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ABSTRACT. The Trojan Y Chromosome Strategy (TYC) is an extremely well
investigated biological control method for controlling invasive populations with
an XX-XY sex determinism. In [35, 36] various dynamical properties of the
system are analyzed, including well posedness, boundedness of solutions, and
conditions for extinction or recovery. These results are derived under the as-
sumption of positive solutions. In the current manuscript, we show that if the
introduction rate of trojan fish is zero, under certain large data assumptions,
negative solutions are possible for the male population, which in turn can lead
to finite time blow-up in the female and male populations. A comparable re-
sult is established for any positive initial condition if the introduction rate of
trojan fish is large enough. Similar finite time blow-up results are obtained in
a spatial temporal TYC model that includes diffusion. Lastly, we investigate
improvements to the TYC modeling construct that may dampen the mecha-
nisms to the blow-up phenomenon or remove the negativity of solutions. The
results draw into suspect the reliability of current TYC models under certain

situations.
1. INTRODUCTION
The detrimental effects of aquatic invasive species is well-documented [1, 2, 3, 6,
5, 18, 19, 30, 33]. Current control methods rely primarily on chemical treatment

l‘ )

[27] and are environmentally detrimental. The Trojan Y chromosome strategy
(TYC) is a promising eradication strategy which circumvents such detriment [10,
27, 31]. It involves introducing a YY male or YY male and feminised YY male
into an invasive population. The off-spring of the YY male or YY feminised male
are only wild type males or YY males. This skews the sex ratio of subsequent
generations towards all males, and extinction of the population may occur (see
Fig. 1).
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FIGURE 1. The pedigree tree of the TYC model (that demonstrates
Trojan Y-Chromosome eradication strategy). (a) Mating of a wild-type
XX female (f) and a wild-type XY male (m). (b) Mating of a wild-
type XY male (m) and a sex-reversed YY female (r). (c) Mating of
a wild-type XX female (f) and a YY supermale (s). (d) Mating of a
sex-reversed YY trojan female (r) and a YY supermale (s). Red color
represents wild types, and white color represents phenotypes.

The classical model of the TYC strategy was first pioneered in [10]. A detailed
analysis and spatial effects were developed in [11, 21] and is give below:
1) 0.f = DAf+ L fmBL—6f,
(2) oom = DAm+ (;fm + %rm + fs) BL — dm,
(3) Os = DAs+ (;rm + rs) BL — ds,
4) Or = DAr+p—or,

with appropriate initial and boundary conditions that might be Dirichlet, Neumann
or mixed. The functions f, m, s, and r are the population densities of individuals
in each associated class: XX females, XY males, YY males, and YY females, re-
spectively. The logistic term, L = (1 — (f + m + s)/K), where K is the carrying
capacity of the ecosystem, attempts to penalize or encourage growth of populations
when above or below K, respectively. The positive constants 8 and ¢ represent
the per capita birth and death rates, respectively; nonnegative constant p denotes
the rate at which the YY females r are introduced; The species move by diffusion,
with equal diffusivity coefficients D. The TYC strategy is now in current practice
and field studies that investigate the survivability and reproductively or introduced
have been reported [25]. In recent years, the model has been the subject of intense
theoretical investigation [7, 8, 9, 11, 13, 20, 21, 22, 23, 24, 26, 31, 34, 36, 37].

It is clear that an equilibrium solution to TYC model (when p = 0) is the trivial
solution (0,0,0,0), which is called the extinction state. In the absence of super
males or females and if % < 1% then the only equilibrium solution is the extinction
state, which is locally stable. A key result is established in [21, 36] and paraphrased
here:

16"
stable. In the presence of supermales/females the equilibrium solution, (0,0,0,7*),

Theorem 1.1. Let % < K If u = 0, the extinction state, (0,0,0,0) is locally
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where r* = u/§ is locally stable if Bu? — BKdp+ K82 > 0 and can be made globally
stable for large enough p.

This theorem encapsulates an important theoretical result, that eradication is
always possible, if the introduction of supermales, p, is sufficiently large. This
key result relies on the assumption that solutions remain positive for all initial
nonnegative conditions. However, to the best of our knowledge, the positivity of
solutions has not been proven rigorously. Subsequently, the analytical results are
correct if solutions remain positive.

