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Abstract
Here we present a machine learning framework
and model implementation that can learn to
simulate a wide variety of challenging physi-
cal domains, involving fluids, rigid solids, and
deformable materials interacting with one an-
other. Our framework—which we term “Graph
Network-based Simulators” (GNS)—represents
the state of a physical system with particles, ex-
pressed as nodes in a graph, and computes dy-
namics via learned message-passing. Our re-
sults show that our model can generalize from
single-timestep predictions with thousands of par-
ticles during training, to different initial condi-
tions, thousands of timesteps, and at least an
order of magnitude more particles at test time.
Our model was robust to hyperparameter choices
across various evaluation metrics: the main de-
terminants of long-term performance were the
number of message-passing steps, and mitigat-
ing the accumulation of error by corrupting the
training data with noise. Our GNS framework
advances the state-of-the-art in learned physical
simulation, and holds promise for solving a wide
range of complex forward and inverse problems.

1. Introduction
Realistic simulators of complex physics are invaluable to
many scientific and engineering disciplines, however tradi-
tional simulators can be very expensive to create and use.
Building a simulator can entail years of engineering ef-
fort, and often must trade off generality for accuracy in a
narrow range of settings. High-quality simulators require
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Figure 1. Rollouts of our GNS model for our WATER-3D, GOOP-
3D and SAND-3D datasets. It learns to simulate rich materials at
resolutions sufficient for high-quality rendering [video].

substantial computational resources, which makes scaling
up prohibitive. Even the best are often inaccurate due to in-
sufficient knowledge of, or difficulty in approximating, the
underlying physics and parameters. An attractive alternative
to traditional simulators is to use machine learning to train
simulators directly from observed data, however the large
state spaces and complex dynamics have been difficult for
standard end-to-end learning approaches to overcome.

Here we present a powerful machine learning framework for
learning to simulate complex systems from data—“Graph
Network-based Simulators” (GNS). Our framework imposes
strong inductive biases, where rich physical states are rep-
resented by graphs of interacting particles, and complex
dynamics are approximated by learned message-passing
among nodes.

We implemented our GNS framework in a single deep learn-
ing architecture, and found it could learn to accurately sim-
ulate a wide range of physical systems in which fluids, rigid
solids, and deformable materials interact with one another.
Our model also generalized well to much larger systems and
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d✓
<latexit sha1_base64="nE73T9eRJLfcXyuQQcLQ7L/NSko=">AAACCHicbVDLSsNAFJ3UV62vqks3g0VwVZJS0GXBjcsK9gFtKJPJpBk6mQkzN0IJ/QGXbvUj3Ilb/8Jv8CectlnY1gMXDufcy733BKngBlz32yltbe/s7pX3KweHR8cn1dOzrlGZpqxDlVC6HxDDBJesAxwE66eakSQQrBdM7uZ+74lpw5V8hGnK/ISMJY84JWClfjgaQsyAjKo1t+4ugDeJV5AaKtAeVX+GoaJZwiRQQYwZeG4Kfk40cCrYrDLMDEsJnZAxG1gqScKMny/uneErq4Q4UtqWBLxQ/07kJDFmmgS2MyEQm3VvLv7nDTKIbv2cyzQDJulyUZQJDArPn8ch14yCmFpCqOb2VkxjogkFG9HqFjFWtiFOGvYZm463nsUm6TbqXrPefGjWWs0ipzK6QJfoGnnoBrXQPWqjDqJIoBf0it6cZ+fd+XA+l60lp5g5Rytwvn4BCNOaYw==</latexit>

Update
<latexit sha1_base64="dx/DLB+2YgKIzz8J93z5l13N0KU=">AAACBnicbVBNS8NAEN34WetX1aOXxSJ4Kkkp6LHgxWMF0xbaUDabTbt2Nxt2J0IJvXv0qj/Cm3j1b/gb/BNu2xxs64OBx3szzMwLU8ENuO63s7G5tb2zW9or7x8cHh1XTk7bRmWaMp8qoXQ3JIYJnjAfOAjWTTUjMhSsE45vZ37niWnDVfIAk5QFkgwTHnNKwEptP40IsEGl6tbcOfA68QpSRQVag8pPP1I0kywBKogxPc9NIciJBk4Fm5b7mWEpoWMyZD1LEyKZCfL5tVN8aZUIx0rbSgDP1b8TOZHGTGRoOyWBkVn1ZuJ/Xi+D+CbIeZJmwBK6WBRnAoPCs9dxxDWjICaWEKq5vRXTEdGEgg1oeYsYKtswknX7jE3HW81inbTrNa9Ra9zXq81GkVMJnaMLdIU8dI2a6A61kI8oekQv6BW9Oc/Ou/PhfC5aN5xi5gwtwfn6BWX+mXs=</latexit>

xi
<latexit sha1_base64="o+q+3RyI9+o0o6Yl/gGV2k97X3I=">AAACDHicbVDLSsNAFL3xWeur6tJNsAiuSlIKuiy4cVnBPqAJZTKdtEPnEWYmYgn9BZdu9SPciVv/wW/wJ5y0WdjWAwOHc+7lnjlRwqg2nvftbGxube/slvbK+weHR8eVk9OOlqnCpI0lk6oXIU0YFaRtqGGklyiCeMRIN5rc5n73kShNpXgw04SEHI0EjSlGxkpBwJEZR3H2NBvQQaXq1bw53HXiF6QKBVqDyk8wlDjlRBjMkNZ930tMmCFlKGZkVg5STRKEJ2hE+pYKxIkOs3nmmXtplaEbS2WfMO5c/buRIa71lEd2Ms+oV71c/M/rpya+CTMqktQQgReH4pS5Rrp5Ae6QKoINm1qCsKI2q4vHSCFsbE3LV9hI2oExr9vP2Hb81S7WSade8xu1xn2j2mwUPZXgHC7gCny4hibcQQvagCGBF3iFN+fZeXc+nM/F6IZT7JzBEpyvX5trnFw=</latexit>
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i

<latexit sha1_base64="MM0Dt+bH5t8Xia8T3E22+f67fLc=">AAACDnicbVDLSgMxFL3js9ZX1aWbYBFclZlS0GXBjcsK9gHttGTSTBuaZIYkUyhD/8GlW/0Id+LWX/Ab/Akz7Sxs64HA4Zx7uScniDnTxnW/na3tnd29/cJB8fDo+OS0dHbe0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTuY3Gd+e0qVZpF8MrOY+gKPJAsZwcZK/Z7AZhyE6XTedwdsUCq7FXcBtEm8nJQhR2NQ+ukNI5IIKg3hWOuu58bGT7EyjHA6L/YSTWNMJnhEu5ZKLKj200XqObq2yhCFkbJPGrRQ/26kWGg9E4GdzFLqdS8T//O6iQnv/JTJODFUkuWhMOHIRCirAA2ZosTwmSWYKGazIjLGChNji1q9wkeRHRiLqv2Mbcdb72KTtKoVr1apPdbK9VreUwEu4QpuwINbqMMDNKAJBBS8wCu8Oc/Ou/PhfC5Ht5x85wJW4Hz9AtFqnPw=</latexit>

e0i,j
<latexit sha1_base64="EA58GTTUFUPeOoLMCo5cRQ5lATs=">AAACFHicbVC7TsMwFHV4lvIKZWSxqJAYUJVUkWCsxMJYJPqQ2hI5rtOa2nFkO4gqym8wssJHsCFWdr6Bn8BpM9CWI1k6Oude3eMTxIwq7Tjf1tr6xubWdmmnvLu3f3BoH1XaSiQSkxYWTMhugBRhNCItTTUj3VgSxANGOsHkOvc7j0QqKqI7PY3JgKNRREOKkTaSb1f6HOlxEKYku3f8lF48ZL5ddWrODHCVuAWpggJN3/7pDwVOOIk0ZkipnuvEepAiqSlmJCv3E0VihCdoRHqGRogTNUhn2TN4ZpQhDIU0L9Jwpv7dSBFXasoDM5knVcteLv7n9RIdXg1SGsWJJhGeHwoTBrWAeRFwSCXBmk0NQVhSkxXiMZIIa1PX4hU2EmZgzOvmM6Ydd7mLVdKu11yv5t161YZX9FQCJ+AUnAMXXIIGuAFN0AIYPIEX8ArerGfr3fqwPueja1axcwwWYH39Al/EntI=</latexit>

v0
j

<latexit sha1_base64="jyE9FVANU3acfSW6HZ2A8CYdfcM=">AAACDnicbVDLSgMxFM3UV62vqks3wSK4KjNlQJcFNy4r2Ae005JJM21sHkOSKZSh/+DSrX6EO3HrL/gN/oSZdha29UDgcM693JMTxoxq47rfTmFre2d3r7hfOjg8Oj4pn561tEwUJk0smVSdEGnCqCBNQw0jnVgRxENG2uHkLvPbU6I0leLRzGIScDQSNKIYGSv1exyZcRil03nfHTwNyhW36i4AN4mXkwrI0RiUf3pDiRNOhMEMad313NgEKVKGYkbmpV6iSYzwBI1I11KBONFBukg9h1dWGcJIKvuEgQv170aKuNYzHtrJLKVe9zLxP6+bmOg2SKmIE0MEXh6KEgaNhFkFcEgVwYbNLEFYUZsV4jFSCBtb1OoVNpJ2YMxr9jO2HW+9i03SqlU9v+o/+JW6n/dUBBfgElwDD9yAOrgHDdAEGCjwAl7Bm/PsvDsfzudytODkO+dgBc7XL9MHnP0=</latexit>

vm
i

<latexit sha1_base64="6yxeFdMRmeSuWhewsYDAJn3mCcE=">AAACDnicbVDLSgMxFL3js9ZX1aWbYBFclZlS0GXBjcsK9gHttGTSTBuaZIYkUyhD/8GlW/0Id+LWX/Ab/Akz7Sxs64HA4Zx7uScniDnTxnW/na3tnd29/cJB8fDo+OS0dHbe0lGiCG2SiEeqE2BNOZO0aZjhtBMrikXAaTuY3Gd+e0qVZpF8MrOY+gKPJAsZwcZK/Z7AZhyE6XTeFwM2KJXdirsA2iReTsqQozEo/fSGEUkElYZwrHXXc2Pjp1gZRjidF3uJpjEmEzyiXUslFlT76SL1HF1bZYjCSNknDVqofzdSLLSeicBOZin1upeJ/3ndxIR3fspknBgqyfJQmHBkIpRVgIZMUWL4zBJMFLNZERljhYmxRa1e4aPIDoxF1X7GtuOtd7FJWtWKV6vUHmvlei3vqQCXcAU34MEt1OEBGtAEAgpe4BXenGfn3flwPpejW06+cwErcL5+ATRcnTk=</latexit>

