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Abstract

We consider the end-to-end deep learning ap-
proach for phase retrieval, a central problem in
scientific imaging. We highlight a fundamental
difficulty for learning that previous work has ne-
glected, likely due to the biased datasets they use
for training and evaluation. We propose a sim-
ple yet different formulation for PR that seems
to overcome the difficulty and return consistently
better qualitative results.

1. Introduction

Given the 2D Fourier magnitudes Y = | F(X)|* € Cm*m
of a complex-valued matrix X € C™*", is it possible to re-
cover X ? This is the (Fourier) phase retrieval (PR) problem
that takes a central place in scientific imaging and has fueled
numerous revolutions in fields such as X-ray crystallogra-
phy, biology, optics, astronomy, and signal processing (Ben-
dory et al., 2017; Shechtman et al., 2015). The complex
phases of F(X) are missing because detectors in practical
imaging systems cannot record complex phases.

When the complex phases of F (X)) are available, F(X)
is known and recovering X is just a matter of inverse 2D
Fourier transform. Without the phases, recovery becomes
tricky: (1) for any X, Xe* for all 0 € [0,27) (global
phase symmetry) and shifted copies of X (shift symmetry)
and the top-down and left-right flipped copy of X (flipping
symmetry) are all mapped to the same Y (see Fig. 1), as
determined by the properties of the 2D Fourier transform
F. So the best one can hope for is recovery up to these
intrinsic symmetries; and (2) the mapping X — |F(X) \2
is generically injective up to the intrinsic symmetries when
m > 2n — 1 (Hayes, 1982). So in this paper, we always
assume m > 2n — 1 and solving PR is up to the intrinsic
symmetries.

"Department of Computer Science and Engineering, Uni-
versity of Minnesota, Twin Cities, USA. Correspondence
to: Raunak Manekar <manek009@umn.edu>, Kshitij Tayal
<tayal007 @umn.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 108, 2020. Copyright 2020 by
the author(s).

Kshitij Tayal ! Vipin Kumar'! Ju Sun'

Figure 1. Shift and flipping symmetries in PR. Left: shifted and
flipped copies of the digit image of 7; Right: their common Fourier
magnitudes.

When X is real-valued, and nonnegativity can be enforced
(e.g., images), or when support (i.e., locations of nonzero
elements) of X is provided with reasonable accuracy, PR
can often be successfully solved by the classic hybrid input-
output (HIO) method (Fienup, 1982), or its recent vari-
ants such as RAAR (Bauschke et al., 2002) or difference
map (Elser et al., 2007); see a comparison of these methods
in Marchesini (2007). When these extra constraints on X
are not applicable, even the most sophisticated variants can
fail to work in practice. The failure is mostly due to stagna-
tion caused by the intrinsic symmetries (Guizar-Sicairos &
Fienup, 2012).

Deep learning has brought about new prospects of solving
difficult inverse problems, of which PR is an instance. One
approach would be phrasing PR as a regularized optimiza-
tion problem first: minx (Y, |F(X)|*) + A2(X), and
then replacing part or the entirety of ¢, €2, and components
of specific numerical methods for solving the regularized
formulation using data-driven neural network modules. This
approach is applied to PR in, e.g., (Metzler et al., 2018;
Isil et al., 2019), where HIO is still needed to produce good
initialization and their methods mostly only perform local
refinement—for simpler inverse problems, such special ini-
tialization is not required (Ongie et al., 2020).

More radical is the end-to-end approach, where a neural
network is trained to directly approximate the inverse map-
ping or its proxies. Goy et al. (2018); Uelwer et al. (2019);
Metzler et al. (2020) have taken this approach and shown
promising results. Here, we take a critical view of the initial
successes.
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Difficulty of learning with symmetries When solving
nonlinear inverse problems with symmetries, the end-to-end
approach may face the difficulty of approximating highly
oscillatory functions. This issue has been elucidated in our
recent work Tayal et al. (2020). We summarize the main
argument using the learning square root example: suppose

Figure 2. Highly oscillatory function defined by the data set when
learning to take square root. Image credit: Tayal et al. (2020).

we randomly sample real values x;’s and form a training
set {x;, 7} and try to learn the square-root function using
the end-to-end approach, allowing both positive and nega-
tive outputs. Now if we think of the function determined
by the training set, which the neural network is trying to
approximate, it is highly oscillatory (see Fig. 2): the sign
symmetry dictates that in the training set, there are frequent
cases where x? and x? are close but x; and x; have different
signs and are far apart. Although in theory neural networks
with adequate capacity are universal function approximators,
in practice they will struggle to learn such irregular func-
tions. For general inverse problems, so long as the forward
symmetries can relate remote inputs to the same output,
such as all the three symmetries in PR, similar problems can
surface.

