Evaluating Gather and Scatter Performance on CPUs and GPUs

Patrick Lavin Jeffrey Young Richard Vuduc
Georgia Tech Georgia Tech Georgia Tech
plavin3 @ gatech.edu jyoung9 @ gatech.edu richie@cc.gatech.edu
Jason Riedy Aaron Vose Daniel Ernst

Lucata Corporation
jason@acm.org

ACM Reference Format:

Patrick Lavin, Jeffrey Young, Richard Vuduc, Jason Riedy, Aaron Vose,
and Daniel Ernst. 2020. Evaluating Gather and Scatter Performance on CPUs
and GPUs. In The International Symposium on Memory Systems (MEMSYS
2020), September 28-October 1, 2020, Washington, DC, USA. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3422575.3422794

This paper describes a new benchmark tool, Spatter, for assessing
memory system architectures in the context of a specific category
of indexed accesses known as gather and scatter. These types of
operations are increasingly used to express sparse and irregular data
access patterns, and they have widespread utility in many modern
HPC applications including scientific simulations, data mining and
analysis computations, and graph processing. However, many tra-
ditional benchmarking tools like STREAM, STRIDE, and GUPS
focus on characterizing only uniform stride or fully random accesses
despite evidence that modern applications use varied sets of more
complex access patterns.

Spatter is an open-source benchmark that provides a tunable and
configurable framework to benchmark a variety of indexed access
patterns, including variations of gather / scatter that are seen in HPC
mini-apps evaluated in this work. The design of Spatter includes
backends for OpenMP and CUDA, and experiments show how it can
be used to evaluate 1) uniform access patterns for CPU and GPU,
2) prefetching regimes for gather / scatter, 3) compiler implementa-
tions of vectorization for gather / scatter, and 4) trace-driven “proxy
patterns” that reflect the patterns found in multiple applications. The
results from Spatter experiments show, for instance, that GPUs typi-
cally outperform CPUs for these operations in absolute bandwidth
but not fraction of peak bandwidth, and that Spatter can better rep-
resent the performance of some cache-dependent mini-apps than
traditional STREAM bandwidth measurements.

1 Introduction

We consider the problem of how to assess the performance of mod-
ern memory systems with respect to indexed memory accesses, such
as gather and scatter (G/S) operations. Our motivation derives from

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

MEMSYS 2020, September 28-October 1, 2020, Washington, DC, USA

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8899-3/20/09. .. $15.00
https://doi.org/10.1145/3422575.3422794

NanoSemi Inc.
Aaron.Vose @nanosemitech.com

Hewlett Packard Enterprise
daniel.ernst@hpe.com

both applications and hardware. On the application side, there are
many instances where memory operations involve loads or stores
through a level of indirection (e.g., reg < base[idx[k]]). For
instance, such indexed memory access is common in scientific and
data analysis applications that rely on sparse and adaptive data ab-
stractions, including adaptive meshes, sparse matrices and tensors,
and graphs, which are our focus. On the hardware side, new CPU
architectures have begun to incorporate advanced vector function-
ality like AVX-512 and the Scalable Vector Extension (SVE) for
improving SIMD application performance.

Within this context, our strategy to understanding the interactions
between application-relevant G/S operations and modern hardware
relies on the development of a microbenchmarking tool. It aims to
express critical features of real G/S workloads, derived from applica-
tions but abstracted in a way that is easy to adopt by system-oriented
stakeholders. These include situations where (1) vendors and hard-
ware architects might wonder how new ISAs (such as AVX-512) and
their implementation choices affect memory system performance;
(2) application developers may consider how the data structures they
choose impact the G/S instructions their code compiles to; and (3)
compiler writers might require better data on real-world memory
access patterns to decide whether to implement a specific vectoriza-
tion optimization for sparse accesses. Although these groups could
turn to any number of memory-focused microbenchmarks available
today [19], we believe a gap still exists in the focused evaluation of
system performance for indexed accesses, including G/S workloads.

In light of these needs, we have formulated a new microbench-
marking tool called Spatter.! It evaluates indexed access patterns
based on G/S operations informed by applications across different
language and architecture platforms. More importantly, we believe
Spatter can help to answer a variety of system, application, and tool
evaluation questions, some of which include: (1) What application
G/S patterns exist in the real world, and how do they impact memory
system performance? (2) How does prefetching affect the perfor-
mance of indexed accesses on modern CPU platforms? (3) How
does the performance of G/S change when dealing with sparse data
on CPUs and GPUs?

The design of the Spatter tool suite aims to address these questions.
At a basic level, Spatter provides tunable gather and scatter imple-
mentations. These include CUDA and OpenMP backends with
knobs for adjusting thread block size and ILP on GPUs and work-
per-thread on CPUs. Spatter also includes a scalar, non-vectorized
backend that can serve as a baseline for evaluating the benefits of

I'The source code for Spatter is available at https://github.com/hpcgarage/spatter

https://doi.org/10.1145/3422575.3422794
https://doi.org/10.1145/3422575.3422794

vector load instructions over their scalar counterparts. Lastly, Spat-
ter has built-in support for running parameterized memory access
patterns and custom patterns. We show, for instance, how one can
collect G/S traces from Department of Energy (DOE) mini-apps to
gain insights or make rough predictions about performance for hot
kernels that depend on indexed accesses (Section 2).

This paper presents the structure of the Spatter benchmark tool,
and then documents experimental results from a number of platforms.
Our initial evaluations of Spatter show that newer GPU architectures
perform best in absolute bandwidth for both gather and scatter oper-
ations, in part due to memory coalescing and faster memories. AMD
Naples performs best of all the CPU-based platforms (Broadwell,
Skylake, TX?2) for strided accesses. A study of prefetching with
Spatter further shows how G/S benefits from modern prefetching
across Broadwell and Skylake CPUs. Spatter’s scalar backend is also
used to demonstrate how compiler vectorization can improve G/S
with large improvements for both Skylake and Knight’s Landing
(Section 5.3). Experiments for three DOE mini-apps show G/S per-
formance improvements enabled by caching on CPU systems and
by fast HBM memory on GPUs. These parameterized access pattern
studies also suggest that STREAM bandwidth does not correlate
well with specific mini-apps that are cache-dependent, which further
motivates benchmarks like Spatter that do better.

2 Gather / Scatter in Real-World Applications

To motivate our interest in G/S performance, we studied several
prominent DOE mini-apps from the CORAL and CORAL-2 pro-
curements [1, 2]. Such software provides a rich source of information
about the computational and memory behavior requirements of crit-
ical scientific workloads in both government as well as academic
environments. Many of these workloads contain important kernels
which stress G/S performance. Indeed, one aim of Spatter is to
leverage such mini-apps as a source of real-world G/S patterns.

Table 5 in the Appendix provides detailed information on the
specific patterns extracted from these applications, so we focus on
the high-level characteristics of each application in this section.
We note that many of these patterns are complex in that the index
defining the G/S does not fit into our categories (broadcast, stride-N,
mostly stride-1) as is discussed in Section 3 and Section 5.

In particular, this work considers mini-apps from CORAL and
CORAL-2, including AMG [28], LULESH [15], and Nekbone [10].
We built these mini-apps targeting ARMv8-A with support for Arm’s
Scalable Vector Extension (SVE) [24] at a vector length of 1024
bits. The resulting executables were run through an instrumented
version of the QEMU functional simulator [4] to extract traces of all
instructions accessing memory along with their associated virtual
addresses. From this instruction stream, collected from rank 0, we
examine only G/S instructions, and extract the base address and
offset vector for each, along with their frequencies. The problem
sizes are chosen so as to prioritize a realistic working set with 64
MPI ranks per node with one thread per rank, while the number
of iterations is less emphasized. For these apps, it is expected that
multiple kernel iterations will have many patterns in common. More
information on how we configured these codes is found in Table 2.