emi,j
<latexit sha1_base64="fWBXWQO7sBW/E8khYhlG66Oeaxs=">AAACFHicbVC7TsMwFHV4lvIKZWSxqJAYUJVUkWCsxMJYJPqQ2hI5rtOa2nFkO4gqym8wssJHsCFWdr6Bn8BpM9CWI1k6Oude3eMTxIwq7Tjf1tr6xubWdmmnvLu3f3BoH1XaSiQSkxYWTMhugBRhNCItTTUj3VgSxANGOsHkOvc7j0QqKqI7PY3JgKNRREOKkTaSb1f6HOlxEKYku+d+Si8eMt+uOjVnBrhK3IJUQYGmb//0hwInnEQaM6RUz3ViPUiR1BQzkpX7iSIxwhM0Ij1DI8SJGqSz7Bk8M8oQhkKaF2k4U/9upIgrNeWBmcyTqmUvF//zeokOrwYpjeJEkwjPD4UJg1rAvAg4pJJgzaaGICypyQrxGEmEtalr8QobCTMw5nXzGdOOu9zFKmnXa65X8269asMreiqBE3AKzoELLkED3IAmaAEMnsALeAVv1rP1bn1Yn/PRNavYOQYLsL5+AcObnw8=</latexit>

em+1
i,j

<latexit sha1_base64="ZPbDpb/FsB6W11nLRsKTK1rgJ8I=">AAACGHicbVDLSsNAFJ3UV62vqODGzWARBKUkJaDLghuXFewD2hgm00k7diYJMxOhxPyIS7f6Ee7ErTu/wZ9w0mZhWw8MHM65l3vm+DGjUlnWt1FaWV1b3yhvVra2d3b3zP2DtowSgUkLRywSXR9JwmhIWooqRrqxIIj7jHT88XXudx6JkDQK79QkJi5Hw5AGFCOlJc886nOkRn6Qkuw+5ed25qX04iHzzKpVs6aAy8QuSBUUaHrmT38Q4YSTUGGGpOzZVqzcFAlFMSNZpZ9IEiM8RkPS0zREnEg3nebP4KlWBjCIhH6hglP170aKuJQT7uvJPK1c9HLxP6+XqODKTWkYJ4qEeHYoSBhUEczLgAMqCFZsognCguqsEI+QQFjpyuavsGGkB0a8rj+j27EXu1gm7XrNdmrOrVNtOEVPZXAMTsAZsMElaIAb0AQtgMETeAGv4M14Nt6ND+NzNloyip1DMAfj6xebJqCL</latexit>

vm+1
i

<latexit sha1_base64="IUzod+b9A2xfmFN7REG4xbjxQ6Y=">AAACFHicbVDLSsNAFJ34rPUV69JNsAiCUJIS0GXBjcsK9gFtLJPppB06jzAzKZaQ33DpVj/Cnbh17zf4E07aLGzrgYHDOfdyz5wwpkRp1/22Nja3tnd2S3vl/YPDo2P7pNJWIpEIt5CgQnZDqDAlHLc00RR3Y4khCynuhJPb3O9MsVRE8Ac9i3HA4IiTiCCojTSwK30G9TiM0mn2mLIrLxuQgV11a+4czjrxClIFBZoD+6c/FChhmGtEoVI9z411kEKpCaI4K/cThWOIJnCEe4ZyyLAK0nn2zLkwytCJhDSPa2eu/t1IIVNqxkIzmSdVq14u/uf1Eh3dBCnhcaIxR4tDUUIdLZy8CGdIJEaazgyBSBKT1UFjKCHSpq7lK3QkzMCY1c1nTDveahfrpF2veX7Nv/erDb/oqQTOwDm4BB64Bg1wB5qgBRB4Ai/gFbxZz9a79WF9LkY3rGLnFCzB+voFgVie5g==</latexit>

(b)

(c) (e)(d)

(a) Xt0
<latexit sha1_base64="FFNUwHHZRtxXaCXRYfUeptosCzE=">AAACB3icbVDLSgNBEOz1GeMr6tHLYBA8hd0Q0GPAi8cI5gHJGmYns8mQeSwzs0JY8gEevepHeBOvfobf4E84SfZgEgsaiqpuuruihDNjff/b29jc2t7ZLewV9w8Oj45LJ6cto1JNaJMornQnwoZyJmnTMstpJ9EUi4jTdjS+nfntJ6oNU/LBThIaCjyULGYEWye1O4+Z7fvTfqnsV/w50DoJclKGHI1+6ac3UCQVVFrCsTHdwE9smGFtGeF0WuylhiaYjPGQdh2VWFATZvNzp+jSKQMUK+1KWjRX/05kWBgzEZHrFNiOzKo3E//zuqmNb8KMySS1VJLFojjlyCo0+x0NmKbE8okjmGjmbkVkhDUm1iW0vIUPlWsYiap7xqUTrGaxTlrVSlCr1O5r5Xotz6kA53ABVxDANdThDhrQBAJjeIFXePOevXfvw/tctG54+cwZLMH7+gUL25nV</latexit>

X̃tK
<latexit sha1_base64="JKqdNdDDw0syQmrxVhW8095cHk4=">AAACEXicbVDLSsNAFJ34rPXRqEs3wSK4KkkJ6LLgRnBTwT6gjWEymbRDJ5MwcyOUkK9w6VY/wp249Qv8Bn/CaZuFbT0wcDjnXO6dE6ScKbDtb2Njc2t7Z7eyV90/ODyqmccnXZVkktAOSXgi+wFWlDNBO8CA034qKY4DTnvB5Gbm956oVCwRDzBNqRfjkWARIxi05Ju1ITAe0rxfPObg3xW+Wbcb9hzWOnFKUkcl2r75MwwTksVUAOFYqYFjp+DlWAIjnBbVYaZoiskEj+hAU4Fjqrx8fnhhXWgltKJE6ifAmqt/J3IcKzWNA52MMYzVqjcT//MGGUTXXs5EmgEVZLEoyrgFiTVrwQqZpAT4VBNMJNO3WmSMJSagu1rewkeJDozjpv6MbsdZ7WKddJsNx22492695ZY9VdAZOkeXyEFXqIVuURt1EEEZekGv6M14Nt6ND+NzEd0wyplTtATj6xd5x53X</latexit>

Construct graph
<latexit sha1_base64="KgZz/W1U1ZSTbiYjGx8yvaxjGkE=">AAACEXicbVDLSgMxFM3UV62Pjrp0EyyCqzJTCrosdOOygn1AO5RMmmlDM8mQ3BHK0K9w6VY/wp249Qv8Bn/CtJ2FbT0QOJxzLvfmhIngBjzv2yns7O7tHxQPS0fHJ6dl9+y8Y1SqKWtTJZTuhcQwwSVrAwfBeolmJA4F64bT5sLvPjFtuJKPMEtYEJOx5BGnBKw0dMtNJQ3olAIea5JMhm7Fq3pL4G3i56SCcrSG7s9gpGgaMwlUEGP6vpdAkBENnAo2Lw1SwxJCp2TM+pZKEjMTZMvD5/jaKiMcKW2fBLxU/05kJDZmFoc2GROYmE1vIf7n9VOI7oKMyyQFJulqUZQKDAovWsAjrhkFMbOEUM3trZhOiCYUbFfrW8RY2cAkrtnP2Hb8zS62SadW9evV+kOt0qjnPRXRJbpCN8hHt6iB7lELtRFFKXpBr+jNeXbenQ/ncxUtOPnMBVqD8/ULGHudmg==</latexit>

Pass messages
<latexit sha1_base64="9tacSZQOx3eLpABdYEbeVlXf9UU=">AAACDXicbVDLSgMxFL3js9ZX1aWbYBFclZlS0GXBjcsK9gHtUDJppg3NY0wyQhn6DS7d6ke4E7d+g9/gT5i2s7CtFwKHc8595EQJZ8b6/re3sbm1vbNb2CvuHxweHZdOTltGpZrQJlFc6U6EDeVM0qZlltNOoikWEaftaHw709tPVBum5IOdJDQUeChZzAi2jgob2BgkqDF4SE2/VPYr/rzQOghyUIa8Gv3ST2+gSCqotIS7Sd3AT2yYYW0Z4XRa7KWGJpiM3fCugxK7TWE2P3qKLh0zQLHS7kmL5uzfjgwLYyYick6B7cisajPyP62b2vgmzJhMUkslWSyKU46sQrME0IBpSiyfOICJZu5WREZYY2JdTstb+FA5w0hU3WdcOsFqFuugVa0EtUrtvlqu1/KcCnAOF3AFAVxDHe6gAU0g8Agv8Apv3rP37n14nwvrhpf3nMFSeV+/0IOcbQ==</latexit>

Extract dynamics info
<latexit sha1_base64="ZKYSFsM/df4nTI3cKPXEj+eVBeA=">AAACF3icbVDLSgMxFM34rPU1Kq7cBIvgqsyUgi4LIrisYB/QDiWTZtrQPIYkIw5DP8SlW/0Id+LWpd/gT5hpZ2FbDwQO59zLuTlhzKg2nvftrK1vbG5tl3bKu3v7B4fu0XFby0Rh0sKSSdUNkSaMCtIy1DDSjRVBPGSkE05ucr/zSJSmUjyYNCYBRyNBI4qRsdLAPb19MgphA4epQJxiDamI5MCteFVvBrhK/IJUQIHmwP3pDyVOOBEGM6R1z/diE2RIGYoZmZb7iSYxwhM0Ij1LbRTRQTY7fwovrDKEkVT2CQNn6t+NDHGtUx7aSY7MWC97ufif10tMdB1kVMSJIQLPg6KEQSNh3gUcUkWwYaklCCtqb4V4jPI6bGOLKWwk7cCY1+xnbDv+cherpF2r+vVq/b5WadSLnkrgDJyDS+CDK9AAd6AJWgCDDLyAV/DmPDvvzofzOR9dc4qdE7AA5+sXmiyf/g==</latexit>

