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Abstract

In reward-poisoning attacks against reinforcement
learning (RL), an attacker can perturb the environ-
ment reward r; into r; + d; at each step, with the
goal of forcing the RL agent to learn a nefarious
policy. We categorize such attacks by the infinity-
norm constraint on §;: We provide a lower thresh-
old below which reward-poisoning attack is infea-
sible and RL is certified to be safe; we provide a
corresponding upper threshold above which the at-
tack is feasible. Feasible attacks can be further cat-
egorized as non-adaptive where J; depends only
on (8¢, a, S¢+1), or adaptive where d; depends
further on the RL agent’s learning process at time
t. Non-adaptive attacks have been the focus of
prior works. However, we show that under mild
conditions, adaptive attacks can achieve the nefar-
ious policy in steps polynomial in state-space size
|S|, whereas non-adaptive attacks require expo-
nential steps. We provide a constructive proof that
a Fast Adaptive Attack strategy achieves the poly-
nomial rate. Finally, we show that empirically
an attacker can find effective reward-poisoning
attacks using state-of-the-art deep RL techniques.

1. Introduction

In many reinforcement learning (RL) applications the agent
extracts reward signals from user feedback. For example, in
recommendation systems the rewards are often represented
by user clicks, purchases or dwell time (Zhao et al., 2018;
Chen et al., 2019); in conversational Al, the rewards can be
user sentiment or conversation length (Dhingra et al., 2016;
Li et al., 2016). In such scenarios, an adversary can manip-
ulate user feedback to influence the RL agent in nefarious
ways. Figure 1 describes a hypothetical scenario of how
conversational Al can be attacked. One real-world example
is that of the chatbot Tay, which was quickly corrupted by a

"University of Wisconsin-Madison *Max Planck Institute for
Software Systems (MPI-SWS). Correspondence to: Xuezhou
Zhang <xzhang784@wisc.edu>.

Proceedings of the 37" International Conference on Machine
Learning, Vienna, Austria, PMLR 119, 2020. Copyright 2020 by
the author(s).

group of Twitter users who deliberately taught it misogynis-
tic and racist remarks shortly after its release (Neff & Nagy,
2016). Such attacks reveal significant security threats in the
application of reinforcement learning.

e
at : Hello! You look pretty!

(2]
Thank you! 7= 1

?
ag : Hello! You look pretty!
Hey, don’t say that! rp = —1

Figure 1. Example: an RL-based conversational Al is learning
from real-time conversations with human users. the chatbot says
“Hello! You look pretty!” and expects to learn from user feedback
(sentiment). A benign user will respond with gratitude, which is
decoded as a positive reward signal. An adversarial user, however,
may express anger in his reply, which is decoded as a negative
reward signal.

In this paper, we formally study the problem of training-
time attack on RL via reward poisoning. As in standard
RL, the RL agent updates its policy 7, by performing action
a; at state s; in each round ¢t. The environment Markov
Decision Process (MDP) generates reward r; and transits
the agent to s,+;. However, the attacker can change the
reward r; to r; + ¢, with the goal of driving the RL agent
toward a target policy m; — .

@|» | s |»|C

Figure 2. A chain MDP with attacker’s target policy 7

Figure 2 shows a running example that we use throughout
the paper. The episodic MDP is a linear chain with five
states, with left or right actions and no movement if it hits
the boundary. Each move has a -0.1 negative reward, and
G is the absorbing goal state with reward 1. Without attack,
the optimal policy 7* would be to always move right. The
attacker’s goal, however, is to force the agent to learn the
nefarious target policy 7! represented by the arrows in Fig-
ure 2. Specifically, the attacker wants the agent to move left
and hit its head against the wall whenever the agent is at the
left-most state.
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Our main contributions are:

1. We characterize conditions under which such attacks are
guaranteed to fail (thus RL is safe), and vice versa;

2. In the case where an attack is feasible, we provide upper
bounds on the attack cost in the process of achieving 7';

3. We show that effective attacks can be found empirically
using deep RL techniques.

2. Related Work

Test-time attacks against RL.  Prior work on adversarial
attacks against reinforcement learning focused primarily on
test-time, where the RL policy 7 is pre-trained and fixed,
and the attacker manipulates the perceived state s; to SI in
order to induce undesired action (Huang et al., 2017; Lin
et al., 2017; Kos & Song, 2017; Behzadan & Munir, 2017).
For example, in video games the attacker can make small
pixel perturbation to a frame (Goodfellow et al., 2014))
to induce an action 7(s}) # 7(s;). Although test-time
attacks can severely impact the performance of a deployed
and fixed policy 7, they do not modify 7 itself. For ever-
learning agents, however, the attack surface includes 7. This
motivates us to study training-time attack on RL policy.

Reward Poisoning: Reward poisoning has been studied
in bandits (Jun et al., 2018; Peltola et al., 2019; Altschuler
et al., 2019; Liu & Shroff, 2019; Ma et al., 2018), where
the authors show that adversarially perturbed reward can
mislead standard bandit algorithms to pull a suboptimal arm
or suffer large regret.

Reward poisoning has also been studied in batch RL (Zhang
& Parkes, 2008; Zhang et al., 2009; Ma et al., 2019) where
rewards are stored in a pre-collected batch data set by some
behavior policy, and the attacker modifies the batch data.
Because all data are available to the attacker at once, the
batch attack problem is relatively easier. This paper in-
stead focuses on the online RL attack setting where reward
poisoning must be done on the fly.

(Huang & Zhu, 2019) studies a restricted version of reward
poisoning, in which the perturbation only depend on the cur-
rent state and action: 0; = ¢(s¢, a;). While such restriction
guarantees the convergence of Q-learning under the per-
turbed reward and makes the analysis easier, we show both
theoretically and empirically that such restriction severely
harms attack efficiency. Our paper subsumes their results by
considering more powerful attacks that can depend on the
RL victim’s Q-table ;. Theoretically, our analysis does
not require the RL agent’s underlying (), to converge while
still providing robustness certificates; see section 4.

Reward Shaping: While this paper is phrased from the
adversarial angle, the framework and techniques are also

applicable to the feaching setting, where a teacher aims
to guide the agent to learn the optimal policy as soon as
possible, by designing the reward signal. Traditionally, re-
ward shaping and more specifically potential-based reward
shaping (Ng et al., 1999) has been shown able to speed up
learning while preserving the optimal policy. (Devlin &
Kudenko, 2012) extend potential-based reward shaping to
be time-varying while remains policy-preserving. More re-
cently, intrinsic motivations(Schmidhuber, 1991; Oudeyer &
Kaplan, 2009; Barto, 2013; Bellemare et al., 2016) was intro-
duced as a new form of reward shaping with the goal of en-
couraging exploration and thus speed up learning. Our work
contributes by mathematically defining the teaching via
reward shaping task as an optimal control problem, and pro-
vide computational tools that solve for problem-dependent
high-performing reward shaping strategies.

