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Abstract

We study a security threat to batch reinforcement learning and control where the
attacker aims to poison the learned policy. The victim is a reinforcement learner /
controller which first estimates the dynamics and the rewards from a batch data set,
and then solves for the optimal policy with respect to the estimates. The attacker
can modify the data set slightly before learning happens, and wants to force the
learner into learning a target policy chosen by the attacker. We present a unified
framework for solving batch policy poisoning attacks, and instantiate the attack
on two standard victims: tabular certainty equivalence learner in reinforcement
learning and linear quadratic regulator in control. We show that both instantiation
result in a convex optimization problem on which global optimality is guaranteed,
and provide analysis on attack feasibility and attack cost. Experiments show the
effectiveness of policy poisoning attacks.

1 Introduction

With the increasing adoption of machine learning, it is critical to study security threats to learning
algorithms and design effective defense mechanisms against those threats. There has been significant
work on adversarial attacks [2, 9]. We focus on the subarea of data poisoning attacks where the
adversary manipulates the training data so that the learner learns a wrong model. Prior work on data
poisoning targeted victims in supervised learning [17, 13, 19, 22] and multi-armed bandits [11, 16, 15].
We take a step further and study data poisoning attacks on reinforcement learning (RL). Given RL’s
prominent applications in robotics, games and so on, an intentionally and adversarially planted bad
policy could be devastating.

While there has been some related work in test-time attack on RL, reward shaping, and teaching
inverse reinforcement learning (IRL), little is understood on how to training-set poison a reinforcement
learner. We take the first step and focus on batch reinforcement learner and controller as the victims.
These victims learn their policy from a batch training set. We assume that the attacker can modify the
rewards in the training set, which we show is sufficient for policy poisoning. The attacker’s goal is to
force the victim to learn a particular target policy (hence the name policy poisoning), while minimizing
the reward modifications. Our main contribution is to characterize batch policy poisoning with a
unified optimization framework, and to study two instances against tabular certainty-equivalence
(TCE) victim and linear quadratic regulator (LQR) victim, respectively.
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2 Related Work

Of particular interest is the work on test-time attacks against RL [10]. Unlike policy poisoning, there
the RL agent carries out an already-learned and fixed policy 7 to e.g. play the Pong Game. The
attacker perturbs pixels in a game board image, which is part of the state s. This essentially changes
the RL agent’s perceived state into some s’. The RL agent then chooses the action a’ := 7(s’) (e.g.
move down) which may differ from a := 7 (s) (e.g. move up). The attacker’s goal is to force some
specific a’ on the RL agent. Note 7 itself stays the same through the attack. In contrast, ours is a
data-poisoning attack which happens at training time and aims to change .

Data-poisoning attacks were previously limited to supervised learning victims, either in batch
mode [3, 21, 14, 17] or online mode [19, 22]. Recently data-poisoning attacks have been extended to
multi-armed bandit victims [11, 16, 15], but not yet to RL victims.

There are two related but distinct concepts in RL research. One concept is reward shaping [18, 1,
7, 20] which also modifies rewards to affect an RL agent. However, the goal of reward shaping
is fundamentally different from ours. Reward shaping aims to speed up convergence to the same
optimal policy as without shaping. Note the differences in both the target (same vs. different policies)
and the optimality measure (speed to converge vs. magnitude of reward change).

The other concept is teaching IRL [5, 4, 12]. Teaching and attacking are mathematically equivalent.
However, the main difference to our work is the victim. They require an IRL agent, which is
a specialized algorithm that estimates a reward function from demonstrations of (state, action)
trajectories alone (i.e. no reward given). In contrast, our attacks target more prevalent RL agents and
are thus potentially more applicable. Due to the difference in the input to IRL vs. RL victims, our
attack framework is completely different.

3 Preliminaries

A Markov Decision Process (MDP) is defined as a tuple (S, A, P, R, ), where S is the state space,
A is the action space, P : & x A — Ag is the transition kernel where As denotes the space of
probability distributions on S, R : S x A — R is the reward function, and 7y € [0, 1) is a discounting
factor. We define a policy 7 : S — A as a function that maps a state to an action. We denote
the @ function of a policy 7 as Q™ (s,a) = E[>"°7 ;7" R(s-,a;) | so = s,a9 = a,7|, where the
expectation is over the randomness in both transitions and rewards. The () function that corresponds
to the optimal policy can be characterized by the following Bellman optimality equation:

Q*(s,a) = R(s,a) +~ Z P(s'|s,a) max Q*(s',a’), (1)
a’€A
s'eS
and the optimal policy is defined as 7*(s) € argmax,c 4 Q*(s, a).
We focus on RL victims who perform batch reinforcement learning. A training item is a tuple
(s,a,rm,8') € S x A x R x S, where s is the current state, « is the action taken, r is the received

reward, and s’ is the next state. A training set is a batch of T training items denoted by D =
(st, at, 7, St )t=0.7—1. Given training set D, a model-based learner performs learning in two steps:

Step 1. The learner estimates an MDP M = (S, A, ]3, R, ~) from D. In particular, we assume the
learner uses maximum likelihood estimate for the transition kernel P : S x A — As
T-1
P ¢ argmaleogP(sHst,at), )
LA

and least-squares estimate for the reward function R:SxA—R

T-1
R = argminZ(rtfR(st,at))Q. 3)
L —

Note that we do not require (2) to have a unique maximizer P. When multiple maximizers exist,
we assume the learner arbitrarily picks one of them as the estimate. We assume the minimizer R is
always unique. We will discuss the conditions to guarantee the uniqueness of I? for two learners later.



Step 2. The learner finds the optimal policy 7 that maximizes the expected discounted cumulative
reward on the estimated environment M, i.e.,

o0
T e argmaxIEpZ’yTR(sT,ﬂ(sT)), 4)
T:S—A —o0
where s is a specified or random initial state. Note that there could be multiple optimal policies,
thus we use € in (4). Later we will specialize (4) to two specific victim learners: the tabular certainty

equivalence learner (TCE) and the certainty-equivalent linear quadratic regulator (LQR).

4 Policy Poisoning

We study policy poisoning attacks on model-based batch RL learners. Our threat model is as follows:

Knowledge of the attacker. The attacker has access to the original training set D° =
(st,a¢, 7Y, 8})i—0.r—1. The attacker knows the model-based RL learner’s algorithm. Importantly,
the attacker knows how the learner estimates the environment, i.Ae., (2) and (3). In the case (2) has

multiple maximizers, we assume the attacker knows exactly the P that the learner picks.