In this paper we show:

(1) The spatially independent TYC system, (5)-(7), can have negative solu-
tions, in the male population m, in certain situations. This result is given
via Lemma 2.2.

(2) The negativity of male population may lead to finite time blow-up in the
female population towards +oo and the male population towards —oo, for
1 = 0 and large enough initial data. This is shown via Theorem 2.3.

(3) For any positive initial data there exists a critical introduction rate p* >
0, such that, Vu > p* finite time blow-up occurs in (5)-(7). This is a
consequence of Theorem 2.4.

(4) Similar results are derived in the spatial-temporal (PDE) model given by
(14)-(16). This is shown via Theorems 3.1 and 3.2.

We then discuss the practical relevance of these results to biological control and
possible model corrections and restrictions.

2. FINITE TIME BLOowW-UP IN DYNAMICAL SYSTEMS MODEL

The classical population model of the TYC strategy relates the populations of
the wild-type XX females (f), wild-type XY males (m), and the YY supermale (s)
populations over time. However, in current field experiments only the supermale
population has been introduced into the wild [13]. Subsequently, in this section we
investigate the three species TYC model, that is,

) o= F(ms) = 36Lm—of,
(6) m = G(f,m,s)= %ﬂLfm—l—ﬁLfs—&m
(7) $ = H(f,m,s)=pu—ds,

where the logistic term L and other parameters are as defined earlier. Again, the
parameters are assumed to nonnegative. In addition, we assume positive initial
conditions (fo, mo, So)-

2.1. Negative Solutions. We recall a result guaranteeing nonnegativity of solu-
tions from [28, 29]:

Lemma 2.1. Consider the following ODE system,
(8) fo= F(fims),
(9) mn G(f,m,s),
(10) 5 o= H(f,m,s).
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Nonnegativity of solutions is preserved in time, that is,
anm0750 2 0 = Vie [Ovaam)a f(t)am(t),s(t) Z 0.

if and only if
VI(t),m(t),s(t) >0,
we have that

F(0,m,s), G(f,0,s), H(f,m,0) > 0.

Notice that by (6) that G(f,0,s) = 8fs(1 — (f + s)/K). Hence, if f(t)+ s(t) >
K at some time ¢ then 1 — (f +s)/K < 0 which gives G(f,0, s) < 0, which violates
the above lemma. This suggests negative solutions are possible with the current
model of TYC. This is stated in the following lemma.

Lemma 2.2. Consider the TYC system given by (5)-(7). Then there exists positive
initial data (fo,mo,S0), and a time interval [T1,T2] € (0,00), s.t for solutions
emanating from this data, the male population m(t) is negative on [T1,Ts].

Proof. Consider (5)-(7) then clearly we have,
F(0,m,5) = 0, H(f,m,0) = >0,

Thus, f,s > 0 for all time. However,

G(f,o,s>=6fs<1—f+s>,

K

and clearly for initial data fo,s0 > K, G(f,0,s) < 0, violating the necessary
requirement for positive solutions from Lemma 2.1, and will yield negative solutions
in the male population m. (Il

2.2. Finite Time Blow Up of Solutions. Interestingly, since it is possible to
obtain negative solutions in the male population, this then could lead to the pos-
sibility of finite time blow up in the female population. Finite time blow-up has
a rich history, we refer the interested reader to [29, 28, 15, 17]. In the forthcom-
ing theorems we show that finite blow up is possible for large enough initial data
or introduction rate of supermales. The former result is given in the following
Theorem.

Theorem 2.3. Consider the TYC system given by (5)-(7), with = 0. Then there
exists positive initial data ( fo, mo, so), such that solutions emanating from this data,
will blow-up in finite time, that is

limsup f — 400

t—T*<oo
or

limsup m — —

t—=T**<oo

Proof. Consider the equation for f expanded, namely,
;P B g
f=%Im=3% 2K

Now, by Lemma 2.2 we know that for large initial data sy and fy, say f§, s; > K,

that m(t) < 0 for ¢t € [T},Tz]. Let m = —m, where m(t) > 0 on t € [T}, T3], to

yield, 5 5 5
U R T ST

f*m fm? — %fms—éf.

fPm— —— fm?+ %fﬁzsféf.
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Rearranging results in,

;B B B.. B ,.,
I =5k oK g =g /M= of.
Since m < 0 on [T1,T3], we must have —d2 < m < —d;. The upper bound is
obvious, but we also have a lower bound, else the finite time blow-up of m and
subsequently f follows trivially. Thus via standard comparison, we have,

i 2 Bo1L ., B B(62)?

