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Abstract

Algorithmic machine teaching studies the interaction between a teacher and a
learner where the teacher selects labeled examples aiming at teaching a target
hypothesis. In a quest to lower teaching complexity and to achieve more natural
teacher-learner interactions, several teaching models and complexity measures have
been proposed for both the batch settings (e.g., worst-case, recursive, preference-
based, and non-clashing models) as well as the sequential settings (e.g., local
preference-based model). To better understand the connections between these dif-
ferent batch and sequential models, we develop a novel framework which captures
the teaching process via preference functions .. In our framework, each function
o € ¥ induces a teacher-learner pair with teaching complexity as TD(o). We show
that the above-mentioned teaching models are equivalent to specific types/families
of preference functions in our framework. This equivalence, in turn, allows us to
study the differences between two important teaching models, namely o functions
inducing the strongest batch (i.e., non-clashing) model and o functions induc-
ing a weak sequential (i.e., local preference-based) model. Finally, we identify
preference functions inducing a novel family of sequential models with teaching
complexity linear in the VC dimension of the hypothesis class: this is in contrast to
the best known complexity result for the batch models which is quadratic in the
VC dimension.

1 Introduction

Algorithmic machine teaching studies the interaction between a teacher and a learner where the
teacher’s goal is to find an optimal training sequence to steer the learner towards a target hypothesis
[GK95, ZLHZI11, Zhul3, SBB* 14, Zhul5, ZSZR18]. An important quantity of interest is the
teaching dimension (TD) of the hypothesis class, representing the worst-case number of examples
needed to teach any hypothesis in a given class. Given that the teaching complexity depends on
what assumptions are made about teacher-learner interactions, different teaching models lead to
different notions of teaching dimension. In the past two decades, several such teaching models have
been proposed, primarily driven by the motivation to lower teaching complexity and to find models
for which the teaching complexity has better connections with learning complexity measured by
Vapnik—Chervonenkis dimension (VCD) [VC71] of the class.

Most of the well-studied teaching models are for the batch setting (e.g., worst-case [GK95, Kuh99],
recursive [ZLHZ08, ZLHZ11, DFSZ14], preference-based [GRSZ17], and non-clashing [KSZ19]
models). In these batch models, the teacher first provides a set of examples to the learner and then
the learner outputs a hypothesis. In a quest to achieve more natural teacher-learner interactions and
enable richer applications, various different models have been proposed for the sequential setting
(e.g., local preference-based model for version space learners [CSMA™ 18], models for gradient
learners [LDH* 17, LDL* 18, KDCS19], models inspired by control theory [Zhul8, LZZ19], models
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for sequential tasks [CL12, HTS18, TGH™19], and models for human-centered applications that
require adaptivity [SBB*13, HCMA ™ 19]).

In this paper, we seek to gain a deeper understanding of how different teaching models relate to each
other. To this end, we develop a novel teaching framework which captures the teaching process via
preference functions . Here, a preference function ¢ € ¥ models how a learner navigates in the
version space as it receives teaching examples (see §2 for formal definition); in turn, each function o
induces a teacher-learner pair with teaching dimension TD(o) (see §3). We highlight some of the key
results below:

e We show that the well-studied teaching models in batch setting corresponds to specific
families of o functions in our framework (see §4 and Table 1).

e We study the differences in the family of o functions inducing the strongest batch
model [KSZ19] and functions inducing a weak sequential model [CSMA 18] (§5.2) (also,
see the relationship between Ygys and Xjocq) in Figure 1).

e We identify preference functions inducing a novel family of sequential models with teaching
complexity linear in the VCD of the hypothesis class. We provide a constructive procedure
to find such ¢ functions with low teaching complexity (§5.3).

