(256) Dense(512)
Dense(1024) Reshape(8, 6, 6) leaky ReLU Dropout(0.3)
leaky ReLU Conv2D(8, 3, 3, inputdilation=2, pad=same) Dense(2*S) leaky ReLU
Dense(28*28) leaky ReLU Dense(256)

Conv2D(8, 4, 4, inputdilation=3, pad=valid) Dropout(0.3)
Reshape(28*28) leaky ReLU

Dense(2)

all the training procedures employ the Adam optimizer with a learning of 0.0001 which stays constant until training
completion. In all cases trainig is done on 300 epochs, an epoch consisting of viewing the entire image training set once.

C. Proofs
C.1. Proof of Proposition 1

Proof. The result is a direct application of Corollary 3 in (Balestriero et al., 2019) adapted to GDNs (and not classification
based DNs). The input regions are proven to be convex polytopes. Then by linearity of the per region mapping, conexity is
preserved and with form given by (6).

C.2. Proof of Lemma 1

Proof. First recall the standard result that

rank(AB) ≤ min(rank(A), rank(B)),

for any matrixA ∈ RN×K andB ∈ RK×D (see for example (?) chapter 5). Now, noticing that min(min(a, b),min(c, d)) =
min(a, b, c, d) leads to the desired result by unrolling the product of matrices that make up the Aω matrix to obtain the
desired result.

C.3. Proof of Proposition 2

Proof. First notice that there can only be two major cases. First for the dimension of the affinely mapped regionG(ω) to
be S or to be smaller than S. Let first consider the bijective case. For the GDN to be bijective on the region we need a
one-to-one mapping from ω to G(ω). If the dimension of the subsapce G(ω) is S, then it means that the matrix Aω is
full-rank, with rank S. In turn, this means that the columns of the matrix are linearly independent. This implies bijectivity
on the region as each point in ω is mapped to an unique point in G(ω) and vice-versa. The surjectivity is direct as if the
dimension is smaller than S, then the matrixAω is not full-rank and all the points in the region ω that leave in the kernel of
the matrix (lifted with the bias bω) will be mapped to the same output points. This means that there exists different points in
ω s.t. they are mapped to the same point inG(ω) which gives surjectivity.

For global bijectivity, we need an additional condition. In fact, to ensure that the entire GDN preserves a one-to-one mapping,
we need per region bijectivity coupled with the fact that the mapping for different region do not intersect. In fact, we know
look at bijectivity between supp(pz) andG(supp(pz)). Thus if the regions do not intersection after affine projections then
there does not exist different latent vectors z and z′ that would be mapped to the same output point. Yet because we have
bijectivity on between ω andG(ω), ∀ω it means that each point in supp(pz) is mapped to an unique point inG(supp(pz))
which gives global bijectivity.



Max-Affine Spline Insights into Generative Deep Networks

C.4. Proof of Proposition 3

Proof. The first bound is obtained by taking the realization of the noise where r = 0, in that case the input space partition
is the entire space as any input is mapped to the same VQ code. As such, the mapping associated to this trivial partition
has 0 slope (matrix filled with zeros) and a possibly nonzeros bias; as such the mapping is zero-dimensional (any points is
mapped to the same point). This gives the lower bound stating that in the mixture of GDNs, one will have dimension 0. For
the other case, simply take the trivial case of r = 1 which gives the result.

C.5. Proof of Lemma 3

Proof. First, as we impose injectivity, we can not have multiple regions of the input space, say ω and ω′ such that
G(ω) ∩G(ω′) 6= ∅. Second, a region of the input space is mapped to another region in the output space by means of the
affine transformation, thus even though the ambiant space D might be of greater dimension that dim(G), the injectivity
implies that points in ω are mapped to at most one point in G(ω). They are affinely mapped meaning that the inverse is
given by removing the bias and inverting the linear mapping which is given by the pseudo inverse. Recalling the above
result on surjectivity, we see that for the GDN to be injective the per region dimension msut be S showing existence of the
pseudo inverse.

C.6. Proof of Proposition 4

Proof. The proof is straightforward from the used definition of disentenglement. In fact, recall that we aim to have
〈G(z)−G(z + εδd),G(z)−G(z + εδd′)〉 ≈ 0. In our case, consider only small transformation such that z + εδd and
z + εδd′ remain the in the same region ω in which was z. Then it is clear that for any positive constant ε fulfilling this
condition, the above disentangelement definition translates into

〈G(z)−G(z + εδd),G(z)−G(z + εδd′)〉 ≈ 0 ⇐⇒ 〈[Aω].,d, [Aω].,d′〉 ≈ 0,

This gives a necessary condition which is not sufficient as this alone does not guarantee that each dimension of the latent
space only impacts a single transformation of the output. But a disentangled representation must have near orthogonal
columns for the slope matricesAω .