Learned simulator, s✓
<latexit sha1_base64="5WSv3EZZle02BJIlGhj8/bkroYM=">AAACH3icbVDLSgNBEJz1/TbqUYTBKHiQsBsCehS8ePCgYFRIQuiddJLBeSwzvUIInvwSj171I7yJ13yDP+HkcfBVMFBUVdPTlWZKeorjQTQ1PTM7N7+wuLS8srq2XtjYvPY2dwKrwirrblPwqKTBKklSeJs5BJ0qvEnvTof+zT06L625ol6GDQ0dI9tSAAWpWdg5R3AGW9xLnSsg6w75nm/WqYsEe81CMS7FI/C/JJmQIpvgoln4rLesyDUaEgq8ryVxRo0+OJJC4cNSPfeYgbiDDtYCNaDRN/qjMx74flBavG1deIb4SP0+0QftfU+nIamBuv63NxT/82o5tY8bfWmynNCI8aJ2rjhZPuyEt6RDQaoXCAgnw1+56IIDQaG5n1tUx4ZAV5fDMaGd5HcXf8l1uZRUSpXLcvGkMulpgW2zXXbAEnbETtgZu2BVJtgje2Yv7DV6it6i9+hjHJ2KJjNb7AeiwRcAXaLC</latexit>

+ + Y
<latexit sha1_base64="C1xyllpmZMUYK+XNx5+4VuBPsq8=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkoMeCF48t2A9pQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJb3ZpqgH9GR5CFn1Fip+TAoV9yquwBZJ15OKpCjMSh/9YcxSyOUhgmqdc9zE+NnVBnOBM5K/VRjQtmEjrBnqaQRaj9bHDojF1YZkjBWtqQhC/X3REYjradRYDsjasZ61ZuL/3m91IQ3fsZlkhqUbLkoTAUxMZl/TYZcITNiagllittbCRtTRZmx2ZRsCN7qy+ukfVX1atVas1ap1/I4inAG53AJHlxDHe6gAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDtU2M1g==</latexit>

Encoder
<latexit sha1_base64="2+XkK014vL90vl0Ij8Xd5rhJ1O0=">AAAB+XicbVBNS8NAEN3Ur1q/oh69BIvgqSSloMeCCB4r2FZoQ9lsJu3SzSbsTool9J948aCIV/+JN/+N2zYHbX0w8Hhvhpl5QSq4Rtf9tkobm1vbO+Xdyt7+weGRfXzS0UmmGLRZIhL1GFANgktoI0cBj6kCGgcCusH4Zu53J6A0T+QDTlPwYzqUPOKMopEGtt1HeELN8lvJkhDUbGBX3Zq7gLNOvIJUSYHWwP7qhwnLYpDIBNW657kp+jlVyJmAWaWfaUgpG9Mh9AyVNAbt54vLZ86FUUInSpQpic5C/T2R01jraRyYzpjiSK96c/E/r5dhdO3nXKYZgmTLRVEmHEyceQxOyBUwFFNDKFPc3OqwEVWUoQmrYkLwVl9eJ516zWvUGvf1arNRxFEmZ+ScXBKPXJEmuSMt0iaMTMgzeSVvVm69WO/Wx7K1ZBUzp+QPrM8fI56T8Q==</latexit>

Decoder
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Figure 2. (a) Our GNS predicts future states represented as particles using its learned dynamics model, dθ , and a fixed update procedure.
(b) The dθ uses an “encode-process-decode” scheme, which computes dynamics information, Y , from input state, X . (c) The ENCODER

constructs latent graph, G0, from the input state, X . (d) The PROCESSOR performs M rounds of learned message-passing over the latent
graphs, G0, . . . , GM . (e) The DECODER extracts dynamics information, Y , from the final latent graph, GM .

longer time scales than those on which it was trained. While
previous learning simulation approaches (Li et al., 2018;
Ummenhofer et al., 2020) have been highly specialized for
particular tasks, we found our single GNS model performed
well across dozens of experiments and was generally robust
to hyperparameter choices. Our analyses showed that perfor-
mance was determined by a handful of key factors: its ability
to compute long-range interactions, inductive biases for spa-
tial invariance, and training procedures which mitigate the
accumulation of error over long simulated trajectories.

2. Related Work
Our approach focuses on particle-based simulation, which
is used widely across science and engineering, e.g., compu-
tational fluid dynamics, computer graphics. States are rep-
resented as a set of particles, which encode mass, material,
movement, etc. within local regions of space. Dynamics are
computed on the basis of particles’ interactions within their
local neighborhoods. One popular particle-based method
for simulating fluids is “smoothed particle hydrodynamics”
(SPH) (Monaghan, 1992), which evaluates pressure and vis-
cosity forces around each particle, and updates particles’
velocities and positions accordingly. Other techniques, such
as “position-based dynamics” (PBD) (Müller et al., 2007)
and “material point method” (MPM) (Sulsky et al., 1995),
are more suitable for interacting, deformable materials. In
PBD, incompressibility and collision dynamics involve re-
solving pairwise distance constraints between particles, and
directly predicting their position changes. Several differen-

tiable particle-based simulators have recently appeared, e.g.,
DiffTaichi (Hu et al., 2019), PhiFlow (Holl et al., 2020), and
Jax-MD (Schoenholz & Cubuk, 2019), which can backprop-
agate gradients through the architecture.

Learning simulations from data (Grzeszczuk et al., 1998)
has been an important area of study with applications in
physics and graphics. Compared to engineered simulators,
a learned simulator can be far more efficient for predicting
complex phenomena (He et al., 2019); e.g., (Ladickỳ et al.,
2015; Wiewel et al., 2019) learn parts of a fluid simulator
for faster prediction.

Graph Networks (GN) (Battaglia et al., 2018)—a type of
graph neural network (Scarselli et al., 2008)—have recently
proven effective at learning forward dynamics in various set-
tings that involve interactions between many entities. A GN
maps an input graph to an output graph with the same struc-
ture but potentially different node, edge, and graph-level
attributes, and can be trained to learn a form of message-
passing (Gilmer et al., 2017), where latent information is
propagated between nodes via the edges. GNs and their
variants, e.g., “interaction networks”, can learn to simu-
late rigid body, mass-spring, n-body, and robotic control
systems (Battaglia et al., 2016; Chang et al., 2016; Sanchez-
Gonzalez et al., 2018; Mrowca et al., 2018; Li et al., 2019;
Sanchez-Gonzalez et al., 2019), as well as non-physical sys-
tems, such as multi-agent dynamics (Tacchetti et al., 2018;
Sun et al., 2019), algorithm execution (Veličković et al.,
2020), and other dynamic graph settings (Trivedi et al.,
2019; 2017; Yan et al., 2018; Manessi et al., 2020).
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Our GNS framework builds on and generalizes several lines
of work, especially Sanchez-Gonzalez et al. (2018)’s GN-
based model which was applied to various robotic control
systems, Li et al. (2018)’s DPI which was applied to fluid
dynamics, and Ummenhofer et al. (2020)’s Continuous Con-
volution (CConv) which was presented as a non-graph-based
method for simulating fluids. Crucially, our GNS frame-
work is a general approach to learning simulation, is simpler
to implement, and is more accurate across fluid, rigid, and
deformable material systems.

3. GNS Model Framework
3.1. General Learnable Simulation

We assume Xt ∈ X is the state of the world at time
t. Applying physical dynamics over K timesteps yields
a trajectory of states, Xt0:K = (Xt0 , . . . , XtK ). A
simulator, s : X → X , models the dynamics by map-
ping preceding states to causally consequent future
states. We denote a simulated “rollout” trajectory as,
X̃t0:K = (Xt0 , X̃t1 , . . . , X̃tK ), which is computed itera-
tively by, X̃tk+1 = s(X̃tk) for each timestep. Simulators
compute dynamics information that reflects how the current
state is changing, and use it to update the current state to
a predicted future state (see Figure 2(a)). An example is a
numerical differential equation solver: the equations com-
pute dynamics information, i.e., time derivatives, and the
integrator is the update mechanism.

A learnable simulator, sθ, computes the dynamics in-
formation with a parameterized function approximator,
dθ : X → Y , whose parameters, θ, can be optimized for
some training objective. The Y ∈ Y represents the dynam-
ics information, whose semantics are determined by the
update mechanism. The update mechanism can be seen as a
function which takes the X̃tk , and uses dθ to predict the next
state, X̃tk+1 = Update(X̃tk , dθ). Here we assume a simple
update mechanism—an Euler integrator—and Y that rep-
resents accelerations. However, more sophisticated update
procedures which call dθ more than once can also be used,
such as higher-order integrators (e.g., Sanchez-Gonzalez
et al. (2019)).

3.2. Simulation as Message-Passing on a Graph

Our learnable simulation approach adopts a particle-based
representation of the physical system (see Section 2), i.e.,
X = (x0, . . . ,xN ), where each of the N particles’ xi rep-
resents its state. Physical dynamics are approximated by
interactions among the particles, e.g., exchanging energy
and momentum among their neighbors. The way particle-
particle interactions are modeled determines the quality and
generality of a simulation method—i.e., the types of effects
and materials it can simulate, in which scenarios the method

performs well or poorly, etc. We are interested in learning
these interactions, which should, in principle, allow learning
the dynamics of any system that can be expressed as particle
dynamics. So it is crucial that different θ values allow dθ to
span a wide range of particle-particle interaction functions.

Particle-based simulation can be viewed as message-passing
on a graph. The nodes correspond to particles, and the
edges correspond to pairwise relations among particles, over
which interactions are computed. We can understand meth-
ods like SPH in this framework—the messages passed be-
tween nodes could correspond to, e.g., evaluating pressure
using the density kernel.

We capitalize on the correspondence between particle-based
simulators and message-passing on graphs to define a
general-purpose dθ based on GNs. Our dθ has three steps—
ENCODER, PROCESSOR, DECODER (Battaglia et al., 2018)
(see Figure 2(b)).

ENCODER definition. The ENCODER : X → G embeds
the particle-based state representation, X , as a latent graph,
G0 = ENCODER(X), where G = (V,E,u), vi ∈ V ,
and ei,j ∈ E (see Figure 2(b,c)). The node embeddings,
vi = εv(xi), are learned functions of the particles’ states.
Directed edges are added to create paths between particle
nodes which have some potential interaction. The edge
embeddings, ei,j = εe(ri,j), are learned functions of the
pairwise properties of the corresponding particles, ri,j , e.g.,
displacement between their positions, spring constant, etc.
The graph-level embedding, u, can represent global prop-
erties such as gravity and magnetic fields (though in our
implementation we simply appended those as input node
features—see Section 4.2 below).

PROCESSOR definition. The PROCESSOR : G → G com-
putes interactions among nodes via M steps of learned
message-passing, to generate a sequence of updated latent
graphs, G = (G1, ..., GM ), where Gm+1 = GNm+1(Gm)
(see Figure 2(b,d)). It returns the final graph,
GM = PROCESSOR(G0). Message-passing allows infor-
mation to propagate and constraints to be respected: the
number of message-passing steps required will likely scale
with the complexity of the interactions.