3. The Threat Model

In the reward-poisoning attack problem, we consider three
entities: the environment MDP, the RL agent, and the at-
tacker. Their interaction is formally described by Alg 1.

The environment MDP is M = (S, A, R, P, uo) where S is
the state space, A is the action space, R: S x A x S — R
is the reward function, P : S x A x S — R is the transition
probability, and po : S — R is the initial state distribution.
We assume S, A are finite, and that a uniformly random
policy can visit each (s, a) pair infinitely often.

We focus on an RL agent that performs standard Q-learning
defined by a tuple A = (Qo, &,7, {a:}), where Q) is the
initial Q table, ¢ is the random exploration probability, v is
the discounting factor, {« } is the learning rate scheduling
as a function of ¢. This assumption can be generalized: in
the additional experiments provided in appendix G.2, we
show how the same framework can be applied to attack
general RL agents, such as DQN. Denote QQ* as the optimal
Q table that satisfies the Bellman’s equation:

Q*(S7 a) = ]EP(S’|s,a) R(Sa a, S/) + 711,121)4( Q*(8/7 a/)
(1)

and denote the corresponding optimal policy as 7*(s) =
arg max, Q*(s, a). For notational simplicity, we assume
7* is unique, though it is easy to generalize to multiple
optimal policies, since most of our analyses happen in the

space of value functions.

The Threat Model The attacker sits between the environ-
ment and the RL agent. In this paper we focus on white-box
attacks: the attacker has knowledge of the environment
MDP and the RL agent’s Q-learning algorithm, except for
their future randomness. Specifically, at time ¢ the attacker
observes the learner Q-table (), state s;, action a;, the
environment transition s;4; and reward r,. The attacker
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Algorithm 1 Reward Poisoning against Q-learning

PARAMETERS: Agent parameters A = (Qo, &,7, {a:}),
MDP parameters M = (S, A, R, P, uo).

1: fort=0,1,... do
2:  agent at state s, has Q-table );.
3:  agent acts according to e-greedy behavior policy

wp.1—¢
w.p. €.

a, { arg max, Q¢(s, a), @)

uniform from A,

4:  environment transits s; 11 ~ P(- | s¢, a;), produces
reward 1, = R(S¢, Gy, St41)-

5:  attacker poisons the reward to r; + d;.

6:  agent receives (Sty1, 7+ + d¢), performs Q-learning
update:

Qit1(5t,at) (1 — o) Qe(st,a0)+  (3)

oy (rt + 6 + ymax Q¢ (s¢11, a’))
a’cA

7:  environment resets if episode ends: sy41 ~ pg.
8: end for

can choose to add a perturbation §; € R to the current en-
vironmental reward r;. The RL agent receives poisoned
reward r; + &;. We assume the attack is inf-norm bounded:
|0, < A, Vt.

There can be many possible attack goals against an RL
agent: forcing the RL agent to perform certain actions;
reaching or avoiding certain states; or maximizing its regret.
In this paper, we focus on a specific attack goal: policy
manipulation. Concretely, the goal of policy manipulation
is to force a target policy 7' on the RL agent for as many
rounds as possible.

Definition 1. Target (partial) policy =¥ : S — 24: For
each s € S, 7' (s) C A specifies the set of actions desired
by the attacker.

The partial policy 7 allows the attacker to desire multiple
target actions on one state. In particular, if 7f(s) = A then
s is a state that the attacker “does not care.” Denote ST =
{s € S:7'(s) # A} the set of target states on which the
attacker does have a preference. In many applications, the
attacker only cares about the agent’s behavior on a small set
of states, namely |ST| < |S|.

For RL agents utilizing a Q-table, a target policy 7' induces
a set of Q-tables:

Definition 2. Target Q-table set

O :={Q: max Q(s,a) > max Q(s,a),Vsc ST}

a€nt(s) agmit(s)

If the target policy 7 always specifies a singleton action
or does not care on all states, then QT is a convex set. But
in general when 1 < |77(s)| < |A| on any s, Q will be a
union of convex sets but itself can be in general non-convex.

4. Theoretical Guarantees

Now, we are ready to formally define the optimal attack
problem. At time ¢, the attacker observes an attack state
(N.B. distinct from MDP state s;):

& = (s¢,a¢, 541,14, Q) € 4

which jointly characterizes the MDP and the RL agent. The
attacker’s goal is to find an attack policy ¢ : = — [—A, A],
where for & € Z the attack action is §; := ¢(&;), that
minimizes the number of rounds on which the agent’s @
disagrees with the attack target QT:

min E, Y 1[Q: ¢ Q1) )
t=0

where the expectation accounts for randomness in Alg 1.
We denote Joo (¢) = Ep > oo, 1{Q: ¢ QT] the total attack
cost, and Jr(¢) = By 31—, 1[Q: ¢ Q'] the finite-horizon
cost. We say the attack is feasible if (5) is finite.

Next, we characterize attack feasibility in terms of poison
magnitude constraint A, as summarized in Figure 3. Proofs
to all the theorems can be found in the appendix.

4.1. Attack Infeasibility

Intuitively, smaller A makes it harder for the attacker to
achieve the attack goal. We show that there is a threshold
A; such that for any A < A; the RL agent is eventually
safe, in that m; — 7* the correct MDP policy. This implies
that (5) is infinite and the attack is infeasible. There is a
potentially larger A, such that for any A < A, the attack
is also infeasible, though 7; may not converge to 7*.

While the above statements are on 7, our analysis is via
the RL agent’s underlying ();. Note that under attack the re-
wards 7; + J; are no longer stochastic, and we cannot utilize
the usual Q-learning convergence guarantee. Nonetheless,
we show that () is bounded in a polytope in the Q-space.

Theorem 1 (Boundedness of Q-learning). Assume that §; <
A for all t, and the stepsize a’s satisfy that oy < 1 for all
t, > ap = coand Y a? < co. Let Q* be defined as (1).
Then, for any attack sequence {9;}, there exists N € N such
that, with probability 1, for allt > N, we have

A A
Q(5,0) = 722 S Q0.0 SQ(5.0) F 7o ©
Remark 1: The bounds in Theorem 1 are in fact tight. The
lower and upper bound can be achieved by setting §; = —A
or +A respectively.
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Guarantee 3¢, 5.t w — 7!
T 7'('? Non-adaptive attack achieves
i Jo = O(exp(|S])-
Guarantee Adaptive attack achieves
T — T Joo = O(S]?).
Ay Ay Az Ay
(implicit)

Figure 3. A summary diagram of the theoretical results.

We immediately have the following two infeasibility certifi-
cates.

Corollary 2 (Strong Infeasibility Certificate). Define

max Q*(s,a)| /2.