> f = — _2f_ _

frf=ttpr- Bty Ty oo
Clearly a solution to f will blow-up at a finite time T* for sufficiently large data.
That is, if

A4 2 fins —

By B(82)?
o 22y +5
(11) fo> -2 &%K
2K

Now we choose the data large enough s.t

fo = max(fo, f5)-
This ensures that 7% < T5 and since f is a sub-solution to (5), this implies that f
blows-up in finite time. This completes the proof of the blow-up of f.
The method of proof for the blow-up of m is similar. Essentially, by Lemma 2.2
we know that for large so and fo, that is say f§, s > K, m(t) < 0 on [Ty, T3].
Thus if we consider the equation for m(t) on [T}, T3], we see

m=gfm—kﬂfs—%]dm—%fmZ—%fms—%fsz—%sf—%fms—ém
We set m = —m, where m > 0 on [T, T3], to yield,
m:gfm—ﬁfs—%meJr%fm?—%fmw%fs%%sf?—%fms—am

We now assume 0 < d3 < f < dq4, that is, we consider the case where f has not

blown up by some intermediate time. The lower bound is obvious by positivity of

f- The upper bound is guaranteed if blow up in f has not occurred. Clearly, if

f has blown up then m(t) tends toward negative infinity in finite time. We shall

assume in the following that, indeed, f has an upper bound and has not blown up.
A simple comparison using positivity now yields,

- B 9. B3 _o 3B . . -
> — - — - — —
m Bo4s 2K((54) m 4+ 5x ™ 2K64ms om
B3 _ o .
> — —
2Km Cym,

where C; is a constant that depends on the parameters in the problem. Next
consider the differential equation
< 553 ~ 2 ~
m=—m*—Cm
2K !
Then the solution to the above differential equation will have a solution that will

blow-up at a finite time T"* for sufficiently large data, that is, if

. Gy
2K
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By comparison, this implies that m will go to negative infinite in finite time. This
completes the proof of the finite time blow-up of m. ([

Remark 1. From the above proof it is not clear that the blow up time in the
female and male population naturally coincide. However, numerical results does
show that this can occur.

The previous theorem assumed that there was only an initial introduction of
supermales through the initial condition s(0). By choosing large enough initial
supermales it is clear now that the male population can be come negative and that
the female or male population may blow up in finite time. In the forthcoming
theorem we turn our attention to the situation where p # 0, that is, the case of a
constant introduction of supermales. It will be shown that for any initial data that
there exists a critical introduction rate that will lead to blow in finite time.

Theorem 2.4. Consider the TYC system given by (5)-(7), with u > 0. For any
positive initial data (fo, mo, So) large or small, there exists a critical u*(fo, mo, So0),
such that for any p > pu*(fo, mo, So), solutions emanating from this data, will blow-
up in finite time, that is

limsup f — +o0
t—=T*<oo
or

limsup m — —o
t—=T** <o

Proof. We first choose p > § K. This guarantees that

G(f,0,) = fs (1 f;gs) <0

for any fy, and so following the methods of Theorem 2.3 we have negative solutions
for m. Following the same estimates as in Theorem 2.3 we arrive at:

i B B B B e

f—2Kf m+2Kfms 2fm 2Kfm of.
Now using the steady state solution of s, we have that

i B B oo B B . o

> B N - —6f.

fzo5f 52+2Kf§25 5 — o fm” —of
This yields

o B B p Bo2 | B(32)*+4

> Sy Nl S (et T -2

F2 gt ogtst s "o )!

