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Abstract—This paper investigates the problem of resource
allocation for a wireless communication network with distributed
reconfigurable intelligent surfaces (RISs). In this network, multi-
ple RISs are spatially distributed to serve wireless users and the
energy efficiency of the network is maximized by dynamically
controlling the on-off status of each RIS as well as optimizing
the reflection coefficient matrix of the RISs. This problem is
posed as a joint optimization problem of transmit power and
RIS control, whose goal is to maximize the energy efficiency
under minimum rate constraints of the users. To solve this
problem, an alternating algorithm is proposed by solving two
sub-problems iteratively. The phase optimization sub-problem is
solved by using a successive convex approximation method, which
admits a closed-form solution at each step. Moreover, the RIS on-
off optimization sub-problem is solved by using the dual method.
Simulation results show that the proposed scheme achieves up to
27% and 68% gains in terms of the energy efficiency compared
to the conventional RIS scheme and amplify-and-forward relay
scheme, respectively.

I. INTRODUCTION

Driven by the rapid development of advanced multimedia

applications, next-generation wireless networks must support

high spectral efficiency and massive connectivity [1]–[3]. Due

to high data rate demand and massive numbers of users,

energy consumption has become a challenging problem in the

design of future wireless networks. In consequence, energy

efficiency, defined as the ratio of spectral efficiency over power

consumption, has emerged as an important performance index

for deploying green and sustainable wireless networks.

Recently, reconfigurable intelligent surface (RIS)-assisted

wireless communication has been proposed as a potential solu-

tion for enhancing the energy efficiency of wireless networks

[4]–[7]. In RIS-assisted wireless communication networks, a

base station (BS) sends control signals to an RIS controller so

as to optimize the properties of incident waves and improve the

communication quality of users. A number of existing works
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such as in [8]–[13] has studied the deployment of RISs in

wireless networks. In [8], the downlink sum-rate of an RIS

assisted wireless communication system was characterized. An

asymptotic analysis of the uplink transmission rate in an RIS-

based large antenna-array system was presented in [9]. Then,

in [10], the authors investigated the asymptotic optimality of

the achievable rate in a downlink RIS system. Considering

energy harvesting, an RIS was invoked for enhancing the sum-

rate performance of a simultaneous wireless information and

power transfer aided system [11]. Taking the secrecy into

consideration, the work in [12] investigated the problem of

secrecy rate maximization of an RIS assisted multi-antenna

system. Further by considering imperfect CSI, the RIS was

considered to enhance the physical layer security of a wireless

channel in [13]. In [14], the authors proposed a new approach

to maximize the energy efficiency of a multi-user multiple-

input single-output (MISO) system by jointly controlling the

transmit power of the BS and the phase shifts of the RIS.

However, only a single RIS was considered for simplicity in

[14]. Deploying a number of low-cost power-efficient RISs in

future networks can cooperatively enhance the coverage of the

networks. In particular, deploying multiple RISs in wireless

networks has several advantages. First, distributed RISs can

provide robust data-transmission since different RISs can be

deployed geometrically apart from each other. Meanwhile,

multiple RISs can provide multiple paths of received signals,

which increases the received signal strength. To our best

knowledge, this is the first work that optimizes the energy

efficiency for a wireless network with multiple RISs.

The main contribution of this paper is a novel energy effi-

cient resource allocation scheme for wireless communication

networks with distributed RISs. Our key contributions include:
→We investigate a downlink wireless communication sys-

tem with distributed RISs that can be dynamically turned

on or off depending on the network requirements. To

maximize the energy efficiency of the system, we jointly

optimize the phase shifts of all RISs, the transmit power

of the transmitter, and the RIS on-off status vector.

→ To maximize the energy efficiency, a suboptimal solution



Fig. 1. A downlink MISO system with multiple RISs.

is obtained by using a low-complexity algorithm that

iteratively solves two subproblems. For the joint phase

and power optimization subproblem, a suboptimal phase

is obtained by using the successive convex approximation

(SCA) method with low complexity, and the optimal

power is subsequently obtained in closed form. For the

RIS on-off optimization subproblem, the dual method is

used to obtain the optimal solution.