Our key findings are highlighted in Figure 1 and Ta-
ble 1. Here, Figure 1 illustrates the relationship between
different families of preference functions that we in-
troduce, and Table 1 summarizes the key complexity
results we obtain for different families. Our unified
view of the existing teaching models in turn opens up
several intriguing new directions such as (i) using our
constructive procedures to design preference functions
for addressing open questions of whether RTD/ NCTD
is linear in VCD, and (ii) understanding the notion of ~Figure 1: Venn diagram for different fami-
collusion-free teaching in sequential models. We discuss lies of preference functions.

these directions further in §6.

Families ‘ Yconst ‘ Eglobal ‘ Ygvs ‘ Yiocal ‘ Yivs
Reduction TD RTD/PBTD NCTD Local-PBTD -
Complexity Results - O(VCD?) O(VCD?) | o(vcD? | O(VCD)

| [GKY95] | [ZLHZ11, GRSZ17, HWLW17] | [KSZ19] | [CSMA*18] |
Table 1: Overview of our main results — reduction to existing models and teaching complexity.

2 The Teaching Model

The teaching domain. Let X', ) be a ground set of unlabeled instances and the set of labels. Let H
be a finite class of hypotheses; each element i € H is a function i : X — ). Here, we only consider
boolean functions and hence Y = {0, 1}. In our model, X, H, and ) are known to both the teacher
and the learner. There is a target hypothesis h* € H that is known to the teacher, but not the learner.
Let Z € X x Y be the ground set of labeled examples. Each element z = (z,,y,) € Z represents
a labeled example where the label is given by the target hypothesis h*, i.e., y. = h*(x.). For any
Z < Z, the version space induced by Z is the subset of hypotheses H(Z) < H that are consistent
with the labels of all the examples, i.e., H(Z) :={he H |Vz = (z,,y.) € Z,h(x,) = y»}.

Learner’s preference function. We consider a generic model of the learner that captures our
assumptions about how the learner adapts her hypothesis based on the labeled examples received from
the teacher. A key ingredient of this model is the learner’s preference function over the hypotheses.
The learner, based on the information encoded in the inputs of preference function—which include the
current hypothesis and the current version space—will choose one hypothesis in 7{. Our model of the
learner strictly generalizes the local preference-based model considered in [CSMA ™ 18], where the
learner’s preference was only encoded by her current hypothesis. Formally, we consider preference
functions of the form o : H x 2% x H — R. For any two hypotheses h’, h”, we say that the learner
prefers h' to h” based on the current hypothesis h and version space H < H, iff o(h'; H,h) <
o(h";H,h). If o(h'; H,h) = o(h”; H, h), then the learner could pick either one of these two.



Interaction protocol and teaching objective. The teacher’s goal is to steer the learner towards
the target hypothesis h* by providing a sequence of labeled examples. The learner starts with an
initial hypothesis hy € H before receiving any labeled examples from the teacher. At time step ¢,
the teacher selects a labeled example z; € Z, and the learner makes a transition from the current
hypothesis to the next hypothesis. Let us denote the labeled examples received by the learner up to
(and including) time step ¢ via Z,. Further, we denote the learner’s version space at time step ¢ as
H, = H(Z;), and the learner’s hypothesis before receiving z; as h;_1. The learner picks the next
hypothesis based on the current hypothesis h;_1, version space H;, and preference function o

hy € argmino(h'; Hy, hy_1). 2.1
WeH,

Upon updating the hypothesis h;, the learner sends h; as feedback to the teacher. Teaching finishes
here if the learner’s updated hypothesis h; equals h*. We summarize the interaction in Protocol 1.!