Table 1 shows the G/S characteristics extracted from several
kernels selected from the aforementioned mini-apps, along with

|n9uts / ____Snatter --. Outputs

§ Num G/SS & Backend / Time (s)

Add
né» el CUDA BW (GB/S)
€| |S Uniform OpenMP)
_§ % Custom [i Scalar Loy ’(3 a;z;onal)
3| L [oapr orrre Statistics
= PAPI Cntrs

| Delta : |

Figure 1: An overview of the“Spatter benchmark with inputs
and outputs.

the percentage of data motion performed by G/S operations. The
reported G/S data motion percentages are conservative, as current
data records all scalar loads and stores them as being 64 bits, while
a significant fraction of 32-bit scalar data types is expected.

Examination of the G/S behavior results in the observation of
a small number of common pattern classes: uniform-stride, where
each element of a gather is a fixed distance from the preceding
element; broadcast, where some elements of a gather share the same
index; mostly stride-1, in which some elements of a gather are a
single element away from the preceding element; and more complex
strides, in which elements of a gather have a complicated pattern
containing many different strides.

We can make a few high-level remarks about Table 1. First, gath-
ers are more common than scatters. Secondly, G/S can account for
high fractions of total load / store traffic (last column; up to 67.6%,
or just over two-thirds, in these examples). Thirdly, the appearance
of differing categories of stride types suggests that there are multi-
ple opportunities for runtime (inspector / executor) and hardware
memory systems to optimize for a variety of G/S use-cases, which
Spatter can then help evaluate.

2.1 Open Source Techniques for Pattern Analysis

The application analysis done in this work depends on a custom,
closed-source QEMU functional simulator that uses an SVE vector
size of 1024 and data from the first rank of an MPI run, which may
slightly differ from other ranks, along with post-processing scripts
to extract the most utilized G/S patterns. We recognize this is a
limitation of the current work in that trace capture and analysis can
be one of the most time-consuming portions of an analysis of G/S
patterns.

A useful open-ended project that would improve pattern inputs
for not just Spatter but many other application analysis frameworks
would be a tool based on either DynamoRio (which supports AVX-
512 and SVE instructions) or Intel Architecture Code Analyzer
(IACA) that generates this type of data in a less time-consuming
fashion and that performs correlation and clustering across all ranks
of an application for CPU and GPU codes.

3 Design of the Spatter Benchmark

‘We have developed Spatter because existing benchmarks like STREAM [19]

and STRIDE [22] focus on uniform stride accesses and are not
configurable enough to handle non-uniform, indirect accesses or
irregular patterns. For more information on related benchmarks, see
Section 6. Figure 1 shows a conceptual view of the Spatter bench-
mark. The design of the benchmark is described further below.

Table 1: High-Level Characterization of Application G/S Patterns.

Application (Extracted Patterns) Selected Kernels Gathers Scatters G/S MB (%)
AMG (mostly stride-1)
hypre_CSRMatrixMatvecOutOfPlace 1,696,875 0 217 (17.8)
LULESH (uniform-stride)
IntegrateStressForElems 828,168 382,656 155 (22.4)
InitStressTermsForElems 1,121,844 1,153,827 291 (67.6)
Nekbone (uniform-stride)
ax_e 2,948,940 0 377 (33.3)
PENNANT (fixed-stride, broadcast)
Hydro: :doCycle 728,814 0 93 (13.9)
Mesh: :calcSurfVecs 324,064 0 41 (39.5)
QCS::setForce 891,066 0 114 (45.5)
QCS: :setQCnForce 1,214,318 323,800 197 (64.5)

Table 2: Details for Selected Applications and Kernels Used for G/S Pattern Extraction.

Application — Version Problem Size / Changes

Kernel Notes

AMG -

LULESH -2.0.3

github.com/ Arguments -problem 1 -n 36 36 36 -P 4 4 4,also Entirety of each of the functions listed in Table 1.
LLNL/AMG commit @9fe8a7 mg_max_iter in amg.c set to 5 to limit iterations.
Arguments -i 2 -s 40, also modifications to The first loop-nest in IntegrateStressForElems.

vectorize the outer loop of the first loop-nest in Arrays [xyz]_locall[8] as well as B[3][8] give

IntegrateStressForElems.

Nekbone — 2.3.5

stride-8 and stride-24. Also, the entirety of the
InitStressTermsForElems function.

Set 1dim = 3, ifbrick = true, iel® = 32, ielN = First loop in ax (essentially a wrapped call to ax_e)

32,nx0 = 16,nxN = 16, stride = 1, internal np and contains the observed stride-6.
nelt distribution. Also, niter in driver.f set to 30 to

limit CG iterations.
PENNANT -0.9
2160 1.0 1.125and cstop 5.

Config file sedovflat.pnt with meshparams

1920 Entirety of each of the functions listed in Table 1.

Algorithm 1 Gather Kernel

foriin 1.N do
src = src + delta * i
for j in 1..vector_length do
dst[j] = srclidx[j1]

The basic gather algorithm. Scatter is performed analogously. False sharing is prevented
by giving each thread its own dst buffer for gather, and src buffer for scatter.

3.1 Kernel Algorithm

Spatter represents a memory access pattern as a short index buffer,
and a delta. At each base address address deltaxi, a gather or scatter
will be performed with the indices in the index buffer. The pseu-
docode is in Algorithm 1, and a visual representation is in Figure 2.
This algorithm allows us to capture some spatial and temporal local-
ity: spatial locality can be controlled by choosing indices that are
close together, and temporal locality can be controlled by picking a
delta that causes your gathers to overlap. In either case, the locality
will be fixed for the entirety of the pattern.

3.2 Backend Implementations

Spatter contains Gather and Scatter kernels for three backends:
Scalar, OpenMP, and CUDA. A high-level view of the gather kernel
is in Figure 2, but the different programming models require that
the implementation details differ significantly between backends.
Spatter provides performance tuning knobs for both the OpenMP
and CUDA backbones, such as index buffer length and block size.

OpenMP: The OpenMP backend is designed to make it easy for
compilers to generate G/S instructions. Each thread will perform
some portion of the iterations shown in Figure 2. To ensure high
performance when gathering, each thread will gather into a local
destination buffer (vice-versa for scattering). This avoids the effects
of false sharing.

CUDA: Whereas in the OpenMP backend, each thread will be
assigned its own set of iterations to perform, in the CUDA program-
ming model, an entire thread block must work together to perform
an iteration of the G/S operation (shown in Figure 2) to ensure high
performance. These backends are similar, in that each thread block
gathers into thread local memory to allow for high performance.
The major difference is that each thread block must read the index
buffer into shared memory to achieve high performance on Spatter’s
indexed accesses.

Scalar: The Scalar backend is based on the OpenMP backend,
and is intended to be used as a baseline to study the benefits of using
CPU vector instructions as opposed to scalar loads and stores. The
major difference between this and the OpenMP backends is that the
Scalar backend includes a compiler pragma to prevent vectorization,
namely #pragma novec.

3.3 Benchmark Input

A Spatter user can evaluate a variety of memory patterns. Spatter
accepts either a single index buffer and run configuration as input,
or a JSON file containing many such patterns and configurations.

Pattern Specification: Spatter currently provides robust mecha-
nisms for representing spatial locality with both standard patterns
and more complex, custom patterns for representing indirect ac-
cesses. In Spatter, a memory access pattern is described by specify-
ing (1) either gather or scatter (2), a short index buffer, (3) a delta,
and (4) the number of gathers or scatters to perform. Spatter will
determine the amount of memory required from these inputs. Spatter
includes three built-in, parameterized patterns, which are Uniform
Stride, Mostly Stride-1, and Laplacian. These all describe small
index sets, which should be thought of as the offsets for a single G/S.
When combined with a delta, these will describe a memory access
pattern. They are described in further detail below.

3.3.1 Uniform Stride The Uniform Stride index buffer is specified
to Spatter with UNIFORM:N: STRIDE. It generates an index buffer of
size N with stride STRIDE. For example, the index buffer generated
by UNIFORM: 8:4 is [0,4,8,12,16,20,24,28].

3.3.2 Mostly Stride-1 The Mostly Stride-1 index is the result of ac-
cessing a few elements sequentially, and then making some jump and
accessing a few more elements sequentially. In code, this could be
the result of accessing the same few members of structs in an array, or
from accessing a sub-block of a matrix. In Spatter, you can specify an
MS1 pattern with MS1:N:BREAKS : GAPS. The pattern will be length N,
with gaps at BREAKS, with gaps of size GAPS. For example, the index
buffer generated by MS1:8:4:201s [0,1,2,3,23,24,25,26].

