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This paper describes a new benchmark tool, Spatter, for assessing

memory system architectures in the context of a specific category

of indexed accesses known as gather and scatter. These types of

operations are increasingly used to express sparse and irregular data

access patterns, and they have widespread utility in many modern

HPC applications including scientific simulations, data mining and

analysis computations, and graph processing. However, many tra-

ditional benchmarking tools like STREAM, STRIDE, and GUPS

focus on characterizing only uniform stride or fully random accesses

despite evidence that modern applications use varied sets of more

complex access patterns.

Spatter is an open-source benchmark that provides a tunable and

configurable framework to benchmark a variety of indexed access

patterns, including variations of gather / scatter that are seen in HPC

mini-apps evaluated in this work. The design of Spatter includes

backends for OpenMP and CUDA, and experiments show how it can

be used to evaluate 1) uniform access patterns for CPU and GPU,

2) prefetching regimes for gather / scatter, 3) compiler implementa-

tions of vectorization for gather / scatter, and 4) trace-driven “proxy

patterns” that reflect the patterns found in multiple applications. The

results from Spatter experiments show, for instance, that GPUs typi-

cally outperform CPUs for these operations in absolute bandwidth

but not fraction of peak bandwidth, and that Spatter can better rep-

resent the performance of some cache-dependent mini-apps than

traditional STREAM bandwidth measurements.

1 Introduction

We consider the problem of how to assess the performance of mod-

ern memory systems with respect to indexed memory accesses, such

as gather and scatter (G/S) operations. Our motivation derives from
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both applications and hardware. On the application side, there are

many instances where memory operations involve loads or stores

through a level of indirection (e.g., reg ← base[idx[k]]). For

instance, such indexed memory access is common in scientific and

data analysis applications that rely on sparse and adaptive data ab-

stractions, including adaptive meshes, sparse matrices and tensors,

and graphs, which are our focus. On the hardware side, new CPU

architectures have begun to incorporate advanced vector function-

ality like AVX-512 and the Scalable Vector Extension (SVE) for

improving SIMD application performance.

Within this context, our strategy to understanding the interactions

between application-relevant G/S operations and modern hardware

relies on the development of a microbenchmarking tool. It aims to

express critical features of real G/S workloads, derived from applica-

tions but abstracted in a way that is easy to adopt by system-oriented

stakeholders. These include situations where (1) vendors and hard-

ware architects might wonder how new ISAs (such as AVX-512) and

their implementation choices affect memory system performance;

(2) application developers may consider how the data structures they

choose impact the G/S instructions their code compiles to; and (3)

compiler writers might require better data on real-world memory

access patterns to decide whether to implement a specific vectoriza-

tion optimization for sparse accesses. Although these groups could

turn to any number of memory-focused microbenchmarks available

today [19], we believe a gap still exists in the focused evaluation of

system performance for indexed accesses, including G/S workloads.

In light of these needs, we have formulated a new microbench-

marking tool called Spatter.1 It evaluates indexed access patterns

based on G/S operations informed by applications across different

language and architecture platforms. More importantly, we believe

Spatter can help to answer a variety of system, application, and tool

evaluation questions, some of which include: (1) What application

G/S patterns exist in the real world, and how do they impact memory

system performance? (2) How does prefetching affect the perfor-

mance of indexed accesses on modern CPU platforms? (3) How

does the performance of G/S change when dealing with sparse data

on CPUs and GPUs?

The design of the Spatter tool suite aims to address these questions.

At a basic level, Spatter provides tunable gather and scatter imple-

mentations. These include CUDA and OpenMP backends with

knobs for adjusting thread block size and ILP on GPUs and work-

per-thread on CPUs. Spatter also includes a scalar, non-vectorized

backend that can serve as a baseline for evaluating the benefits of

1The source code for Spatter is available at https://github.com/hpcgarage/spatter
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Table 1: High-Level Characterization of Application G/S Patterns.

Application (Extracted Patterns) Selected Kernels Gathers Scatters G/S MB (%)

AMG (mostly stride-1)

hypre_CSRMatrixMatvecOutOfPlace 1,696,875 0 217 (17.8)

LULESH (uniform-stride)

IntegrateStressForElems 828,168 382,656 155 (22.4)

InitStressTermsForElems 1,121,844 1,153,827 291 (67.6)

Nekbone (uniform-stride)

ax_e 2,948,940 0 377 (33.3)

PENNANT (fixed-stride, broadcast)

Hydro::doCycle 728,814 0 93 (13.9)

Mesh::calcSurfVecs 324,064 0 41 (39.5)

QCS::setForce 891,066 0 114 (45.5)

QCS::setQCnForce 1,214,318 323,800 197 (64.5)

Table 2: Details for Selected Applications and Kernels Used for G/S Pattern Extraction.