Protocol 1 Interaction protocol between the teacher and the learner

1: learner’s initial version space is Hy = H and learner starts from an initial hypothesis hg € H
2: fort=1,2,3,...do

3: learner receives z; = (x4, y¢); updates Hy = Hy_1 n H({z:}); picks h; per Eq. (2.1);

4: teacher receives h; as feedback from the learner;

5 if h, = h* then teaching process terminates

3 The Complexity of Teaching
3.1 Teaching Dimension for a Fixed Preference Function

Our objective is to design teaching algorithms that can steer the learner towards the target hypothesis
in a minimal number of time steps. We study the worst-case number of steps needed, as is common
when measuring information complexity of teaching [GK95, ZLHZ11, GRSZ17, Zhul8]. Fix the
ground set of instances X and the learner’s preference o. For any version space H < H, the
worst-case optimal cost for steering the learner from h to h* is characterized by

Dy (H., b, h*) = {1, . Iz, s.t.'C(,(H,h,z) = {h*}
1 + min, maxprec, (a,h,2) Do (H N H({z}),h",h*), otherwise

where C, (H, h,z) = argming ey -y 0(h'; H 0 H({z}), h) denotes the set of candidate hy-

potheses most preferred by the learner. Note that our definition of teaching dimension is similar in

spirit to the local preference-based teaching complexity defined by [CSMA ™ 18]. We shall see in the

next section, this complexity measure in fact reduces to existing notions of teaching complexity for

specific families of preference functions.

Given a preference function o and the learner’s initial hypothesis hg, the teaching dimension w.r.t. o
is defined as the worst-case optimal cost for teaching any target h*:

TDux 34,10 (0) = max Do (H, ho, h*). 3.1

3.2 Teaching Dimension for a Family of Preference Functions

In this paper, we will investigate several families of preference functions (as illustrated in Figure 1).
For a family of preference functions X, we define the teaching dimension w.r.t the family X as the
teaching dimension w.r.t. the best ¢ in that family:

E'TDX,”H,hO = mi;lTD)(?HyhO (U) (32)
oE

Tt is important to note that in our teaching model, the teacher and the learner use the same preference
function. This assumption of shared knowledge of the preference function is also considered in existing teaching
models for both the batch settings (e.g., as in [ZLHZ11, GRSZ17]) and the sequential settings [CSMA™18]).



3.3 Collusion-free Preference Functions

An important consideration when designing teaching models is to ensure that the teacher and the
learner are “collusion-free”, i.e., they are not allowed to collude or use some ‘“coding-trick” to
achieve arbitrarily low teaching complexity. A well-accepted notion of collusion-freeness in the
batch setting is one proposed by [GM96] (also see [AK97, OS99, KSZ19]). Intuitively, it captures
the idea that a learner conjecturing hypothesis h will not change its mind when given additional
information consistent with h. In comparison to batch models, the notion of collusion-free teaching
in the sequential models is not well understood. We introduce a novel notion of collusion-freeness
for the sequential setting, which captures the following idea: if h is the only hypothesis in the most
preferred set defined by o, then the learner will always stay at h as long as additional information
received by the learner is consistent with h. We formalize this notion in the definition below. Note
that for ¢ functions corresponding to batch models (see §4), Definition 1 reduces to the collusion-free
definition of [GM96].

Definition 1 (Collusion-free preference) Consider a time t where the learner’s current hypothesis
is hy_1 and version space is H; (see Protocol 1). Further assume that the learner’s preferred
hypothesis for time t is uniquely given by arg miny, .y, o(h's Hy, hy—1) = {h}. Let S be additional
examples provided by an adversary from time t onwards. We call a preference function collusion-free,
if for any S consistent with h, it holds that arg MiNy,e g, A24(5) o (05 He 0 H(S), h) = {h}.

In this paper, we study preference functions that are collusion-free. In particular, we use X to
denote the set of preference functions that induce collusion-free teaching:

Ycr = {0 | o is collusion-free}.

4 Preference-based Batch Models
4.1 Families of Preference Functions

We consider three families of preference functions which do not depend

on the learner’s current hypothesis. The first one is the family of uniform LT -
preference functions, denoted by >¢onst, Which corresponds to constant " Sglobal ~
preference functions: K Tgvs N\

Yeonst = {0 € Xgr | Ice R, s.t. VA, H, h,o(h'; H,h) = ¢} : ]

The second family, denoted by Ygjgnal, corresponds to the preference
functions that do not depend on the learner’s current hypothesis and "~ =----
version space. In other words, the preference functions capture some  Figure 2: Batch models.
global preference ordering of the hypotheses:

Ygiobal = {0 € Xcr [T g: H — R, s.t. VA, H, h, o(h'; H,h) = g(h')}

The third family, denoted by X4y, corresponds to the preference functions that depend on the learner’s
version space, but do not depend on the learner’s current hypothesis:

Sgus = {0 €Scr |3g: H x 2% SR, stV H h,o(h';H,h) = g(h', H)}

Figure 2 illustrates the relationship between these preference families.