Now if
Bo B(82)%+6
( 22 (22)K )

(13) pr = (%2) ;

2K96

then for any p > p* we obtain

¢ 562 2
> —= .
P> (52)1
This fact leads to the finite time blow-up of f for any positive initial condition.
The blow-up of m can be shown similarly. O

Remark 2. Note via (13), u* depends on the parameters in the problem, as well
as 0o - which in turn depends on the initial conditions (fo, m0, So)-
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3. FINITE TIME BLOW-UP IN THE PARTIAL DIFFERENTIAL EQUATIONS MODEL

The disadvantageous behavior observed in the previous section may be attenu-
ated in the presence of spatial pressures. Here, we examine the spatially explicit
version of the three species TYC model and prove the possibility of finite time
blow-up in the female or male population. To this end we use standard techniques
[15, 17, 28, 29] Consider the partial differential equations (PDE) model:

of _ 1 _

(14) 5 = AS+5BLIm =6,

(15) %—T — Am—i—%BLfm—i—BLfs—(Sm,
0s

(16) E = AS"‘M_(SS,

specified over the domain (z,t) C 2% (0, 00) and subject to homogeneous Neumann
boundary conditions on the boundary 0f2, that is,

Vf-n=Vm-n=Vs-n=0,

where L, 38, 0, and p are as defined previously. Again, the parameters, (, 9,
and p are assumed nonnegative. Positive initial data, (f(z,0), m(x,0),s(x,0)), is
assumed herein. We first show the possibility of finite time blow in the female
or male populations in the situation for large enough initial data where p = 0.
We then show, regardless of the initial condition size, that there exists a critical
introduction rate of supermales that leads to finite time blow-up. Hence, even in
the case of diffusion, the results of the previous section permeate into the PDE
model.

Theorem 3.1. Consider the TYC system given by (14)-(16), with p = 0. Then
there exists positive initial data (f(z,0),m(z,0),s(z,0)), such that solutions ema-
nating from this data, can blow-up in finite time, that is

limsup ||f||, = +o0

t—T*<oo
and
limsup ||m||, = o0
t—T** <oo
forallp > 1.

Proof. Consider the equation for the female population expanded:

of s B B
T TS Tre
Via Lemma 2.2 we know that for large s(z,0) and f(z,0), that is s(z,0), f(z,0) >
K, that m(z,t) < 0 for ¢t € [T1,T5] and = € Q. Let m = —m, where m > 0 for
t € [T1,T>] and x € Q. By direct substitution,
of B.. B p B
A T T TS A T
Integrating over the spatial domain €2 and rearranging yields,

%/Qfdx - %/ﬂfzmdx+%/ﬂfmsdx—§/ﬂfmdx

—%/erthx—é/Qfdx.

f*m fm? — %fms—éf.

2 — ——fm? + — frs — 0 f.
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Since m(z,t) < 0 for (z,t) € Q x [T1,Ts] then —d2 < m(x,t) < —d1, for posi-
tive constants §; and ds. Thus via standard comparison as earlier and Holder’s
inequality we have,

dt/ pae e (fm) - (5 250) f e

Define F(t / fdzx, then,

2
0= g o = (55 PO ko

which yields the finite time blow-up of F(t), for large enough initial data. That is
for

88 B(6§§+5)

:/Qf(ac,O)de : )

2K

Thus the L'() norm of f blows-up in finite time. Since LP(Q) < L'(Q), for
p > 1, we have that the LP norm of f blows up for any p, for large enough initial
conditions. This completes the proof of the blow-up of f. A similar proof for the
blow up in the male population can be established. (|

The previous theorem proves that the finite time blow up is a possibility even if
the only introduction of supermales is through the initial condition. In the following
theorem we prove that regardless of the initial condition size that there exists a
threshold to the introduction rate, u, such that rates beyond this value will lead to
finite time blow in the female population.

Theorem 3.2. Consider the TYC system given by (14)-(16), with u > 0. Then
for any positive initial data (f(x,0), m(z,0),s(x,0)), there exists a p* such that if
w > p*, then solutions emanating from this data, can blow-up in finite time, that is

limsup || f|[, = +o0

t—=T*<oo
and
limsup ||m||, = o0
t—T** <oo
for all p > 1.

Proof. Let > K. Following similar estimates as in the previous theorem yields,

%/Qfdx B /f2~dx+—/fmsdx—é/f dx——/medx 6/fdm.