Notations: In this paper, the imaginary unit of a complex

number is denoted by j = 1. Matrices and vectors are

denoted by boldface capital and lower-case letters, respec-

tively. Matrix diag(x1,×××, xN ) denotes a diagonal matrix

whose diagonal components are x1,×××, xN . The real and

imaginary parts of a complex number x are denoted by { (x)
and L(×), respectively. x•, xT , and xH respectively denote

the conjugate, transpose, and conjugate transpose of vector x.

[x]n and [X]kn denote the n-th and (k, n)-th elements of the

respective vector x and matrix X . √x√denotes the �2-norm of

vector x. Gaussian variable with mean x and covariance σ is

denoted by DO (x, σ).

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model
Consider an RIS-assisted MISO downlink channel that

consists of one BS, one user, and a set N of L RISs, as shown

in Fig. 1. The number of transmit antennas at the BS is M ,

while the user is equipped with one antenna. Such a setting has

been used in many practical scenarios such as in Internet-of-

Things networks [8]–[10]. Each RIS, l ∀ N, has Nl reflecting

elements. The RISs are configured to assist the communication

between the BS and the user. In particular, the RISs will be

installed on the walls of the surrounding high-rise buildings.

The transmitted signal at the BS is ws, where s is unit-

power information symbol and w ∀ C
M is the beamforming

vector for the user. The power consumption of an RIS depends

on both the type and the resolution of the reflecting elements

that effectively perform phase shifting on the impinging signal

[14]. Considering the power consumption of RISs due to

controlling the phase shift values of the reflecting elements

[14], it is often not energy efficient to turn on all the RISs.

We now introduce a binary variable xl ∀ }0, 1| , where xl = 1
indicates that RIS l is on. When xl = 1, the phase shift

matrix of RIS l can be optimized through a diagonal matrix

Θl = diag(ejθl1 ,×××, ejθlNl ) ∀ C
Nl∗ Nl with θln ∀ [0, 2π],

l ∀ N, and n ∀ Ol = }1,×××, Nl| , where Θl captures the

effective phase shifts applied by all reflecting elements of RIS

l. In contrast, when xl = 0, RIS l is off and does not consume

any power. Then, with the multiple RISs, the received signal

at the user can be given by

y =

)
gH +

L

l=1

xlh
H
l ΘlGl

⎛
ws+ n, (1)

where g ∀ C
M , Gl ∀ C

Nl∗M , and hl ∀ C
Nl , respectively,

denote the channel responses from the BS to the user, from the

BS to RIS l, and from RIS l to the user, and n∞DO (0, σ2)
is the additive white Gaussian noise.

Based on (1), the received signal-to-interference-plus-noise

ratio (SINR) at the user is

γ =

((()gH +
∑L

l=1 xlh
H
l ΘlGl

(
w
(((2

σ2
. (2)

Since there is no multi-user interference, it is well-known that

beaming as the maximum ratio transmission (MRT) at the BS

is optimal [15]. That is

w = p
g +

∑L
l=1 xlG

H
l ΘH

l hl

√g +
∑L

l=1 xlGH
l ΘH

l hl√
, (3)

where p is the transmit power at the BS.

The total power consumption of the considered RIS-assisted

system includes the transmit power of the BS, the circuit power

consumption of both the BS and all users, and the power

consumption of all RISs. Consequently, the total power of the

system will be given by

Pt = μp+ PB + PU +
L

l=1

xlNlPR, (4)

where μ = ν 1 with ν being the power amplifier efficiency

of the BS, PB is the circuit power consumption of the BS, PU

is the circuit power consumption of the user, and PR is the

power consumption of each reflecting element in the RIS. In

(4), xlNlPR is the power consumption of RIS l.