Application – Version Problem Size / Changes Kernel Notes

AMG – github.com/

LLNL/AMG commit 09fe8a7

Arguments -problem 1 -n 36 36 36 -P 4 4 4, also

mg_max_iter in amg.c set to 5 to limit iterations.

Entirety of each of the functions listed in Table 1.

LULESH – 2.0.3 Arguments -i 2 -s 40, also modifications to

vectorize the outer loop of the first loop-nest in

IntegrateStressForElems.

The first loop-nest in IntegrateStressForElems.

Arrays [xyz]_local[8] as well as B[3][8] give

stride-8 and stride-24. Also, the entirety of the

InitStressTermsForElems function.

Nekbone – 2.3.5 Set ldim = 3, ifbrick = true, iel0 = 32, ielN =

32, nx0 = 16, nxN = 16, stride = 1, internal np and

nelt distribution. Also, niter in driver.f set to 30 to

limit CG iterations.

First loop in ax (essentially a wrapped call to ax_e)

contains the observed stride-6.

PENNANT – 0.9 Config file sedovflat.pnt with meshparams 1920

2160 1.0 1.125 and cstop 5.

Entirety of each of the functions listed in Table 1.

Algorithm 1 Gather Kernel

for i in 1..N do

src = src + delta * i

for j in 1..vector_length do

dst[j] = src[idx[j]]

The basic gather algorithm. Scatter is performed analogously. False sharing is prevented
by giving each thread its own dst buffer for gather, and src buffer for scatter.

3.1 Kernel Algorithm

Spatter represents a memory access pattern as a short index buffer,

and a delta. At each base address address delta*i, a gather or scatter

will be performed with the indices in the index buffer. The pseu-

docode is in Algorithm 1, and a visual representation is in Figure 2.

This algorithm allows us to capture some spatial and temporal local-

ity: spatial locality can be controlled by choosing indices that are

close together, and temporal locality can be controlled by picking a

delta that causes your gathers to overlap. In either case, the locality

will be fixed for the entirety of the pattern.

3.2 Backend Implementations

Spatter contains Gather and Scatter kernels for three backends:

Scalar, OpenMP, and CUDA. A high-level view of the gather kernel

is in Figure 2, but the different programming models require that

the implementation details differ significantly between backends.

Spatter provides performance tuning knobs for both the OpenMP

and CUDA backbones, such as index buffer length and block size.

OpenMP: The OpenMP backend is designed to make it easy for

compilers to generate G/S instructions. Each thread will perform

some portion of the iterations shown in Figure 2. To ensure high

performance when gathering, each thread will gather into a local

destination buffer (vice-versa for scattering). This avoids the effects

of false sharing.

CUDA: Whereas in the OpenMP backend, each thread will be

assigned its own set of iterations to perform, in the CUDA program-

ming model, an entire thread block must work together to perform

an iteration of the G/S operation (shown in Figure 2) to ensure high

performance. These backends are similar, in that each thread block

gathers into thread local memory to allow for high performance.

The major difference is that each thread block must read the index

buffer into shared memory to achieve high performance on Spatter’s

indexed accesses.

Scalar: The Scalar backend is based on the OpenMP backend,

and is intended to be used as a baseline to study the benefits of using

CPU vector instructions as opposed to scalar loads and stores. The

major difference between this and the OpenMP backends is that the

Scalar backend includes a compiler pragma to prevent vectorization,

namely #pragma novec.

3.3 Benchmark Input

A Spatter user can evaluate a variety of memory patterns. Spatter

accepts either a single index buffer and run configuration as input,

or a JSON file containing many such patterns and configurations.
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Table 3: Experimental Parameters and Systems (OMP Denotes OpenMP, and OCL Denotes OpenCL).