Available actions of the attacker. The attacker is allowed to arbitrarily modify the rewards r’ =
(rdy...;r%_1) in D into r = (ro,...,77—1). As we show later, changing r’s but not s, a, s’ is
sufficient for policy poisoning.

Attacker’s goals. The attacker has a pre-specified target policy 71. The attack goals are to (1) force
the learner to learn 7, (2) minimize attack cost ||r — r°||, under an a-norm chosen by the attacker.

Given the threat model, we can formulate policy poisoning as a bi-level optimization problem':

min r — 1% (5)
) T—1
s.t. R = arg min Z(n — R(s¢,a1))? (©)
LLS—
{71} = argmaxEp Z Y R(sr, m(s,)). 7
m:S—A —0

The P in (7) does not involve r and is precomputed from D°. The singleton set {7} on the LHS
of (7) ensures that the target policy is learned uniquely, i.e., there are no other optimal policies tied
with 7. Next, we instantiate this attack formulation to two representative model-based RL victims.

4.1 Poisoning a Tabular Certainty Equivalence (TCE) Victim

In tabular certainty equivalence (TCE), the environment is a Markov Decision Process (MDP) with
finite state and action space. Given original data D° = (s, at, 79, 8})o.r—1, let Ts o = {t | s8¢ =
s,a; = a}, the time indexes of all training items for which action « is taken at state s. We assume
Ts o > 1,Vs, a, i.e., each state-action pair appears at least once in D°. This condition is needed to

ensure that the learner’s estimate P and R exist. Remember that we require (3) to have a unique

solution. For the TCE learner, Ris unique as long as it exists. Therefore, T , > 1, Vs, a is sufficient
to guarantee a unique solution to (3). Let the poisoned data be D = (s¢, at, 7+, 8})o.7—1. Instantiating
model estimation (2), (3) for TCE, we have

P(s' | s,a) = —— Z 1[s; =5, 8)
ool t€Ts
where 1 [] is the indicator function, and
- 1
R(s.a) ==y D v ©)

teTs o

' As we will show, the constraint (7) could lead to an open feasible set (e.g., in (10)) for the attack optimiza-
tion (5)-(7), on which the minimum of the objective function (5) may not be well-defined. In the case (7) induces
an open set, we will consider instead a closed subset of it, and optimize over the subset. How to construct the
closed subset will be made clear for concrete learners later.



The TCE learner uses P, R to form an estimated MDP M, then solves for the optimal policy 7 with
respect to M using the Bellman equation (1). The attack goal (7) can be naively characterized by

Q(s,m'(s)) > Q(s,a),Vs € S,VYa # ' (s). (10)

However, due to the strict inequality, (10) induces an open set in the () space, on which the minimum
of (5) may not be well-defined. Instead, we require a stronger attack goal which leads to a closed
subset in the @) space. This is defined as the following e-robust target () polytope.

Definition 1. (s-robust target () polytope) The set of e-robust Q) functions induced by a target policy
w1 is the polytope

Q.(m") ={Q : Q(s,7'(s5)) > Q(s,a) +¢,Ys € S,Ya # 7' (s)} (11)
for a fixed € > 0.

The margin parameter ¢ ensures that 7' is the unique optimal policy for any @ in the polytope. We
now have a solvable attack problem, where the attacker wants to force the victim’s () function into
the e-robust target ) polytope Q. (71):

min r —1°|a (12)
reRT ,R,QeRISIXIA|

st Rsa)=—— Y n (13)

| Sl ter, ,

Q(s,a) = R(s,a) + 72]3 (s']s,a) Q (8", 7' (s)) ,Vs,Va  (14)

Q(s,71(s)) > Q(s,a) +¢,Vs € S,Va # 7' (s). (15)

The constraint (14) enforces Bellman optimality on the value function @, in which max, ¢ 4 Q(s',a’)
is replaced by Q (s',77(s')), since the target policy is guaranteed to be optimal by (15). Note that
problem (12)-(15) is a convex program with linear constraints given that o > 1, thus could be solved
to global optimality. However, we point out that (12)-(15) is a more stringent formulation than (5)-(7)
due to the additional margin parameter € we introduced. The feasible set of (12)-(15) is a subset
of (5)-(7). Therefore, the optimal solution to (12)-(15) could in general be a sub-optimal solution
to (5)-(7) with potentially larger objective value. We now study a few theoretical properties of policy
poisoning on TCE. All proofs are in the appendix. First of all, the attack is always feasible.

Proposition 1. The attack problem (12)-(15) is always feasible for any target policy 7t

Proposition 1 states that for any target policy 7', there exists a perturbation on the rewards that
teaches the learner that policy. Therefore, the attacker changing r’s but not s, a, s’ is already sufficient
for policy poisoning.

We next bound the attack cost. Let the MDP estimated on the clean data be M© = (S, A, P, RO, v).
Let Q° be the Q function that satisfies the Bellman optimality equation on M?°. Define Ae) =
max,es[max, ..+ (5 Q°(s,a)—Q"(s, 7' (s))+¢]4, where [], takes the maximum over 0. Intuitively,
A(g) measures how suboptimal the target policy 7' is compared to the clean optimal policy 7° learned
on M°, up to a margin parameter e.

Theorem 2. Assume o > 1 in (12). Let r¥, R* and Q™ be an optimal solution to (12)-(15), then

1 @ 1
31 =86 (win Tl ) < I =10l < 50+ )AET. (16)

Corollary 3. If o = 1, then the optimal attack cost is O(A(e)T). If o = 2, then the optimal attack
cost is O(A(e)VT). If a = oo, then the optimal attack cost is O(A(g)).

Note that both the upper and lower bounds on the attack cost are linear with respect to A(g), which
can be estimated directly from the clean training set D°. This allows the attacker to easily estimate
its attack cost before actually solving the attack problem.



4.2 Poisoning a Linear Quadratic Regulator (LQR) Victim

As the second example, we study an LQR victim that performs system identification from a batch
training set [6]. Let the linear dynamical system be

St+1 = ASt + Bat + wt,Vt Z 0, (17)

where A € R"*" B € R"*™, s, € R" is the state, a; € R™ is the control signal, and w; ~
N (0, 021) is a Gaussian noise. When the agent takes action a at state s, it suffers a quadratic loss of
the general form

1
L(s,a) = §STQS+L]T8+GTRCL+C (18)

for some () > 0, R > 0, ¢ € R™ and ¢ € R. Here we have redefined the symbols ) and R in order to
conform with the notation convention in LQR: now we use @ for the quadratic loss matrix associated
with state, not the action-value function; we use R for the quadratic loss matrix associated with
action, not the reward function. The previous reward function R(s,a) in general MDP (section 3)
is now equivalent to the negative loss —L(s, a). This form of loss captures various LQR control
problems. Note that the above linear dynamical system can be viewed as an MDP with transition
kernel P(s" | s,a) = N(As + Ba,c*I) and reward function —L(s, a). The environment is thus
characterized by matrices A, B (for transition kernel) and @, R, g, ¢ (for reward function), which are
all unknown to the learner.