A1 = (1—~)min |Q*(s,7"(s)) —
L= (1= ) min [ Q*(s,7°(5) — max

If A < Ay, there exist N € N such that, with probability 1,
forallt > N, my = w*. In other words, eventually the RL
agent learns the optimal MDP policy 7 despite the attacks.

Corollary 3 (Weak Infeasibility Certificate). Given attack
target policy ¥, define

Ao = (1= ) max |Q"(5,7°(s)) ~ max Q"(s.a) /2
s acmT(s

If A < A, there exist N € N such that, with probability

1, forallt > N, m(s) ¢ n'(s) for some s € ST. In

other words, eventually the attacker is unable to enforce '

(though m; may not settle on 7* either).

Intuitively, an MDP is difficult to attack if its margin
min, [Q* (s, 7*(s)) — max, .« (s) @ (s, a)] is large. This
suggests a defense: for RL to be robust against poisoning,
the environmental reward signal should be designed such
that the optimal actions and suboptimal actions have large
performance gaps.

4.2. Attack Feasibility

We now show there is a threshold A3 such that for all A >
A5 the attacker can enforce 7t for all but finite number of
rounds.

Theorem 4. Given a target policy 7', define

Q*(s.) — max Q*(s,a)-
acni(s)
(7

where [x]; = max(z,0). Assume the same conditions on
oy as in Theorem 1. If A > Ag, there is a feasible attack

policy ¢35, Furthermore, Joo (¢%5) < O(L®), where L is
the covering number.

A3 = —— max| ma
3 2 sES}Ti[aQTrfi(s)

Algorithm 2 The Non-Adaptive Attack ¢'7

PARAMETERS: target policy 7, agent parameters

A =(Qo,¢,7, {at}), MDP parameters

M = (S, A, R, P, 1), maximum magnitude of poisoning
A.

def Init(r', A, M):

1: Construct a Q-table Q’, where Q' (s, a) is defined as

Q*(s,a)+(1f_v), ifse St aenl(s)
Q*(s,a)uj_Aw, ifse St ad¢nl(s)
Q" (s,a), if s ¢ ST

2: Calculate a new reward function

R'(s,a) = Q'(s,a) = YEp(s'|s,a) max Q'(s',a)|.
3: Define the attack policy ¢\'* as:

PR (s,a) = R'(s,a) — Ep(ss,a) [R(5,a,5)], Vs, a.

def Attack(&;):

1: Return ¢X'? (8¢, az)

Theorem 4 is proved by constructing an attack policy
X (51,ar), detailed in Alg. 2. Note that this attack
policy does not depend on @Q);. We call this type of at-
tack non-adaptive attack. Under such construction, one
can show that Q-learning converges to the target policy
7t. Recall the covering number L is the upper bound
on the minimum sequence length starting from any (s, a)
pair and follow the MDP until all (state, action) pairs ap-
pear in the sequence (Even-Dar & Mansour, 2003). It is
well-known that e-greedy exploration has a covering time
L < O(e!¥!) (Kearns & Singh, 2002). Prior work has con-
structed examples on which this bound is tight (Jin et al.,
2018). We show in appendix C that on our toy example
e-greedy indeed has a covering time O(e!®!). Therefore,
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the objective value of (5) for non-adaptive attack is upper-
bounded by O(e!®!). In other words, the non-adaptive attack
is slow.

4.3. Fast Adaptive Attack (FAA)

We now show that there is a fast adaptive attack qﬁ% AA
which depends on ); and achieves J, polynomial in |.S|.
The price to pay is a larger attack constraint Ay, and the
requirement that the attack target states are sparse: k =
|ST| < O(log | S|). The FAA attack policy ¢5, , , is defined
in Alg. 3.

Conceptually, the FAA algorithm ranks the target states
in descending order by their distance to the starting states,
and focusing on attacking one target state at a time. Of
central importance is the temporary target policy v;, which is
designed to navigate the agent to the currently focused target
state szl.), while not altering the already achieved target
actions on target states of earlier rank. This allows FAA to
achieve a form of program invariance: after FAA achieves
the target policy in a target state SL), the target policy on
target state (i) will be preserved indefinitely. We provide
a more detailed walk-through of Alg. 3 with examples in
appendix E.

Definition 3. Define the shortest e-distance from s to s’ as

d.(s,s") = miqul E.. [T] 9)

S
s.t.sg=8,87 =5 ,5 #5 V¥Vt <T

where . denotes the epsilon-greedy policy based on .
Since we are in an MDP, there exists a common (partial)
policy Ty that achieves d. (s, s') for all source state s € S.
Denote . as the navigation policy to s'.

Definition 4. The c-diameter of an MDP is defined as the
longest shortest e-distance between pairs of states in S’

D, = Inax d.(s,s") (10)
Theorem 5. Assume that the learner is running e-greedy
Q-learning algorithm on an episodic MDP with e-diameter
D, and maximum episode length H, and the attacker aims
at k distinct target states, i.e. |ST| = k. If A is large enough
that the Clipa () function in Alg. 3 never takes effect, then
(b% A4 18 feasible, and we have

Joo (D) <k —

k
SUAIH 1A [Vﬂ b an
1—e| ¢

1-¢
How large is D.? For MDPs with underlying structure
as undirected graphs, such as the grid worlds, it is shown
that the expected hitting time of a uniform random walk is
bounded by O(|S|?)(Lawler, 1986). Note that the random
hitting time tightly upper bounds the optimal hitting time,

Algorithm 3 The Fast Adaptive Attack (FAA)

PARAMETERS: target policy 7', margin ), agent
parameters A = (Qo, €, 7, {a: }), MDP parameters
M= (S,A,R, P, ,U()).
def Init(7", A, M, n):

1: Given  (s¢,a¢, Qy), define  the  hypotheti-
cal Q-update function without attack as
Qg1 (e, ar) = (I = o)Qi(se,ae) +

ot (re + (1 — EOE) maxgy e Qt(st41,a’)).
2: Given (s¢, at, @), denote the greedy attack function at
st W.I.t. a target action set A, as g(As, ), defined as

o lmaxaga,, Qi(se,a)—

Qi1 (s ar) + )y ifay € A, )
o [maxeea,, Qu(se,a)—
Qi1 (seya) +m)-  ifa, & As,.

3: Define Clipp (§) = min(max(d, —A), A).

4: Rank the target states in descending order as
{szl)7 ey sgk)}, according to their shortest e-distance
to the initial state Eq,,, [d®(s, s;))].