System description Abbreviation System Type STREAM (MB/s) Threads, Backends

Knight’s Landing (cache mode) KNL Intel Xeon Phi 249,313 272 threads, OMP

Broadwell BDW 32-core Intel CPU (E5-2695 v4) 43,885 16 threads, OMP

Skylake SKX 32-core Intel CPU (Platinum 8160) 97,163 16 threads, OMP

Cascade Lake CLX 24-core Intel CPU (Platinum 8260L) 66,661 12 threads, OMP

ThunderX2 TX2 28-core ARM CPU 120,000 112 threads, OMP

Kepler K40c K40c NVIDIA GPU 193,855 CUDA

Titan XP Titan XP NVIDIA GPU 443,533 CUDA

Pascal P100 P100 NVIDIA GPU 541,835 CUDA

Volta V100 V100 NVIDIA GPU 868,000 CUDA

available to us for testing at the time of this writing and are instead

left for future work. experiments.

OpenMP: To control for NUMA effects, CPU systems are tested

using all the cores on one socket or one NUMA region if the system

has more than one CPU socket. Some systems like the KNL on Cori

have an unusual configuration where the entire chip is listed as 1

NUMA region with 272 threads. For all the OpenMP tests, Spatter is

bound to one socket and run using one thread per core on that socket.

The following settings are used for OpenMP tests:

(1) OMP_NUM_THREADS = <num_threads_single_socket>

(2) OMP_PROC_BIND = master

(3) OMP_PLACES = sockets

(4) KMP_AFFINITY = compact (only for KNL)

An important performance tuning factor is the index buffer length.

On CPUs, we find that it is best to use an index buffer that closely

matches the hardware vector length, or a small multiple. On the

CPUs we have tested, we achieve good performance by using an

index buffer length of 16, which is 2-4x the length of the vector

registers on our systems.

CUDA: When testing on GPUs, the block size for Spatter is

set at 1024 and an index buffer of length 256 is used. These set-

tings allow Spatter to reach bandwidths within 20% of the vendor

reported theoretical peak for both gather and scatter kernels. These

bandwidths are slightly different than what is typically reported, as

gather is designed to only perform reads, and scatter should only

perform writes.

Experimental Configurations: Runs of Spatter use the maxi-

mum bandwidth out of 10 runs for the platform comparison uniform

stride and application pattern tests. STREAM results used for com-

parisons with Spatter are generated using 225 elements with either

STREAM for CPU or BabelStream for GPU, while all Spatter uni-

form stride tests read or write at least 8GB of data on the GPU and

16GB on the CPU. The difference between CPU and GPU data sizes

results from most GPUs having less than 16 GB of on-board memory.

The application-specific pattern tests read or write at least 2GB.

5 Case Studies

Spatter is designed to be a flexible tool that can allow the user to

run many different memory access patterns and expose many knobs

used for tuning. In this section, we use Spatter to investigate several

questions regarding CPU and GPU memory architecture including:

A) uniform stride access on CPUs, B) uniform stride access on

GPUs, C) the effectiveness of G/S over scalar load/store, and D) the

performance of trace-derived G/S patterns on CPU.

5.1 CPU Uniform Stride

We begin with a basic test: running Spatter with the uniform stride

pattern, and increasing the stride by 2x until performance flattens.

A stride of 1 is analogous to the STREAM benchmark,2 except

that Spatter will only generate read instructions (gathers) for the

gather kernel and write instructions for the scatter kernel, meaning

the bandwidths should be slightly different. Fig. 3 shows the results

of our uniform stride tests on CPUs. We would expect that as stride

increases by a factor of 2, bandwidth should drop by half; the en-

tire cache line is read in but only every other element is accessed.

This should continue until about stride 8, as we are then using one

double from every cache line. This is what we see on Naples, but

performance continues to drop on TX2, Skylake, and Broadwell.

Interestingly, Broadwell performance increases at stride-64, even

out-performing Skylake. We can further use Spatter to investigate

these two points: 1) why does Broadwell outperform Skylake at high

strides, and 2) why does TX2 performance drop so dramatically past

1/16?

5.1.1 Disabling Prefetching To get an idea of what is causing Broad-

well to outperform Skylake, we turn prefetching off with Model

Specific Registers (MSRs) and re-run the same uniform stride pat-

terns. Fig. 4a and b shows the results from this test. For Broadwell,

performance does not show the same increase for stride-64 with

prefetching off and it instead bottoms out after stride-8. We conclude

that one of Broadwell’s prefetchers pulls in two cache lines at a

time for small strides but switches to fetching only a single cache

line at stride-64 (512 bytes). We can understand the performance

discrepancy between Broadwell and Skylake by looking at Fig. 4b.