C.7. Proof of Theorem 2

Proof. First, notice that P (Aω) = Aω(AT
ωAω)−1AT

ω defines a projection matrix. In fact, we have that

P (Aω)2 = Aω(AT
ωAω)−1AT

ωAω(AT
ωAω)−1AT

ω

= Aω(AT
ωAω)−1AT

ω

= P (Aω)

and we have that (AT
ωAω)−1 is well defined as we assume injectivity (rank(Aω) = S) making the S × S matrixAT

ωAω

full rank. Now it is clear that this projection matrix maps an arbitrary point x ∈ RD to the affine subspace G(ω) up to
the bias shift. As we are interested in the angle between two adjacent subspacesG(ω) andG(ω′) it is also clear that the
biases (which do not change the angle) can be omited. Hence the task simplifies to finding the angle between P (Aω) and
P (Aω′). This can be done by means of the greatest principal angle (proof can be found in Stewart (1973)) with the result
being sin

(
θ(G(ω),G(ω′))

)
= ‖P (Aω)− P (Aω′)‖2 as desired.

C.8. Proof of Lemma 4

Proof. In the special case of an affine transform of the coordinate given by the matrix A ∈ RD×D the well known result
from demonstrates that the change of volume is given by | det(A)| (see Theorem 7.26 in (?)). However in our case the
mapping is a rectangular matrix as we span an affine subspace in the ambiant space RD making | det(A)| not defined.
However by applying Sard’s theorem (?) we obtain that the change of volume from the region ω to the affine subspaceG(ω)
is given by

√
det(ATA) which can also be written as follows with USV T the svd-decomposition of the matrix A:√

det(ATA) =
√

det((USV T )T (USV T )) =
√

det((V STUT )(USV T ))
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=
√

det(V STSV T )

=
√

det(STS)

=
∏
i:σi 6=0

σi(A)

C.9. Proof of Theorem 3

Proof. We will be doing the change of variables z = (AT
ωAω)−1AT

ω (x−bω) = A+
ω (x−bω), also notice that JG−1(x) =

A+. First, we know that PG(z)(x ∈ w) = Pz(z ∈ G−1(w)) =
∫
G−1(w)

pz(z)dz which is well defined based on our full
rank assumptions. We then proceed by

PG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
√

det(JG−1(x)TJG−1(x))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))

√
det((A+

ω )TA+
ω )dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(A
+
ω )>0

σi(A
+
ω ))dx

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))(
∏

i:σi(Aω)>0

σi(Aω))−1dx Etape 1

=
∑
ω∈Ω

∫
ω∩w

pz(G−1(x))
1√

det(AT
ωAω)

dx

Let now prove the Etape 1 step by proving that σi(A+) = (σi(A))−1 where we lighten notations as A := Aω and USV T

is the svd-decomposition of A:

A+ = (ATA)−1AT =((USV T )T (USV T ))−1(USV T )T

=(V STUTUSV T )−1(USV T )T

=(V STSV T )−1V STUT

=V (STS)−1STUT

=⇒ σi(A
+) = (σi(A))−1

with the above it is direct to see that
√

det((A+
ω )TA+

ω ) = 1√
det(AT

ωAω)
as follows

√
det((A+

ω )TA+
ω ) =

∏
i:σi 6=0

σi(A
+
ω ) =

∏
i:σi 6=0

σi(Aω)−1

=

 ∏
i:σi 6=0

σi(Aω)

−1

=
1√

det(AT
ωAω)

which gives the desired result.
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C.10. Proof of Cor. 1

Proof. The derivation of the Entropy will consist in rewritting the Entropy w.r.t the distribution in the output space of the
GDN and performing the change of coordinates leveragign the abvoe result to finally obtain the desired result as follows:

E(pG) =−
∑
ω∈Ω

∫
G(ω)

pG(x) log(pG(x))dx

=−
∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2 log

(
pz(G−1(x)) det(AT

ωAω)−
1
2

)
=−

∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2

(
log
(
pz(G−1(x))

)
+ log

(
det(AT

ωAω)−
1
2

))
=−

∑
ω∈Ω

∫
G(ω)

det(AT
ωAω)−

1
2 pz(G−1(x)) log

(
pz(G−1(x))

)
−
∑
ω∈Ω

∫
G(ω)

det(AT
ωAω)−

1
2 pz(G−1(x)) log

(
det(AT

ωAω)−
1
2

)
=E(pz) (apply the change of coordinate z = G(x))

−
∑
ω∈Ω

∫
G(ω)

pz(G−1(x)) det(AT
ωAω)−

1
2 log

(
det(AT

ωAω)−
1
2

)
=E(pz) +

1

2

∑
ω∈Ω

P (z ∈ ω) log
(
det(AT

ωAω)
)

(apply the change of coordinate z = G(x))

which gives the desired result. For a complete review of integrals on manifold please see (Cover & Thomas, 2012).

C.11. Proof of Theorem 1

Proof. For very small N it is clear than in general, even if S < S∗, the memorization capacity of the generator will be s.t.
it can fit through those points. Just imagine a couple of points sampled from a 2D linear manifold, even though S = 1,
the GDN can go through those two points and thus have E∗ = 0 for N = 2. We now consider the case where N is large
enough. Two cases have to be studied.