4.2 Complexity Results

We first provide several definitions, including the formal definition of VC dimension as well as several
existing notions of teaching dimension.

Definition 2 (Vapnik—Chervonenkis dimension [VC71]) The VC dimension for H € H w.rt. a
fixed set of unlabeled instances X < X, denoted by VCD(H, X), is the cardinality of the largest set
of points X' = X that are “shattered”.* Formally, let H x = {(h(z1),...,h(xy)) | Vh € H} denote

all possible patterns of H on X. Then VCD(H, X)) = max |X'|, s.t. X' € X and |H|x/| = 21X,

*In the classical definition of VCD, only the first argument H is present; the second argument X is omitted
and is by default the ground set of unlabeled instances X'.




Definition 3 (Teaching dimension [GK95]) For any hypothesis h € H, we call a set of instances
T(h) © X a teaching set for h, if it can uniquely identify h € H. The teaching dimension for H,
denoted by TD(H), is the maximum size of the minimum teaching set for any h € H: TD(H) =
maxpey min | T(h)].

As noted by [ZLHZ08], the teaching dimension of [GK95] does not always capture the intuitive idea
of cooperation between teacher and learner. The authors then introduced a model of cooperative
teaching that resulted in the complexity notion of recursive teaching dimension, as defined below.

Definition 4 (Recursive teaching dimension [ZLLHZ08, ZLLHZ11]) The recursive teaching dimen-
sion (RTD) of H, denoted by RTD(H), is the smallest number k, such that one can find an ordered
sequence of hypotheses in ‘H, denoted by (hy, ..., hi,. .., hyy), where every hypothesis h; has a
teaching set of size no more than k to be distinguished from the hypotheses in the remaining sequence.

In this paper we consider finite hypothesis classes. Under this setting, RTD is equivalent to preference-
based teaching dimension (PBTD) [GRSZ17].

In a recent work of [KSZ19], a new notion of teaching complexity, called non-clashing teaching
dimension or NCTD, was introduced (see definition below). Importantly, NCTD is the optimal
teaching complexity among teaching models in the batch setting that satisfy the collusion-free
property of [GM96].

Definition 5 (Non-clashing teaching dimension [KSZ19]) Let H be a hypothesis class and T :
H — 2% be a “teacher mapping” on H, i.e., mapping a given hypothesis to a teaching set.> We say
that T is non-clashing on H iff there are no two distinct h, h' € H such that T(h) is consistent with h’
and T (W) is consistent with h. The non-clashing Teaching Dimension of H, denoted by NCTD(H),
is defined as NCTD(H) = min i non-clashing {maxnez | T(h)|}.

We show in the following, that the teaching dimension X-TD in Eq. (3.2) unifies the above definitions
of TD’s for batch models.

Theorem 1 (Reduction to existing notions of TD’s) Fix X', H, hg. The teaching complexity for the
three families reduces to the existing notions of teaching dimensions:

1. Yconst-TDx 3,n, = TD(H)
2. Ygiobar- TDx 34,n, = RTD(H) = O(VCD(H, X)?)
3. Sgvs-TDx 0n, = NCTD(H) = O(VCD(H, X)?)

Our teaching model strictly generalizes the local-preference based model of [CSMA ™ 18], which
reduces to the “worst-case” model when o € Ygongt (corresponding to TD) [GK95] and the global
“preference-based” model when o € Ygopa. Hence we get Yeonst-TDx 7,n, = TD(H) and
Lglobal-TDx 2,n, = RTD(H). To establish the equivalence between Xgys-TD x 71,1, and NCTD(H),
it suffices to show that for any X', H, ho, the following holds: (i) Xgvs-TDx 3,1, = NCTD(#), and
(i) Xgqvs-TDx 34,h, < NCTD(#). The full proof is provided in Appendix A.2.