Biases in practical image datasets Strangely, few previ-
ous works on PR (Goy et al., 2018; Uelwer et al., 2019) have
discussed this issue, except for Metzler et al. (2020). When
we examine the training and test data that previous works
use, it becomes clear that the issue is probably covered by
intrinsic data biases. Previous experiments typically use im-
ages from standard computer vision datasets such as MNIST,
ImageNet, CelebA(faces), where the image contents tend
to be centralized and naturally oriented (see Fig. 3 (a)—(b)).
This helps break the shift and flipping symmetries naturally,
as these images are relatively close to each other compared
to when mixed up with some of their symmetric copies. !
Our analysis is confirmed in our later experiment, where we
show that augmenting natural datasets to account for sym-
metries fails a naive end-to-end pipeline, which performs
well without the augmentation.

!The global phase symmetry is absent as they only deal with
real-valued images.

Figure 3. Sample training images used in: (a) Goy et al. (2018)
and (b) Uelwer et al. (2019). (c) Sample images of biological cells
from Gustafsdottir et al. (2015), which do not have any natural
orientation or centering.

In short, the fundamental difficulty has been concealed by
biased data which do not reflect the properties of data in
PR applications: biological image samples (see Fig. 3 (d)),
astronomical objects (Fienup, 2019), where there is no nat-
ural orientation or centering of the image contents. The
difficulty of learning with symmetries needs to be addressed
for building practical PR systems.

2. Passive Symmetry Breaking for PR
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Figure 4. Illustration of PR and the passive symmetry-breaking
formulation.

In Tayal et al. (2020), we proposed mathematical ways of
preprocessing the training data to break symmetries and
hence eliminating the learning difficulty for simplified ver-
sions of PR, i.e., Gaussian PR—shift and flipping symme-
tries are erased. It may be possible to generalize the solution
to PR, but here we take a different route that is arguable
much simpler but effective.

Let 7 = {X,;,Y; = | F(X)|?} be the training dataset we
set up for implementing the end-to-end approach, and gy
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be a chosen neural network parametrized by weights W.
Then the naive end-to-end approach will take the form

min > (X, gw (Y5)), Q.1

where £ is the loss function. Due to the symmetries, Y;, Y
that are close may correspond to X; and X that are cen-
tered at very different locations or flipped and hence far
apart. This forces gy to approximate a rapidly changing
function, i.e., the difficulty that we alluded to above.

The difficulty occurs because we require gw (Y;) to match
X as possible, where the latter data are problematic and
induce mixed symmetries. How about we get rid of X;’s?
A natural alternative formulation is

min >~ (i, 1F o gw (Y0) ), 2.2)

as whether gw (Y;) outputs X; or any of its symmetric
copies,

\Fogw (V)| = Y; Vi (2.3)

This is illustrated in Fig. 4.

Why it might work? We toss away the difficult X;’s, but
we also supply less information to the learning model. Now
gw has much more freedom, and it can still generate distant
outputs for nearby inputs. Why is there hope? We draw our
inspiration from the growing pile of evidence that neural
networks optimized with first-order stochastic methods tend
to learn simple functions over complicated ones, known as
implicit regularization (Neyshabur et al., 2014). For our
problem, gy is simple when all the symmetries are broken
and complicated when there are symmetries. So if implicit
regularization occurs, symmetries are naturally broken with-
out any active intervention. So we call Eq. (2.2) the passive
symmetry-breaking formulation for PR, as against the active
approach proposed in Tayal et al. (2020).

Precursors Formulation (2.3) can be considered as an au-
toencoder objective with a known decoder. It is also similar
to the cycle consistency idea (Zhu et al., 2017; Godard et al.,
2017; Zhou et al., 2016) used in many computer vision tasks.
A unified theme is to approximate identity maps. But our
motivation here is for implicit symmetry breaking taking
advantage of implicit regularization, which differ from all
other works. The same formulation and its equivalent form
in the autocorrelation form has been independently pro-
posed in the recent work Metzler et al. (2020). They have
not articulated the learning difficulty caused by symmetries,
and they only motivated their formulation using the shift
symmetry.