DECODER definition. The DECODER : G → Y extracts
dynamics information from the nodes of the final latent
graph, yi = δv(vMi ) (see Figure 2(b,e)). Learning δv

should cause the Y representations to reflect relevant dy-
namics information, such as acceleration, in order to be
semantically meaningful to the update procedure.

4. Experimental Methods
Model code and datasets will be released on final publica-
tion.
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4.1. Physical Domains

We explored how our GNS learns to simulate in datasets
which contained three diverse, complex physical materials:
water as a barely damped fluid, chaotic in nature; sand
as a granular material with complex frictional behavior;
and “goop” as a viscous, plastically deformable material.
These materials have very different behavior, and in most
simulators, require implementing separate material models
or even entirely different simulation algorithms.

For one domain, we use Li et al. (2018)’s BOXBATH, which
simulates a container of water and a cube floating inside, all
represented as particles, using the PBD engine FleX (Mack-
lin et al., 2014).

We also created WATER-3D, a high-resolution 3D water
scenario with randomized water position, initial velocity
and volume, comparable to Ummenhofer et al. (2020)’s
containers of water. We used SPlisHSPlasH (Bender &
Koschier, 2015), a SPH-based fluid simulator with strict
volume preservation to generate this dataset.

For most of our domains, we use the Taichi-MPM en-
gine (Hu et al., 2018) to simulate a variety of challenging
2D and 3D scenarios. We chose MPM for the simulator
because it can simulate a very wide range of materials, and
also has some different properties than PBD and SPH, e.g.,
particles may become compressed over time.

Our datasets typically contained 1000 train, 100 valida-
tion and 100 test trajectories, each simulated for 300-2000
timesteps (tailored to the average duration for the various
materials to come to a stable equilibrium). A detailed list-
ing of all our datasets can be found in the Supplementary
Materials B.

4.2. GNS Implementation Details

We implemented the components of the GNS framework
using standard deep learning building blocks, and used stan-
dard nearest neighbor algorithms (Dong et al., 2011; Chen
et al., 2009; Tang et al., 2016) to construct the graph.

Input and output representations. Each particle’s input
state vector represents position, a sequence of C = 5 pre-
vious velocities1, and features that capture static material
properties (e.g., water, sand, goop, rigid, boundary parti-
cle), xtki = [ptki , ṗ

tk−C+1

i , . . . , ṗtki , fi], respectively. The
global properties of the system, g, include external forces
and global material properties, when applicable. The pre-
diction targets for supervised learning are the per-particle
average acceleration, p̈i. Note that in our datasets, we only
require pi vectors: the ṗi and p̈i are computed from pi

1C is a hyperparameter which we explore in our experiments.

using finite differences. For full details of these input and
target features, see Supplementary Material Section B.

ENCODER details. The ENCODER constructs the graph
structureG0 by assigning a node to each particle and adding
edges between particles within a “connectivity radius”, R,
which reflected local interactions of particles, and which
was kept constant for all simulations of the same resolution.
For generating rollouts, on each timestep the graph’s edges
were recomputed by a nearest neighbor algorithm, to reflect
the current particle positions.

The ENCODER implements εv and εe as multilayer percep-
trons (MLP), which encode node features and edge features
into the latent vectors, vi and ei,j , of size 128.

We tested two ENCODER variants, distinguished by whether
they use absolute versus relative positional information. For
the absolute variant, the input to εv was the xi described
above, with the globals features concatenated to it. The
input to εe, i.e., ri,j , did not actually carry any information
and was discarded, with the e0

i in G0 set to a trainable fixed
bias vector. The relative ENCODER variant was designed
to impose an inductive bias of invariance to absolute spa-
tial location. The εv was forced to ignore pi information
within xi by masking it out. The εe was provided with
the relative positional displacement, and its magnitude2,
ri,j = [(pi − pj), ‖pi − pj‖]. Both variants concatenated
the global properties g onto each xi before passing it to εv .

PROCESSOR details. Our processor uses a stack of M
GNs (where M is a hyperparameter) with identical struc-
ture, MLPs as internal edge and node update functions, and
either shared or unshared parameters (as analyzed in Re-
sults Section 5.4). We use GNs without global features or
global updates (similar to an interaction network)3, and with
a residual connections between the input and output latent
node and edge attributes.

DECODER details. Our decoder’s learned function, δv,
is an MLP. After the DECODER, the future position and
velocity are updated using an Euler integrator, so the yi
corresponds to accelerations, p̈i, with 2D or 3D dimension,
depending on the physical domain. As mentioned above, the
supervised training targets were simply these, p̈i vectors4.

Neural network parameterizations. All MLPs have two
hidden layers (with ReLU activations), followed by a non-

2Similarly, relative velocities could be used to enforce invari-
ance to inertial frames of reference.

3In preliminary experiments we also attempted using a PRO-
CESSOR with a full GN and a global latent state, for which the
global features g are encoded with a separate εg MLP.

4Note that in this case optimizing for acceleration is equivalent
to optimizing for position, because the acceleration is computed as
first order finite difference from the position and we use an Euler
integrator to update the position.
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activated output layer, each layer with size of 128. All
MLPs (except the output decoder) are followed by a Lay-
erNorm (Ba et al., 2016) layer, which we generally found
improved training stability.

4.3. Training

Software. We implemented our models using TensorFlow
1, Sonnet 1, and the “Graph Nets” library (2018).

Training noise. Modeling a complex and chaotic simula-
tion system requires the model to mitigate error accumu-
lation over long rollouts. Because we train our models on
ground-truth one-step data, they are never presented with
input data corrupted by this sort of accumulated noise. This
means that when we generate a rollout by feeding the model
with its own noisy, previous predictions as input, the fact
that its inputs are outside the training distribution may lead
it to make more substantial errors, and thus rapidly accu-
mulate further error. We use a simple approach to make
the model more robust to noisy inputs: during training we
corrupt the input positions and velocities of the model with
random-walk noise N (0, σv = 0.0003), so the training dis-
tribution is more similar to the distribution generated during
rollouts. See Supplementary Materials B for full details.

Normalization. We normalize all input and target vectors
elementwise to zero mean and unit variance, using statistics
computed online during training. Preliminary experiments
showed that normalization led to faster training, though
converged performance was not noticeably improved.

Loss function and optimization procedures. We ran-
domly sampled particle state pairs (xtki ,x

tk+1

i ) from our
training trajectories, calculated target accelerations p̈tki , and
computed the L2 loss on the predicted per-particle accel-
erations, i.e., L(xtki ,x

tk+1

i ; θ) = ‖dθ(xtki ) − p̈tki ‖2. We
optimized the model parameters θ over this loss with the
Adam optimizer (Kingma & Ba, 2014), using a nominal5

mini-batch size of 2. We performed a maximum of 20M
gradient update steps, with exponential learning rate decay
from 10−4 to 10−6. While models can train in significantly
less steps, we avoid aggressive learning rates to reduce vari-
ance across datasets and make comparisons across settings
more fair.

We evaluated our models regularly during training by pro-
ducing full-length rollouts on 5 held-out validation trajecto-
ries, and recorded the associated model parameters for best
rollout MSE. We stopped training when we observed negli-
gible decrease in MSE, which, on GPU/TPU hardware, was
typically within a few hours for smaller, simpler datasets,
and up to a week for the larger, more complex datasets.

5The actual batch size varies at each step dynamically. See
Supplementary Material for more details.

Experimental
domain N K

1-step
(×10−9)

Rollout
(×10−3)

WATER-3D (SPH) 13k 800 8.66 10.1
SAND-3D 20k 350 1.42 0.554
GOOP-3D 14k 300 1.32 0.618
WATER-3D-S (SPH) 5.8k 800 9.66 9.52
BOXBATH (PBD) 1k 150 54.5 4.2
WATER 1.9k 1000 2.82 17.4
SAND 2k 320 6.23 2.37
GOOP 1.9k 400 2.91 1.89
MULTIMATERIAL 2k 1000 1.81 16.9
FLUIDSHAKE 1.3k 2000 2.1 20.1
WATERDROP 1k 1000 1.52 7.01
WATERDROP-XL 7.1k 1000 1.23 14.9
WATERRAMPS 2.3k 600 4.91 11.6
SANDRAMPS 3.3k 400 2.77 2.07
RANDOMFLOOR 3.4k 600 2.77 6.72
CONTINUOUS 4.3k 400 2.06 1.06

Table 1. List of maximum number of particles N , sequence length
K, and quantitative model accuracy (MSE) on the held-out test set.
All domain names are also hyperlinks to the video website.

4.4. Evaluation

To report quantitative results, we evaluated our models af-
ter training converged by computing one-step and rollout
metrics on held-out test trajectories, drawn from the same
distribution of initial conditions used for training. We used
particle-wise MSE as our main metric between ground truth
and predicted data, both for rollout and one-step predictions,
averaging across time, particle and spatial axes. We also
investigated distributional metrics including optimal trans-
port (OT) (Villani, 2003) (approximated by the Sinkhorn
Algorithm (Cuturi, 2013)), and Maximum Mean Discrep-
ancy (MMD) (Gretton et al., 2012). For the generalization
experiments we also evaluate our models on a number of
initial conditions drawn from distributions different than
those seen during training, including, different number of
particles, different object shapes, different number of ob-
jects, different initial positions and velocities and longer
trajectories. See Supplementary Materials B for full details
on metrics and evaluation.

5. Results
Our main findings are that our GNS model can learn ac-
curate, high-resolution, long-term simulations of different
fluids, deformables, and rigid solids, and it can generalize
well beyond training to much longer, larger, and challenging
settings. In Section 5.5 below, we compare our GNS model
to two recent, related approaches, and find our approach
was simpler, more generally applicable, and more accurate.

http://tny.sh/jFszr4x
http://tny.sh/4WbbnXU
http://tny.sh/Ojm7Olb
http://tny.sh/water3ds
http://tny.sh/mrOkfpg
http://tny.sh/xlDxA0A
http://tny.sh/2M64scu
http://tny.sh/uImt11M
http://tny.sh/bf5FJnN
http://tny.sh/dGoSxSA
http://tny.sh/QpFGhIK
http://tny.sh/QpFGhIK
http://tny.sh/waterramps
http://tny.sh/sandramps
http://tny.sh/MfmIF9H
http://tny.sh/lLvCAc5
https://sites.google.com/view/learning-to-simulate
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Initial

Prediction

Ground truth

Figure 3. We can simulate many materials, from (a) GOOP over (b) WATER to (c) SAND, and (d) their interaction with rigid obstacles
(WATERRAMPS). We can even train a single model on (e) multiple materials and their interaction (MULTIMATERIAL). We applied
pre-trained models on several out-of-distribution tasks, involving (f) high-res turbulence (trained on WATERRAMPS), (g) multi-material
interactions with unseen objects (trained on MULTIMATERIAL), and (h) generalizing on significantly larger domains (trained on
WATERRAMPS). In the two bottom rows, we show a comparison of our model’s prediction with the ground truth on the final frame for
goop and sand, and on a representative mid-trajectory frame for water.