5. fori=1,...,kdo

6:  Define the temporary target policy v; as

1 - 'i' s

7t (s) ifse{s]gj):jgi}.
7: end for
def Attack(&y):
1: fori=1,...,kdo
2:  if argmax, Qt(szri), a) ¢ (sJ(rl)) then
3: Return §; < Clips (g({vi(se)}))-
4:  endif
5: end for
6: Return &; < Clips (g({77(s:)})).

a.k.a. the e-diameter D., and they match when € = 1. This
immediately gives us the following result:

Corollary 6. If in addition to the assumptions of Theo-
rem 5, the maximal episode length H = O(|S]), then
Joo (d)i-,AA) < O(e¥|S|?|Al) in Grid World environments.
When the number of target states is small, ie. k <
O(log|S1), Joo(¢fa4) < O(poly(|S])).

Remark 2: Theorem 5 and Corollary 6 can be thought of
as defining an implicit A4, such that for any A > Ay, the
clip function in Alg. 3 never take effect, and qb% 4.4 achieves
polynomial cost.
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Figure 4. Attack cost J;¢s (¢) on different A’s. Each curve shows
mean +1 standard error over 1000 independent test runs.

4.4. Ilustrating Attack (In)feasibility A Thresholds

The theoretical results developed so far can be summarized
as a diagram in Figure 3. We use the chain MDP in Figure 2
to illustrate the four thresholds Ay, As, Az, A4 developed
in this section. On this MDP and with this attack target
policy 7f, we found that A; = Ay = 0.0069. The two
matches because this 71 is the easiest to achieve in terms
of having the smallest upperbound A,. Attackers whose
poison magnitude |d;| < Az will not be able to enforce the
target policy 7' in the long run.

We found that Az = 0.132. We know that ¢\’ should be
feasible if A > Aj. To illustrate this, we ran quAa; with
A = 0.2 > Ajz for 1000 trials and obtained estimated
Jio5 (¢30F) = 9430. The fact that Jygs (¢3) < T = 10°
is empirical evidence that ¢\'7 is feasible. We found that
A4 = 1 by simulation. The adaptive attack qb% A4 CON-
structed in Theorem 5 should be feasible with A = Ay = 1.
We run ¢S, , , for 1000 trials and observed Jygs (¢5 4 4) =
30.4 < T, again verifying the theorem. Also observe that
J105 (gb% 4.4) is much smaller than Jygs (¢A%), verifying the
foundamental difference in attack efficiency between the
two attack policies as shown in Theorem 4 and Corollary 6.

While FAA is able to force the target policy in polynomial
time, it’s not necessarily the optimal attack strategy. Next,
we demonstrate how to solve for the optimal attack problem
in practice, and empirically show that with the techniques
from Deep Reinforcement Learning (DRL), we can find
efficient attack policies in a variety of environments.

5. Attack RL with RL

The attack policies ¢A’* and qﬁ% 44 Were manually con-
structed for theoretical analysis. Empirically, though, they
do not have to be the most effective attacks under the rele-
vant A constraint.

In this section, we present our key computational insight: the
attacker can find an effective attack policy by relaxing the
attack problem (5) so that the relaxed problem can be effec-
tively solved with RL. Concretely, consider the higher-level
attack MDP N = (E, A, p, 7) and the associated optimal
control problem:

e The attacker observes the attack state &; € =.
e The attack action space is {0, € R : |§;] < A}.

e The original attack loss function 1[Q; ¢ Q] is a 0-1 loss
that is hard to optimize. We replace it with a continuous
surrogate loss function p that measures how close the
current agent Q-table @, is to the target Q-table set:

p(&) = Z { max Q:(s,a) — max Q(s,a)+n

scst ag¢mi(s) aemt(s) n

12)

where 7 > 0 is a margin parameter to encourage that
7t (s) is strictly preferred over A\7(s) with no ties.

e The attack state transition probability is defined by
T(&+1 | &,0:). Specifically, the new attack state

11 = (St41,0141, St42,Te41, Qeg1) is generated as
follows:

— s;41 1s copied from &, if not the end of episode, else
St4+1 ™~ Ho-

— auy41 1s the RL agent’s exploration action drawn ac-
cording to (2), note it involves (Q;1.

— si49 is the RL agent’s new state drawn according to
the MDP transition probability P(- | st41, as11)-

— 7141 is the new (not yet poison) reward according to
MDP R(St_;,_l, At41, St+2).

— The attack J; happens. The RL agent updates Q;1
according to (3).

With the higher-level attack MDP A/, we relax the optimal
attack problem (5) into

o = arg(;ninEd, Z p(&) (13)

t=0

One can now solve (13) using Deep RL algorithms. In this
paper, we choose Twin Delayed DDPG (TD3) (Fujimoto
et al., 2018), a state-of-the-art algorithm for continuous
action space. We use the same set of hyperparameters for
TD3 across all experiments, described in appendix F.

6. Experiments

In this section, We make empirical comparisons between
a number of attack policies ¢: We use the naming conven-
tion where the superscript denotes non-adaptive or adaptive
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Figure 5. Attack performances on the chain MDPs of different
lengths. Each curve shows mean £1 standard error over 1000
independent test runs.

policy: ¢*%* depends on (s, a, $¢+1) but not Q;. Such
policies have been extensively used in the reward shaping
literature and prior work (Ma et al., 2019; Huang & Zhu,
2019) on reward poisoning; ¢¢ depends on the whole attack
state £;. We use the subscript to denote how the policy is
constructed. Therefore, (b% ps 1 the attack policy found
by solving (13) with TD3; gi)% AT D3 18 the attack policy
found by TD3 initialized from FAA (Algorithm 3), where
TD?3 learns to provide an additional §; on top of the d; gen-
erated by gb% 44> and the agent receives r; + 0, + J; as
reward; ¢354 is the attack policy found using TD3 with the
restriction that the attack policy only takes (s;, at, S¢41) as
mnput.

In all of our experiments, we assume a standard Q-learning
RL agent with parameters: Qp = 05%4, ¢ = 0.1,y =
0.9,y = 0.9, Vt. The plots show +1 standard error around
each curve (some are difficult to see). We will often evaluate
an attack policy ¢ using a Monte Carlo estimate of the 0-1
attack cost J(¢) for T = 10°, which approximates the
objective Joo () in (5).

6.1. Efficiency of Attacks across different A’s

Recall that A > Az, A > Ay are sufficient conditions
for manually-designed attack policies ¢\'* and ¢>§7 A4 tO
be feasible, but they are not necessary conditions. In this
experiment, we empirically investigate the feasibilities and
efficiency of non-adaptive and adaptive attacks across dif-

ferent A values.

We perform the experiments on the chain MDP in Fig-
ure 2. Recall that on this example, As = 0.132 and
A4 = 1 (implicit). We evaluate across 4 different A values,
[0.1,0.2,0.5, 1], covering the range from Ajz to Ay. The
result is shown in Figure 4.

) ) ms) mp) =) ) =) =) -‘(;_

il

Figure 6. The 10 x 10 Grid World. s is the starting state and G
the terminal goal. Each move has a —0.1 negative reward, and a
+1 reward for arriving at the goal. We consider two partial target
policies: ﬂ marked by the green arrows, and 71'; by both the green
and the orange arrows.