B. Problem Formulation
Our objective is to jointly optimize the reflection coeffi-

cient matrix, transmit power, and RIS on-off vector so as

to maximize the energy efficiency under the minimum rate

requirements and total power constraint. Mathematically, the

problem for the distributed RISs can be given by

max
θ,p,x

B log2

)
1 +

p√gH+
∑L

l=1 xlh
H
l ΘlGl√2

σ2

{
μp+ PU + PB +

∑L
l=1 xlNlPR

(5)

s.t. B log2

⎞
⎟⎠1+ p

(((gH+
∑L

l=1 xlh
H
l ΘlGl

(((2
σ2

⎡
∑⎜∼R, (5a)

0 ≥ p ≥ Pmax, (5b)

θln ∀ [0, 2π], Cl ∀ N, n ∀ Ol, (5c)

xl ∀ }0, 1| , Cl ∀ N, (5d)

where θ = [θ11,×××, θ1N1 ,×××, θLNL
]T , x = [x1,×××, xL]

T ,

B is the bandwidth of the channel, R is the minimum data rate

requirement of the user, and Pmax is the maximum transmit



power of the BS. Constraint (5a) follows from (2) and (3).

The minimum rate constraint for the user is given in (5a)

and (5b) represents the maximum power constraint. The phase

shift constraint for each reflecting element is provided in (5c),

which can also be seen as the unit-modulus constraint since

√ejθln√= 1.

III. ENERGY EFFICIENCY OPTIMIZATION

Due to the involvement of integer variable x, it is difficult

to obtain the globally optimal solution of (5). As such, we

propose an iterative algorithm to solve problem (5) sub-

optimally with low complexity. The proposed iterative algo-

rithm contains two major steps. In the first step, we jointly

optimize phase and power (θ, p) with given x. Then, in the

second step, we update RIS on-off vector x with the optimized

(θ, p) in the previous step.

A. Joint Phase and Power Optimization
For a fixed integer variable x, problem (5) becomes

max
θ,p

B log2

)
1 +

p√gH+
∑L

l=1 xlh
H
l ΘlGl√2

σ2

{
μp+ PU + PB +

∑L
l=1 xlNlPR

(6)

s.t. (5a)-(5c). (6a)

From the objective function (6) and the constraint in (6a),

we observe that the optimal θ is the one that maximizes

the channel gain, i.e.,
(((gH +

∑L
l=1 xlh

H
l ΘlGl

(((2. With this

in mind, the optimal solution of problem (6) can be obtained

in two stages, i.e., obtain the value of θ that maximizes the

channel gain in the first stage and, then, calculate the optimal

p in the second stage with the obtained θ in the first stage.

1) First stage: We first optimize the phase shift vec-

tor θ of problem (6). Before optimizing θ, we show that

hH
l ΘlGl = θT

l Ul, where Ul = diag(hH
l )Gl ∀ C

Nl∗M

and θl = [ejθl1 ,×××, ejθlNl ]T . According to problem (6), the

optimal θ can be calculated by solving the following problem:

max
θ

(((((gH +

L

l=1

xlθ
T
l Ul

(((((
2

(7)

s.t. θln ∀ [0, 2π], Cl ∀ N, n ∀ Ol. (7a)

Let θ•l be the conjugate vector of θl. The total number of

elements for all RISs is denoted by Q =
∑L

l=1 Nl. Denote v =
[θ•1 ;×××;θ•L] ∀ C

Q and U = [x1Ul;×××;xLUL] ∀ C
Q∗M .

Problem (7) can be rewritten as

max
v

((g +UHv
((2 (8)

s.t. √vq√= 1, Cq ∀ R, (8a)

where R = }1,×××, Q| .
To handle the nonconvexity of objective function (8), we

adopt the SCA method and, consequently, objective function

(8) can be approximated by

2{ ((g +UHv(n 1))HUHv)
(((g +UHv(n 1)

(((2 , (9)

and the superscript (n 1) represents the value of the variable

at the (n 1)-th iteration. With approximation (9), problem (8)

can be approximated by

Algorithm 1 SCA Method for Phase Optimization

1: Initialize v(0). Set iteration number n = 1.
2: repeat
3: Set v(n) = e−j∠(U(g+UHv(n−1))), and n = n+ 1.
4: until the objective value (8) converges.
5: Output θ = (v(n))∗.

max
v

2{ ((g+UHv(n 1))HUHv)
(((g+UHv(n 1)

(((2 (10)

s.t.√vq√≥ 1, Cq ∀ R, (10a)

where constraint (8a) is temporarily relaxed as (10a). In the

following lemma, we show that (10a) always holds with

equality for the optimal solution of problem (10).