We assume the clean training data DY = (st,at,r? , St+1)0.7—1 Was generated by running the
linear system for multiple episodes following some random policy [6]. Let the poisoned data be
D = (s4,at,7t, St+1)0.7—1. Instantiating model estimation (2), (3), the learner performs system
identification on the poisoned data:

T-1
PN 1
(A,B) € argmin§ Z ||As; + Bay — st+1||§ (19)
(A,B) =0
T-1 2

N 1
(Q,R,§,¢) = argmin — Z

(20)
(@Q=0,Rrelq,.0) 2 =

1
§stTQst + qut + atTRat +c+ry

2

Note that in (20), the learner uses a stronger constraint R > <[ than the original constraint R > 0,
which guarantees that the minimizer can be achieved. The conditions to further guarantee (20) having
a unique solution depend on the property of certain matrices formed by the clean training set DY,
which we defer to appendix D.

The learner then computes the optimal control policy with respect to A, B, Q, R, ¢ and ¢. We assume
the learner solves a discounted version of LQR control

oo
L TA AT Th ;
_max, -E Tz:;)’y (287_ Qsr +G' s +7m(s;) Rr(s;)+¢) (21)
s.t. Srq1 = As, + B’]T(S.,-) + w,, V7T > 0. (22)

where the expectation is over w,. It is known that the control problem has a closed-form solution
a, = 7(s;) = Ks; + k, where

. . N\ —1 . X N . . .
](:AW<R+7BTXB) B"XA, k=-—(R++yBTXB)'Bx. (23)
Here X > 0 is the unique solution of the Algebraic Riccati Equation,
- - - L /oA . N\ 1o - N
X =~ATXA—-~?ATXB (R + »yBTXB) BTXA+ 0, (24)

and z is a vector that satisfies o
r=G4+~v(A+BK) z. (25)

The attacker aims to force the victim into taking target action 7 (s),¥s € R™. Note that in LQR, the
attacker cannot arbitrarily choose 71, as the optimal control policy K and k enforce a linear structural
constraint between 7 (s) and s. One can easily see that the target action must obey 71 (s) = KTs+kf



for some (KT, k") in order to achieve successful attack. Therefore we must assume instead that the
attacker has a target policy specified by a pair (KT, kT). However, an arbitrarily linear policy may
still not be feasible. A target policy (KT, k') is feasible if and only if it is produced by solving some
Riccati equation, namely, it must lie in the following set:

{(K,k):3Q = 0,R = el,q € R", ¢ € R, such that (23), (24), and (25) are satisfied}.  (26)

Therefore, to guarantee feasibility, we assume the attacker always picks the target policy (K, k1)
by solving an LQR problem with some attacker-defined loss function. We can now pose the policy
poisoning attack problem:

min r— 104 27)
r,Q,R,§,¢,X,x
~ ~ N\ —1 . o
st —y (R + 7BTXB) BTXA= Kt (28)
o ~ N\ 1 .
—y (R + vBTXB) BT =kt (29)
~ ~ ~ ~ ~ ~ R ~ ~
X =~ATXA-2ATXB (R + WBTXB) BTXA+0 (30)
t=G4+~v(A+BKH) (31)
YD oaoa - S T T ’
(Q,R,§,¢) = argmin Z =8, Qst 4+ q st +a; Ray +c+rif| (32)
(Q=0,R=cl,q.0) =5 11 2 5
X = 0. (33)

Note that the estimated transition matrices /1, B are not optimization variables because the attacker
can only modify the rewards, which will not change the learner’s estimate on A and B. The attack
optimization (27)-(33) is hard to solve due to the constraint (32) itself being a semi-definite program
(SDP). To overcome the difficulty, we pull all the positive semi-definite constraints out of the lower-
level optimization. This leads to a more stringent surrogate attack optimization (see appendix C).
Solving the surrogate attack problem, whose feasible region is a subset of the original problem, in
general gives a suboptimal solution to (27)-(33). But it comes with one advantage: convexity.

S Experiments

Throughout the experiments, we use CVXPY [8] to implement the optimization. All code can be
found in https://github.com/myzwisc/PPRL_NeurIPS19.

5.1 Policy Poisoning Attack on TCE Victim

Experiment 1. We consider a simple MDP with two states A, B and two actions: stay in the same
state or move to the other state, shown in figure la. The discounting factor is v = 0.9. The MDP’s ()
values are shown in table 1b. Note that the optimal policy will always pick action stay. The clean
training data DY reflects this underlying MDP, and consists of 4 tuples:

(A, stay,1,A) (A,move,0,B) (B,stay,1,B) (B,move,0,A)

Let the attacker’s target policy be 7f(s) =move, for any state s. The attacker sets ¢ = 1 and
uses @ = 2, i.e. ||r — r’||5 as the attack cost. Solving the policy poisoning attack optimization
problem (12)-(15) produces the poisoned data:

(A, stay,0,A) (A,move,1,B) (B,stay,0,B) (B,move,1,A)

with attack cost ||r — r¥||z = 2. The resulting poisoned @ values are shown in table Ic. To verify
this attack, we run TCE learner on both clean data and poisoned data. Specifically, we estimate
the transition kernel and the reward function as in (8) and (9) on each data set, and then run value
iteration until the ) values converge. In Figure 1d, we show the trajectory of () values for state A,
where the x and y axes denote Q(A, stay) and Q(A, move) respectively. All trajectories start at
(0,0). The dots on the trajectory correspond to each step of value iteration, while the star denotes the
converged () values. The diagonal dashed line is the (zero margin) policy boundary, while the gray
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Figure 1: Poisoning TCE in a two-state MDP.

region is the e-robust target () polytope with an offset ¢ = 1 to the policy boundary. The trajectory of
clean data converges to a point below the policy boundary, where the action stay is optimal. With the
poisoned data, the trajectory of () values converge to a point exactly on the boundary of the e-robust
target () polytope, where the action move becomes optimal. This validates our attack.