3.3.3 Laplacian The Laplacian index is based on Laplacian stencils
from PDE solvers. Spatter can generate 1-D, 2-D, or 3-D stencils
with the pattern LAPLACIAN:D:L:SIZE. This creates a D-dimensional
stencil, with each “branch” of length L, for a problem size of SIZE.
Even though a 2- or 3-D problem can be specified, Spatter still only
allocates a 1-D data array. Thus the problem size must be specified in
the stencil so that Spatter can calculate the distances of the neighbors
in the stencil. For example, the input LAPLACIAN: 2:2: 100 generates

the classic 5-point stencil [0, 100,198,199, 200,201, 202,300,4001,

which may be more familiar to users in the non-zero-based form,
[-200,-100,-2,-2,0,1,2,100,200].

3.3.4 Custom Patterns (Complex Accesses) Finally, if users want to
represent a more complex pattern not specified above, they can spec-
ify a pattern index buffer as . /spatter -p idx@,idx1,...,idxN.
This allows users to develop more complex and irregular kernels that
often show up in HPC applications. The use of custom patterns is
the basis of ongoing research described in Section 7.

Delta Specification: To form a full memory access pattern, Spat-
ter needs an index buffer, such as the ones described above, and a
delta. The index buffer will be used as the offsets for a gather or
scatter with base addresses @, delta, 2xdelta etc.

JSON Specification: When running tests, it is common to run
many different patterns. To support this, Spatter accepts a JSON file
as input that can contain as many configurations as the user wishes.
Spatter will parse this file and allocate memory once for all tests,
greatly speeding up test sets with many different patterns, and easing
data management.

src + delta
[a[e]clolele]c]
NS

idx:

Iteration 0 Iteration 1
Figure 2: A visual representation of the first two iterations of the
gather kernel with a uniform stride-2 index buffer of length 4, and a

delta of 1.

3.4 Example

A user specifies a Spatter run with an index buffer, a delta, and the
number of gathers or scatters. The simplest example would be to
emulate a STREAM-like pattern, which would look like a uniform
stride-1 pattern with delta equal to the index length, so that there is
no data reuse between gathers. In Spatter, this is expressed as:

./spatter -k Gather -p UNIFORM:8:1 -d 8 -1 $((2%*24))

to run 224 (-1) gathers (-k), each one 8 doubles beyond the last
(-d), and each using an index buffer of length 8 and uniform stride-1
(-p). This will produce a STREAM Copy-like number, but it will
only be read bandwidth, as a gather reads data from memory to a
register. Spatter includes further options for choosing backends and
devices and performance tuning that are described in its README.

3.5 Benchmark Output

For each pattern specified, Spatter will report the minimum time
taken over 10 runs to perform the given number of gathers or scat-
ters. It will also translate this into a bandwidth, with the formula
Bandwidth = (sizeof(double) x len(index) * n) / time,
where n is the number of gathers or scatters. This value is the amount
of data that is moved to or from memory, and does not count the
bandwidth used by the the index buffer, as it is assumed to be small
and resident in cache. This measure may not be a true bandwidth
in the traditional sense of the word, as many patterns specified to
Spatter may allow for cache reuse. Thus, one should think about
the bandwidths reported as the rate at which the processor is able to
consume data for each pattern.

Optionally, PAPI [27] can be used to measure performance coun-
ters. However, we do not demonstrate that feature in this paper.

For JSON inputs, Spatter will also report stats about all of the runs,
such as the maximum and minimum bandwidths observed across
configurations, as well as the harmonic mean of the bandwidths.

4 Experimental Setup

Table 3 describes the different configurations and backends tested
for our initial evaluation using the Spatter benchmark suite. We pick
a diverse set of systems based on what is currently available in our
lab and collaborator’s research labs, including a Knight’s Landing
system, and a prototype system with ARMv8 ThunderX2 chips
designed by Marvell (formerly Cavium). We also include a server-
grade and desktop-grade Intel CPU system and several generations
of NVIDIA GPUs. Recent AMD GPUs, CPUs, or APUs were not

Table 3: Experimental Parameters and Systems (OMP Denotes OpenMP, and OCL Denotes OpenCL).

System description Abbreviation System Type STREAM (MB/s) Threads, Backends
Knight’s Landing (cache mode) KNL Intel Xeon Phi 249,313 272 threads, OMP
Broadwell BDW 32-core Intel CPU (E5-2695 v4) 43,885 16 threads, OMP
Skylake SKX 32-core Intel CPU (Platinum 8160) 97,163 16 threads, OMP
Cascade Lake CLX 24-core Intel CPU (Platinum 8260L) 66,661 12 threads, OMP
ThunderX2 TX2 28-core ARM CPU 120,000 112 threads, OMP
Kepler K40c K40c NVIDIA GPU 193,855 CUDA
Titan XP Titan XP NVIDIA GPU 443,533 CUDA
Pascal P100 P100 NVIDIA GPU 541,835 CUDA

Volta V100 V100 NVIDIA GPU 868,000 CUDA

available to us for testing at the time of this writing and are instead
left for future work. experiments.

OpenMP: To control for NUMA effects, CPU systems are tested
using all the cores on one socket or one NUMA region if the system
has more than one CPU socket. Some systems like the KNL on Cori
have an unusual configuration where the entire chip is listed as 1
NUMA region with 272 threads. For all the OpenMP tests, Spatter is
bound to one socket and run using one thread per core on that socket.
The following settings are used for OpenMP tests:

(1) OMP_NUM_THREADS = <num_threads_single_socket>
(2) OMP_PROC_BIND = master

(3) OMP_PLACES = sockets

(4) KMP_AFFINITY = compact (only for KNL)

An important performance tuning factor is the index buffer length.
On CPUs, we find that it is best to use an index buffer that closely
matches the hardware vector length, or a small multiple. On the
CPUs we have tested, we achieve good performance by using an
index buffer length of 16, which is 2-4x the length of the vector
registers on our systems.

CUDA: When testing on GPUs, the block size for Spatter is
set at 1024 and an index buffer of length 256 is used. These set-
tings allow Spatter to reach bandwidths within 20% of the vendor
reported theoretical peak for both gather and scatter kernels. These
bandwidths are slightly different than what is typically reported, as
gather is designed to only perform reads, and scatter should only
perform writes.

Experimental Configurations: Runs of Spatter use the maxi-
mum bandwidth out of 10 runs for the platform comparison uniform
stride and application pattern tests. STREAM results used for com-
parisons with Spatter are generated using 22° elements with either
STREAM for CPU or BabelStream for GPU, while all Spatter uni-
form stride tests read or write at least §GB of data on the GPU and
16GB on the CPU. The difference between CPU and GPU data sizes
results from most GPUs having less than 16 GB of on-board memory.
The application-specific pattern tests read or write at least 2GB.

5 Case Studies

Spatter is designed to be a flexible tool that can allow the user to
run many different memory access patterns and expose many knobs
used for tuning. In this section, we use Spatter to investigate several
questions regarding CPU and GPU memory architecture including:
A) uniform stride access on CPUs, B) uniform stride access on

GPUs, C) the effectiveness of G/S over scalar load/store, and D) the
performance of trace-derived G/S patterns on CPU.

5.1 CPU Uniform Stride

We begin with a basic test: running Spatter with the uniform stride
pattern, and increasing the stride by 2x until performance flattens.
A stride of 1 is analogous to the STREAM benchmark,2 except
that Spatter will only generate read instructions (gathers) for the
gather kernel and write instructions for the scatter kernel, meaning
the bandwidths should be slightly different. Fig. 3 shows the results
of our uniform stride tests on CPUs. We would expect that as stride
increases by a factor of 2, bandwidth should drop by half; the en-
tire cache line is read in but only every other element is accessed.
This should continue until about stride 8, as we are then using one
double from every cache line. This is what we see on Naples, but
performance continues to drop on TX2, Skylake, and Broadwell.
Interestingly, Broadwell performance increases at stride-64, even
out-performing Skylake. We can further use Spatter to investigate
these two points: 1) why does Broadwell outperform Skylake at high
strides, and 2) why does TX?2 performance drop so dramatically past
1/16?