Lemma 1: The optimal solution of problem (10) is

v = e j∠(U(g+UHv(n−1))), (11)

where ∠(×) represents the angle vector of a vector, i.e, for

q ∀ R, [∠(y)]q = arctan
R([y]q)
([y]q)

.

Proof: To maximize (g + UHv(n 1))HUHv in (10),

the optimal v should be chosen such that [(g +
UHv(n 1))HUH ]q[v]q is a real number and √[v]q√= 1 for

any q, i.e., the optimal v should be given as (11). �
From (11) and Lemma 1, we can see that the optimal phase

vector v should be adjusted such that the signal that goes

through all RISs is aligned to be a signal vector with equal

phase at each element. The SCA algorithm for solving problem

(8) is summarized in Algorithm 1.

2) Second stage: We now obtain the optimal power allo-

cation p. With the obtained θ in Algorithm 1 and defining

ḡ =
√gH+

∑L
l=1 xlh

H
l ΘlGl√2

σ2 , problem (6) reduces to

max
p

B log2 (1 + ḡp)

μp+ P0
(12)

s.t. Pmin ≥ p ≥ Pmax, (12a)

where P0 = PU + PB +
∑L

l=1 xlNlPR, and Pmin = (2
R
B

1)/ḡ. In (12a), Pmin is used to guarantee the minimum rate

requirement for the user.

For problem (12), the Dinkelbach method from [16] can

be used. The Dinkelbach method involves solving a series

of convex subproblems, which increases the computational

complexity. However, the optimal solution of (12) can be

derived in closed form using the following theorem.

Theorem 1: The optimal transmit power of the energy

efficiency maximization problem in (12) is

p =

⎤
⎦ ḡP0 μ

μḡW
)

(ḡP0 μ)
μe

( 1

ḡ

⎣
⎧
Pmax

Pmin

, (13)

where W (×) is the Lambert-W function and [a]cb =
min}max}a, b| , c| .

Proof: The first-order derivative of the objective function

(12) with respect to power p is

∂B log2(1+ḡp)
μp+P0

∂p
=

B(ḡ(μp+ P0) μ(1 + ḡp) ln(1 + ḡp))

(1 + ḡp)(μp+ P0)2 ln 2
.

(14)



To show the increasing trend of the objective function (12),

we further denote

f(p) = ḡ(μp+ P0) μ(1 + ḡp) ln(1 + ḡp), Cp > 0. (15)

The first-order derivative of function f(p) is:

f∞(p) = μḡ ln(1 + ḡp) < 0, (16)

which indicates that f(p) is a monotonically decreasing func-

tion. Since f(0) = ḡP0 > 0 and limp′ ∈ f(p) < 0, there

must exist a unique p̄ such that f(p̄) = 0, where

p̄ =
ḡP0 μ

μḡW
)

(ḡP0 μ)
μe

( 1

ḡ
. (17)

Hence, the objective function (12) first increases in interval

(0, p̄] and then decreases in interval (p̄,∈ ), which indicates

that the optimal solution can be presented as in (13). �
From Theorem 1, the optimal power control of problem

(12) is obtained in closed-form, as shown in (13). According

to (13), it is shown that the optimal power control lies in one of

three values, i.e., the minimum transmit power, the power with

zero first-order derivative, and the maximum transmit power.

B. RIS On-Off Optimization
We introduce an auxiliary variable y and problem (5) with

fixed phase and power variables (θ, p) is equivalent to

max
x,y

B log2 1 + py
σ2

∣
μp+ PU + PB +

∑L
l=1 xlNlPR

(18)

s.t. y ≥
(((((gH +

L

l=1

xlh
H
l ΘlGl

(((((
2

, (18a)

y ∼
)
2

R
B 1

(σ2

p
, (18b)

xl ∀ }0, 1| , Cl ∀ N, (18c)

where constraint (18b) is used to ensure the minimum rate

demand. For the optimal solution of problem (18), constraint

(18a) will always hold with equality since the objective func-

tion monotonically increases with y. There are two difficulties

in solving problem (18). The first difficulty is that objective

function (18) has a fractional form, which is difficult to solve.