To challenge the robustness of our architecture, we used a
single set of model hyperparameters for training across all
of our experiments. Our GNS architecture used the relative
ENCODER variant, 10 steps of message-passing, with un-
shared GN parameters in the PROCESSOR. We applied noise
with a scale of 3 · 10−4 to the input states during training.

5.1. Simulating Complex Materials

Our GNS model was very effective at learning to simulate
different complex materials. Table 1 shows the one-step and
rollout accuracy, as MSE, for all experiments. For intuition
about what these numbers mean, the edge length of the
container was approximately 1.0, and Figure 3(a-c) shows
rendered images of the rollouts of our model, compared
to ground truth6. Visually, the model’s rollouts are quite
plausible. Though specific model-generated trajectories can
be distinguished from ground truth when compared side-by-
side, it is difficult to visually classify individual videos as
generated from our model versus the ground truth simulator.

Our GNS model scales to large amounts of particles and
very long rollouts. With up to 19k particles in our 3D
domains—substantially greater than demonstrated in previ-
ous methods—GNS can operate at resolutions high enough
for practical prediction tasks and high-quality 3D renderings
(e.g., Figure 1). And although our models were trained to
make one-step predictions, the long-term trajectories remain
plausible even over thousands of rollout timesteps.

6All rollout videos can be found here: https://sites.
google.com/view/learning-to-simulate

The GNS model could also learn how the materials respond
to unpredictable external forces. In the FLUIDSHAKE do-
main, a container filled with water is being moved side-to-
side, causing splashes and irregular waves.

Our model could also simulate fluid interacting with com-
plicated static obstacles, as demonstrated by our WATER-
RAMPS and SANDRAMPS domains in which water or sand
pour over 1-5 obstacles. Figure 3(d) depicts comparisons
between our model and ground truth, and Table 1 shows
quantitative performance measures.

We also trained our model on continuously varying material
parameters. In the CONTINUOUS domain, we varied the fric-
tion angle of a granular material, to yield behavior similar to
a liquid (0◦), sand (45◦), or gravel (> 60◦). Our results and
videos show that our model can account for these continu-
ous variations, and even interpolate between them: a model
trained with the region [30◦, 55◦] held out in training can
accurately predict within that range. Additional quantitative
results are available in Supplementary Materials C.

5.2. Multiple Interacting Materials

So far we have reported results of training identical GNS
architectures separately on different systems and materials.
However, we found we could go a step further and train a
single architecture with a single set of parameters to simulate
all of our different materials, interacting with each other in
a single system.

In our MULTIMATERIAL domain, the different materials
could interact with each other in complex ways, which
means the model had to effectively learn the product space

https://sites.google.com/view/learning-to-simulate
https://sites.google.com/view/learning-to-simulate
http://tny.sh/lLvCAc5
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of different interactions (e.g., water-water, sand-sand, water-
sand, etc.). The behavior of these systems was often much
richer than the single-material domains: the stiffer materials,
such as sand and goop, could form temporary semi-rigid ob-
stacles, which the water would then flow around. Figure 3(e)
and this video shows renderings of such rollouts. Visually,
our model’s performance in MULTIMATERIAL is compa-
rable to its performance when trained on those materials
individually.

5.3. Generalization

We found that the GNS generalizes well even beyond
its training distributions, which suggests it learns a more
general-purpose understanding of the materials and physical
processes experienced during training.

To examine its capacity for generalization, we trained a GNS
architecture on WATERRAMPS, whose initial conditions
involved a square region of water in a container, with 1-5
ramps of random orientation and location. After training,
we tested the model on several very different settings. In
one generalization condition, rather than all water being
present in the initial timestep, we created an “inflow” that
continuously added water particles to the scene during the
rollout, as shown in Figure 3(f). When unrolled for 2500
time steps, the scene contained 28k particles—an order of
magnitude more than the 2.5k particles used in training—
and the model was able to predict complex, highly chaotic
dynamics not experienced during training, as can be seen in
this video. The predicted dynamics were visually similar to
the ground truth sequence.

Because we used relative displacements between particles
as input to our model, in principle the model should handle
scenes with much larger spatial extent at test time. We eval-
uated this on a much larger domain, with several inflows
over a complicated arrangement of slides and ramps (see
Figure 3(h), video here). The test domain’s spatial width
× height were 8.0 × 4.0, which was 32x larger than the
training domain’s area; at the end of the rollout, the number
of particles was 85k, which was 34x more than during train-
ing; we unrolled the model for 5000 steps, which was 8x
longer than the training trajectories. We conducted a similar
experiment with sand on the SANDRAMPS domain, testing
model generalization to hourglass-shaped ramps.

As a final, extreme test of generalization, we applied a model
trained on MULTIMATERIAL to a custom test domain with
inflows of various materials and shapes (Figure 3(g)). The
model learned about frictional behavior between different
materials (sand on sticky goop, versus slippery floor), and
that the model generalized well to unseen shapes, such as
hippo-shaped chunks of goop and water, falling from mid-
air, as can be observed in this video.

5.4. Key Architectural Choices

We performed a comprehensive analysis of our GNS’s ar-
chitectural choices to discover what influenced performance
most heavily. We analyzed a number of hyperparameter
choices—e.g., number of MLP layers, linear encoder and
decoder functions, global latent state in the PROCESSOR—
but found these had minimal impact on performance (see
Supplementary Materials C for details).

While our GNS model was generally robust to architec-
tural and hyperparameter settings, we also identified several
factors which had more substantial impact:

1. the number of message-passing steps,
2. shared vs. unshared PROCESSOR GN parameters,
3. the connectivity radius,
4. the scale of noise added to the inputs during training,
5. relative vs. absolute ENCODER.

We varied these choices systematically for each axis, fixing
all other axes with the default architecture’s choices, and
report their impact on model performance in the GOOP
domain (Figure 4).

For (1), Figure 4(a,b) shows that a greater number of
message-passing steps M yielded improved performance in
both one-step and rollout accuracy. This is likely because
increasing M allows computing longer-range, and more
complex, interactions among particles. Because computa-
tion time scales linearly withM , in practice it is advisable to
use the smallest M that still provides desired performance.

For (2), Figure 4(c,d) shows that models with unshared
GN parameters in the PROCESSOR yield better accuracy,
especially for rollouts. Shared parameters imposes a strong
inductive bias that makes the PROCESSOR analogous to
a recurrent model, while unshared parameters are more
analogous to a deep architecture, which incurs M times
more parameters. In practice, we found marginal difference
in computational costs or overfitting, so we conclude that
using unshared parameters has little downside.

For (3), Figure 4(e,f) shows that greater connectivity R
values yield lower error. Similar to increasing M , larger
neighborhoods allow longer-range communication among
nodes. Since the number of edges increases with R, more
computation and memory is required, so in practice the
minimal R that gives desired performance should be used.

For (4), we observed that rollout accuracy is best for an
intermediate noise scale (see Figure 4(g,h)), consistent with
our motivation for using it (see Section 4.3). We also note
that one-step accuracy decreases with increasing noise scale.
This is not surprising: adding noise makes the training
distribution less similar to the uncorrupted distribution used
for one-step evaluation.

http://tny.sh/bf5FJnN
http://tny.sh/tWNrMBg
http://tny.sh/2fmmUfN
http://tny.sh/C0TUQH7
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Figure 4. (left) Effect of different ablations (grey) against our model (red) on the one-step error (a,c,e,g,i) and the rollout error (b,d,f,h,j).
Bars show the median seed performance averaged across the entire GOOP test dataset. Error bars display lower and higher quartiles,
and are shown for the default parameters. (right) Comparison of average performance of our GNS model to CConv. (k,l) Qualitative
comparison between GNS (k) and CConv (l) in BOXBATH after 50 rollout steps (video link). (m) Quantitative comparison of our
GNS model (red) to the CConv model (grey) across the test set . For our model, we trained one or more seeds using the same set of
hyper-parameters and show results for all seeds. For the CConv model we ran several variations including different radius sizes, noise
levels, and number of unroll steps during training, and show the result for the best seed. Errors bars show the standard error of the mean
across all of the trajectories in the test set (95% confidence level).

For (5), Figure 4(i,j) shows that the relative ENCODER
is clearly better than the absolute version. This is likely
because the underlying physical processes that are being
learned are invariant to spatial position, and the relative EN-
CODER’s inductive bias is consistent with this invariance.

5.5. Comparisons to Previous Models

We compared our approach to two recent papers which
explored learned fluid simulators using particle-based ap-
proaches. Li et al. (2018)’s DPI studied four datasets of fluid,
deformable, and solid simulations, and presented four dif-
ferent, distinct architectures, which were similar to Sanchez-
Gonzalez et al. (2018)’s, with additional features such as as
hierarchical latent nodes. When training our GNS model on
DPI’s BOXBATH domain, we found it could learn to sim-
ulate the rigid solid box floating in water, faithfully main-
taining the stiff relative displacements among rigid particles,
as shown Figure 4(k) and this video. Our GNS model did
not require any modification—the box particles’ material
type was simply a feature in the input vector—while DPI
required a specialized hierarchical mechanism and forced
all box particles to preserve their relative displacements with
each other. Presumably the relative ENCODER and training
noise alleviated the need for such mechanisms.

Ummenhofer et al. (2020)’s CConv propagates information
across particles7, and uses particle update functions and

7The authors state CConv does not use an explicit graph repre-
sentation, however we believe their particle update scheme can be
interpreted as a special type of message-passing on a graph. See
Supplementary Materials D.

training procedures which are carefully tailored to model-
ing fluid dynamics (e.g., an SPH-like local kernel, different
sub-networks for fluid and boundary particles, a loss func-
tion that weights slow particles with few neighbors more
heavily). Ummenhofer et al. (2020) reported CConv out-
performed DPI, so we quantitatively compared our GNS
model to CConv. We implemented CConv as described in
its paper, plus two additional versions which borrowed our
noise and multiple input states, and performed hyperparam-
eter sweeps over various CConv parameters. Figure 4(m)
shows that across all six domains we tested, our GNS model
with default hyperparameters has better rollout accuracy
than the best CConv model (among the different versions
and hyperparameters) for that domain. In this comparison
video, we observe than CConv performs well for domains
like water, which it was built for, but struggles with some
of our more complex materials. Similarly, in a CConv roll-
out of the BOXBATH DOMAIN the rigid box loses its shape
(Figure 4(l)), while our method preserves it. See Supple-
mentary Materials D for full details of our DPI and CConv
comparisons.