5.1.1 Disabling Prefetching To get an idea of what is causing Broad-
well to outperform Skylake, we turn prefetching off with Model
Specific Registers (MSRs) and re-run the same uniform stride pat-
terns. Fig. 4a and b shows the results from this test. For Broadwell,
performance does not show the same increase for stride-64 with
prefetching off and it instead bottoms out after stride-8. We conclude
that one of Broadwell’s prefetchers pulls in two cache lines at a
time for small strides but switches to fetching only a single cache
line at stride-64 (512 bytes). We can understand the performance
discrepancy between Broadwell and Skylake by looking at Fig. 4b.
Performance drops to 1/16th of peak, as Skylake always brings in
two cache lines, no matter the stride. We did not get the opportunity
to run on the Thunder X2 without prefetching since it does not have
a similar MSR equivalent, but we suspect similar effects are at play:
one of the prefetchers likely always brings in the next line, although
that only helps to explain performance dropping through stride-16,
not through stride-64.

20n a CPU, we use an index buffer of length 8 and fill it with indices [1*stride, 2*stride,
...]. We set the delta to be 8*stride, so that there is no data reuse and indeed stride-1
matches the STREAM pattern.

105§ Gather
v
1)
=
~.«104
S —
: <
ke
S —e— BDW
B 03] = KL
—o— Naples
SKX
X2

20 21 22 23 24 25 6)7
Stride (Doubles)

(a)

10° Scatter

104

1

—e— BDW >~
=—p=— KNL
—o— Naples

SKX

X2

Bandwidth (MB/s)
((//

103

20 21 22 23 24 25 26 27
Stride (Doubles)

(b)
Figure 3: CPU Gather and Scatter Bandwidth Comparison
‘We increase the stride of memory access and show how performance drops
as the stride increase from 1 to 128 doubles on Skylake, Broadwell, Naples,
and Thunder X2 systems. Cascade Lake is omitted as it overlaps closely
with Skylake. A log-scale is used for the y-axis to make differences between
the platforms apparent. Takeaway: Uniform stride patterns show us that
peak bandwidth is not necessarily an indication of which architecture will
perform best at even moderate strides.

Lesson: By running uniform stride tests on CPUs we are able to
(1) identify a number of performance crossover points for interme-
diate strides and (2) see some interesting differences between the
Broadwell and Skylake prefetching behavior

5.2 GPU Uniform Stride

As the memory architecture of CPUs and GPUs is quite different, it
is worthwhile to see how GPUs handle these uniform stride patterns.
Figure 5a shows how a K40c, a Titan Xp, and a P100 perform on
the same tests.> As with the CPUs, we see bandwidth drop by half
for stride-2 and by another half for stride-4. However, for the P100
and the Titan Xp, from stride-4 to stride-8, we see that bandwidth
stays the same (illustrated by the dotted lines). This effect is due to

3To get high performance on GPUs, the threads within a block all work together to read
a pattern buffer into shared memory This buffer must be much longer than the CPU
index buffer (256 indices vs 8) so that each thread has enough work to do.

11] r—— " Prefetch - 1
— off
on 5
=40)
0
2
[sa]
e 5
£ s
T 12 g
2 N
20 ©
c
3 E
.. va 2
10
- s
116

20 21 2 23 % 5 36 7
Stride (Doubles)

(@)
{
70 oy " Prefetch |1
— 0 ff
60 on c
W 50 :
@ =
[sa]
g g
g 40 2
5 . 22 g
230 =
= [+
g E
20
va 3
10 1/8
1/16

20 91 92 23 24 25 96 of
Stride (Doubles)
(b)

Figure 4: Broadwell Gather (a) and Skylake Gather (b) We show the
performance of gather for various strides, with prefetching on and off. On
the right, normalized bandwidth is shown to display the regularity of the
decrease in bandwidth. Takeaway: Uniform stride patterns can help
us identify interesting prefetching behavior, such as above, where
we see that Skylake always fetches two lines.

the GPUs’ ability to coalesce some loads. The older K40 hardware
shows less ability to do so. In the scatter kernel plot, Fig. 5b, the
effect of coalescing is less pronounced, but still visible from stride 4
to stride 8. Instead of plateauing at 1/4th of peak bandwidth, however,
it plateaus at 1/8th. Regardless of the effect being less pronounced
in scatter vs. gather, we still see the benefit of a memory architecture
that is able to coalesce access, as we see how the bandwidth curves
of these GPUs platforms take a longer time to fall off than their CPU
counterparts.

Lesson: By running uniform stride tests on GPUs, we identify
some qualitative differences between CPU and GPU strided access,
especially in the range of stride-8 to stride-32.

5.3 SIMD vs. Scalar Backend Characterization

Spatter can also be used to test the effectiveness of different hardware
implementations of single instruction, multiple data (SIMD) instruc-
tion set architectures (ISAs). In a real-world sense, this capability can

108
—=— GV100

—F— K40cC
—4— P100
—<¢— Titan
--- 25% of peak _

Bandwidth (MB/s)
=
o

Gather

20 2t 22 23 2% 25 6 7
Stride (Doubles)

(a)
6
10 - GV100
=N K40c
—4— P100
o —<— Titan
3 ---12.5% of peak
2
- 10°
=]
9
3
k]
c
©
m
4
10 Scatter

20 21 22 23 24 25 26 27
Stride (Doubles)
(b)
Figure 5: GPU Gather (a) and Scatter (b) Uniform Stride Bandwidth
comparison Takeaway: We are able to use uniform stride patterns to show
improvements to the memory architecture of GPUs over time, beyond sim-
ply improved bandwidth. We see here that in newer generations, not only
do GPUs have more bandwidth, they are also able to utilize a higher per-
centage of that bandwidth throughout intermediate strides.

be used by compiler writers to answer questions such as whether it
would be beneficial to load some addresses with vector instructions
and others with scalar instructions to maximize utilized memory
bandwidth. Vector versions of indexed load and store instructions
help compilers to vectorize loops and can also help avoid unnec-
essary data motion between scalar and vector registers that might
otherwise be required. We can use Spatter to investigate whether
these vector instructions are indeed superior to scalar load instruc-
tions and whether compiler writers should prioritize vectorized G/S
optimizations.

To demonstrate the effectiveness of SIMD load / store instructions,
we run Spatter using the gather kernel on multiple platforms with the
scalar backend as a baseline. This scalar baseline is then compared to
the OpenMP backend as vectorized by the Cray compiler (CCE 9.0)
with the resulting percent improvement from vectorization reported
in Figure 6 for strides 1-128, as before. The Broadwell CPU performs
the worst of all the tested CPUs, showing worse performance with
vectorized code in many cases for both gather and scatter. Thus,

80 —e— BDW
=»— KNL

2 —o— Naples
S 60 SKX
£ X2
g
o 40
2
[oR
E
e 20
S »
5] / o Z. \
o 0/' ™

-20

20 2t 22 23 24 23 26 27
Stride (Doubles)
()
100 —e— BDW
—— KNL

" 80 —o— Naples
S SKX
£ 60 X2
]
>
o
5 40
£
2 20
5]
= —— N X ," '\
g 0 v\;

-20

20 21 22 23 24 25 26 7
Stride (Doubles)

(b)

Figure 6: Improvement of SIMD Gather Kernel (a) and Scatter Ker-
nel (b) Compared to Serial Scalar Backend. Takeaway: By examining
the performance of uniform stride patterns with and without vectorization
enabled in the compiler, we show that achieving maximum bandwidth on
processors such as Knights Landing and Skylake requires vectorization.
On the other hand, these instructions can be detrimental to performance
on Broadwell.

for a memory heavy kernel, it would likely be better to use scalar
instructions than G/S instructions for this architecture. At the same
time, this difference may be mitigated somewhat as G/S instructions
remove the need to move data between regular and vector registers.