We are able to make several interesting observations:

(1) All attacks are feasible (y-axis < T'), even when A falls
under the thresholds Az and Ay for corresponding methods.
This suggests that the feasibility thresholds are not tight.
(2) For non-adaptive attacks, as A increases the best-found
attack policies ¢354 achieve small improvement, but gener-
ally incur a large attack cost.

(3) Adaptive attacks are very efficient when A is large. At
A =1, the best adaptive attack ¢% AA4+T D3 achieves a cost
of merely 13 (takes 13 steps to always force 7' on the RL
agent). However, as A decreases the performance quickly
degrades. At A = (.1 adaptive attacks are only as good as
non-adaptive attacks. This shows an interesting transition
region in A that our theoretical analysis does not cover.

6.2. Adaptive Attacks are Faster

In this experiment, we empirically verify that, while both
are feasible, adaptive attacks indeed have an attack cost
O(Poly|S|) while non-adaptive attacks have O(e!®!). The
0-1 costs 1[m; # '] are in general incurred at the beginning
of eacht = 0...T run. In other words, adaptive attacks
achieve 7! faster than non-adaptive attacks. We use sev-
eral chain MDPs similar to Figure 2 but with increasing
number of states |S| = 3,4,5,6,12. We provide a large
enough A = 2 > A, to ensure the feasibility of all attack
policies. The result is shown in Figure 5. The best-found
non-adaptive attack ¢35 is approximately straight on the
log-scale plot, suggesting attack cost J growing exponen-
tially with MDP size | S|. In contrast, the two adaptive attack
polices gb% A4 and ¢§, AA+T D3 actually achieves attack cost
linear in |S|. This is not easy to see from this log-scaled
plot; We reproduce Figure 5 without the log scale in the
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Figure 7. Experiment results for the ablation study. Each curve shows mean 41 standard error over 20 independent test runs. The gray

dashed lines indicate the total number of target actions.

appendix G.1, where the linear rate can be clearly verified.
This suggests that the upperbound developed in Theorem 5
and Corollary 6 can be potentially improved.

6.3. Ablation Study

In this experiment, we compare three adaptive attack poli-
cies: quET D3 the policy found by out-of-the-box TD3, qﬁ% AA
the manually designed FAA policy, and qﬁg AAasTD3 the
policy found by using FAA as initialization for TD3.

We use three MDPs: a 6-state chain MDP, a 12-state chain
MDP, and a 10 x 10 grid world MDP.. The 10 x 10 MDP

has two separate target policies WI and 7T;, see Figure 6.

For evaluation, we compute the number of target actions
achieved |{s € ST : m(s) € n(s)}| as a function of .
This allows us to look more closely into the progress made
by an attack. The results are shown in Figure 7.

First, observe that across all 4 experiments, attack policy
qbfT ps found by out-of-the-box TD3 never succeeded in
achieving all target actions. This indicates that TD3 alone
cannot produce an effective attack. We hypothesize that
this is due to a lack of effective exploration scheme: when
the target states are sparse (|ST| < |S]) it can be hard for
TD3 equiped with Gaussian exploration noise to locate all
target states. As a result, the attack policy found by vanilla
TD3 is only able to achieve the target actions on a subset of
frequently visited target states.

Hand-crafted QS% 4.4 18 effective in achieving the target poli-
cies, as is guaranteed by our theory. Nevertheless, we found
that ¢% AA4+TD3 always improves upon qb% ps- Recall that
we use FAA as the initialization and then run TD3. This
indicates that TD3 can be highly effective with a good ini-
tialization, which effectively serves as the initial exploration
policy that allows TD3 to locate all the target states.

Of special interest are the two experiments on the 10 x 10
Grid World with different target policies. Conceptually, the
advantage of the adaptive attack is that the attacker can
perform explicit navigation to lure the agent into the target
states. An efficient navigation policy that leads the agent to

all target states will make the attack very efficient. Observe
that in Figure 6, both target polices form a chain, so that
if the agent starts at the beginning of the chain, the target
actions naturally lead the agent to the subsequent target
states, achieving efficient navigation.

Recall that the FAA algorithm prioritizes the target states
farthest to the starting state. In the 10 x 10 Grid World,
the farthest state is the top-left grid. For target states SI,
the top-left grid turns out to be the beginning of the rarget
chain. As a result, (b% a4 1s already very efficient, and
(b% AA+TD3 couldn’t achieve much improvement, as shown
in 7c. On the other hand, for target states S T, the top-left
grid is in the middle of the target chain, which makes qﬁ% AA
not as efficient. In this case, d)% AALTD3 makes a significant
improvement, successfully forcing the target policy in about
500 steps, whereas it takes (b% 44 as many as 1000 steps,
about twice as long as d)%AAJrTDg.

7. Conclusion

In this paper, we studied the problem of reward-poisoning
attacks against reinforcement-learning agents. Theoretically,
we provide robustness certificates that guarantee the truth-
fulness of the learned policy when the attacker’s constraint
is stringent. When the constraint is loose, we show that by
being adaptive to the agent’s internal state, the attacker can
force the target policy in polynomial time, whereas a naive
non-adaptive attack takes exponential time. Empirically, we
formulate that the reward poisoning problem as an optimal
control problem on a higher-level attack MDP, and devel-
oped computational tools based on DRL that is able to find
efficient attack policies across a variety of environments.
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Appendices

A. Proof of Theorem 1

Proof. Consider two MDPs with reward functions defined as R + A and R — A, denote the Q table corresponding to them
as Q4 and Q_a, respectively. Let {(s¢, a;)} be any instantiated trajectory of the learner corresponding to the attack policy
¢. By assumption, {(s¢, a;)} visits all (s, a) pairs infinitely often and o ’s satisfy Y a; = oo and Y a? < oo. Assuming
now that we apply Q-learning on this particular trajectory with reward given by r; + A, standard Q-learning convergence
applies and we have that Q; A — Q4 and similarly, Q; _A — Q_a (Melo).