In Table 2, we consider the well known Warmuth hypothesis class [DFSZ14] where Y¢onst-TD = 3,
Yglobal-TD = 3, and Xgys-TD = 2. Table 2b and Table 2d show preference functions o € Mconst,
0 € Ygiobal, and o € Xgys that achieve the minima in Eq. (3.2). Table 2a shows the teaching sequences
achieving these teaching dimensions for these preference functions. In Appendix A.1, we provide
another hypothesis class where Xconst-TD = 3, Egiobal-TD = 2, and Xgys-TD = 1.

S Preference-based Sequential Models

5.1 Families of Preference Functions

In this section, we investigate two families of preference functions that depend on the learner’s
current hypothesis h;_1. The first one is the family of local preference-based functions [CSMA ™ 18],

denoted by Xocal, Which corresponds to preference functions that depend on the learner’s current
(local) hypothesis, but do not depend on the learner’s version space:

Socal = {0 € Sor | 3g: H x H — R, s.t. V&', H,h,o(k'; H,h) = g(I', h)}

3We refer the reader to the original paper [KSZ19] for a more formal description of “teacher mapping".



h v Ty X2 X3 T4 Ts Sconst = Sglobal ngs Slocal Sivs
hy 1 1 0 0 O (z1,2,24) (z1,22) | (z1) (z1)
h2 0 1 1 0 0 ( I3, 1‘5) (.Iz., 11,’3) (Ig) (332)
hg 0 0 1 1 0 ( .’L'3,.’I'4) (’I‘g/’L4) (.’1537.’114) (’Lg)
ha 0O 0 o0 1 1 (l‘ , X4, T5) (z4,5) | (z5,24) | (24)
h5 1 0 0 0 1 ( 1,333,1’5) (.1?1.,335) (”L‘5) (335)
hg 1 1 0 1 0 (CLl .L‘Q,.CE4) (127.'[4) (.’174) (.173)
hy 0 1 1 0 1 (22,3, 25) (z3,25) | (z3,25) | (x4)
h,g 1 0 1 1 0 (11,L3,J4) (1'171114) ((L’47ZL‘3) (L5)
hg 0 1 0 1 1 (SEQ 274,15) (CE2,275) (I4,{E5) (271)
hio 1 0 1 0 1 (21,3, 25) (z1,23) | (z5,23) | (x2)

(a) The Warmuth hypothesis class and the corresponding teaching sequences (denoted by S).

I | VW e H R\l | b1 hg h3 ha hs he hy hg he hio
aconst(P'; -, ) 0 Olcal(W5sh=h1) [0 2 4 4 2 1 3 3 3 3
!
Uglobal(h §',')
(b) oconst and ogopal () Olocal Tepresenting the Hamming distance between h’ and h.
14 hl h,2 e n {}hl} {}hz}
1584V 15349
H {hl}; h6} {th7 h7} o z {hs, he, lhg, hio}* | {ha, h7,2}1,5, hg}*
{ha} {ha} - h h1 h1 ho
Tgus 0 0 e Olvs 0 0 0 .
(d) oqs(h'; H, ) (e) ows(h'; H, h). Here, {-}* denotes all subsets.

Table 2: Teaching sequences with different preference functions for the Warmuth hypothesis class
[DFSZ14].* Full preference functions are given in Appendix B.