6. Conclusion
We presented a powerful machine learning framework for
learning to simulate complex systems, based on particle-
based representations of physics and learned message-
passing on graphs. Our experimental results show our sin-
gle GNS architecture can learn to simulate the dynamics
of fluids, rigid solids, and deformable materials, interact-
ing with one another, using tens of thousands of particles
over thousands time steps. We find our model is simpler,

http://tny.sh/6I0girh
http://tny.sh/mrOkfpg
http://tny.sh/6I0girh
http://tny.sh/6I0girh
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more accurate, and has better generalization than previous
approaches.

While here we focus on mesh-free particle methods, our
GNS approach may also be applicable to data represented
using meshes, such as finite-element methods. There are
also natural ways to incorporate stronger, generic physi-
cal knowledge into our framework, such as Hamiltonian
mechanics (Sanchez-Gonzalez et al., 2019) and rich, archi-
tecturally imposed symmetries. To realize advantages over
traditional simulators, future work should explore how to
parameterize and implement GNS computations more ef-
ficiently, and exploit the ever-improving parallel compute
hardware. Learned, differentiable simulators will be valu-
able for solving inverse problems, by not strictly optimizing
for forward prediction, but for inverse objectives as well.

More broadly, this work is a key advance toward more
sophisticated generative models, and furnishes the modern
AI toolkit with a greater capacity for physical reasoning.
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Supplementary Material: Learning to Simulate Complex Physics with Graph
Networks

A. Supplementary GNS Model Details
Update mechanism. Our GNS implementation here uses semi-implicit Euler integration to update the next state based on
the predicted accelerations:

ṗtk+1 = ṗtk + ∆t · p̈tk

ptk+1 = ptk + ∆t · ṗtk+1

where we assume ∆t = 1 for simplicity. We use this in contrast to forward Euler (ptk+1 = ptk +∆t ·ṗtk ) so the acceleration
p̈tk predicted by the model can directly influence ptk+1 .

Optimizing parameters of learnable simulator. Learning a simulator sθ, can in general be expressed as optimizing its
parameters θ over some objective function,

θ∗ ← argθ minEP(Xt0:K )L(Xt1:K , X̃t1:K
sθ,Xt0

) .

P(Xt0:K ) represents a distribution over state trajectories, starting from the initial conditions Xt0 , over K timesteps. The
X̃t1:K
sθ,Xt0

indicates the simulated rollout generated by sθ given Xt0 . The objective function L, considers the whole trajectory
generated by sθ. In this work, we specifically train our GNS model on a one-step loss function, L1-step, with

θ∗1-step ← argθ minEP(Xtk:k+1 )L1-step(Xtk+1 , sθ(X
tk)) .

This imposes a stronger inductive bias that physical dynamics are Markovian, and should operate the same at any time
during a trajectory.

In fact, we note that optimizing for whole trajectories may not actually not be ideal, as it can allow the simulator to learn
biases which may not be hold generally. In particular, an L which considers the whole trajectory means θ∗ does not
necessarily equal the θ∗1-step that would optimize L1-step. This is because optimizing a capacity-limited simulator model for
whole trajectories might benefit from producing greater one-step errors at certain times, in order to allow for better overall
performance in the long term. For example, imagine simulating an undamped pendulum system, where the initial velocity of
the bob is always zero. The physics dictate that in the future, whenever the bob returns to its initial position, it must always
have zero velocity. If sθ cannot learn to approximate this system exactly, and makes mistakes on intermediate timesteps, this
means that when the bob returns to its initial position it might not have zero velocity. Such errors could accumulate over
time, and causes large loss under an L which considers whole trajectories. The training process could overcome this by
selecting θ∗ which, for example, subtly encodes the initial position in the small decimal places of its predictions, which the
simulator could then exploit by snapping the bob back to zero velocity when it reaches that initial position. The resulting
sθ∗ may be more accurate over long trajectories, but not generalize as well to situations where the initial velocity is not zero.
This corresponds to using the predictions, in part, as a sort of memory buffer, analogous to a recurrent neural network.

Of course, a simulator with a memory mechanism can potentially offer advantages, such as being better able to recognize
and respect certain symmetries, e.g., conservation of energy and momentum. An interesting area for future work is exploring
different approaches for training learnable simulators, and allowing them to store information over rollout timesteps,
especially as a function for how the predictions will be used, which may favor different trade-offs between accuracy over
time, what aspects of the predictions are most important to get right, generalization, etc.
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B. Supplementary Experimental Methods
B.1. Physical Domains

Domain Simulator
(Dim.)

Max. #
particles
(approx)

Trajectory
length

# trajectories
(Train/

Validation/
Test)

∆t
[ms]

Connectivity
radius

Max. #
edges

(approx)

WATER-3D SPH (3D) 13k 800 1000/100/100 5 0.035 230k
SAND-3D MPM (3D) 20k 350 1000/100/100 2.5 0.025 320k
GOOP-3D MPM (3D) 14k 300 1000/100/100 2.5 0.025 230k
WATER-3D-S SPH (3D) 5.8k 800 1000/100/100 5 0.045 100k
BOXBATH PBD (3D) 1k 150 2700/150/150 16.7 0.08 17k
WATER MPM (2D) 1.9k 1000 1000/30/30 2.5 0.015 27k
SAND MPM (2D) 2k 320 1000/30/30 2.5 0.015 21k
GOOP MPM (2D) 1.9k 400 1000/30/30 2.5 0.015 19k
MULTIMATERIAL MPM (2D) 2k 1000 1000/100/100 2.5 0.015 25k
FLUIDSHAKE MPM (2D) 1.3k 2000 1000/100/100 2.5 0.015 20k
FLUIDSHAKE-BOX MPM (2D) 1.5k 1500 1000/100/100 2.5 0.015 19k
WATERDROP MPM (2D) 1k 1000 1000/30/30 2.5 0.015 12k
WATERDROP-XL MPM (2D) 7.1k 1000 1000/100/100 2.5 0.01 210k
WATERRAMPS MPM (2D) 2.3k 600 1000/100/100 2.5 0.015 26k
SANDRAMPS MPM (2D) 3.3k 400 1000/100/100 2.5 0.015 32k
RANDOMFLOOR MPM (2D) 3.4k 600 1000/100/100 2.5 0.015 44k
CONTINUOUS MPM (2D) 4.3k 400 1000/100/100 2.5 0.015 47k

B.2. Implementation Details

Input and output representations. We define the input “velocity” as average velocity between the current and previous
timestep, which is calculated from the difference in position, ṗtk ≡ ptk − ptk−1 (omitting constant ∆t for simplicity).
Similarly, we use as target the average acceleration, calculated between the next and current timestep, p̈tk ≡ ṗtk+1 − ṗtk .
Target accelerations are thus calculated as, p̈tk = ptk+1 − 2ptk + ptk−1 .

We express the material type (water, sand, goop, rigid, boundary particle) as a particle feature, ai, represented with a learned
embedding vector of size 16. For datasets with fixed flat orthogonal walls, instead of adding boundary particles, we add a
feature to each node indicating the vector distance to each wall. Crucially, to maintain spatial translation invariance, we clip
this distance to the connectivity radius R, achieving a similar effect to that of the boundary particles. In FLUIDSHAKE,
particle positions were provided in the coordinate frame of the container, and the container position, velocity and acceleration
were provided as 6 global features. In CONTINUOUS a single global scalar was used to indicate the friction angle of the
material.

Building the graph. We construct the graph by, for each particle, finding all neighboring particles within the connectivity
radius. We use a standard k-d tree algorithm for this search. The connectivity radius was chosen, such that the number of
neighbors in roughly in the range of 10 − 20. We however did not find it necessary to fine-tune this parameter: All 2D
scenes of the same resolution share R = 0.015, only the high-res 2D and 3D scenes, which had substantially different
particle densities, required choosing a different radius. Note that for these datasets, the radius was simply chosen once based
on particle neighborhood size adn total number of edges, and was not fine-tuned as a hyperparameter.

Neural network parametrizations. We also trained models where we replaced the deep encoder and decoder MLPs by
simple linear layers without activations, and observed similar performance.

B.3. Training

Noise injection. Because our models take as input a sequence of states (positions and velocities), we draw independent
samples∼ N (0, σv = 0.0003), for each input state, particle and spatial dimension, before each training step. We accumulate
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them across time as a random walk, and use this to perturb the stack of input velocities. Based on the updated velocities, we
then adjust the position features, such that ṗtk ≡ ptk − ptk−1 is maintained, for consistency. We also experimented with
other types of noise accumulation, as detailed in Section C.

Another way to address differences in training and test input distributions is to, during training, provide the model with its
own predictions by rolling out short sequences. Ummenhofer et al. (2020), for example, train with two-step predictions.
However computing additional model predictions are more expensive, and in our experience may not generalize to longer
sequences as well as noise injection.

Normalization. To normalize our inputs and targets, we compute the dataset statistics of during training. Instead of using
moving averages, which could shift in cycles during training, we instead build exact mean and variance for all of the input
and target particle features up seen up to the current training step l, by accumulating the sum, the sum of the squares and the
total particle count. The statistics are computed after noise is applied to the inputs.

Loss function and optimization procedures. We load the training trajectories sequentially, and use them to generate input
and target pairs (from a 1000-step long trajectory we generate 995 pairs, as we condition on 5 past states), and sample
input-target pairs from a shuffle buffer of size 10k. Rigid obstacles, such as the ramps in WATER-RAMPS, are represented as
boundary particles. Those particles are treated identical to regular particles, but they are masked out of the loss. Similarly,
in the ground truth simulations, particles sometimes clip through the boundary and disappear; we also mask those particles
out of the loss.

Due to normalization of predictions and targets, our prediction loss is normalized, too. This allows us to choose a scale-free
learning rate, across all datasets. To optimize the loss, we use the Adam optimizer (Kingma & Ba, 2014) (a form of
stochastic gradient descent) with a nominal mini-batch size of 2 examples, averaging the loss for all particles in the batch.
We performed a maximum of 20M gradient update steps, with an exponentially decaying learning rate, α(j), where on
the j-th gradient update step, α(j) = αfinal + (αstart − αfinal) · 0.1(j·5·106), with αstart = 10−4 and αfinal = 10−6. While
models can train in significantly less steps, we avoid aggressive learning rates to reduce variance across datasets and make
comparisons across settings more fair.