On the other hand, Skylake, Knights Landing, and Naples have
better gather performance in the vectorized case. The use of gather
instructions on these platforms is clearly justified. Of these three,
however, Naples is the only one to not improve in the scatter case
as well. This is due to the lack of scatter instructions on Naples.
TX2 has no G/S support at all, so it stays close to 0% difference
(save for a single outlier in the gather chart). Interestingly, for our
three processors with useful G/S instructions, they all gather best in
different regions, with Knights Landing best at small strides, Naples
for medium strides, and Skylake best at large strides. While we
are not able to explain the reason for this performance artifact, we
have demonstrated the benefit of G/S instructions over their scalar
counterparts. At least for Knights Landing, anecdotal evidence has

suggested that using vectorized instructions at lower strides reduces
overall unique instruction count and overall request pressure on the
memory system.

Lesson: Spatter shows that the G/S instructions themselves lead
to higher performance, especially on Knights Landing. G/S instruc-
tions have a further benefit over scalar in that the data loaded is
already in a vector register, whereas after performing scalar loads,
further rearrangement would be needed to move the data into vector
registers.

5.4 Application-derived G/S Patterns

While the three previous sections have focused on uniform stride
patterns, Spatter is also able to run more complex patterns. To demon-
strate Spatter’s ability to emulate patterns found in real applications,
we take the top patterns from several DOE mini-apps (as described
in Section 2) and run them in Spatter. The patterns that come out
of Section 2 are described by a buffer of offsets and a delta. These
offsets and deltas can be found in Table 5 in Appendix A.

In Section 5.4.1, we first look at how these patterns perform in
aggregate, and see if they correlate with STREAM bandwidth. In
Section 5.4.2, we look at each pattern individually, and look for
trends among the applications. Finally, in Section 5.4.3, we show a
method for plotting results that allows us to examine absolute and
relative performance of patterns at the same time.

5.4.1 Application Pattern / STREAM Correlation Another question
is to what extent application-specific patterns are more informative
than STREAM, considering CPUs and GPUs separately. Table 4
shows the harmonic mean of the performance of the patterns. To see
if the performance correlates with STREAM, we calculate Pearson’s
correlation coefficient, R, as follows:

R = cov(X,STREAM) (std(X) * std(STREAM)))

According to Table 4, in aggregate, LULESH shows poor per-
formance on most CPU platforms. The next section shows that this
result is due to the LULESH-S3 pattern, which is a scatter with
delta 0. We believe this configuration triggers cache invalidations
for multicore writebacks.

We also see that AMG and Nekbone show higher performance
than STREAM in general. Inspecting their patterns, the deltas tend
to be small, which implies that gathered addresses overlap. Thus,
caching effects may explain this observation.

More interestingly, we see that the CPU runs of the Nekbone
and PENNANT patterns show poor correlation (close to 0) with
STREAM. In the case of AMG, the patterns perform much better
than STREAM, whereas in PENNANT, the patterns perform much
worse. This difference suggests that Spatter indeed captures distinct
behaviors from STREAM, and that the patterns Spatter generates
are not well approximated by STREAM on CPUs. For GPU systems,
however, the R coefficient shows that STREAM is much better
correlated (close to 1) with the Spatter results. This observation may
reflect the smaller and simpler memory hierarchy of GPUs compared
to CPUs.

5.4.2 Comprehensive Evaluation Across Platforms and Applications
The design of Spatter makes it easy to collect lots of data, over many

platforms and patterns, and these results can reveal more than single-
number benchmarks like STREAM as discussed in Section 5.4.1.
A natural question is whether that data facilitates any qualitative
comparisons about broad classes of platforms or applications. For
example, what can we say generally about CPU-oriented memory
system design today versus GPU-oriented design? Are applications
uniform in their patterns, or are they more varied?

To get a handle on such questions, we take the per-platform and
per-pattern data, and render them using small-multiple radar plots
as shown in Fig. 7 and Fig. 8. A single radar in this plot shows the
performance of a pattern relative to its stride-1 performance across
all CPUs (blue) and GPUs (green). The inner circle represents 100%
of stride-1 bandwidth, meaning that any value larger than this must
be utilizing caching. This detailed look at the performance gives us
a number of insights:

(1) Consider LULESH-S3 in Fig. 8. It indeed has very low per-
formance, except on the TX2, which appears to handle the
scenario of writing to the same location over and over very
well. This behavior could be due to an architectural optimiza-
tion that recognizes data is being overwritten before it is ever
used.

(2) Overall, we see that the GPUs are largely unable to outper-
form their stride-1 bandwidth. However, this behavior may be
changing in newer generations. The V100 values peak above
the 100% circle for many of the patterns.

(3) The Naples system (bottom-right of the CPU radars) largely
under-performs, save for one set of patterns, Nekbone. Cu-
riously, there is not much that differentiates the Nekbone
patterns from LULESH, as both have uniform stride patterns
with small deltas. Thus, these patterns may require more
thorough profiling and investigation.
Restricting ourselves to the Intel processors, we see in the
Gather patterns that improvements to the caching architecture
have been made between Broadwell and the new Skylake and
Cascade Lake architectures. We see a further improvement
in Cascade Lake when looking at the LULESH scatter pat-
terns, as it outperform Skylake as well. Thus, even within the
same architecture family, tweaks to caching and prefetching
models can improve performance for hard-to-optimize scatter
operations.

4

fa

(5) To first order, performance appears most sensitive to each pat-
tern’s delta (distance between G/S operations). Looking at the
PENNANT patterns, we see a large difference in performance
starting at PENNANT-GS. If we look at Table 5, we see that
all the patterns before this have deltas less than or equal to
4, and the patterns including PENNANT-GS5 and after have
deltas larger than 400. Section 5.4.3 further expands on these
patterns with a more detailed look at absolute and relative
performance for these later PENNANT patterns.

Lesson: Spatter can be used to differentiate performance across
architectures and can show how improved caching and prefetching
hardware support in CPUs and limited caching in GPUs affects
patterns with reuse. Additionally, these results can be correlated with
the patterns themselves to show that delta is a primary indicator of
performance for G/S operations.

LILIVIVIOIVIOIOIO
010/0I0I0]0I0]0]0,

©E@E@O©@
OI0I0I0IO

GO Gl G2 G3 G4 G5 G6 G7

PeEE®E®®
OIOI0I0I0IO0
o 5

CPU

PENNANT

GPU

CPU

GPU

CPU

@0

LULESH

SKX
[]
S S
O
v
Z o
S
8 X2 NPL
GO G1 - TITAN Xp
(D O
=
< P10 K40
G
Percent of Stride-1 BW:
V100 Inner circle: 100%

Outer circle: 325%

Figure 7: App-derived Gather Patterns
Each circle represents a single pattern. A spoke represents the performance of that pattern on a specific architecture as a percentage of the
architecture’s stride-1 bandwidth. The pattern descriptions are in Table 5. Takeaway: As the chart reports relative and not absolute
performance, we must emphasize that this does not show CPUs outperforming GPUs, but rather the ability of CPUs to utilize their caches on
the chosen patterns.

9

Table 4: Spatter Results for Mini-apps

Platform | AMG (=36) Nekbone (n=6) Lulesh PENNANT STREAM
GB/s GB/s GB/s GB/s GB/s
(H-Mean) (H-Mean) (H-Mean) (H-Mean)
BDW 123 121 20 6 43
SKX 328 309 12 35 96
CLX 315 287 14 41 94
Naples 140 323 3 11 97
TX2 270 247 232 28 241
KNL 201 190 19 4 249
R-value 0.15 -0.04 0.50 -1
K40c 108 99 88 14 193
TitanXP 496 320 175 21 443
P100 703 673 165 19 541
R-value 0.66 0.62 0.62 0.57
Scatter Patte rns on CPUs and GPUs also how well a platform utilizes the bandwidth available to it on a
S0 given platform (by measuring a point’s vertical distance from the
5 diagonal).
(.:F) 6 In Fig. 9(a), we have 4 different PENNANT patterns plotted,
Ll along with Stride-1 and Stride-16 results for reference. At a high
— level, there is clear left-to-right separation between CPUs and GPUs,
3 z due to the former having much less bandwidth available. There are a
O number of interesting points to discuss:
0 (1) If we take a look at just the Broadwell and Cascade Lake num-
- bers, we see a slope that is greater than 1. What this means
2z is that Cascade Lake is not only better in absolute terms,
<Y @ but in relative terms as well, utilizing more of its available
P bandwidth than the Broadwell processor.
5 o) Percent 0f_ Stride-1 BW: (2) A disappointing outlier is Naples, which performs much
(a % Inner C'_rde: 100?’ worse than its stride-1 bandwidth would suggest. This sug-
Outer circle: 522% gests a cache architecture much less capable than the other

Figure 8: App-derived Scatter Patterns
Each circle represents a single pattern. A spoke represents the
performance of that pattern on a specific architecture as a
percentage of the architecture’s stride-1 bandwidth.