We also compare our attack with reward shaping [18]. We let the potential function ¢(s) be the
optimal value function V (s) for all s to shape the clean dataset. The dataset after shaping is

(A, stay,0,A) (A,move,—1,B) (B,stay,0,B) (B,move,—1,A)

In Figure 1d, we show the trajectory of () values after reward shaping. Note that same as on clean
dataset, the trajectory after shaping converges to a point also below the policy boundary. This means
reward shaping can not make the learner learn a different policy from the original optimal policy.
Also note that after reward shaping, value iteration converges much faster (in only one iteration),
which matches the benefits of reward shaping shown in [18]. More importantly, this illustrates the
difference between our attack and reward shaping.

a
07031
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0026, 00 0004

(a) Grid world with a single terminal state G. (b) Grid world with two terminal states G; and G.

Figure 2: Poisoning TCE in grid-world tasks.



Experiment 2. As another example, we consider the grid world tasks in [5]. In particular, we focus
on two tasks shown in figure 2a and 2b. In figure 2a, the agent starts from S and aims to arrive at the
terminal cell G. The black regions are walls, thus the agent can only choose to go through the white or
gray regions. The agent can take four actions in every state: go left, right, up or down, and stays if the
action takes it into the wall. Reaching a gray, white, or the terminal state results in rewards —10, —1,
2, respectively. After the agent arrives at the terminal state G, it will stay there forever and always
receive reward 0 regardless of the following actions. The original optimal policy is to follow the blue
trajectory. The attacker’s goal is to force the agent to follow the red trajectory. Correspondingly, we
set the target actions for those states on the red trajectory as along the trajectory. We set the target
actions for the remaining states to be the same as the original optimal policy learned on clean data.

The clean training data contains a single item for every state-action pair. We run the attack with
€ = 0.1 and o = 2. Our attack is successful: with the poisoned data, TCE generates a policy
that produces the red trajectory in Figure 2a, which is the desired behavior. The attack cost is
lr — r%|2 & 2.64, which is small compared to ||r°||2 = 21.61. In Figure 2a, we show the poisoning
on rewards. Each state-action pair is denoted by an orange arrow. The value tagged to each arrow
is the modification to that reward, where red value means the reward is increased and blue means
decreased. An arrow without any tagged value means the corresponding reward is not changed by
attack. Note that rewards along the red trajectory are increased, while those along the blue trajectory
are reduced, resulting in the red trajectory being preferred by the agent. Furthermore, rewards closer
to the starting state S suffer larger poisoning since they contribute more to the () values. For the large
attack +2.139 happening at terminal state, we provide an explanation in appendix E.

Experiment 3. In Figure 2b there are two terminal states G1 and G2 with reward 1 and 2, respectively.
The agent starts from S. Although G2 is more profitable, the path is longer and each step has a —1
reward. Therefore, the original optimal policy is the blue trajectory to G1. The attacker’s target
policy is to force the agent along the red trajectory to G2. We set the target actions for states as in
experiment 2. The clean training data contains a single item for every state-action pair. We run our
attack with € = 0.1 and o = 2. Again, after the attack, TCE on the poisoned dataset produces the red
trajectory in figure 2b, with attack cost |[r — r°||2 ~ 0.38, compared to ||r°||; = 11.09. The reward
poisoning follows a similar pattern to experiment 2.

5.2 Policy Poisoning Attack on LQR Victim

-254 \ P
104 L% ~ S0l \aw ~
0.8 75 s clean rewards r0
' poisoned rewards r
0.6 -10.0
>
0.4 0.1
0.2 —— clean data 0.0
0.0 poisoned data
4+ target ~0.1
0.00 0.25 050 0.75 1.00 1.25 0 100 200 300 400
X t
(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 3: Poisoning a vehicle running LQR in 4D state space.

Experiment 4. We now demonstrate our attack on LQR. We consider a linear dynamical system that
approximately models a vehicle. The state of the vehicle consists of its 2D position and 2D velocity:
sy = (24, 4, v¥,v)) € R*. The control signal at time ¢ is the force a; € R? which will be applied
on the vehicle for h seconds. We assume there is a friction parameter 7 such that the friction force
is —mv;. Let m be the mass of the vehicle. Given small enough h, the transition matrices can be
approximated by (17) where

10 & 0 0 0
01 o0 h 0 0

A=10 0 1-mym 0 B=1 im0 (34)
0 0 0 1—hn/m 0 h/m



In this example, we let h = 0.1, m = 1, n = 0.5, and w; ~ N(O, 021) with o = 0.01. The vehicle
starts from initial position (1, 1) with velocity (1, —0.5), i.e., s = (1,1,1,—0.5). The true loss
function is L(s,a) = %STQS-I-GTR(L withQQ =Tand R=0.11 (i.e.,, @ =I,R=0.11,¢q=0,c =
0 in (18)). Throughout the experiment, we let v = 0.9 for solving the optimal control policy in (21).
With the true dynamics and loss function, the computed optimal control policy is

—1.32 0 -2.39 0

K'=1 0 _132 0 -239

kT =10 07, (35)

which will drive the vehicle to the origin.

The batch LQR learner estimates the dynamics and the loss function from a batch training data. To
produce the training data, we let the vehicle start from state sg and simulate its trajectory with a
random control policy. Specifically, in each time step, we uniformly sample a control signal a; in a
unit sphere. The vehicle then takes action a; to transit from current state s, to the next state s, 1, and
receives a reward ry = —L(st, a¢). This gives us one training item (¢, az, ¢, S¢4+1). We simulate a
total of 400 time steps to obtain a batch data that contains 400 items, on which the learner estimates
the dynamics and the loss function. With the learner’s estimate, the computed clean optimal policy is

. —1.31 1.00e—2 —2.41 2.03e—3

K'=1 1972 135 —Llle—2 —24p |-K'=[-488=5 4956 ]. (36)

The clean optimal policy differs slightly from the true optimal policy due to the inaccuracy of the
learner’s estimate. The attacker has a target policy (KT, kT) that can drive the vehicle close to its
target destination (z', ") = (0, 1) with terminal velocity (0, 0), which can be represented as a target
state sT = (0, 1,0, 0). To ensure feasibility, we assume that the attacker starts with the loss function
1(s—s")TQ(s—s") +a" Ra where Q = I, R = 0.11. Due to the offset this corresponds to setting

Q=I,R=01I,q = —sf,c = %STTQST = 0.5 in (18). The attacker then solves the Riccati
equation with its own loss function and the learner’s estimates A and B to arrive at the target policy

—1.31 9.99e—3 —2.41 2.02e—3
K= { ~1.97e-2 —1.35 —1.14e—2 —2.42 ] KT =[-001 135]. (37
We run our attack (27)-(33) with « = 2 and € = 0.01 in (32). Figure 3 shows the result of our attack.
In Figure 3a, we plot the trajectory of the vehicle with policy learned on clean data and poisoned
data respectively. Our attack successfully forces LQR into a policy that drives the vehicle close to the
target destination. The wiggle on the trajectory is due to the noise w; of the dynamical system. On
the poisoned data, the LQR victim learns the policy

. 131 9.99c—3  —241  2.02-3 ] -
K_[—1.97e—2 135 —1.140—-2 —2.42 },k—[—o.m 135, (38)

which matches exactly the target policy K, k7. In Figure 3b, we show the poisoning on rewards. Our
attack leads to very small modification on each reward, thus the attack is efficient. The total attack
cost over all 400 items is only [|[r — r°||2 = 0.73, which is tiny small compared to ||r°||z = 112.94.
The results here demonstrate that our attack can dramatically change the behavior of LQR by only
slightly modifying the rewards in the dataset.