Via Holder’s 1nequahty we have,

£ it () -5 o (32520 L

The result follows for
(562 | B62)? +6>
2 2K
502
2K6§

(17) >
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Remark 3. The thresholds provided in the current and present section, namely
(11), (12), (13), and (17) are not guaranteed to be sharp. In fact, numerical exper-
iments suggest the critical values of initial condition size or introduction may be
much smaller to yield negative solutions or finite time blow-up.

This section’s results motivate the following corollaries concerning the classical
four species TYC model.

Corollary 1. Consider the TYC system given by (1)-(4), with u = 0. Then
there exists positive initial data (f(x,0),m(x,0),s(z,0),r(x,0)), such that solutions
emanating from this data, can blow-up in finite time, that is

limsup ||f||, = +o0

t—T*<oo
and
limsup ||m||, = o0
t—T** <oo
forallp > 1.

Corollary 2. Consider the TYC system given by (1)-(4), with p > 0. Then for
any positive initial data (f(x,0), m(zx,0),s(x,0),7(x,0)), there exists a p* such that
if p > p*, then solutions emanating from this data, can blow-up in finite time, that
18

limsup ||f||, = +o0

t—T*<oco
and
limsup ||m||, = o0
t—T**<oo
for allp > 1.

4. NUMERICAL EXPERIMENTS

In this section, numerical experiments are given to illustrate that negativity of
solutions or finite time blow up is a possibility with the classical three species model.
Comparable numerical results can be established for the four species situation. In
the numerical simulations, the dynamical system is scaled into dimensionless form.

BK

In particular, we let f — i m — %, s — % , T — 0t and r = o5 The

dimensionless variables r is a ratio of the two time scales in the TYC model, that
is, the birth and death rates. The dimensionless system takes the form:

(18) fo= rmfL—f

(19) m = rmfL+2rsfL—m

(20) § = v—3s

where the logistic term is L = 1 — (f + m + s). In [10], population experiments of

guppy fish were given and subsequently used to determine the best parameters, in
the least squares sense, to the mating model, (18)-(19), with no supermales. The
best fit parameters suggested r ~ 17.8125. This value of r will be used throughout
the numerical simulations. All simulations are computed using a Runge-Kutta-
Fehlberg (RK45) and conducted in Matlab®.
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FIGURE 2. (a) Positive solutions are shown given the initial condi-
tions of f(0) = m(0) = .3 and s(0) = .1. (b) The simulation with
£(0) =m(0) = .3 and s(0) = 2.5. Notice that the male population
is clearly negative for an interval. Hence, s(0) = 2.5 > s*. (c¢) The
population densities given initial conditions of f(0) = m(0) = 4
and s(0) = 2.5. The female population is tending towards infinity
and we estimate the blow-up time as T ~ 0.18.

In Fig. 2(a) we show the populations over time for initial conditions f(0) =
m(0) = .3 and an initial introduction rate of supermales of s(0) = .1 with v = 0.
It is clear, that the populations remain nonnegative through the computational
domain. However, as we increase the initial supermale population then negative
solutions can persist in the male population. This is shown in Fig. 2(b) in the case
of f(0) = m(0) = .3 and s(0) = 2.5. Clearly, f(0) + m(0) + s(0) = 3.1 > 1, which
leads to L < 0 initially. This causes a large decline in the male population since
m(0) < 0. Subsequently, the male population becomes negative.

In turn, we determine the threshold s*, which may depend on f(0) and m(0),
such that Vs(0) > s* there exists an interval I C (0, 00) for which V¢ € I we have
m(t) < 0. In the situation for f(0) = m(0) = .3 then s* ~ 0.9194. In Fig. 3 we
show the critical threshold, s*, for initial populations f(0) = m(0) € [.1,.5].