Next, we want to show that Q;(s,a) < Q; y+a(s,a) forall s € S,a € A and for all t. We prove by induction. First, we
know Qo (s, a) = Qo,+(s,a). Now, assume that Qy (s, a) < Qk,+a(s,a). We have

Qrt1,4A(Skt1, Akt1) (14)
= (1= ory1)Qr+a(Sk41,apt1) + Qkg1 <7"k+1 + A+ 7 max Qra(Ski1s a’)) (15)
> (1= ap1)Qr(Skt1, k1) + akg1 (Tk+1 + 0kt1 + 7 max Qr(8k41 a’)) (16)
= Qr+1(5k+1,ak41), (17)

which established the induction. Similarly, we have Q;(s,a) > Q¢ —a(s, a). Since Q¢ +A = Q+a, Qt—aA — Q—_a, We
have that for large enough ¢,

Q—A($7a) < Qt(saa) < Q-&-Aavs € Saa €A (13)

Finally, it’s not hard to see that Q1A (s,a) = Q*(s,a) + ﬁ and Q_a(s,a) = Q*(s,a) — ﬁ. This concludes the proof.
[

B. Proof of Theorem 4

Proof. We provide a constructive proof. We first design an attack policy ¢, and then show that ¢ is a strong attack. For the
purpose of finding a strong attack, it suffices to restrict the constructed ¢ to depend only on (s, a) pairs, which is a special
case of our general attack setting. Specifically, for any A > Aj, we define the following Q’:

. Vse St aeni(s),

Q(5,0) = § (5,0 - Ty Weshagr(s), )

Q"(s,a),Vs ¢ ST, a,

where Q* (s, a) is the original optimal value function without attack. We will show Q' € Qf, i.e., the constructed @’ induces
the target policy. For any s € St, letaf € arg MAaX, () Q*(s,a), a best target action desired by the attacker under the

original value function Q*. We next show that a! becomes the optimal action under Q’. Specifically, Ya’' ¢ 7 (s), we have

A

/ T _ * T
— * N _ )* ! A * no_ A
= Q%(s,a") Q(s7a)+(1+’y)+Q(s,a) a5 2n
= Qsa) - Q (5.0 + o £ (s, @)

(1+7)



Adaptive Reward-Poisoning Attacks against Reinforcement Learning

Next note that

A>As > T[a%‘ﬁ) Q*(s,a) — agﬁ)(i) Q*(s,a)] (23)
1

> 2 2Q (s,a) ~ Q7 (s,ah), 25)

which is equivalent to

* T * / 2A
Q(S,a)*Q(S,Q)>*m, (26)
thus we have

Qs:ah) = Q(s.a") ~Q(s.0) + 775 +Q'(s.0) @7)
> 0+Q'(s,a") =Q'(s,d). (28)

This shows that under @, the original best target action a becomes better than all non-target actions, thus a' is optimal
and Q' € Qf. According to Proposition 4 in (Ma et al., 2019), the Bellman optimality equation induces a unique reward
function R'(s, a) corresponding to @'

R'(s,a) = Q'(s,a) — 'yZP(s’ | 5,a) max Q'(s',a’). (29)

1 sas .
We then construct our attack policy ¢\’ as:

¢, (s,a) = R/(s,a) — R(s,a), Vs, a. (30)

The ¢X* (s, a) results in that the reward function after attack appears to be R/ (s, a) from the learner’s perspective. This
in turn guarantees that the learner will eventually learn )’, which achieves the target policy. Next we show that under
A2 (8, a), the objective value (5) is finite, thus the attack is feasible. To prove feasibility, we consider adapting Theorem 4

in (Even-Dar & Mansour, 2003), re-stated as below.

Lemma 7 (Even-Dar & Mansour). Assume the attack is ¢ X7 (s,a) and let Q; be the value of the Q-learning algorithm using

polynomial learning rate oy = (l%_t)“’ where w € (%, 1]. Then with probability at least 1 — 6, we have ||Qr — Q[0 < T
with
. 1 1 1
T=Q(L3*%Z(In—) +LT%In- |, €3]
T2V 0T T

Note that Q' is an open set and Q’ € Q. This implies that one can pick a small enough 7y > 0 such that ||Q7 — Q’'||oe < 70
implies Q7 € QT. From now on we fix this 7, thus the bound in the above theorem becomes

T:Q(L:‘*i(ln;)i —|—L11w>. (32)

As the authors pointed out in (Even-Dar & Mansour, 2003), the w that leads to the tightest lower bound on T is around 0.77.
Here for our purpose of proving feasibility, it is simpler to let w ~ % to obtain a loose lower bound on 7" as below

1
T=Q (L5(1n 5)2> . (33)
Now we represent J as a function of T to obtain that V' > 0,

Pl|Qr — Q'lloe > 70] < Cexp(~L™3T2). (34)
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Lete; = 1[||Qt — @' |loo > 7o), then we have

Eqsza; [Z Qt ¢ QT‘| < Eqﬁza; Zet‘| (35)
t=1 t=1
= Y PlQr - Qllo > 1) <> Cexp(~L™3t%) (36)
t=1 t=1
< Cexp(—L~3t7)dt = 2CL7, (37)
t=0

which is finite. Therefore the attack is feasible.

It remains to validate that ¢\' is a legitimate attack, i.e. , |0¢] < A under attack policy ¢x.. By Lemma 7 in (Ma et al.,
2019), we have

‘6t| = |R/(8t7a't) - R(St7at)| (38)
< max[R'(s,a) — R(s,a)] = |R' — Rl (39)
< A+9)Q -Q=01+) =A. (40)

(1+7)

Therefore the attack policy ¢\ is valid. m

Discussion on a number of non-adaptive attacks: Here, we discuss and contrast 3 non-adaptive attack polices developed
in this and prior work:

1. (Huang & Zhu, 2019) produces the non-adaptive attack that is feasible with the smallest A. In particular, it solves for the
following optimization problem:

i [ @
sit. Q(s,a) = 0(s,a) + Epys,a) |R(s,a,s) + 7 max Q(s',a") (42)

a’'e
Qe of (43)

where the optimal objective value implicitly defines a A} < Ajz. However, it’s a fixed policy independent of the actual A
. In other word, It’s either feasible if A > A, or not.

2. ¢X; is a closed-form non-adaptive attack that depends on A. ¢\"* is guaranteed to be feasible when A > Ajz. However,
this is sufficient but not necessary. Implicitly, there exists a AY Wthh is the necessary condition for the feasibility of ¢
Then, we know Af > A%, because Aj is the sufficient and necessary condition for the feasibility of any non- adaptlve
attacks, whereas Ag’ is the condition for the feasibility of non-adaptive attacks of the specific form constructed above.

3. @754 (assume perfect optimization) produces the most efficient non-adaptive attack that depends on A.

In terms of efficiency, ¢33, achieves smaller Jo,(¢) than ¢x. and (Huang & Zhu, 2019). It’s not clear between ¢\'* and
(Huang & Zhu, 2019) which one is better. We believe that in most cases, especially when A is large and learning rate oy is
small, x> will be faster, because it takes advantage of that large A, whereas (Huang & Zhu, 2019) does not. But there
probably exist counterexamples on which (Huang & Zhu, 2019) is faster than ¢

C. The Covering Time L is O(exp(|S])) for the chain MDP

Proof. While the e-greedy exploration policy constantly change according to the agent’s current policy 7, since L is a
uniform upper bound over the whole sequence, and we know that 7; will eventually converge to 77, it suffice to show that
the covering time under 7} is O(exp(|S])).