• Case S < S∗: if S < S∗, the generated manifold can never be dense in the true linear manifold. This means
that the newly introduced point will almost surely not lie in the span of the current generated manifold. Thus,
E∗(N + 1) > E∗(N).

• Case S ≥ S∗: in that case, it is clear the there always exist a setting of the parameters Θ s.t. the DGN spans the linear
manifold. For example if using ReLU, consider any weights for the first L− 1 layers s.t. the ReLU ae always “on” and
use the last layer affine mapping to rotate and translate the affine subspace to the true one. That is, E∗(N) = 0, ∀N > 0.

The above demonstrates how for the simplest target manifold (linear) an too narrow DN leading to S < S∗ will haev a
training error E∗ increasing with N or 0 if S ≥ S∗ for any N .

C.12. Proof of Corollary 2

Proof. First, by applying the above results on the general density formula and setting pz a standard Normal distribution we
obtain that

pG(x ∈ w) =
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)pz(G−1(x)) det(AT
ωAω)−

1
2 dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2‖G

−1(x)‖22dx

=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 ((A+

ω (x−bω))T ((A+(x−bω))dx
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=
∑
ω∈Ω

∫
ω∩w

1x∈G(ω)
1

(2π)S/2
√

det(AT
ωAω)

e−
1
2 (x−bω)T (A+

ω )TA+
ω (x−bω)dx

giving the desired result.

D. Codes of neighbour regions
Each code is equivalent to a system of inequalities that define the regions. In fact, a code depends on the signs of the feature
map pre activation (recall (3)). This defines a polytope in the input space and also in the output space. Now, when traveling
from a point z to another point z′ of a neighbouring region (recall Def. 2), we ask the question on how many indices of the
code will change. That is, what is the Hamming distance between q(z) and q(z′). As a neighbouring region is defined as a
region which shares some of its boundary with another (their interior is disjoint) we can see that the degree of the face that is
shared between the two regions define the amount of changes in their corresponding codes. If two regions share a S − 1
dimensional face, then only 1 value of the code changes. If they share in general a S − r dimensional face, then the code
will change by r values. As most adjacent regions will share a high dimensional face, we see that r tends to be small and
thus codes are similar. For details and analytical study of the above please see (?).

E. More on Disentangled Latent Representations
It has been coined that providing interpretable and practical generators lies in the ability to learn a disentangled representation
of an input x = G(z) (Schmidhuber, 1992; Bengio et al., 2013). The code z should contain all the information present in x
in a compact and interpretable structure where distinct, informative factors of variations are encoded by different dimensions.
Such motivations orginitated from the (non-)linear independent component analysis focusing on recovering independent
factors from observed data (Comon, 1994; Hyvarinen & Morioka, 2016). In fact, even in recent GAN/VAE based models,
disentengled representations are associated to independent transformations of the input such as pose, hair color, eye color
and so on which should behave independently form each other (??). For a more in-depth review of learning disentangled
representation, see (Locatello et al., 2018).

F. Details on Training Procedure
The experiment aims at depicting the training error being E∗ on the training set for varying latent dimensions S in the
simple case of a linear true data manifold approximation. In order to prevent any optimization unlucky degeneracy we repeat
the training procedure 30 times and compute for each poch the error E∗ and report the minimum over the 30 trials and
training epochs. We also set a very large number of epochs: 2000. Due to the large number of trials and epochs the reported
results are not due to some random initialization settings and convey the point of the result which is that even for such a
simple data model (linear manifold) if S < S∗ then the training error E∗ will increase with N . Finally, the minimization
over z is replacer by an autoencoder with a very wide encoder s.t. it has the capacity for each training point to memorize the
optimum z that minimizes E. That is, when minimizing

min
Θ

min
Θ′
‖GΘ(EΘ′(x))− x‖ ≈ min

Θ
min
z
‖GΘ(z)− x‖,

got a large enough encoder network E. In our case given that we used S∗ = 6 we used an encoder with D` = 256 units and
L = 3.

G. More on Effect of Dropout/Dropconnect
As opposed to the Dropout case which applies the binary noise ont the feature maps v`, Dropconnect (Wan et al., 2013)
applies this binary noise onto the slope matricesW` making the mapping noise become

G(z) =

(
1∏

`=L

diag(q`)(W` �R`)

)
z +

L∑
`=1

(
`+1∏
`′=L

diag(q`′)(W`′ �R`′)

)
b`,

where the binary noise matrices are denoted byR`. Despite this change of nosei application, the exact same result applies
and Prop. 3 also holds. That is the dropconnect equipped GDN becomes a mixture of GDNs with varying dimensions and
parameters. Notice however that dropconnect will be less likely to reduce the ablated generator dimension as opposed to
dropout due to its application on each entry of the weight matrix as opposed to an entire row at a time as depicted in Fig. 2.
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