Performance drops to 1/16th of peak, as Skylake always brings in

two cache lines, no matter the stride. We did not get the opportunity

to run on the Thunder X2 without prefetching since it does not have

a similar MSR equivalent, but we suspect similar effects are at play:

one of the prefetchers likely always brings in the next line, although

that only helps to explain performance dropping through stride-16,

not through stride-64.

2On a CPU, we use an index buffer of length 8 and fill it with indices [1*stride, 2*stride,
...]. We set the delta to be 8*stride, so that there is no data reuse and indeed stride-1
matches the STREAM pattern.
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suggested that using vectorized instructions at lower strides reduces

overall unique instruction count and overall request pressure on the

memory system.

Lesson: Spatter shows that the G/S instructions themselves lead

to higher performance, especially on Knights Landing. G/S instruc-

tions have a further benefit over scalar in that the data loaded is

already in a vector register, whereas after performing scalar loads,

further rearrangement would be needed to move the data into vector

registers.

5.4 Application-derived G/S Patterns

While the three previous sections have focused on uniform stride

patterns, Spatter is also able to run more complex patterns. To demon-

strate Spatter’s ability to emulate patterns found in real applications,

we take the top patterns from several DOE mini-apps (as described

in Section 2) and run them in Spatter. The patterns that come out

of Section 2 are described by a buffer of offsets and a delta. These

offsets and deltas can be found in Table 5 in Appendix A.

In Section 5.4.1, we first look at how these patterns perform in

aggregate, and see if they correlate with STREAM bandwidth. In

Section 5.4.2, we look at each pattern individually, and look for

trends among the applications. Finally, in Section 5.4.3, we show a

method for plotting results that allows us to examine absolute and

relative performance of patterns at the same time.

5.4.1 Application Patern / STREAM Correlation Another question

is to what extent application-specific patterns are more informative

than STREAM, considering CPUs and GPUs separately. Table 4

shows the harmonic mean of the performance of the patterns. To see

if the performance correlates with STREAM, we calculate Pearson’s

correlation coefficient, R, as follows:

R = cov
(

X ,ST REAM
)(

std
(

X
)

∗ std
(

ST REAM
))

(1)

According to Table 4, in aggregate, LULESH shows poor per-

formance on most CPU platforms. The next section shows that this

result is due to the LULESH-S3 pattern, which is a scatter with

delta 0. We believe this configuration triggers cache invalidations

for multicore writebacks.

We also see that AMG and Nekbone show higher performance

than STREAM in general. Inspecting their patterns, the deltas tend

to be small, which implies that gathered addresses overlap. Thus,

caching effects may explain this observation.

More interestingly, we see that the CPU runs of the Nekbone

and PENNANT patterns show poor correlation (close to 0) with

STREAM. In the case of AMG, the patterns perform much better

than STREAM, whereas in PENNANT, the patterns perform much

worse. This difference suggests that Spatter indeed captures distinct

behaviors from STREAM, and that the patterns Spatter generates

are not well approximated by STREAM on CPUs. For GPU systems,

however, the R coefficient shows that STREAM is much better

correlated (close to 1) with the Spatter results. This observation may

reflect the smaller and simpler memory hierarchy of GPUs compared

to CPUs.

5.4.2 Comprehensive Evaluation Across Platforms and Applications

The design of Spatter makes it easy to collect lots of data, over many

platforms and patterns, and these results can reveal more than single-

number benchmarks like STREAM as discussed in Section 5.4.1.

A natural question is whether that data facilitates any qualitative

comparisons about broad classes of platforms or applications. For

example, what can we say generally about CPU-oriented memory

system design today versus GPU-oriented design? Are applications

uniform in their patterns, or are they more varied?

To get a handle on such questions, we take the per-platform and

per-pattern data, and render them using small-multiple radar plots

as shown in Fig. 7 and Fig. 8. A single radar in this plot shows the

performance of a pattern relative to its stride-1 performance across

all CPUs (blue) and GPUs (green). The inner circle represents 100%

of stride-1 bandwidth, meaning that any value larger than this must

be utilizing caching. This detailed look at the performance gives us

a number of insights:

(1) Consider LULESH-S3 in Fig. 8. It indeed has very low per-

formance, except on the TX2, which appears to handle the

scenario of writing to the same location over and over very

well. This behavior could be due to an architectural optimiza-

tion that recognizes data is being overwritten before it is ever

used.