If the initial supermale populations is further increased blow-up is possible. We
define s** as the threshold value of initial supermales such that ¥s(0) > s** then
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3.5
Region 3 : m(t) < 0 and Blow up

—m(t)<0
——m(t)<0 & blow up

o
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N

—
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1 

Region 1 : m(t) > 0

0.5 1 L L L L
0.1 015 02 025 03 035 04 045 05

fo=m,
FIGURE 3. Three regions in the phase space are shown. In Region
1, where s(0) < s*, positive solutions are guaranteed. In Region
2, where s** > s(0) > s*, negative solutions exist but finite time
blow up does not occur in either the female or male populations.
In Region 3, for s(0) > s** negative solutions exist and blow-up in
finite time occurs.

lim sup;_, 7+ .o f — 400 for finite time 7™, deemed the blow-up time. To illustrate,
let f(0) =m(0) = .4 and s(0) = 2.5. Then f(¢) blows-up in finite time as shown in
Fig. 2(c). The threshold s** is documented in Fig. 3.

Next, consider the situation where s(0) = 0. Let v* be the critical introduction
rate of supermales such that for all v > +* there exists an interval I C (0, 00) such
that m(¢) < 0 for all t € I. Further, by Theorem 2.4 it is known that a critical
~v** exists such that for all v > v** the female or male population will blow up in
finite time. Here, we determine the critical introduction rates for initial conditions
f(0) =m(0) € [.1,.5]. The results are shown in Fig. 4.

As indicated in Section 3, blow-up is possible in the partial differential equation
model. Here, we consider the dimensionless spatial-temporal TYC model,

(21) % = DAf+rmfL—f
(22) 8877: = DAm+rmfL+2rsfL —m
s

specified over the scaled spatial domain Q = (0,1) and ¢ € (0, c0). Again, homoge-
nous Neumann boundary conditions are assumed. Clearly, if we assume constant
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2 ; : : : | ——m(t)<0
——m(t)<0 & blow up

Region 3 : m(t) < 0 and Blow up

1.5} ]
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critical ~
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FIGURE 4. Three regions in the phase space are shown. In Region
1, where v < v*, positive solutions are guaranteed. In Region 2,
where v** > ~ > v* negative solutions exist but finite time blow
up does not occur in either the female or male populations. In
Region 3, for v > v** negative solutions exist and blow-up in finite
time occurs. In each simulation, s(0) = 0. It is evident that both
thresholds are independent of the initial condition size.

initial conditions, then the solution for f(z,t), m(z,t), and s(x,t) are constant for
all z € Q) for a fixed value of t. Hence, comparable numerical results are expected in
such a case. In Fig. 5(a) we show a simulation for which negative solutions exist in
the male population but finite time blow-up does not occur for s(z,0) = 2.5. Like-
wise, by increasing the initial condition of supermales to a value of s(z,0) = 2.75
we see finite time blow up at ¢ ~ ¢ = .1899399. This is shown in Fig. 5(b).

In the case of homogenous Dirichlet boundary conditions it is clear that the
boundaries could prevent blow up unless the initial conditions are large enough in
norm such that the reaction terms dominate over the diffusive processes. Indeed,
numerical simulations suggest that negativity of solutions and finite time blow-up
is possible. Here, we assume homogenous Dirichlet boundary conditions and let
the diffusion constant be .01. Assume f(z,0) = m(z,0) = z(1 — x) and s(z,0) =
48mazx(1l — x). In Fig. 6(a) we show simulations for $,,,, = 2 which generates
negative solutions in the male population. In Fig. 6(b) finite time blow-up at occurs
t =~ .1901902 in the female population when s,,,; is increased to 3.
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FIGURE 5. (a) Simulation showing negative solutions in the male
population for initial conditions f(z,0) = m(z,0) = .3 and
s(x,0) = 2.5. (b) Simulation with f(z,0) = m(z,0) = .3 and
s(z,0) = 2.75. The increase in the initial amount of supermales
results in finite time blow-up in the female population. Simulations

were conducted used Matlab®’s pdepe built-in partial differential
solver.

5. D1scussSION AND CONCLUSION

This paper proves and provides numerous numerical experiments indicating neg-
ativity of solutions or finite blow up is possible. Therefore, caution and discretion
should be taken in choosing the parameter regime and initial condition size when
utilizing the classical TYC model for predictions of the efficacy of the TYC strategy.