Finally, for both attacks on TCE and LQR, we note that by setting the attack cost norm o = 1 in (5),
the attacker is able to obtain a sparse attack, meaning that only a small fraction of the batch data
needs to be poisoned. Such sparse attacks have profound implications in adversarial machine learning
as they can be easier to carry out and harder to detect. We show detailed results in appendix E.

6 Conclusion

We presented a policy poisoning framework against batch reinforcement learning and control. We
showed the attack problem can be formulated as convex optimization. We provided theoretical
analysis on attack feasibility and cost. Experiments show the attack can force the learner into an
attacker-chosen target policy while incurring only a small attack cost.
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Supplementary Material

A Proof of Proposition 1

The proof of feasibility relies on the following result, which states that there is a bijection mapping
between reward space and value function space.

Proposition 4. Given an MDP with transition probability function P and discounting factor v €
[0,1), let R = {R: S x A — R} denote the set of all possible reward functions, and let Q = {Q :
S x A+ R} denote the set of all possible Q tables. Then, there exists a bijection mapping between
R and Q, induced by Bellman optimality equation.

Proof. = Given any reward function R(s, a) € R, define the Bellman operator as

HR(Q)(s,a) = R(s,a) + v ) P(s' | s,a) max Q(s',a'). (39)

S

Since v < 1, Hg(Q) is a contraction mapping, i.e., |Hr(Q1) — Hr(Q2)|loo < 7/|Q1 — Q200>
VQ1,Q2 € Q. Then by Banach Fixed Point Theorem, there is a unique () € Q that satisfies
Q = Hr(Q), which is the ) that R maps to.

< Given any Q € Q, one can define the corresponding R € R by
R(s,a) = Q(s,a) — va(s’ | 5,a) max Q(s',a’). (40)
Thus the mapping is one-to-one. m

Proposition 1. The attack problem (12)-(15) is always feasible for any target policy '

Proof. For any target policy 7' : S + A, we construct the following Q:

e Vse€S,a=nl(s),

. 41)
0, otherwise.

Q.0 = {

The @ values in (41) satisfy the constraint (15). Note that we construct the Q) values so that for all
s € §, max, Q(s,a) = . By proposition 4, the corresponding reward function induced by Bellman
optimality equation is

- — -
(s, a) = {(1 v)e Vse S,’a 7' (s), 42)
— €, otherwise.

Then one can let r; = R(st, at) so thatr = (ro,...,77—1), R in (42), together with Q in (41) is a
feasible solution to (12)-(15). m

B Proof of Theorem 2

The proof of Theorem 2 relies on a few lemmas. We first prove the following result, which shows
that given two vectors that have equal element summation, the vector whose elements are smoother
will have smaller £, norm for any v > 1. This result is used later to prove Lemma 6.

Lemma 5. Let v,y € RT be two vectors. Let T C {0,1,...,T — 1} be a subset of indexes such that
1
P). xi:mZyj,ViEI, W), x=y,Vi#TL (43)
JjET

Then for any a > 1, we have ||z||o < ||yl a-

Proof. Note that the conditions 7) and i) suggest the summation of elements in x and y are equal,
and only elements in Z differ for the two vectors. However, the elements in Z of = are smoother than
that of y, thus = has smaller norm. To prove the result, we consider three cases separately.
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Case 1: a = 1. Then we have

[zlla = llylla = Z|xz| Z\%l—lezl—Zlyﬂ—IZM—Z\ZM<0~ (44)

i€ JET JjET JET

Case 2: 1 < av < 00. We show ||z]|& < ||y||%. Note that

lzlle = llylla = lezla Zlyy\“ Dol =Dyl

i€T jGI

|_’Z‘O‘ 1|Zyj|0( Z'yj‘a |I|O‘ 1 Zlyj _Z|y]‘a

JEL JET jET

(45)

Let 8 = —%5. By Holder’s inequality, we have

STyl < Ol F S0 19)5 = O Jyslo) = |zt =. (46)

JjET JET jET JET
Plugging (46) into (45), we have
« « 1 (o7 a— «
”x”a - Hy” < |I|a_1 (Z |yJ| )|I| t— Z |yj‘ =0. 47)
JET JET

Case 3: o = 0o. We have

llo = maxfa] = max{ 7] Zyjl, max e} < max{ Z [, mau |}
JjET (48)
< max{max|y;|, max Iwil} = max{max |y;|, max [y;[} = max|y;[ = y]la-

Therefore Vo > 1, we have ||z]|o < ||y]lo. B

Next we prove Lemma 6, which shows that one possible optimal attack solution to (12)-(15) takes
the following form: shift all the clean rewards in T , by the same amount ¢ (s, a). Here ¢(s, a) is a
function of state s and action a. That means, rewards belonging to different T’ , might be shifted a
different amount, but those corresponding to the same (s, ) pair will be identically shifted.

Lemma 6. There exists a function (s, a) such that v, = 9 + (s, ay), together with some R and
Q, is an optimal solution to our attack problem (12)-(15).

We point out that although there exists an optimal attack taking the above form, it is not necessarily
the only optimal solution. However, all those optimal solutions must have exactly the same objective
value (attack cost), thus it suffices to consider the solution in Lemma 6.