(2) Overall, we see that the GPUs are largely unable to outper-

form their stride-1 bandwidth. However, this behavior may be

changing in newer generations. The V100 values peak above

the 100% circle for many of the patterns.

(3) The Naples system (bottom-right of the CPU radars) largely

under-performs, save for one set of patterns, Nekbone. Cu-

riously, there is not much that differentiates the Nekbone

patterns from LULESH, as both have uniform stride patterns

with small deltas. Thus, these patterns may require more

thorough profiling and investigation.

(4) Restricting ourselves to the Intel processors, we see in the

Gather patterns that improvements to the caching architecture

have been made between Broadwell and the new Skylake and

Cascade Lake architectures. We see a further improvement

in Cascade Lake when looking at the LULESH scatter pat-

terns, as it outperform Skylake as well. Thus, even within the

same architecture family, tweaks to caching and prefetching

models can improve performance for hard-to-optimize scatter

operations.

(5) To first order, performance appears most sensitive to each pat-

tern’s delta (distance between G/S operations). Looking at the

PENNANT patterns, we see a large difference in performance

starting at PENNANT-G5. If we look at Table 5, we see that

all the patterns before this have deltas less than or equal to

4, and the patterns including PENNANT-G5 and after have

deltas larger than 400. Section 5.4.3 further expands on these

patterns with a more detailed look at absolute and relative

performance for these later PENNANT patterns.

Lesson: Spatter can be used to differentiate performance across

architectures and can show how improved caching and prefetching

hardware support in CPUs and limited caching in GPUs affects

patterns with reuse. Additionally, these results can be correlated with

the patterns themselves to show that delta is a primary indicator of

performance for G/S operations.
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6.1 Heterogeneous Architectural Benchmarking

Memory access patterns have been studied extensively on hetero-

geneous and distributed memory machines, where data movement

has been a concern for a long time. Benchmarks such as SHOC, Par-

boil, and Rodinia provide varying levels of memory access patterns

that are critical to HPC application [5, 7, 25]. For example, SHOC

contains “Level 0” DeviceMemory and BusSpeedDownload bench-

marks that can be used to characterize GPUs and some CPU-based

devices. Likewise, other recent work has investigated vectorization

support with hardware and compiler suites for next-generation ap-

plications for the SIERRA supercomputers [21]. Spatter intends to

be a more focused microbenchmark that supplements these exist-

ing benchmark suites and studies. It also aims to provide a simpler

mechanism for comparing scatter and gather operations across pro-

gramming models and architectures.

Other work focuses on optimizing memory access patterns for

tough-to-program heterogeneous devices like GPUs. Recent work by

Lai, et al. evaluates the effects of TLB caching on GPUs, develops

an analytical model to predict the caching characteristics of G/S and

then develops a multi-pass technique to improve the performance

of G/S on modern GPU devices [17]. Dymaxion takes an API ap-

proach to transforming data layouts and data structures and looks at

scatter and gather as part of a sparse matrix-vector multiplication

kernel experiment [6]. Jang et al. characterize loop body random

and complex memory access patterns and attempt to resolve them

into simpler and regular patterns that can be easily vectorized with

GPU programming languages [14]. Finally, CuMAPz provides a

tool to evaluate different optimization techniques for CUDA pro-

grams with a specific focus on access patterns for shared and global

memory [16].

6.2 Extensions to Other Architectures

One additional motivation for this work is to better implement sparse

access patterns on nontraditional accelerators like FPGAs and the

Emu Chick. For FPGAs, the Spector FPGA Suite provides several

features that have influenced the design of our benchmark suite

including user-defined parameters for block size, work item size,

and delta settings [11].

Spector uses OpenCL-based High-Level Synthesis and compiles a

number of different FPGA kernels with various parameters and then

attempts to pick the best configuration to execute on a specific FPGA

device. While this process can be time-consuming for FPGAs due

to routing heuristics, it could also be incorporated into a benchmark

like Spatter to pick and plot the best result for a given configuration

(i.e., work item size, block size, and vector length). This is supported

but not automated in the current version of Spatter.