Of course, revisions to the TYC model may remove this inconsistency with phys-
ical reality that the current paradigm displays. A promising revision and modifica-
tion to the classical TYC model are models that include the Allee effect [4, 34] and
intraspecies competition [4] for female mates by the males and supermales. In [4]
a new model to the three species TYC strategy given in the same scaled variables

13
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FIGURE 6. (a) Simulation showing negative solutions in the male
population for initial conditions f(z,0) = m(x,0) = z(1 — z) and
s(x,0) = 48mazx(l — ), where S0, = 2. (b) Simulation with the
same initial conditions but with s,,,. = 3. The increase in the
maximum number supermales results in finite time blow-up in the
female population. Each simulation uses D = .01.

as in (18)-(20) is:
(24) e (L) () mes,

(25) moo= "mLJJ:S <£—1> (m*+2s*) —m,
(26) § = v—s,

where a < 1, is the Allee threshold. However, numerical experiments indicate that
negativity of solutions remains a possibility.

Assume v = 0 then for any initial conditions on f(0) and m(0) there exists a
critical value of s* such that male population will become negative for any initial
supermale population above or equal to s*. In In Fig. 7 we show the threshold
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in the range of initial values of supermales that leads to negative solutions for
f(0) = m(0) € [.1,.5]. Interestingly, finite time blow-up was not observed in any
population. It is conjectured that the intraspecies competition terms removes this
unrealistic dynamic since large populations will attenuate the growth rates of the
female and male populations.

Region 2 : m(t) <0 -

o
O
T

o
(o]
T

Region 1 :

critical s
o
~N

.
o

0.1 0.2 0.3 0.4 0.5
fo:m 0
FIGURE 7. Two regions in the phase space are shown. In Region
1, where s(0) < s*, positive solutions are guaranteed. In Region 2,
where s(0) > s*, negative solutions exist. No simulation rendered
finite time blow-up in either the female or male populations.

In contrast, the Allee effect affects the differentiability of the threshold curve
since at small populations the Allee effect can dominate the dynamics. To illustrate,
we determine the threshold for the model without the Allee effect and see the
threshold monotonically decreases as we increase the value of the initial female and
male populations. This is shown in Fig. 8. In fact, the intraspecies competition
for mates seems to have little effect on the negative solutions, however, blow-up
is not observed. This suggests, that the inclusion of intraspecies competition is a
crucial modeling feature. However, additional refinement of the TYC model is still
required to eliminate the possibility of negative solutions.

The cause of the negativity of solutions is a result of the form of the logistic term,
L=1-(f+m+s). This term properly stems from consideration of the standard
logistic model of population growth, P = aP(1—P/K). Hence, the term 1 —P/K is
the motivation behind L in the model of TYC. However, in the standard population
model when P > K we have P < 0. In the current situation, P = f 4+ m + s and
if P < 0 there is no guarantee that f ,m, or § are all simultaneously negative nor
the populations all positive or comparable size. Therein, lies the essential modeling
flaw.
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FIGURE 8. Two regions in the phase space are shown. In Region
1, where s(0) < s*, positive solutions are guaranteed. In Region 2,
where s(0) > s*, negative solutions exist. No simulation rendered
finite time blow-up in either the female or male populations. The
threshold for (red) Egs. (18)-(20) and (blue) Egs. (24)-(26) with
no Allee effect are given.

Alternatives to the logistic term are plentiful. For instance, one such alternative
is to consider a logistic term of the form exp(1 — (f +m + s)). Hence, a popu-
lations are still penalized with a dampened growth rate when populations exceed
the carrying capacity. However, preliminary analysis of this type of logistic term
have proven difficult for mathematical analysis and moreover can generate stable
nontrivial equilibrium solutions such that the total population size asymptotically
approaches values above the carrying capacity. Another alternative, is based on
the work of mating models (see [5, 12, 32] and references therein), where the fe-
male/male and female/supermale mating enter are modeled by mating functions
¢1(m,f) and ¢2(57f) such that ¢1(O7f) = d)l(mvo) = ¢2(O’f) = ¢2(3’0) = 0.
Criteria on the mating can then be established to guarantee positivity of solution
in the model of the TYC strategy.

In all, this paper indicates it still remains an open problem to determine a
complete mathematical model for the TYC strategy that is valid in a full parameter
regime and yields realistic solutions.
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