5.4.3 Comprehensive Evaluation of Relative and Absolute Applica-
tion Pattern Performance In addition to the high-level takeaways,
we can also use Spatter measurements to plot both the absolute and
relative performance of patterns and how this relative performance
varies between platforms. In Fig. 9, we have a few selected gather
patterns from PENNANT in (a), and a few scatter patterns from
LULESH in (b).

These plots display application pattern performance as a function
of stride-1 bandwidth. What this means is that stride-1 bandwidth
will appear on the diagonal, and other bandwidths will appear in a
vertical line through that point. It also means that all lines with unit
slope are lines of constant fractional bandwidth. We have marked
some of these lines in the plot for your reference. For instance, you
can see that the PENNANT-G12 pattern runs at about 1/16th of
the peak bandwidth on Broadwell. This complicated plot structure
allows us to see both how well a pattern performs on platform X
vs platform Y (by comparing the y values of the two points) and

CPUs. We hope to compare this result with AMD EPYC
processors in a future evaluation.

If we shift our attention to just the GPUs, we see that the large
strides present in the higher-numbered PENNANT patterns
have a large impact on the performance. If we reference
Table 5, we see that the delta increases as the pattern number
increases. This shows us that while CPUs are able to handle
these large deltas relatively well, GPUs have much worse
relative performance as the delta increases.

Finally, if we look at both CPUs and GPUs, we see the power
of this type of plot: we can see that the CPUs, due to the
fact that the patterns contain some data reuse, are able to
outperform GPUs on the selected patterns in terms of relative
bandwidth.

Fig. 9(b) shows two LULESH scatter patterns.

(1) The only platform that does well on LULESH-S3, which has
a Scatter with delta 0, is the TX2, which we described in the
previous section.

(2) LULESH-S1 appears to distinguish CPUs and GPUs. This
pattern has a uniform stride-24 pattern with delta 8. Thus,
there is quite a bit of reuse between scatters, which is likely
to be cached well by CPUs but is handled more poorly by the
smaller caches on GPUs.

3

“)

Lesson: By examining a number of application-derived G/S pat-
terns, we show that (1) Spatter is able to reproduce unique behavior
on CPUs that is not easily modeled by STREAM, (2) Spatter can
also be used to discern improvements between architecture genera-
tions that go beyond simple bandwidth improvements, and (3) the
Spatter benchmark suite can be used to quantitatively rank pattern
performance between CPUs and GPUs and identify regimes where
the CPUs are the clear winner in terms of relative performance.

6 Related Work

Our primary aim for Spatter is to measure at a low level the effects
of sparsity and indirect accesses on effective bandwidth for a partic-
ular application or algorithm. While a number of bandwidth-related
benchmarks exist, there are no current suites that explicitly support
granular examinations of sparse memory accesses. The closest ana-
logue to our work is APEX-Map [26], which allows for varying
sparsity to control the amount of spatial locality in the tested data
set. However, APEX-Map has not been updated for heterogeneous
devices and does not allow for custom G/S patterns.

Similar to Spatter and APEX-Map, the HopScotch microbench-
mark [3] suite provides a tunable mechanism for representing mixes
of read-only, write-only, and mixed access kernels in a similar fash-
ion as Spatter. Currently, HopScotch includes a large suite of kernels
intended to produce many different types of memory access patterns.
While their suite does include G/S, we believe our work is comple-
mentary, allowing users a large degree of flexibility in the types of
access patterns available. In addition, Spatter supports GPUs. One
technical difference is Spatter’s interface to the kernel: instead of
specifying the entire access pattern up front to the kernel, we specify
an index pattern and a delta. Therefore, Spatter can more effectively
mirror apps that generate indices dynamically, and it does not incur
the overhead of moving a large index buffer through the memory
hierarchy.

In terms of peak effective, or real-world achievable bandwidth,
STREAM [20] provides the most widely used measurement of sus-
tained local memory bandwidth using a regular, linear data access
pattern. Similarly, BabelStream [8], provides a STREAM interface
for heterogeneous devices using backends like OpenMP, CUDA,
OpenCL, SyCL, Kokkos, and Raja. Intel’s Parallel Research Ker-
nels [12] also supports an nstream benchmark that is used for some
platforms here. The CORAL 2 benchmarks also include a STREAM
variant called STRIDE [22], that includes eight different memory-
intensive linear algebra kernels written in C and Fortran. STRIDE
includes dot product and triad variations but still utilizes uniform
stride inputs and outputs. None of these suites support any access
pattern aside from uniform stride, which underlines the need for a
benchmark like Spatter which includes configurable and indirect
access patterns.

Whereas STREAM focuses on a single access pattern, pointer-
chasing benchmarks [13] and RandomAccess [18] use randomness
in their patterns. Pointer-chasing benchmarks measure the effects
of memory latency but are limited in scope to measuring memory
latency, and RandomAccess is only able to produce random streams.
Spatter cannot model dependencies like pointer chasing, but it con-
tains kernels for modeling random access and can be used for a
GUPS-like analysis.

Uniform Stride Bandwidth vs PENNANT Patterns

Selected Gather Patterns

@4
m
=
—
ﬂ-
£ &
8 o
£ =
f=
©
o
£
8
® v
& o
o
o
-
LR IR v
B 9 e
- 1 GB/s 10 GB/s 100 GB/s 1TB/s
Stride-1 DRAM Bandwidth
(a)
Uniform Stride Bandwidth vs LULESH Patterns
Selected Scatter Patterns
o
m
=
—
wn
o
o
g 8
k=] —
3
°
[=4
©
o
£
2 05
€ 3
{2
o
G}
Ll

1TB/s

100 GB/s

10 GB/s

Stride-1 DRAM Bandwidth

(b)

Figure 9: Bandwidth-Bandwidth Plots

We display a quantitative ranking of the selected platforms by plotting their
pattern bandwidths as a function of the platform’s stride-1 bandwidth. For a
given platform, its stride-1 bandwidth is on the x=y diagonal, and selected
pattern bandwidths appear directly below. Skylake is omitted from these plots
as it is very similar to Cascade Lake. Takeaway: For the patterns selected,
CPUs show both an increase in performance, and relative performance
across generations. Conversely, GPUs do not fare well on these patterns
at all, leading to a decrease in the percentage of the bandwidth they use
for the case of the gather patterns in (a).

6.1 Heterogeneous Architectural Benchmarking

Memory access patterns have been studied extensively on hetero-
geneous and distributed memory machines, where data movement
has been a concern for a long time. Benchmarks such as SHOC, Par-
boil, and Rodinia provide varying levels of memory access patterns
that are critical to HPC application [5, 7, 25]. For example, SHOC
contains “Level 0” DeviceMemory and BusSpeedDownload bench-
marks that can be used to characterize GPUs and some CPU-based
devices. Likewise, other recent work has investigated vectorization
support with hardware and compiler suites for next-generation ap-
plications for the SIERRA supercomputers [21]. Spatter intends to
be a more focused microbenchmark that supplements these exist-
ing benchmark suites and studies. It also aims to provide a simpler
mechanism for comparing scatter and gather operations across pro-
gramming models and architectures.