Finally, there is also work in computer architecture that explores

the area of adding more capabilities to vector units. SuperStrider

and Arm’s Scalable Vector Extension both aim to implement G/S

operations in hardware [23, 24]. Similarly, the Emu system focuses

on improving random memory accesses by moving lightweight

threads to the data in remote DRAM [9]. Spatter complements these

hardware designs and associated benchmarking by allowing users to

test how their code can benefit from dedicated data rearrangement

units or data migration strategies.

7 Conclusions and Future Work

This work is motivated by the growing importance of indexed ac-

cesses in modern HPC applications and specifically looks at the use

of gather and scatter operations in modern applications like the DOE

mini-apps investigated in Section 2. Spatter serves as a configurable

benchmark suite that can be used to better evaluate these types of

indirect memory accesses by using pattern-based inputs to generate a

wide class of indexed memory access patterns. The presented exper-

iments suggest how this tool could be used by architects to evaluate

new prefetching hardware or instructions for gather and scatter, how

compiler writers can inspect the performance implications of their

generated code, and potentially how application developers could

profile representative portions of their application that rely on these

operations.

We envision that the Spatter benchmark will be a tool that can

be used to examine any memory performance artifact that exists in

sparse codes. The current model that Spatter implements, which is a

single index buffer and delta for each pattern, is descriptive of a wide

range of patterns that we have seen in DOE mini-apps as well as

related benchmarks like STREAM and STRIDE. However, certain

aspects of the memory hierarchy cannot be properly examined by

the current version of Spatter, especially those relating to temporal

locality.

To increase Spatter’s ability to model memory access patterns, we

plan to expand the benchmark suite with the following features: (1)

model temporal locality for accesses using time delta patterns to bet-

ter represent cacheable access patterns, (2) investigate mathematical

and AI techniques for modeling more complex access patterns than

can be represented with combinations of stride and delta parameters,

and (3) develop new open-source techniques for extracting sparse

memory access patterns from applications in a timely fashion. For

this last goal, we are currently working on modeling 2D and 3D

stencil operations from a proprietary full waveform inversion code

used for ocean surveying. Other features that we are investigating

for inclusion into Spatter are kernels written with intrinsics as well

as new backends for Kokkos, SyCL, and novel architectures like

FPGAs or the Emu Chick.

Our goal is also to make Spatter as easy to use as possible, and

useful for a wide audience. To aid in this effort, we plan to make

the following upgrades to the codebase: (1) support for OpenMP

4.5 and SyCL backends, (2) automation of parameter selection, (3)

optimized CPU backends that make use of prefetching and streaming

accesses, and (4) make as much of our tracing and trace analysis

infrastructure available along with our codebase, which is open-

source and available on Github.
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A Application Gather / Scatter Patterns

Table 5 lists all the patterns used in evaluation of the Spatter suite.

Table 5: Listing of Patterns

Gather Pattern Index Delta Type

PENNANT-G0 [2,484,482,0,4,486,484,2,6,488,486,4,8,490,488,6] 2

PENNANT-G1 [0,2,484,482,2,4,486,484,4,6,488,486,6,8,490,488] 2

PENNANT-G2 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 2 Stride-4

PENNANT-G3 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 2

PENNANT-G4 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 4 Broadcast

PENNANT-G5 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 4

PENNANT-G6 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 480

PENNANT-G7 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 482

PENNANT-G8 [2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0] 129608

PENNANT-G9 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388852 Broadcast

PENNANT-G10 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast

PENNANT-G11 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast

PENNANT-G12 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408

PENNANT-G13 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408

PENNANT-G14 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 1036816

PENNANT-G15 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 1882384 Broadcast

LULESH-G0 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 Stride-1

LULESH-G1 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 8 Stride-1

LULESH-G2 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8

LULESH-G3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24

LULESH-G4 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 4 Stride-24

LULESH-G5 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24

LULESH-G6 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24

LULESH-G7 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 41 Stride-1

NEKBONE-G0 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 3 Stride-6

NEKBONE-G1 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6

NEKBONE-G2 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6

AMG-G0 [1333,0,1,36,37,72,73,1296,1297,1332,1368,1369,2592,2593,2628,2629] 1 Mostly Stride-1

AMG-G1 [1333,0,1,2,36,37,38,72,73,74,1296,1297,1298,1332,1334,1368] 1 Mostly Stride-1

Scatter Pattern Index Delta Type

PENNANT-S0 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 1 Stride-4

LULESH-S0 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8

LULESH-S1 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24

LULESH-S2 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24

LULESH-S3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 0 Stride-24
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