Recall that 7! prefers going right in all but the left most grid. The covering time in this case is equivalent to the expected
number of steps taken for the agent to get from sy to the left-most grid, because to get there, the agent necessarily visited all
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states along the way. Denote the non-absorbing states from right to left as s, s1, ..., $p—1, with |S| = n. Denote Vj, the
expected steps to get from state s to s,,—1. Then, we have the following recursive relation:

Voer = 0 (44)
Vii = 14+(1- )Vk 1+ Vk+1,for k=1,. -2 (45)
Vo = 1+(1—§)Vo+§V1 (46)
Solving the recursive gives
Vo = p(l(‘gp(;p—)fp)) [(1 ;P)n_1 B 1] (47)

where p = £ < 1 and thus V5 = O(exp(n)). m

D. Proof of Theorem 5
Lemma 8. For any state s € S and target actions A(s) C A, it takes FAA at most % Visits to s in expectation to enforce
the target actions A(s).

Proof. Denote V; the expected number of visits s to teach A(s) given that under the current Q;, max,e 4(s) is ranked ¢

among all actions, where ¢ € 1, ..., |A|. Then, we can write down the following recursion:
i =0 (48)
V; 1+(1—e)V t=ly Ly Aty (49)
t = —€&)Vi-1€ t—1 1 t
IAI A Al

Equation (49) can be simplified to

1—6+5% 1
Vi = thfﬁr _E\Alft (50)
[A] [A]
1
< Vi 1+17 (51
—€
Thus, we have
t—1 |A]
< 52
Vt_l—g 1—c¢ (52)

as needed. m

Now, we prove Theorem 5.

Proof. Leti € [1,n] be given. First, consider the number of episodes, on which the agent was found in at least one state s;
and is equipped with a policy 7, s.t. 7(s¢) € v;(st). Since each of these episodes contains at least one state s; on which v;

has not been successfully taught, and according to Lemma 2, it takes at most ﬂ visits to each state to successfully teach
any actions A(s), there will be at most ‘S‘ ‘Al such episodes. These episodes take at most ‘SHAlH iterations for all target
states. Out of these episodes, we can safely assume that the agent has successfully picked up 1/1 for all the states visited.
-1

Next, we want to show that the expected number of iterations taken by 7r to get to s; is upper bounded by [‘Aq D,
where 77 is defined as

772r = arg min Esompo [dr(50,5i)] - (53)

mell,m(s;)enT(s;),Vj<i—1

First, we define another policy

I(S) _ { 7f(s) ifs€ {s1,...., 51} 54)

7, (8) otherwise
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Clearly B, {dﬂj(so,si)} < By [dﬁf(so,si)} for all 7.

i—1
We now prove by induction that d_. (s, s;) < [“Eil} Dforalliands € S.
First, let ¢ = 1, 7%2 = Ts,,and thus d_+ (s, s;) < D.

Next, we assume that when i = k, d_+ (s, s;) < D, and would like to show that when i = k 4 1, d_+ (s, 5;) < [@} Dy,.

g

Define another policy

T i .
ity | 7m(s) ifse {s2...,8i-1}
7i(s) = { 7s; (8)  otherwise (35)

which respect the target policies on so, ..., S;_1, but ignore the target policy on s;. By the 1nduct1ve hypothesis, we have that
d.1(s,8;) < Dy. Consider the dlfference between d.. f(s)(Sl, sy) and d+(s1, s3). Since 7] T(s) and 7 7, only differs by their
first action at s1, we can derive Bellman’s equation on each policy, Wthh yield

dj(slvsk) = (1-¢)Q(s1,7'(s1)) +eQ(s1,0a) (56)
< Erleaj(Q(sl,a) (57)

doi(s1,5%) = (1—2)Q(s1,7s,(s1) +eQ(s1,0) (58)
ﬁ' max Q(s1, a) (59)

(60)

where Q)(s1,a) denotes the expected distance to s, from s; by performing action a in the first step, and follow frj thereafter,
and Q(s1,a) denote the expected distance by performing a uniformly random action in the first step. Thus,

|A

dr (s, s%) < %dm(ShSk) (61)
With this, we can perform the following decomposition:
d.i(s,sr) = [P[visit s; before reaching sy ] (d (s,81) +d.1(s1, sk)) + P [not visit s1] (dﬁT(s, s1)|not visit 31)

A
< P|[visit 1 before reaching sy] (d (s,81)+ udﬁ_]‘ (s1, sk)> + P [not visit 1] (dﬁ_f (s, sk )|not visit 51)
< i i

A
= dﬁt (S,Sk) + <€| - 1) d;‘.T (817Sk7)

E €

This completes the induction. Thus, we have

IA

i—1
d.+(s,s;) < <A|) D, (62)

3

and the total number of iterations taken to arrive at all target states sequentially sums up to

D doi(s,si) < (":') D. (63)

\A\

Finally, each target states need to visited for number of times to successfully enforce 7. Adding the numbers for

enforcing each 7ri gives the correct result. m
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E. Detailed Explanation of Fast Adaptive Attack Algorithm

In this section, we try to give a detailed walk-through of the Fast Adaptive Attack Algorithm (FAA) with the goal of
providing intuitive understanding of the design principles behind FAA. For the sake of simplisity, in this section we assume
that the Q-learning agent is € = 0, such that the attacker is able to fully control the agent’s behavior. The proof of correctness
and sufficiency in the general case when ¢ € [0, 1] is provided in section D.

The Greedy Attack: To begin with, let’s talk about the greedy attack, a fundamental subroutine that is called in every
step of FAA to generate the actual attack. Given a desired (partial) policy v, the greedy attack aims to teach v to the agent
in a greedy fashion. Specifically, at time step ¢, when the agent performs action a; at state s;, the greedy attack first look
at whether a; is a desired action at s + ¢ according to sv, i.e. whether a; € v(s;). If a; is a desired action, the greedy
attack will produce a large enough d;, such that after the Q-learning update, a; becomes strictly more preferred than all
undesired actions, i.e. Q¢ 41(5¢, ) > MaxXqg,(s,) Qt+1(5¢, a). On the other hand, if a; is not a desired action, the greedy
attack will produce a negative enough d;, such that after the Q-learning update, a; becomes strictly less preferred than all
desired actions, i.e. Q¢4 1(s¢,ar) < MaxX,e,(s,) Qe+1(5¢,a). It can be shown that with ¢ = 0, it takes the agent at most
|A| — 1 visit to a state s, to force the desired actions v/(s).

Given the greedy attack procedure, one could directly apply the greedy attack with respect to ! throughout the attack
procedure. The problem, however, is efficiency. The attack is not considered success without the attacker achieving the
target actions in ALL target states, not just the target states visited by the agent. If a target state is never visited by the agent,
the attack never succeed. 7' itself may not efficiently lead the agent to all the target states. A good example is the chain
MDP used as the running example in the main paper. In section C, we have shown that if an agent follows 7', it will take
exponentially steps to reach the left-most state. In fact, if ¢ = 0, the agent will never reach the left-most state following 77,
which implies that the naive greedy attack w.r.t. ' is in fact infeasible. Therefore, explicit navigation is necessary. This
bring us to the second component of FAA, the navigation polices.