We train our models using second generation TPUs and V100 GPUs interchangeably. For our datasets, we found that
training time per example with a single TPU core or a single V100 GPU was about the same. TPUs allowed for faster
training through fast batch parallelism (each of the two training examples in the batch runs on a separate TPU core in the
same TPU chip). Furthermore, since TPU cores require fixed size tensors, instead of just padding each training example up
to a maximum number of nodes/edges, we set the fixed size to correspond to the largest graph in the dataset, and, at each
step, build a larger minibatch using multiple training examples whenever they would fit within the set fixed size, before
adding the padding. This yielded an effective batch size between 1 (large examples) and 3 examples (small examples) per
device (2 to 6 examples per batch when batch parallelism is taken into account) and is equivalent to setting a mini batch size
in terms of total number of particles per batch. For easier comparison, we also replicated this procedure on the GPU training.

Additionally, for our largest systems (¿ 100k edges) we also used model parallelism (a single training example distributed
over multiple TPU cores)(Kumar et al., 2019), over a total of 16 TPU cores per example (16 TPU chips in total, given the
batch parallelism of 2 and that each TPU chip has two TPU cores).

B.4. Distributional Evaluation Metrics

An MSE metric of zero indicates that the model perfectly predicts where each particle has traveled. However, if the model’s
predicted positions for particles A and B exactly match true positions of particles B and A, respectively, the MSE could be
high, even though the predicted and true distributions of particles match. So we also explored two metrics that are invariant
under particle permutations, by measuring differences between the distributions of particles: optimal transport (OT) (Villani,
2003) using 2D or 3D Wasserstein distance and approximated by the Sinkhorn Algorithm (Cuturi, 2013), and maximum
mean discrepancy (MMD) (Gretton et al., 2012) with a Gaussian kernel bandwidth of σ = 0.1. These distributional metrics
may be more appropriate when the goal is to predict what regions of the space will be occupied by the simulated material, or
when the particles are sampled from some continuous representation of the state and there are no “true” particles to compare
predictions to. We will analyze some of our results using those metrics in Section C.
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C. Supplementary Results
C.1. Architectural Choices with Minor Impact on Performance

We provided additional ablation scans on the GOOP dataset in Figure C.1, which show that the model is robust to typical
hyperparameter changes.

Number of input steps C. (Figure C.2a,b) We observe a significant improvement from conditioning the model on just the
previous velocity (C = 1) to the two most recent velocities (C = 2), but find similar performance for larger values of C.
All our models use C = 5. Note that because we approximate the velocity as the finite difference of the position, the model
requires the most recent C + 1 positions to compute the last C velocities.

Latent and MLP layer sizes. (Figure C.2c,d) The performance does not change much as function of the latent and MLP
hidden sizes, for sizes of 64 or larger.

Number of MLP hidden layers. (Figure C.2e,f) Except for the case of zero hidden layers (linear layer), the performance
does not change much as a function of the MLP depth.

Use MLP encoder & decoder. (Figure C.2g,h) We replaced the MLPs used in the encoder and decoder by linear layers
(single matrix multiplication followed by a bias), and observed no significant changes in performance.

Use LayerNorm. (Figure C.2i,j) In small datasets, we typically observe slightly better performance when LayerNorm (Ba
et al., 2016) is not used, however, enabling it provides additional training stability for the larger datasets.

Include self-edges. (Figure C.2k,l) The model performs similarly regardless of whether self-edges are included in the
message passing process or not.

Use global latent. (Figure C.2m,n) We enable the global mechanisms of the GNs. This includes both, explicit input global
features (instead of appending them to the nodes) and a global latent state that updates after every message passing step
using aggregated information from all edges and nodes. We do not find significant differences when doing this, however we
speculate that generalization performance for systems with more particles than used during training would be affected.

Use edges latent. (Figure C.2o,p) We disabled the updates to the latent state of the edges that is performed at each edge
message passing iteration, but found no significant differences in performance.

Add gravity acceleration. (Figure C.2q,r) We attempted adding gravity accelerations to the model outputs in the update
procedure, so the model would not need to learn to predict a bias acceleration due to gravity, but found no significant
performance differences.

C.2. Noise-Related Training Parameters

We provide some variations related to how we add noise to the input data on the GOOP dataset in Figure C.2.

Noise type. (Figure C.2a,e) We experimented with 4 different modes for adding noise to the inputs. only last adds
noise only to the velocity of the most recent state in the input sequence of states. correlated draws a single per-particle
and per-dimension set of noise samples, and applies the same noise to the velocities of all input states in the sequence.
uncorrelated draws independent noise for the velocity of each input state. random walk draws noise for each input state,
adding it to the noise of the previous state in sequence as in a random random walk, as an attempt to simulate accumulation
of error in a rollout. In all cases the input states positions are adjusted to maintain ṗtk ≡ ptk − ptk−1 . To facilitate the
comparison, the variance of the generated noise is adjusted so the variance of the velocity noise at the last step is constant.
We found the best rollout performance for random walk noise type.

Noise Std. (Figure C.2b,f) This is described in the main text, included here for completeness.

Reconnect graph after noise. (Figure C.2c,g) We found that the performance did not change regardless of whether we
recalculated the connectivity of the graph after applying noise to the positions or not.

Fraction of noise to correct. (Figure C.2d,h) In the process of corrupting the input position and velocity features with
noise, we do not adjust the target accelerations, that is, we do not ask the model to predict the accelerations that would
correct the noise in the input positions. For this variation we modify the target average accelerations to force the model
to predict accelerations that would also correct for 10%, 30% or 100% of the the noise in the inputs. This it implicitly
what happens when the loss is defined directly on the positions, regardless of whether the inputs are perturbed with noise



Learning to Simulate

10−9

10−8

10−7

On
e-

st
ep

 M
SE

(G
oo

p)

# input steps

a

Hidden &
Latent
Sizes
c

# MLP
hidden
layers
e

Use MLP
encoder

& decoder
g

Use
Layer
Norm
i

Include
self-edges

k

Use
global
latent
m

Use
edge
latent
o

Add
gravity

acceleration
q

1 2 3 4 5
10−3

10−2

10−1

Ro
llo

ut
 M

SE
(G

oo
p)

b

16 32 64 12
8

25
6

d

0 1 2 3

f

Fa
lse

Tr
ue

h

Fa
lse

Tr
ue

j

Fa
lse

Tr
ue

l

Fa
lse

Tr
ue

n

Fa
lse

Tr
ue

p

Fa
lse

Tr
ue

r

Figure C.1. Additional ablations (grey) on the GOOP dataset compared to our default model (red). Error bars display lower and higher
quartiles, and are shown for the default parameters. The same vertical limits from Figure 4 are reused for easier qualitative scale
comparison.
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Figure C.2. Noise-related training variations (grey) on the GOOP dataset compared to our default model (red). Error bars display lower
and higher quartiles, and are shown for the default parameters. The same vertical limits from Figure 4 are reused for easier qualitative
scale comparison.

(Sanchez-Gonzalez et al., 2018) or the inputs have noise due to model error (Ummenhofer et al., 2020). Figure C.2d,h show
that asking the model to correct for a large fraction of the noise leads to worse performance. We speculate that this is because
physically valid distributions are very complex and smooth in these datasets, and unlike in the work by Sanchez-Gonzalez
et al. (2018), once noise is applied, it is not clear which is the route the model should take to bring the state back to a valid
point in the distribution, resulting in large variance during training.

C.3. Distributional Evaluation Metrics

Generally we find that MSE and the distributional metrics lead to generally similar conclusions in our analyses (see Fig-
ure C.3), though we notice that differences in the distributional metrics’ values for qualitatively “good” and “bad” rollouts
can be more prominent, and match more closely with our subjective visual impressions. Figure C.4 shows the rollout errors
as a function of the key architectural choices from Figure 4 using these distributional metrics.
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C.4. Quantitative Results on all Datasets

Mean Squared Error Optimal Transport

Maximum
Mean

Discrepancy
(σ = 0.1)

Domain One-step
×10−9

Rollout
×10−3

One-step
×10−9

Rollout
×10−3

One-step
×10−9

Rollout
×10−3

WATER-3D 8.66 10.1 26.5 0.165 7.32 0.368
SAND-3D 1.42 0.554 4.29 0.138 11.9 2.67
GOOP-3D 1.32 0.618 4.05 0.208 22.4 5.13
WATER-3D-S 9.66 9.52 29.9 0.222 6.9 0.192
BOXBATH 54.5 4.2 – – – –
WATER 2.82 17.4 6.19 0.468 10.6 7.66
SAND 6.23 2.37 11.8 0.193 32.6 6.79
GOOP 2.91 1.89 6.14 0.419 20.3 7.76
MULTIMATERIAL 1.81 16.9 – – – –
FLUIDSHAKE 2.1 20.1 4.13 0.591 12.1 9.84
FLUIDSHAKE-BOX 1.33 4.86 – – – –
WATERDROP 1.52 7.01 3.31 0.273 11.1 5.99
WATERDROP-XL 1.23 14.9 3.03 0.209 11.6 4.34
WATERRAMPS 4.91 11.6 10.3 0.507 14.3 7.68
SANDRAMPS 2.77 2.07 6.13 0.187 15.7 4.81
RANDOMFLOOR 2.77 6.72 5.8 0.276 14 3.53
CONTINUOUS 2.06 1.06 4.63 0.0709 23.1 3.57

C.5. Quantitative Generalization Results on CONTINUOUS Domain

See Figure C.5.

Figure C.5. Rollout and one-step error as a function of the friction angle in the CONTINUOUS domain. Regions highlighted in red
correspond to values of the friction angle not observed during training. Our results show that a model trained in the [0◦, 30◦] and
[55◦, 80◦] ranges can produce good predictions across all friction angles (see also videos), with only marginally higher errors in the
[30◦, 55◦] range that was not seen during training. Note that the dynamics at very low and very high friction angles are simply more
complicated and harder to learn, hence the higher error.

C.6. Inference Times

The following table compares the performance of our learned GNS model (evaluated on a single V100 GPU) to the
performance of the simulator used to generate the data (run on a 6-core workstation CPU) for each of the datasets. The
learned GNS model has inference times comparable to that of the ground truth simulator used to generate the data. Note that

http://tny.sh/lLvCAc5
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these results are purely informative and calculated post-hoc, as the main goal of this work was not to improve simulation
time. We expect better performance could be achieved by making predictions for longer time steps, or using optimized
implementations for neighborhood graph calculation (which we evaluated out-of-graph on the CPU using KDTrees).

Domain Simulator
(Dim.)