The second difficulty is that constraint (18a) is nonconvex.

To handle the first difficulty, we use the parametric approach

in [16] and consider the following problem:

H(λ)= max
(x,y)FI

B log2

)
1+

py

σ2

(
λ

)
PC+

L

l=1

xlNlPR

⎛
, (19)

where I is the feasible set of (x, y) satisfying constraints

(18a)-(18c) and PC = μp+PU+PB. It was proved in [16] that

solving (18) is equivalent to finding the root of the nonlinear

function H(λ), which can be obtained by using the Dinkelbach

method. By introducing parameter λ, the objective function of

problem (18) can be simplified, as shown in (19).

To handle the second difficulty, due to the fact that xl ∀
}0, 1| , we can rewrite the right hand side of (18a) as(((((gH+

L

l=1

xlh
H
l ΘlGl

(((((
2

=D0+

L

l=1

Dlxl+

L

l=2

l 1

m=1

Dlmxlxm,

(20)

where we set D0 = gHg, Dl = hH
l ΘlGlG

H
l ΘH

l hl +
gHGH

l ΘH
l hl+hH

l ΘlGlg, and Dlm=hH
l ΘlGlG

H
mΘH

mhm+
hH
mΘmGmGH

l ΘH
l hl. To solve problem (18), we introduce

new variable zlm = xlxm. Since xl ∀ }0, 1| , constraint

zlm = xlxm is equivalent to

zlm ∼ xl + xm 1, 0 ≥ zlm ≥ 1, (21)

zlm ≥ xl, zlm ≥ xm, (22)

for all l = 2,×××, L, m = 1,×××, l 1. According to (19)-(22),

problem (18) can be reformulated as

max
x,y,z

B log2

)
1 +

py

σ2

(
λ

)
PC +

L

l=1

xlNlPR

⎛
(23)

s.t. y ≥ D0 +
L

l=1

Dlxl +
L

l=2

l 1

m=1

Dlmzlm, (23a)

(18b), (18c), (21), (22), (23b)

where z = [z21, z31, z32,×××, zL(L 1)]
T .

Due to constraints (23e), it is difficult to handle problem

(23). By relaxing the integer constraints (23b) with xl ∀ [0, 1],
problem (23) becomes a convex problem. For problem (23)

with relaxed constraints, the optimal solution can be obtained

through the dual method. We show that the dual method

obtains the integer solution, which guarantees both optimality

and feasibility of the original problem. To obtain the optimal

solution of problem (23), we have the following theorem.

Theorem 2: For problem (23), the optimal RIS on-off

vector x and auxiliary variables (y, z) can be respectively

expressed as

xl =

(
1, if Cl > 0,
0, otherwise,

(24)

y =

)
B

(ln 2)α

σ2

p

{(((((
2

R
B 1

)
σ2

p

, (25)

and

zlm =

(
1, if αDlm + κ1lm κ2lm κ3lm > 0,
0, otherwise,

(26)

where

Cl=

⎩⎝⎝⎝⎪
⎝⎝⎝⎨

λN1PR + αD1 +
∑L

m=2(κ3ml κ1ml), if l = 1,

λNlPR + αDl +
∑l 1

m=1(κ2lm κ1lm)

+
∑L

m=l+1(κ3ml κ1ml), if 2 ≥ l ≥ L 1,

λNLPR + αDL +
∑L 1

m=1(κ2lm κ1lm), if l = L,
(27)}α, κ1lm, κ2lm, κ3lm| are the Lagrange multipliers associated

with corresponding constraints of (23), and ab = max}a, b| .
Proof: The dual problem of (23) with relaxed constraints is

min
α,κ

F(α,κ), (28)

where

F(α,κ) =

⎩⎝⎝⎝⎪
⎝⎝⎝⎨

max
x,y,z

N(x, y, z, α,κ)
s.t. y ∼

)
2

R
B 1

(
σ2

p ,

0 ≥ zlm ≥ 1, C2 ≥ l ≥ L, 1 ≥ m ≥ l 1,
0 ≥ xl ≥ 1, Cl ∀ N,

(29)



Algorithm 2 Dual Method for Problem (18)

1: Initialize parameter λ and set the accuracy ε.
2: repeat
3: Initialize dual variables (α,κ).
4: repeat
5: Update the RIS on-off vector x and the auxiliary variables

(y, z) according to (24)-(26).
6: Update dual variables (α,κ) based on the sub-gradient

method.
7: until the objective value (23) converges
8: Denote the objective value (23) by H(λ).