The navigation polices: Instead of trying to achieve all target actions at once by directly appling the greedy attack w.r.t.
7t, FAA aims at one target state at a time. Let s .. be an order of target states. We will discuss the choice of
ordering in the next paragraph, but for now we W111 assume tflat an ordering is given. The agent starts off aiming at forcing
the target actions in a single target state s (1)- To do so, the attacer first calculate the corresponding navigation policy v,

where v (s;) = 77521) (s¢) when s; # 821)’ and v (s;) = m'(s;) when s; = 511). That is, v1 follows the shortest path policy
W.I.L. 311) when the agent has not arrived at 311), And when the agent is in 521)’ v; follows the desired target actions. Using
the greedy attack w.r.t. v allows the attacker to effectively lure the agent into sJ(rl) and force the target actions 7' (811)). After
successfully forcing the target actions in 521)’ the attacker moves on to 322). This time, the attacker defines the navigation
policy v» similiar to v, except that we don’t want the already forced ﬁT(S](Ll)) to be untaught. As a result, in v5, we define

Vo (sgl)) = H(s}l)), but otherwise follows the corresponding shortest-path policy 7+ . Follow the greedy attack w.r.t. vy,
e)

the attacker is able to achieve 7' (szz)) efficiently without affecting (sgl)). This process is carried on throughout the whole
ordered list of target states, where the target actions for already achieved target states are always respected when defining the
next v;. If each target states sgi) can be reachable with the corresponding v;, then the whole process will terminate at which
point all target actions are guaranteed to be achieved. However, the reachability is not always guaranteed with any ordering
of target states. Take the chain MDP as an example. if the 2nd left target state is ordered before the left-most state, then after
teaching the target action for the 2nd left state, which is moving right, it’s impossible to arrive at the left-most state when the
navigation policy resepct the moving-right action in the 2nd left state. Therefore, the ordering of target states matters.

The ordering of target states: FAA orders the target states descendingly by their shortest distance to the starting state
so. Under such an ordering, the target states achieved first are those that are farther away from the starting state, and they
necessarily do not lie on the shortest path of the target states later in the sequence. In the chain MDP example, the target
states are ordered from left to right. This way, the agent is always able to get to the currently focused target state from the
starting state sg, without worrying about violating the already achieved target states to the left. However, note that the bound
provided in theorem 5 do not utilize this particular ordering choice and applies to any ordering of target states. As a result,
the bound diverges when £ — 0, matching with the pathological case described at the end of the last paragraph.
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Parameters Values Description

exploration noise 0.5 Std of Gaussian exploration noise.

batch size 100 Batch size for both actor and critic

discount factor 0.99 Discounting factor for the attacker problem.

policy noise 0.2 Noise added to target policy during critic update.

noise clip [—0.5,0.5] | Range to clip target policy noise.

action L2 weight 50 Weight for L2 regularization added to the actor network optimization objective.
buffer size 107 Replay buffer size, larger than total number of iterations.
optimizer Adam Use the Adam optimizer.

learning rate critic 1073 Learning rate for the critic network.

learning rate actor 54 Learning rate for the actor network.

T 0.002 Target network update rate.

policy frequency 2 Frequency of delayed policy update.

Table 1. Hyperparameters for TD3.

F. Experiment Setting and Hyperparameters for TD3

Throughout the experiments, we use the following set of hyperparameters for TD3, described in Table 1. The hyperparameters
are selected via grid search on the Chain MDP of length 6. Each experiment is run for 5000 episodes, where each episode
is of 1000 iteration long. The learned policy is evaluated for every 10 episodes, and the policy with the best evaluation

performance is used for e evaluations in the experiment section.

G. Additional Experiments

G.1. Additional Plot for the rate comparison experiment

See Figure 8.
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Figure 8. Attack performances on the chain MDP of different length in the normal scale. As can be seen in the plot, both d)% a4t
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G.2. Additional Experiments: Attacking DQN

Throughout the main paper, we have been focusing on attacking the tabular Q-learning agent. However, the attack MDP also
applies to arbitrary RL agents. We describe the general interaction protocol in Alg. 4. Importantly, we assume that the RL
agent can be fully characterized by an internal state, which determines the agent’s current behavior policy as well as the
learning update. For example, if the RL agent is a Deep Q-Network (DQN), the internal state will consist of the Q-network

parameters as well as the transitions stored in the replay buffer.
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Algorithm 4 Reward Poisoning against general RL agent

Parameters: MDP (S, A, R, P, uo), RL agent hyperparameters.

1: fort=0,1,...do

2:  agent at state s, has internal state 6.

3:  agent acts according to a behavior policy:
Ay <— Tg, (St)

4:  environment transits s;11 ~ P(- | $¢,a:), produces reward r; = R(s¢, at, S¢4+1) and an end-of-episode indicator
EOE.

5:  attacker perturbs the reward to r; + d;

6:  agent receives (S¢41, 7 + 0t, EOE), performs one-step of internal state update:

Or+1 = f(0:,5¢, a8, S¢41,7¢ + 04, EOE) (64)

7. environment resets if EFOE = 1: s;41 ~ L.
8: end for
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Figure 9. Result for attacking DQN on the Cartpole environment. The left figure plots the cumulative attack cost Jr(¢) as a function of
T. The right figure plot the performance of the DQN agent J(6;) under the two attacks.

In the next example, we demonstrate an attack against DQN in the cartpole environment. In the cartpole environment, the
agent can perform 2 actions, moving left and moving right, and the goal is to keep the pole upright without moving the cart
out of the left and right boundary. The agent receives a constant +1 reward in every iteration, until the pole falls or the cart
moves out of the boundary, which terminates the current episode and the cart and pole positions are reset.

In this example, the attacker’s goal is to poison a well-trained DQN agent to perform as poorly as possible. The corresponding
attack cost p(&;) is defined as J(6;), the expected total reward received by the current DQN policy in evaluation. The DQN
is first trained in the clean cartpole MDP and obtains the optimal policy that successfully maintains the pole upright for 200
iterations (set maximum length of an episode). The attacker is then introduced while the DQN agent continues to train in the
cartpole MDP. We freeze the Q-network except for the last layer to reduce the size of the attack state representation. We
compare TD3 with a naive attacker that perform §; = —1.1 constantly. The results are shown in Fig. 9.

One can see that under the TD3 found attack policy, the performance of the DQN agent degenerates much faster compared
to the naive baseline. While still being a relatively simple example, this experiment demonstrates the potential of applying
our adaptive attack framework to general RL agents.