Mean #
particles

per graph
(approx)

Mean #
edges

per graph
(approx)

Simulator
time per
step [s]

Learned GNS time per step
including neighborhood computation

[s] (relative to simulator)

WATER-3D SPH (3D) 7.8k 110k 0.104 0.358 (345%)
SAND-3D MPM (3D) 9.8k 140k 0.221 0.336 (152%)
GOOP-3D MPM (3D) 7.8k 120k 0.199 0.247 (124%)
WATER-3D-S SPH (3D) 3.8k 55k 0.053 0.0683 (129%)
BOXBATH PBD (3D) 1k 15k – 0.0475 (–)
WATER MPM (2D) 1.1k 12k 0.037 0.0579 (156%)
SAND MPM (2D) 1.2k 11k 0.045 0.048 (107%)
GOOP MPM (2D) 1k 9.2k 0.04 0.0301 (75.1%)
MULTIMATERIAL MPM (2D) 1.6k 16k 0.049 0.0595 (121%)
FLUIDSHAKE MPM (2D) 1.3k 13k 0.039 0.0257 (65.8%)
FLUIDSHAKE-BOX MPM (2D) 1.4k 13k 0.048 0.133 (277%)
WATERDROP MPM (2D) 0.6k 4.8k 0.05 0.0256 (51.3%)
WATERDROP-XL MPM (2D) 4.3k 83k 0.166 0.192 (116%)
WATERRAMPS MPM (2D) 1.5k 13k 0.071 0.0506 (71.3%)
SANDRAMPS MPM (2D) 2.3k 21k 0.077 0.0691 (89.8%)
RANDOMFLOOR MPM (2D) 2.3k 24k 0.076 0.0634 (83.4%)
CONTINUOUS MPM (2D) 2.4k 22k 0.072 0.0919 (128%)

The table below shows the inference time for batches of graphs like those used during training, which had pre-computed
neighborhoods. Comparing to the previous table, we indeed observe that most of the computation time was spent on
neighborhood computation rather than on graph neural network inference.

Domain # particles
per batch

# edges
per batch

Learned GNS time per step
without neighborhood computation [s]

(relative to learned GNS in previous table)8

WATER-3D 14k 245k 0.071 (19.8%)
SAND-3D 19k 320k 0.086 (25.6%)
GOOP-3D 15k 230k 0.109 (44.2%)
WATER-3D-S 6k 120k 0.04 (58.6%)
BOXBATH 1k 18k 0.017 (35.8%)
WATER 2k 31k 0.025 (43.2%)
SAND 2k 21k 0.018 (37.5%)
GOOP 2k 21k 0.019 (63.2%)
MULTIMATERIAL 2k 27k 0.018 (30.3%)
FLUIDSHAKE 1.4k 23k 0.017 (66.2%)
FLUIDSHAKE-BOX 1.5k 20k 0.019 (14.3%)
WATERDROP 2k 18k 0.023 (89.7%)
WATERDROP-XL 8k 300k 0.057 (29.7%)
WATERRAMPS 2.5k 28k 0.017 (33.6%)
SANDRAMPS 3.5k 35k 0.023 (33.3%)
RANDOMFLOOR 3.5k 46k 0.023 (36.3%)
CONTINUOUS 5k 50k 0.033 (35.9%)

8Note that these results are for batches with fixed number of nodes and edges larger than in the previous table, so “(relative to learned
GNS in previous table)” only provides an upper bound on the time spent on graph net inference compared to neighborhood computation.
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C.7. Example Failure Cases

In this video, we show two of the failure cases we sometimes observe with the GNS model. In the BOXBATH domain we
found that our model could accurately predict the motion of a rigid block, and maintain its shape, without requiring explicit
mechanisms to enforce solidity constraints or providing the rest shape to the network. However, we did observe limits to
this capability in a harder version of BOXBATH, which we called FLUIDSHAKE-BOX, where the container is vigorously
shaken side to side, over a rollout of 1500 timesteps. Towards the end of the trajectory, we observe that the solid block starts
to deform. We speculate the reason for this is that GNS has to keep track of the block’s original shape, which can be difficult
to achieve over long trajectories given an input of only 5 initial frames.

In the second example, a bad seed of our model trained on the GOOP domain predicts a blob of goop stuck to the wall
instead of falling down. We note that in the training data, the blobs do sometimes stick to the wall, though it tends to be
closer to the floor and with different velocities. We speculate that the intricacies of static friction and adhesion may be hard
to learn—to learn this behaviour more robustly, the model may need more exposure to fall versus sticking phenomena.

D. Supplementary Baseline Comparisons
D.1. Continuous Convolution (CConv)

Recently Ummenhofer et al. (2020) presented Continuous Convolution (CConv) as a method for particle-based fluid
simulation. We show that CConv can also be understood in our framework, and compare CConv to our approach on several
tasks.

Interpretation.

While Ummenhofer et al. (2020) state that “Unlike previous approaches, we do not build an explicit graph structure to
connect the particles but use spatial convolutions as the main differentiable operation that relates particles to their neighbors.”,
we find we can express CConv (which itself is a generalization of CNNs) as a GN (Battaglia et al., 2018) with a specific
type of edge update function.

CConv relates to CNNs (with stride of 1) and GNs in two ways. First, in CNNs, CConv, and GNs, each element (e.g., pixel,
feature vector, particle) is updated as a function of its neighbors. In CNNs the neighborhood is fixed and defined by the
kernel’s dimensions, while in CConv and GNs the neighborhood varies and is defined by connected edges (in CConv the
edges connect to nearest neighbors).

Second, CNNs, CConv, and GNs all apply a function to element i’s neighbors, j ∈ N (i), pool the results from within the
neighborhood, and update element i’s representation. In a CNN, this is computed as, f ′i = σ

(
b +

∑
j∈N (i)W (τi,j)fj

)
,

where W (τi,j) is a matrix whose parameters depend on the displacement between the grid coordinates of i and j, τi,j =
xj − xi (and b is a bias vector, and σ is a non-linear activation). Because there are a finite set of τi,j values, one for each
coordinate in the kernel’s grid, there are a finite set of W (τi,j) parameterizations.

CConv uses a similar formula, except the particles’ continuous coordinates mean a choice must be made about how to
parameterize W (τi,j). Like in CNNs, CConv uses a finite set of distinct weight matrices, Ŵ (τ̂i,j), associated with the
discrete coordinates, τ̂i,j , on the kernel’s grid. For the continuous input τi,j , the nearest Ŵ (τi,j) are interpolated by the
fractional component of τi,j . In 1D this would be linear interpolation, W (τi,j) = (1− d) Ŵ (bτi,jc) + d Ŵ (dτi,je)), where
d = τi,j − bτi,jc. In 3D, this is trilinear interpolation.

A GN can implement CNN and CConv computations by representing τi,j using edge attributes, ei,j , and an edge
update function which uses independent parameters for each τi,j , i.e., e′i,j = φe(ei,j ,vi,vj) = φeτi,j (vj). Beyond
their displacement-specific edge update function, CNNs and CConv are very similar to how graph convolutional net-
works (GCN) (Kipf & Welling, 2016) work. The full CConv update as described in Ummenhofer et al. (2020) is,
f ′i = 1

ψ(xi)

∑
j∈N (xi,R) a (xj ,xi) fj g (Λ (xj − xi)). In particular, it indexes into the weight matrices via a polar-to-

Cartesian coordinate transform, Λ, to induce a more radially homogeneous parameterization. It also uses a weighted sum
over the particles in a neighborhood, where the weights, a(xj ,xi), are proportional to the distance between particles. And it
includes a normalization, ψ(xi), for neighborhood size, they set it to 1.

http://tny.sh/Tc01u0R
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Performance comparisons.

We implemented the CConv model, loss and training procedure as described by Ummenhofer et al. (2020). For simplicity, we
only tested the CConv model on datasets with flat walls, rather than those with irregular geometry. This way we could omit
the initial convolution with the boundary particles and instead give the fluid particles additional simple features indicating
the vector distance to each wall, clipped by the radius of connectivity, as in our model. This has the same spatial constraints
as CConv with boundary particles in the wall, and should be as or more informative than boundary particles for square
containers. Also, for environments with multiple materials, we appended a particle type learned embedding to the input
node features.

To be consistent with Ummenhofer et al. (2020), we used their batch size of 16, learning rate decay of 10−3 to 10−5 for 50k
iterations, and connectivity radius of 4.5x the particle radius. We were able to replicate their results on PBD/FLeX and SPH
simulator datasets similar to the datasets presented in their paper. To allow a fair comparison when evaluating on our MPM
datasets, we performed additional hyperparameter sweeps over connectivity particle radius, learning rate, and number of
training iterations using our GOOP dataset. We used the best-fitting parameters on all datasets, analogous to how we selected
hyperparameters for our GNS model.

We also implemented variations of CConv which used noise to corrupt the inputs during training (instead of using 2-step
loss), as we did with GNS. We found that the noise improved CConv’s rollout performance on most datasets. In our
comparisons, we always report performance for the best-performing CConv variant.

Our qualitative results show CConv can learn to simulate sand reasonably well. But it struggled to accurately simulate solids
with more complex fine grained dynamics. In the BOXBATH domain, CConv simulated the fluid well, but struggled to keep
the box’s shape intact. In the GOOP domain, CConv struggled to keep pieces of goop together and handle the rest state,
while in MULTIMATERIAL it exhibited local “explosions”, where regions of particles suddenly burst outward (see video).

Generally CConv’s performance is strongest for simulating water-like fluids, which is primarily what it was applied to
in the original paper. However it still did not match our GNS model, and for other materials, and interactions between
different materials, it was clearly not as strong. This is not particularly surprising, given that our GNS is a more general
model, and our neural network implementation has higher capacity on several axes, e.g., more message-passing steps,
pairwise interaction functions, more flexible function approximators (MLPs with multiple internal layers versus single
linear/non-linear layers in CConv).

D.2. DPI

We trained our model on the Li et al. (2018)’s BOXBATH dataset, and directly compared the qualitative behavior to the
authors’ demonstration video in this comparison. To provide a fair comparison to DPI, we show a model conditioned on just
the previous velocity (C=1) in the above comparison video9. While DPI requires a specialized hierarchical mechanism and
forced all box particles to preserve their relative displacements with each other, our GNS model faithfully represents the the
ground truth trajectories of both water and solid particles without any special treatment. The particles making up the box
and water are simply marked as a two different materials in the input features, similar to our other experiments with sand,
water and goop. We also found that our model seems to also be more accurate when predicting the fluid particles over the
long rollout, and it is able to perfectly reproduce the layering effect for fluid particles at the bottom of the box that exists in
the ground truth data.

9We also ran experiments with C=5 and did not find any meaningful difference in performance. The results in Table 1 and the
corresponding example video are run with C=5 for consistency with our other experiments

http://tny.sh/6I0girh
http://tny.sh/mrOkfpg