Proof. Letr* = (1§, ...,7%_1), R* and Q* be any optimal solution to (12)-(15). Fix a particular
state-action pair (s, a), we have

R*(s,a) = % Z ;. 49)

Let RO(s,a) = ‘T | doter. . r? be the reward function for the (s, a) pair estimated from clean data

r°. We then define a different poisoned reward vector r’ = (7, ..., 77,_; ), where

;L {r? + I%*(s,a) - ]A%O(s,a)7 teTs,,

50
T t ¢ Ty 0

Now we show r’, R* and Q™ is another optimal solution to (12)-(15). We first verify that r’/, R*, and
Q™ satisfy constraints (13)-(15). To verify (13), we only need to check R*(s,a) = ﬁ ZteTm T},
since r’ and r* only differ on those rewards in T ,. We have

1 1 L .
T 2 = o (PR - R0)
S0l ey, 50 teT, (1)

= R%(s,a) + R*(s,a) — R°(s,a) = R*(s,a),
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Thus r’ and R* satisfy constraint (13). R* and Q* obviously satisfy constraints (14) and (15) because
r*, R* and Q* is an optimal solution.

Let 8’ = r’ — r® and 6* = r* — r?, then one can easily show that 6’ and * satisfy the conditions
in Lemma 5 with 7 = T, ,. Therefore by Lemma 5, we have

I = 2%l = [10"llo < 16" 0 = lIr* = £°a- (52)

But note that by our assumption, r* is an optimal solution, thus [r* — r°||, < |r’ — r°||,, which

gives ||t/ — 1|, = [[r* — r0||,. This suggests r’, R*, and Q* is another optimal solution. Compared

to r*, r’ differs in that 7, — r? now becomes identical for all ¢ € T, for a particular (s, a) pair.

Reusing the above argument iteratively, one can make 7, — r? identical for all t € T} ,, for all (s, a)
pairs, while guaranteeing the solution is still optimal. Therefore, we have

=14+ R*(s,a) — R%(s,a),Vt € Ts.a, Vs, a, (53)

together with R* and Q* is an optimal solution to (12)-(15). Let (s, a) = R*(s,a) — R°(s, a)
conclude the proof. m

Finally, Lemma 7 provides a sensitive analysis on the value function @ as the reward function changes.

Lemma 7. Let M = (S, A, P,R',~) and M° = (S, A, P, R°, ) be two MDPs, where only the
reward function differs. Let Q' and Q° be action values satisfying the Bellman optimality equation
on M and MP respectively, then

1=MNQ" = Q6o IR = Rl|os < (1 +7N[Q = Q°|lcc- (54)
Proof. Define the Bellman operator as
Hg(Q)(s,a) = R(s,a) + 7Y P(s | s,a) max Q(s', a’). (55)
From now on we suppress variables s and a for convenience. Note that due to the Bellman optimality,
we have H 3, (Q°) = Q° and H,(Q') = @', thus
1Q" = Q°lce = [Hp (Q") = Hppo (Q°)]oo
= |Hp (Q") — Hp (Q°) + H (Q%) — Hppo (Q°)]oo
< Hp (Q) = Hyy (Q°)loo + 1H 5 (Q°) — Hpo (Q°) oo (56)
<ANQ" = Q°llos + 1Hz (Q) — H o (Q) |0 (by contraction of Hp, (-))
=@ = Qoo + IR = RO||oo (by H, (Q%) = Hpo(Q°) = R/ — R”)

Rearranging we have (1 —4)||Q" — Q%o < || R’ — R°||so. Similarly we have

1Q" = Qe = 1 Hp (Q') - (O)Hoo
= |z (Q) — Hpo(Q°) + Hp (Q) = Hp (Q°) o
> [|Hp (Q) — Hpo (@)oo — 1H (@) — Hp(Q°)lloo (57)
> [|Hp (Q°) = Hpo(Q°)lloo = 71Q" = Q°lle

=R — Rl — WHQI — Q"

Rearranging we have || R’ — R%||oo < (14 7)]|Q" — Q°||oe. concluding the proof. m

Now we are ready to prove our main result.

Theorem 2. Assume o > 1in (12). Let r*, R* and Q* be an optimal solution to (12)-(15), then

Q=

1 1 1
SA=7)AG) (rgian|Ts7a|) <" =100 < S+ 7AETE. (16)
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Proof. We construct the following value function Q’.

Q%(s,a) + ?, Vse S,a= WT(S),

Q'(s,a) = (58)
Q%(s,a) — %, Vs € S,Va # 7'(s).
Note that Vs € S and Va # 71 (s), we have
Ale) = max[ max Qs a") = Q°(s', 7' (s)) + €]+ o
> Qo) - Qo) o2 @) - Q) re
which leads to
Q°(s,a) = Q°(s,m'(s)) — Ale) < —e, (60)
thus we have Vs € S and Va # 7' (s),
Q' (s,m1(s) = Q%(s, 7' (s)) + A;E)
= Q(s.0) - [@Q"(s.0) — Q(s.71(5)) — A(e)] - 2 1)
> Q(s.a) +2 - 2 — Q/(sa) 2

Therefore Q' satisfies the constraint (15). By proposition 4, there exists a unique function R’
such that )’ satisfies the Bellman optimality equation of MDP M’ = (S, A, P, R',~). We then
construct the following reward vector r' = (r(,...,7;-_,) such that ¥(s,a) and V¢t € T, ,, r; =

™ + R'(s,a) — RO(s,a), where R%(s,a) is the reward function estimated from r®. The reward
function estimated on r’ is then

N 1 1 .
R'(s,a) = —— Z T, = Z <r? + R/(s,a) — Ro(s,a))
ol .. )
t€Ts q teTs, (62)
= R%(s,a) + R'(s,a) — R°(s,a) = R'(s, a).

Thus r/, R and Q' is a feasible solution to (12)-(15). Now we analyze the attack cost for r’, which
gives us a natural upper bound on the attack cost of the optimal solution r*. Note that Q' and Q°

satisfy the Bellman optimality equation for reward function R’ and R° respectively, and

A(e
1 = Q°lle = ;X (63)
thus by Lemma 7, we have V¢,
rp =1l = |R (st,a0) — RO(s, ay)| < max|R/(s,a) — R(s,a)| = | R — R°||
D 1 (64)
S AH+NNQ = Qe = 5L +7)A(e).
Therefore, we have
T-1 1
1 1
I = 2 < ' = xla = (3 Irf =917 < S+ AETS. (65)
t=0

Now we prove the lower bound. We consider two cases separately.

Case 1: A(e) = 0. We must have Q°(s, w1 (s)) > Q%(s,a) + ¢, Vs € S,Va # 7' (s). In this case no
attack is needed and therefore the optimal solution is r* = r°. The lower bound holds trivially.