Other work focuses on optimizing memory access patterns for
tough-to-program heterogeneous devices like GPUs. Recent work by
Lai, et al. evaluates the effects of TLB caching on GPUs, develops
an analytical model to predict the caching characteristics of G/S and
then develops a multi-pass technique to improve the performance
of G/S on modern GPU devices [17]. Dymaxion takes an API ap-
proach to transforming data layouts and data structures and looks at
scatter and gather as part of a sparse matrix-vector multiplication
kernel experiment [6]. Jang et al. characterize loop body random
and complex memory access patterns and attempt to resolve them
into simpler and regular patterns that can be easily vectorized with
GPU programming languages [14]. Finally, CUMAPz provides a
tool to evaluate different optimization techniques for CUDA pro-
grams with a specific focus on access patterns for shared and global
memory [16].

6.2 Extensions to Other Architectures

One additional motivation for this work is to better implement sparse
access patterns on nontraditional accelerators like FPGAs and the
Emu Chick. For FPGAs, the Spector FPGA Suite provides several
features that have influenced the design of our benchmark suite
including user-defined parameters for block size, work item size,
and delta settings [11].

Spector uses OpenCL-based High-Level Synthesis and compiles a
number of different FPGA kernels with various parameters and then
attempts to pick the best configuration to execute on a specific FPGA
device. While this process can be time-consuming for FPGAs due
to routing heuristics, it could also be incorporated into a benchmark
like Spatter to pick and plot the best result for a given configuration
(i.e., work item size, block size, and vector length). This is supported
but not automated in the current version of Spatter.

Finally, there is also work in computer architecture that explores
the area of adding more capabilities to vector units. SuperStrider
and Arm’s Scalable Vector Extension both aim to implement G/S
operations in hardware [23, 24]. Similarly, the Emu system focuses

on improving random memory accesses by moving lightweight
threads to the data in remote DRAM [9]. Spatter complements these
hardware designs and associated benchmarking by allowing users to
test how their code can benefit from dedicated data rearrangement
units or data migration strategies.

7 Conclusions and Future Work

This work is motivated by the growing importance of indexed ac-
cesses in modern HPC applications and specifically looks at the use
of gather and scatter operations in modern applications like the DOE
mini-apps investigated in Section 2. Spatter serves as a configurable
benchmark suite that can be used to better evaluate these types of
indirect memory accesses by using pattern-based inputs to generate a
wide class of indexed memory access patterns. The presented exper-
iments suggest how this tool could be used by architects to evaluate
new prefetching hardware or instructions for gather and scatter, how
compiler writers can inspect the performance implications of their
generated code, and potentially how application developers could
profile representative portions of their application that rely on these
operations.

We envision that the Spatter benchmark will be a tool that can
be used to examine any memory performance artifact that exists in
sparse codes. The current model that Spatter implements, which is a
single index buffer and delta for each pattern, is descriptive of a wide
range of patterns that we have seen in DOE mini-apps as well as
related benchmarks like STREAM and STRIDE. However, certain
aspects of the memory hierarchy cannot be properly examined by
the current version of Spatter, especially those relating to temporal
locality.

To increase Spatter’s ability to model memory access patterns, we
plan to expand the benchmark suite with the following features: (1)
model temporal locality for accesses using time delta patterns to bet-
ter represent cacheable access patterns, (2) investigate mathematical
and Al techniques for modeling more complex access patterns than
can be represented with combinations of stride and delta parameters,
and (3) develop new open-source techniques for extracting sparse
memory access patterns from applications in a timely fashion. For
this last goal, we are currently working on modeling 2D and 3D
stencil operations from a proprietary full waveform inversion code
used for ocean surveying. Other features that we are investigating
for inclusion into Spatter are kernels written with intrinsics as well
as new backends for Kokkos, SyCL, and novel architectures like
FPGAs or the Emu Chick.

Our goal is also to make Spatter as easy to use as possible, and
useful for a wide audience. To aid in this effort, we plan to make
the following upgrades to the codebase: (1) support for OpenMP
4.5 and SyCL backends, (2) automation of parameter selection, (3)
optimized CPU backends that make use of prefetching and streaming
accesses, and (4) make as much of our tracing and trace analysis
infrastructure available along with our codebase, which is open-
source and available on Github.

Acknowledgments

This material is based upon work supported by the National Science
Foundation under Grant No. 1710371 (SuperSTARLU).

This research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is
supported by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC05-000R22725.

This research was performed in part during an internship at Cray,

Inc.

References

[1]
[2]
3

[4

[5

6

[7

[8

[9

[10]
(1]
[12]

2014. CORAL RFP B604142. https://asc.lInl.gov/CORAL/. Accessed: 2019-04-
02.

2018. CORAL-2 ACQUISITION, RFP No. 6400015092. https://procurement.
ornl.gov/rfp/CORAL2/. Accessed: 2019-04-02.

Alif Ahmed and Kevin Skadron. 2019. Hopscotch: A Micro-Benchmark Suite
for Memory Performance Evaluation. In Proceedings of the International Sym-
posium on Memory Systems (Washington, District of Columbia) (MEMSYS
’19). Association for Computing Machinery, New York, NY, USA, 167-172.
https://doi.org/10.1145/3357526.3357574

Fabrice Bellard. 2005. QEMU, a fast and portable dynamic translator.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 41. 46.

S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K. Skadron.
2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE
International Symposium on Workload Characterization (IISWC). 44-54. https:
//doi.org/10.1109/IISWC.2009.5306797

Shuai Che, Jeremy W. Sheaffer, and Kevin Skadron. 2011. Dymaxion: Optimizing
Memory Access Patterns for Heterogeneous Systems. In Proceedings of 2011
International Conference for High Performance Computing, Networking, Storage
and Analysis (Seattle, Washington) (SC '11). ACM, New York, NY, USA, Article
13, 11 pages. https://doi.org/10.1145/2063384.2063401

Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. 2010. The Scalable
Heterogeneous Computing (SHOC) Benchmark Suite. In Proceedings of the
3rd Workshop on General-Purpose Computation on Graphics Processing Units
(Pittsburgh, Pennsylvania, USA) (GPGPU-3). ACM, New York, NY, USA, 63-74.
https://doi.org/10.1145/1735688.1735702

Tom Deakin, James Price, Matt Martineau, and Simon McIntosh-Smith. 2016.
GPU-STREAM v2.0: Benchmarking the Achievable Memory Bandwidth of Many-
Core Processors Across Diverse Parallel Programming Models. In High Perfor-
mance Computing, Michela Taufer, Bernd Mohr, and Julian M. Kunkel (Eds.).
Springer International Publishing, Cham, 489-507.

Timothy Dysart, Peter Kogge, Martin Deneroff, Eric Bovell, Preston Briggs, Jay
Brockman, Kenneth Jacobsen, Yujen Juan, Shannon Kuntz, and Richard Lethin.
2016. Highly scalable near memory processing with migrating threads on the
Emu system architecture. In Irregular Applications: Architecture and Algorithms
(IA3), Workshop on. IEEE, 2-9.

P Fischer and K Heisey. 2013. NEKBONE: Thermal Hydraulics mini-application.
Nekbone Release 2 (2013).

Quentin Gautier, Alric Althoff, Pingfan Meng, and Ryan Kastner. 2016. Spector:
An OpenCL FPGA benchmark suite. (12 2016).

Jeff R. Hammond and Timothy G. Mattson. 2019. Evaluating Data Parallelism
in C++ Using the Parallel Research Kernels. In Proceedings of the International

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Workshop on OpenCL (Boston, MA, USA) (IWOCL’19). ACM, New York, NY,
USA, Article 14, 6 pages. https://doi.org/10.1145/3318170.3318192

E. Hein, T. Conte, J. Young, S. Eswar, J. Li, P. Lavin, R. Vuduc, and J. Riedy.
2018. An Initial Characterization of the Emu Chick. In 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW). 579-588.
https://doi.org/10.1109/IPDPSW.2018.00097

B. Jang, D. Schaa, P. Mistry, and D. Kaeli. 2011. Exploiting Memory Access
Patterns to Improve Memory Performance in Data-Parallel Architectures. IEEE
Transactions on Parallel and Distributed Systems 22, 1 (Jan 2011), 105-118.
https://doi.org/10.1109/TPDS.2010.107

Ian Karlin, Jeff Keasler, and JR Neely. 2013. Lulesh 2.0 updates and changes.
Technical Report. Lawrence Livermore National Lab.(LLNL), Livermore, CA
(United States).