9: Update λ =
B log2

(
1+ py

σ2

)
μp+PU+PB+

∑L
l=1

xlNlPR
.

10: until H(λ) < ε.

N(x, y,z, α,κ)=B log2

)
1+

py

σ2

(
λ

)
PC +

L

l=1

xlNlPR

⎛

+ α

)
D0 +

L

l=1

Dlxl +
L

l=2

l 1

m=1

Dlmzlm y

⎛

+

L

l=2

l 1

m=1

[κ1lm(zlm xl xm + 1)

+ κ2lm(xl zlm) + κ3lm(xm zlm)], (30)

and κ = }κ1lm, κ2lm, κ3lm| l=2,×××,L,m=1,×××,l 1.

To maximize the objective function in (29), which is a

linear combination of xl and zlm, we must let the positive

coefficients corresponding to the xl and zlm be 1. Therefore,

the optimal xl and zlm are given as (24) and (26), respectively.

To optimize y from (29), we set the first derivative of

objective function to zero, i.e.,
∂N(x, y, z, α,κ)

∂y
=

Bp

(py + σ2) ln 2
α = 0, (31)

which yields y = B
(ln 2)α

σ2

p . Considering constraint (23c),

we obtain the optimal solution to problem (23) as (25). �
Theorem 2 states that RIS l that has a positive coefficient Cl

should be on. According to the expression of Cl in (27), the

negative term λNlPR, is the effect of introducing additional

power consumption if RIS l is on, while the remaining term

represents the benefit of increasing the transmit rate by keeping

RIS l in operation. When Cl > 0, the benefit of increasing the

transmit rate is larger than the effect of introducing additional

power consumption, which means that the energy efficiency

can be improved if RIS l is on. The values of (α,κ) are

determined by the sub-gradient method.

By iteratively optimizing primal variables (x, y, z) and dual

variables (α,κ), the optimal RIS on-off vector is obtained.

The dual method for solving problem (23) and the Dinkelbach

method to update parameter λ are given in Algorithm 2.

Notice that the optimal xl is either 0 or 1 according to

(24), even though we relax xl as (29). Consequently, the

optimal solution to problem (23) is obtained by using the dual

method, i.e., H(λ) in (19) is obtained for given λ. Using the

Dinkelbach method, we can obtain the root of H(λ) = 0,

which indicates that the optimal solution of fractional energy

efficiency optimization problem (18) is obtained.

Algorithm 3 Iterative Optimization for Problem (5)

1: Initialize (θ(0), p(0),x(0)). Set iteration number n = 1.
2: repeat
3: Given x(n−1), solve the phase optimization problem (8) by

using Algorithm 1 and the solution is denoted by θ(n).
4: Given x(n−1) and the optimized θ(n), solve the power control

problem (12) according to Theorem 1 and the optimal power
is denoted by p(n).

5: Given (θ(n), p(n)), solve the RIS on-off optimization problem
(18) by using Algorithm 2 and the solution is denoted by x(n).

6: Set n = n+ 1.
7: until the objective value (5) converges.

C. Complexity Analysis
The iterative algorithm for solving problem (5) is given

in Algorithm 3. From Algorithm 3, the main complexity of

solving problem (5) lies in solving the phase optimization

problem (8) and the RIS on-off optimization problem (18).

According to Algorithm 1, to solve the phase optimiza-

tion problem (8), the complexity lies in computing v(n) =

e j∠(U1(g1+UH
1 v(n−1))) at each iteration, which involves the

complexity of Q(QM). Hence, the total complexity of solving

problem (8) with Algorithm 1 is Q(T1QM), where T1 is the

total number of the iterations of Algorithm 1.

According to Algorithm 2, the main complexity of solving

problem (18) lies in solving RIS on-off vector x, which

involves the complexity of Q(L2) based on (24) and (27).