Case 2: A(e) > 0. Let s’ and a’ (a’ # 7' (s’)) be a state-action pair such that
Ae) = Q(s,a') = Q°(s' () + e (66)
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Let r*, R* and @* be an optimal solution to (12)-(15) that takes the form in Lemma 6, i.e.,
rf =14 R*(s,a) — Ro(s, a),Vt € Ts 4,5, a. (67)

Constraint (15) ensures that Q*(s’, 77 (s")) > Q*(s', a’) +e, in which case either one of the following
two conditions must hold:

i). Qs 7l(s) — Qs 7 (s)) =
since otherwise we have

*( T 0ro! —T( A(g)i
Q" (7 () < Qs () + =2
= 2@ a) + 3@ () + S = Q) -

2
=Q%s,d) - % +e< Q" (s, d)+e.

Ale)

(68)

(69)
Next note that if either i) or i) holds, we have |Q* — Q|| > Aé‘g). By Lemma 7, we have

max| (s, @) = B(s,0)] = | B = Blloe = (1 =M@ = Qo = 5 (1= VAE).  (70)

s,a - - 2
Let s*,a* € argmax, , |R*(s,a) — R%(s, a)|, then we have
A . 1
|R*(s*,a*) — R°(s*,a")| > 71 =7A). (71)
Therefore, we have

T-1
AT DI TRt LE DI D P I S P e
t=0

5,0 t€Ts, 4 €T x on

= 3 ) - Bl 2 (50-)AE) [Tl 0D

tETgx g%

1 «
> (30-926)) win Tl

1
We finally point out that while an optimal solution r* may not necessarily take the form in Lemma 6,

it suffices to bound the cost of an optimal attack which indeed takes this form (as we did in the proof)
since all optimal attacks have exactly the same objective value. m

Therefore |[r* — %o > 2(1 — v)A(e) (ming 4 | Ty q

C Convex Surrogate for LQR Attack Optimization

By pulling the positive semi-definite constraints on () and R out of the lower level optimization (32),
one can turn the original attack optimization (27)-(33) into the following surrogate optimization:

Cwin e ol (73)
r,Q,R,4,¢6,X,x
o ~ A\ 1. o
st —y (R + yBTXB) BTXA =K', (74)
N o A\ 1.
—y (R + ’yBTXB) BT =k, (75)
o o o A /A N A\ 1. R N
X =yATXA - ?ATXB (R + vBTXB) BTXA+Q (76)
t=G4+v(A+BKH) Tz (77)
o T—1 1 2
(Q.R,q,¢) :argminz §SIQ5t+qut+a:Rat+C+ﬁ (78)
t=0 2
Q=0,R=cl, X = 0. (79)
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The feasible set of (73)-(79) is a subset of the original problem, thus the surrogate attack optimization
is a more stringent formulation than the original attack optimization, that is, successfully solving
the surrogate optimization gives us a (potentially) sub-optimal solution to the original problem. To
see why the surrogate optimization is more stringent, we illustrate with a much simpler example as
below. A formal proof is straight forward, thus we omit it here. The original problem is (80)-(81).
The feasible set for a is a singleton set {0}, and the optimal objective value is 0.

min 0 (80)

s.t. @ = argmin(a + 3)2, (81)
a>0
Once we pull the constraint out of the lower-level optimization (81), we end up with a surrogate
optimization (82)-(84). Note that (83) requires a = —3, which does not satisfy (84). Therefore the
feasible set of the surrogate optimization is (), meaning it is more stringent than (80)-(81).

min 0 (82)
s.t. a = argmin(a + 3)2, (83)
a>0 (84)

Back to our attack optimization (73)-(79), this surrogate attack optimization comes with the advantage
of being convex, thus can be solved to global optimality.

Proposition 8. The surrogate attack optimization (73)-(79) is convex.

Proof. First note that the sub-level optimization (78) is itself a convex problem, thus is equivalent to
the corresponding KKT condition. We write out the KKT condition of (78) to derive an explicit form
of our attack formulation as below:

. in [ = rolla (85)
r,Q,R,§,¢,X,x
N . N\ 1. A
st =y (R+9BTXB) BTXA=K", (86)
. . N\ 1.
~y (R++BTXB)  BTa =, (87)

R R R A [/ A R R 1, R N
X =~ATXA—~?ATXB (R n VBTXB> BTXA+O  (88)

r=G¢+~v(A+BKH) (89)
T-1 1

(§szst +q" s +a) Rag + ¢ +1¢)sps) =0, (90)
t=0
T-1 1
Z(gszst +G" s +a) Ray + é+r)aza) =0, (91)
t=0
T-—1 1
Z(iszSt +G"si +a) Ray +¢é+r)s; =0, (92)
t=0
T-—1 1
Z(is;Qst +G4" st +a) Ra; +¢é+1r) =0, 93)
t=0
Q=0,R=¢cl, X 0. (94)

The objective is obviously convex. (86)-(88) are equivalent to

—ABTXA= (R + VBTXB) Kt (95)
7756‘% = (R+7§TXB) kT (96)
X =~ATX(A+ BK") +Q, (97)
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Note that these three equahty constraints are all linear in X, R, z, and Q (89) is linear in T and

4. (90)-(93) are also linear in Q R g, ¢ and r. Finally, (94) contains convex constraints on Q R, and
X. Given all above, the attack problem is convex. m

Next we analyze the feasibility of the surrogate attack optimization.

Proposition 9. Let A, B be the learner’s estimated transition kernel. Let
1
Li(s,a) = fsTQTer (¢ Ts+a"Rfa+cf (98)

be the attacker-defined loss function. Assume RY = cI. If the target policy Kt k' is the optimal

control policy induced by the LOR with transition kernel A, B, and loss function L'(s,a), then
the surrogate attack optimization (73)-(79) is feasible. Furthermore, the optimal solution can be
achieved.

Proof. To prove feasibility, it suffices to construct a feasible solution to optimization (73)-(79). Let
1 T
=55 Qs g’ s +a) Rlay + (99)

and r be the vector whose ¢-th element is 7;. We next show that r, Qf, Rf, ¢, ¢, together with some
X and z is a feasible solution. Note that since KT, kT is induced by the LQR with transition kernel
A, B and cost function LT(S7 a), constraints (74)-(77) must be satisfied with some X and z. The
poisoned reward vector r obviously satisfies (78) since it is constructed exactly as the minimizer.
By our assumption, R > eI, thus (79) is satisfied. Therefore, r, QT, R, qf, ¢, together with the
corresponding X, x is a feasible solution, and the optimization (73)-(79) is feasible. Furthermore,
since the feasible set is closed, the optimal solution can be achieved. m

D Conditions for The LQR Learner to Have Unique Estimate

The LQR learner estimates the cost function by

T-1 2

A 1
(Q,R,4,¢) = argmin - Z —5) Qs; +q's; +a) Ray +c+ry (100)
(Q=0,R>¢l,q,c) 2 t—0 2 2
‘We want to find a condition that guarantees the uniqueness of the solution.
Letvy € RT be a vector, whose ¢-th element is
1
Py = fstht—i—q st+atRat+c()<t<T—1 (101)

Note that we can view % as a function of D, Q, R, g, and ¢, thus we can also denote (D, Q, R, ¢, c).
Define ¥(D) = {¢¥(D,Q,R,q,¢) | @ = 0,R = €l,q,c}, i.e., all possible vectors that are
achievable with form (101) if we vary @, R, g and c subject to positive semi-definite constraints on
@ and R. We can prove that U is a closed convex set.