3. Experiment

Goals In this preliminary experiment, we hope to quickly
confirm that (1) the naive formulation (2.1) works well with
biased data, and fails when symmetries are accounted for
in the dataset; and (2) our passive formulation (2.2) works
well with and without the dataset biases.

Data We conduct our experiments on the MNIST dataset
(LeCun et al., 1998), which is used by several previous
works on PR. We take their 60, 000 training images and
10, 000 test images to construct our training and test sets,
respectively. The images are 28 x 28 each and so n =
28. We take m = 64 here and so the injectivity threshold
2n — 1 = 55 is exceeded.

Model and training For gy, we use the U-Net architec-
ture (Ronneberger et al., 2015), which is a state-of-the-art
deep model for image segmentation and other regression-
type tasks. For training, we use the Adam optimizer and
train all models for a maximum of 300 epochs. The learning
rate is set as 10~ by default and training is stopped if the
validation loss does not reduce for 20 consecutive epochs.

Setups We create 4 variants of the dataset to test the im-
pact of symmetries on learning. We do this by modifying
the images as described below, followed by the standard
operation of taking Fourier magnitudes.

¢ No Symmetry: i.e., original MNIST dataset; samples
shown in Fig. 5 (a)-left;

o Shift symmetry: all images placed in a larger dark
background and randomly translated; samples shown
in Fig. 5 (b)-left;

* Flipping symmetry: 50% of randomly selected train-
ing and test images are top-down and left-right flipped;
samples shown in Fig. 5 (c)-left.

« Shift and flipping symmetries: random flipping fol-
lowed by random translation; samples shown in Fig. 5
(d)-left.

We denote the vanilla formulation Eq. (2.1) and the passive
formulation Eq. (2.2) as DNN-V and DNN- P, respectively.
They are trained and tested on all the 4 variants.

Qualitative results We focus on the qualitative aspects
in this preliminary experiment; we hope to include more
quantitative comparisons in the future. Results on randomly
selected test images are presented in Fig. 5. For results on
each variant of the dataset, the left column is the groundtruth
image, and the middle and right columns are results pro-
duced by DNN-V and DNN-P, respectively.
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Figure 5. Visualization of recovery results. For each group, the first columns contain the groundtruth images. Second and third columns

are reconstructions produced by DNN-V and DNN- P, respectively.

First note that on the original MNIST dataset, DNN-V" gives
good recovery, but it quickly fails on the variants containing
symmetries. This confirms our analysis regarding the dataset
bias. The mode of failure is interesting, as the estimated im-
ages are almost always the superposition of the symmetric
copies of the groundtruth. This is very similar to the fail-
ure mode of the classic methods on PR (Guizar-Sicairos &
Fienup, 2012). Moreover, for digits that are visually similar
between the original and the flipped copy, e.g., “17, “27,
“0”, the reconstruction results are good with or without the
flipping symmetry, consistent with our intuition.

On the other hand, irrespective of the symmetries, DNN-P
consistently leads to good recovery. Interestingly, DNN-
P can sometimes recover novel symmetric copies of the
groundtruth image: e.g., flipped digits “7” and “9” are re-
turned for the no-symmetry and shift-symmetry datasets
even when there is no flipping symmetry entering the
training data, and shifted digit “0” is returned for the no-
symmetry and flipping symmetry dataset even when there is
no shift symmetry present. These striking observations are
not unexpected, given the fact that the DNN-P loss func-
tion works only with Y and never sees the real images X.
These observation reinforce our intuition that DNN-P can
deal with the symmetries automatically and try to learn a
low-complexity function.

These preliminary results are encouraging and the next step
would be to test this new formulation on other natural image
datasets such as faces or objects, and more importantly,
datasets that stem from real PR applications, such as the cell
dataset (Fig. 3 (c)) or astronomical data. Datasets which are
much less dense than MNIST may present a considerable
challenge for this formulation. It would also be interesting
to see whether this formulation can help break the third type
of symmetry, global phase, in complex images such as MRI
data.

4. Conclusion

Tayal et al. (2020) tackles the symmetry issue in Gaussian
PR and explicitly breaks the symmetry in the training set.
Generalizing the idea to PR can be mathematically heavy,
as three types of symmetries exist for PR whereas only
one type exists for Gaussian PR. The passive formulation
presented in this work is lightweight and turns out to be
effective, making this a first work of this kind on PR. This
formulation can be developed into a practical algorithm for
end-to-end learning on Fourier-PR.
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