Hence, the complexity of solving problem (18) with Algorithm

2 is Q(T2T3L
2), where T2 is the number of inner iterations

by updating primal variables and dual variables and T3 is the

number of inner iterations by updating the parameter λ.

As a result, the total complexity of solving problem (5) is

Q(T0T1QM + T0T2T3L
2), where T0 is the total number of

iterations for Algorithm 3.

IV. SIMULATION RESULTS AND DISCUSSIONS

There are K users uniformly distributed in a square area

of size 300 m ≤ 300 m with the BS located at its center.

There are L RISs and the location of RIS l is given by

(cos(2lπ/L), sin(2lπ/L))≤ 100 m. The main system param-

eters are listed in Table I. For small scale fading, we consider

[gk]m, [hkl]m, [Gl]mn ∞DO (0, 1), Ck, l,m, n [17], [18]. The

AF relay is assumed to transmit with the maximum power PT.

Unless specified otherwise, we set Pmax = 50 dBm, M = 8,

L = 8, N1 = ×××= NL = N = 4, and R = 1 Mbps. We

compare the proposed scheme using distributed RISs (labeled

‘DRIS’) with the following schemes: the conventional scheme

with the central deployment of one RIS located at (100, 0)

m in [14] (labeled ‘CRIS’) and the conventional AF relay

scheme [19] (labeled ‘AFR’). In particular, the number of

reflecting elements for one central RIS in CRIS is set as the

total number of reflecting elements for all RISs in DRIS. In

AFR, we consider the same deployment of DRIS, i.e., there

are L AF relays, where AF l with N antennas is located at

(cos(2lπ/L), sin(2lπ/L))≤ 100 m.

Fig. 2 shows how the energy efficiency changes as the

maximum transmit power of the BS varies. In this figure,



TABLE I
SYSTEM PARAMETERS

Parameters Values
Bandwidth of the BS B 1 MHz

Noise power σ2 −104 dBm
Maximum transmit power of the AF relay PT 30 dBm

Large scale fading model at distance d 10−3 53

d3 76

Circuit power of the BS PB 39 dBm
Power amplifier efficiency at the BS/ AF relay ν 0.8

Circuit power of the user PU 10 dBm
Circuit power of each RIS element PR 10 dBm

Circuit power of each AF relay transmit-receive antenna PA 10 dBm

Fig. 2. Energy efficiency versus the maximum transmit power Pmax of the
BS.

the EXH-DRIS scheme is an exhaustive search method that

can find a near optimal solution of problem (5). Hereinafter,

the EXH-DRIS scheme refers to the proposed DRIS algorithm

with 1000 initial starting points. In this simulation, EXH-DRIS

can obtain 1000 solutions, and the solution with the highest

energy efficiency is treated as the near optimal solution. It is

shown that the energy efficiency of all schemes first increases

and then remains stable as the maximum transmit power of

the BS increases. This is because energy efficiency is not a

monotonically increasing function of the maximum transmit

power, as shown in (13). When Pmax ∼ 25 dBm, the exceed

transmit power is not used since it will decrease the energy

efficiency. Fig. 2 also shows that the proposed DRIS scheme

outperforms the CRIS and AFR schemes. For high maximum

transmit power of the BS, DRIS can increase up to 27%

and 68% energy efficiency compared to CRIS and AFR,

respectively. Moreover, the proposed DRIS scheme achieves

almost the same performance as the EXH-DRIS scheme,

which indicates that the proposed DRIS can achieve the near

optimum solution.

V. CONCLUSION

In this paper, we have investigated the resource allocation

problem for a wireless communication network with distribut-

ed RISs. The RIS phase shifts, BS transmit power, and RIS

on-off status were jointly optimized to maximize the system

energy efficiency while satisfying minimum rate demand,

maximum transmit power, and unit-modulus constraints. To

solve this problem, we have proposed an iterative algorithm

with low complexity. In particular, the phase optimization

problem was solved by using the SCA method, where the

closed-form solution was obtained at each step. Numerical

results have shown that the proposed scheme outperforms

conventional schemes in terms of energy efficiency, especially

for small maximum transmit power.
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