Yooseong Kim and Aviral Shrivastava. 2011. CuMAPz: A Tool to Analyze
Memory Access Patterns in CUDA. In Proceedings of the 48th Design Automation
Conference (San Diego, California) (DAC ’11). ACM, New York, NY, USA,
128-133. https://doi.org/10.1145/2024724.2024754

Zhuohang Lai, Qiong Luo, and Xiaoying Jia. 2018. Revisiting Multi-pass Scatter
and Gather on GPUs. In Proceedings of the 47th International Conference on
Parallel Processing (Eugene, OR, USA) (ICPP 2018). ACM, New York, NY, USA,

Article 25, 11 pages. _https://doi.org/10.1145/3225058.3225093
Piotr Luszczek, Jack J. Dongarra, David Koester, Rolf Rabenseifner, Bob Lucas,

Jeremy Kepner, John Mccalpin, David Bailey, and Daisuke Takahashi. 2005.
Introduction to the HPC Challenge Benchmark Suite. Technical Report.

John McCalpin. 2018. Notes on “non-temporal” (aka “streaming”) stores. http:
//sites.utexas.edu/jdm4372/tag/cache/.

John D. McCalpin. 1995. Memory Bandwidth and Machine Balance in Current
High Performance Computers. IEEE Computer Society Technical Committee on
Computer Architecture (TCCA) Newsletter (Dec. 1995), 19-25.

Mahesh Rajan, Douglas W Doerfler, Mike Tupek, and Simon Hammond. 2015.
An investigation of compiler vectorization on current and next-generation Intel
processors using benchmarks and Sandia’s Sierra Applications. (2015).

Mark K. Seager. 2019. STRIDE CORAL 2 benchmark summary. https://asc.1Inl.
gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf.

S. Srikanth, T. M. Conte, E. P. DeBenedictis, and J. Cook. 2017. The Superstrider
Architecture: Integrating Logic and Memory Towards Non-Von Neumann Com-
puting. In 2017 IEEE International Conference on Rebooting Computing (ICRC).
1-8. https://doi.org/10.1109/ICRC.2017.8123669

N. Stephens, S. Biles, M. Boettcher, J. Eapen, M. Eyole, G. Gabrielli, M. Horsnell,
G. Magklis, A. Martinez, N. Premillieu, A. Reid, A. Rico, and P. Walker. 2017.
The ARM Scalable Vector Extension. IEEE Micro 37, 2 (Mar 2017), 26-39.
https://doi.org/10.1109/MM.2017.35

John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-Wen Chang,
Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu. 2012. Parboil: A revised
benchmark suite for scientific and commercial throughput computing. Center for
Reliable and High-Performance Computing 127 (2012).

Erich Strohmaier and Hongzhang Shan. 2005. Apex-Map: A Global Data Access
Benchmark to Analyze HPC Systems and Parallel Programming Paradigms. In
Proceedings of the 2005 ACM/IEEE Conference on Supercomputing (SC ’05).
IEEE Computer Society, Washington, DC, USA, 49—. https://doi.org/10.1109/
SC.2005.13

Dan Terpstra, Heike Jagode, Haihang You, and Jack Dongarra. 2010. Collecting
Performance Data with PAPI-C. In Tools for High Performance Computing 2009,
Matthias S. Miiller, Michael M. Resch, Alexander Schulz, and Wolfgang E. Nagel
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 157-173.

Ulrike Yang, Robert Falgout, and Jongsoo Park. 2017. Algebraic Multigrid
Benchmark, Version 00. https://www.osti.gov//servlets/purl/1389816

https://asc.llnl.gov/CORAL/
https://procurement.ornl.gov/rfp/CORAL2/
https://procurement.ornl.gov/rfp/CORAL2/
https://doi.org/10.1145/3357526.3357574
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1145/2063384.2063401
https://doi.org/10.1145/1735688.1735702
https://doi.org/10.1145/3318170.3318192
https://doi.org/10.1109/IPDPSW.2018.00097
https://doi.org/10.1109/TPDS.2010.107
https://doi.org/10.1145/2024724.2024754
https://doi.org/10.1145/3225058.3225095
http://sites.utexas.edu/jdm4372/tag/cache/
http://sites.utexas.edu/jdm4372/tag/cache/
https://asc.llnl.gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf
https://asc.llnl.gov/coral-2-benchmarks/downloads/STRIDE_Summary_v1.0.pdf
https://doi.org/10.1109/ICRC.2017.8123669
https://doi.org/10.1109/MM.2017.35
https://doi.org/10.1109/SC.2005.13
https://doi.org/10.1109/SC.2005.13
https://www.osti.gov//servlets/purl/1389816

A Application Gather / Scatter Patterns

Table 5 lists all the patterns used in evaluation of the Spatter suite.

Table 5: Listing of Patterns

Gather Pattern ‘ Index Delta Type
PENNANT-GO [2,484,482,0,4,486,484,2,6,488,486,4,8,490,488,6] 2

PENNANT-G1 [0,2,484,482,2,4,486,484,4,6,488,486,6,8,490,488] 2

PENNANT-G2 [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 2 Stride-4
PENNANT-G3 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 2

PENNANT-G4 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 4 Broadcast
PENNANT-G5 [4,8,12,0,20,24,28,16,36,40,44,32,52,56,60,48] 4

PENNANT-G6 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 480

PENNANT-G7 [482,0,2,484,484,2,4,486,486,4,6,488,488,6,8,490] 482

PENNANT-G8 [2,0,0,0,2,0,0,0,2,0,0,0,2,0,0,0] 129608

PENNANT-G9 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388852 Broadcast
PENNANT-G10 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G11 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 388848 Broadcast
PENNANT-G12 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G13 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 518408
PENNANT-G14 [6,0,2,4,14,8,10,12,22,16,18,20,30,24,26,28] 1036816
PENNANT-G15 [0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3] 1882384 Broadcast
LULESH-GO0 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 1 Stride-1
LULESH-G1 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 8 Stride-1
LULESH-G2 [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-G3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G4 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 4 Stride-24
LULESH-G5 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-G6 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-G7 [0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] 41 Stride-1
NEKBONE-GO0 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 3 Stride-6
NEKBONE-G1 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
NEKBONE-G2 [0,6,12,18,24,30,36,42,48,54,60,66,72,78,84,90] 8 Stride-6
AMG-GO [1333,0,1,36,37,72,73,1296,1297,1332,1368,1369,2592,2593,2628,2629] 1 Mostly Stride-1
AMG-Gl1 [1333,0,1,2,36,37,38,72,73,74,1296,1297,1298,1332,1334,1368] 1 Mostly Stride-1
Scatter Pattern Index Delta Type
PENNANT-SO [0,4,8,12,16,20,24,28,32,36,40,44,48,52,56,60] 1 Stride-4
LULESH-SO [0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120] 1 Stride-8
LULESH-S1 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 8 Stride-24
LULESH-S2 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 1 Stride-24
LULESH-S3 [0,24,48,72,96,120,144,168,192,216,240,264,288,312,336,360] 0 Stride-24

	1 Introduction
	2 Gather / Scatter in Real-World Applications
	2.1 Open Source Techniques for Pattern Analysis

	3 Design of the Spatter Benchmark
	3.1 Kernel Algorithm
	3.2 Backend Implementations
	3.3 Benchmark Input
	3.4 Example
	3.5 Benchmark Output

	4 Experimental Setup
	5 Case Studies
	5.1 CPU Uniform Stride
	5.2 GPU Uniform Stride
	5.3 SIMD vs. Scalar Backend Characterization
	5.4 Application-derived G/S Patterns

	6 Related Work
	6.1 Heterogeneous Architectural Benchmarking
	6.2 Extensions to Other Architectures

	7 Conclusions and Future Work
	Acknowledgments
	References
	A Application Gather / Scatter Patterns