Proposition 10. VD, ¥(D) = {¢(D,Q,R,q,¢) | @ = 0, R > eI, q,c} is a closed convex set.

Proof. Let iy, 12 € U(D). We use 1), ; to denote the ¢-th element of vector 1);. Then we have

1
Y1 = §S:Q1St +qi st +af Ria; + ¢ (102)

for some Q1 = 0, Ry > €I, q; and ¢, and
1
Yo = 552—622515 + (J;é’t + a:R2at + c2 (103)

for some Q2 = 0, Ry = €I, g2 and ¢5. VE € [0, 1], let 103 = ki1 + (1 — k)1)2. Then the ¢-th element
of 13 is

Y0 =] KQ1 + (1~ B)Qalse + [hay + (1~ Kaz] s

+af [ERy + (1 — k)Ro)as + ke + (1 — k)ey
Since kQ1 + (1 — k)Q2 = 0 and kRy + (1 — k)Rs = eI, ¢35 € ¥(D), concluding the proof. m

(104)
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The optimization (100) is intrinsically a least-squares problem with positive semi-definite constraints
on () and R, and is equivalent to solving the following linear equation:

1
fst Qsﬁ—q sﬁ—at Raf+c—wt,Vt

(105)

where ¢* = argmin,cq(p) [ + r||3 is the projection of the negative reward vector —r onto the set
U (D). The solution to (105) is unique if and only if the following two conditions both hold

i). The projection ¢* is unique.

i4). (105) has a unique solution for ¢*.

Condition ) is satisfied because ¥(D) is convex, and any projection (in {2 norm) onto a convex set
exists and is always unique (see Hilbert Projection Theorem). We next analyze when condition %)
holds. (105) is a linear function in Q R, g, and ¢, thus one can vectorize Q and R to obtain a problem
in the form of linear regression. Then the uniqueness is guaranteed if and only if the design matrix
has full column rank. Specifically, let Q € R™" R € R™*™ and g € R". Let s; ; and a; ; denote

the ¢-th element of s, and a; respectively. Define
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then (105) is equivalent to Ax = 1*, where x contains the vectorized variables Q, R, q and ¢.
Ax = " has a unique solution if and only if A has full column rank.

E Sparse Attacks on TCE and LQR

In this section, we present experimental details for both TCE and LQR victims when the attacker uses
£1 norm to measure the attack cost, i.e. & = 1. The other experimental parameters are set exactly the

same as in the main text.

We first show the result for MDP experiment 2 with « = 1, see Figure 4. The attack cost is
|lr — r°||; = 3.27, which is small compared to ||r°||; = 105. We note that the reward poisoning is
extremely sparse: only the reward corresponding to action “go up” at the terminal state G is increased
by 3.27, and all other rewards remain unchanged. To explain this attack, first note that we set the
target action for the terminal state to “go up”, thus the corresponding reward must be increased. Next
note that after the attack, the terminal state becomes a sweet spot, where the agent can keep taking
action “go up” to gain large amount of discounted future reward. However, such future reward is
discounted more if the agent reaches the terminal state via a longer path. Therefore, the agent will
choose to go along the red trajectory to get into the terminal state earlier, though at a price of two

discounted —10 rewards.

The result is similar for MDP experiment 3. The attack cost is ||r — r’||; = 1.05, compared to
|t°]]; = 121. In Figure 5, we show the reward modification for each state action pair. Again, the
attack is very sparse: only rewards of 12 state-action pairs are modified out of a total of 124.

Finally, we show the result on attacking LQR with o = 1. The attack cost is ||r — r°||; = 5.44,
compared to ||r°||; = 2088.57. In Figure 6, we plot the clean and poisoned trajectory of the vehicle,
together with the reward modification in each time step. The attack is as effective as with a dense
2-norm attack in Figure 3. However, the poisoning is highly sparse: only 10 out of 400 rewards are

changed.
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(a) Clean and poisoned vehicle trajectory. (b) Clean and poisoned rewards.

Figure 6: Sparse-poisoning a vehicle running LQR in 4D state space.

F Derivation of Discounted Discrete-time Algebraic Riccati Equation

We provide a derivation for the discounted Discrete-time Algebraic Riccati Equation. For simplicity,
we consider the noiseless case, but the derivation easily generalizes to noisy case. We consider the
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Figure 5: Sparse reward modification for MDP experiment 3.

loss function is a general quadratic function w.r.t. s as follows:

1
L(s,a) = isTQs—i—qu—i—c—i—aTRa. (106)

When ¢ = 0, c = 0, we recover the classic LQR setting. Assume the general value function takes
the form V(s) = 1s" Xs+ s'a + v. Let Q(s,a) (note that this is different notation from the Q
matrix in L(s, a)) be the corresponding action value function. We perform dynamics programming
as follows:

1
Q(s,a) = §STQS +¢"s+c+a"Ra+~V(As + Ba)
1 1
= §STQS +q's+c+a Ra+ry (Q(As + Ba)" X(As + Ba) + (As + Ba) "2 + v)

1 1
= isT(Q +vATX A)s + iaT(R +9B"XB)a+s"(yA'XB)a
+s5"(g+vATz)+a" (yBTx) + (c+ ).
(107)
We minimize a above:
(R+yB"XB)a+~vBTXAs +yB 2 =0

(108)
=a=-vR+vB'XB)"'B"XAs —y(R+~vB"XB)"'B'z £ Ks + k.
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Now we substitute it back to Q)(s, a) and regroup terms, we get:

V(s) :%ST(Q + AT XA+ K" (R+yB"XB)K +2yA" XBK)s (109)
+ s (K"(R+vB"XB)k+vA"XBk +q+~vA'z +yK'B'z) + C
for some constant C, which gives us the following recursion:
X =7ATXA-+?A"XB(R+~vB"XB)"'B"XA +Q,

(110)
r=q+~v(A+ BK) .
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