The second family, denoted by s, corresponds to the preference functions that depend on all three
arguments of o(h’; H, h). The dependence of o on the learner’s current (local) hypothesis and the
version space renders a powerful family of preference functions:

Sws = {0eScr [Ig:H x 2% x H >R, s.t. Y&, H, h,o(K; H,h) = g(h', H, 1)}

Figure 1 illustrates the relationship between these preference families. As an example, in Table 2¢c
and Table 2e, we provide the preference functions ojocq and oys for the Warmuth hypothesis class
that achieve the minima in Eq. (3.2).

5.2 Comparing Ygys-TD and Xjoca-TD
In the following, we show that substantial differences arise as we transition from ¢ functions inducing

the strongest batch (i.e., non-clashing) model to o functions inducing a weak sequential (i.e., local
preference-based) model. We provide the full proof of Theorem 2 in Appendix C.

Theorem 2 Neither of the families ¥gys and ¥ ocai dominates the other. Specifically,

1. ngs N Liocal = Eg/obal
2. There exist H, X, where Yho € H, Ejocar- TDx 314,10 > Bgvs- TDx 24,10
3. There exist H, X, where Yho € H, Eiocai- TDx 14,1 < Xgvs- TDx 34,k

5.3 Complexity Results
We now connect the teaching complexity of the sequential models with the VC dimension.
Theorem 3 E/oca/- TDX,H,ILO = O( VCD(H, X)Q), and E/Vs- TDX,H,hO = O( VCD(H, X))

To establish the proof, we first introduce an important definition (Definition 6) and a key lemma
(Lemma 4).

*The Warmuth hypothesis class is the smallest concept class for which RTD exceeds VCD.



Definition 6 (Compact-Distinguishable Set) Fix H € H and X < X, where X = {x1,...,xy}.
Let H x = {(h(z1), ..., h(zn)) | Yh € H} denote all possible patterns of H on X. Then, we say that
X is compact-distinguishable on H, if |H x| = |H| and VX' = X, |H x/| < [H|. We will use ¥ g
to denote a compact-distinguishable set on H.

In words, one can uniquely identify any hypothesis in H with a (sub)set of examples from V¥ g (also
see the definition of distinguishing sets in [DFSZ14]). Our definition of compact-distinguishable
set further implies that there are no “redundant” examples in W . It can be shown that a compact-
distinguishable set satisfies the following two properties: (i) it does not contain any pair of distinct
instances x, «’ such that (Vh € H : h(z) = h(z')) or (Yh € H : h(z) # h(z')); and (ii) it does not
contain any instance x such that (Vh € H : h(z) = 1) or (Vh € H : h(z) = 0).

Lemma 4 Consider a subset H = H and any compact-distinguishable set Uy = {x1, ..., T}y, |}.
Fix any hypothesis hyy € H. Let d = VCD(H, ¥ jr) denote the VC dimension of H on V. If d = 1,
we can divide H into m = |V | + 1 separate hypothesis classes {H', ..., H™}, such that

(i) Yj € [m], there exists a compact-distinguishable set U g;; s.t. VCD(H? , Wy;) < d — 1.
(ii) Vj € [m — 1], H’ is not empty and H‘];[xj} ={(1—hu(z;))}
(iii) H™ = {hy).

Lemma 4 suggests that for any H, X, one can partition the hypothesis class H into m < |X| + 1
subsets with lower VC dimension with respect to some compact-distinguishable set.’> The main idea
of the lemma is similar to the reduction of a concept class w.r.t. some instance x to lower VCD as done
in Theorem 9 of [FW95]. The key distinction of Lemma 4 is that we consider compact-distinguishable
sets for this partitioning, which in turn ensures the uniqueness of the version spaces associated with
these partitions (see proof of Theorem 3). Another key novelty in our proof of Theorem 3 is to
recursively apply the reduction step from the lemma.

To prove the lemma, we provide a constructive procedure to partition the hypothesis class, and show
that the resulting partitions have reduced VC dimensions on some compact-distinguishable set. We
highlight the procedure for constructing the partitions in Algorithm 2 (Line 7— Line 10). In Figure 3,
we provide an illustrative example for creating such partitions for the Warmuth hypothesis class from
Table 2a. We sketch the proof of Lemma 4 below, and defer the detailed proof to Appendix D.1.

Proof [Proof Sketch of Lemma 4] Let us define H, = {h € H : hAzy, € H)y, }. Here, hAx
denotes the hypothesis that only differs with % on the label of =, and |y, denotes the patterns of
h on ¥ . Fix a reference hypothesis hy. For all j € [m — 1], lety; = 1 — hy(z;) be the opposite
label of x; € Vg as provided by hy. As shown in Line 9 of Algorithm 2, we consider the set
H':= HY' = {h e Hy, : h(z1) = y1} as the first partition. In the appendix, we show that | H*| > 0.

Next, we show that VCD(H!, W \{z1}) < d — 1. When d > 1, we prove the statement as follows:
VCD(H', ¥p\{z1}) < VCD(HY!,¥y) =VCD(H,,,¥y) -1 <VCD(H,¥y)—-1<d-1
In the appendix, we prove the statement for d = 1, and further show that there exists a compact-

distinguishable set W1 S Wy \{x1} for the first partition H'. Then, we conclude that the first
partition H' has VCD(H!, ¥ ;1) < d — 1.

Next, we remove the first partition H I from H, and continue to create the above mentioned partitions
on Hey = H\H' and X,eq = Vg \{z1}. As discussed in the appendix, we show that X . is a
compact-distinguishable set on H.i. Therefore, we can repeat the above procedure (Line 7— Line 10,
Algorithm 2) to create the subsequent partitions. This process continues until the size of X .y reduces
to 1, i.e. Xesx = {T;m_1}. Until then, we obtain partitions {H!, ..., H™~2}. By construction, H’
satisfy properties (i) and (ii) for all j € [m — 2].

It remains to show that H™~! and H™ also satisfy the properties in Lemma 4. Since X =
{®m—1} before we start iteration m — 1, and X, is a compact-distinguishable set for Hey, there
must exist exactly two hypotheses in Hye, and therefore |[H™~!|,|H™| = 1. This implies that
VCD(H™ Y, Wm-1) = VCD(H™, ¥pm) = 0. Furthermore, Vj € [m — 1] and h € H7, we have
hi(z;) # h(z;). This indicates hy € H,,, and hence H,, = {hg} which completes the proof. H

*When VCD(H, ¥ ;) = 0, this implies |H| = 1.



Algorithm 2 Recursive procedure for constructing oys
achieving TD x 4 5, (ovs) < VCD(H, X)

Input: X, H, hg
I: Let I : H — {1,...,|H|} be any bijective mapping HE
2: Forall W € H, H € H, h € H, initialize

0 ifh' =h

IR -
s (R H 1) {|H| +1 ow.

3: SETPREFERENCE(H,H, X, hg)

4: function SETPREFERENCE(V, H, X, h) 00011 11010

5: Create compact-distinguishable set ¥ iy < X hip| 1010 1 hol 010 1 1

6: Hiest := H, Xiest := Yy

7. H,

8: hal 01 100

9: hs| 10110

10: h7| 01101

11: Vaext b 14 7? H({(z, U),}) , Figure 3: Illustration of Lemma 4 on the

}g g()r W'e H; dp J"’S(hj; ]‘f‘ex" h) < I(h') Warmuth class. The grouped hypotheses
: next < ArgMiny ey 1 (') in the leaf clusters correspond to the sets

14: SETPREFERENCE (Viext, HY, ¥ i\ {x}, hnext)

(21,0) (22,0) (23,1)

HY created in Line 9 of Algorithm 2.

) (25,1)

thOllO‘ h400011‘ h201100‘ 11010 hleOOl‘
(3,1) (4,1) (25,1) (5, 1)
1110‘ 10101 ‘ hs|1 01 10| h7|01101 ‘ ho| 01 01 1 ‘

Figure 4: Illustration of Theorem 3 proof — constructing a oys € Xy for the Warmuth class.

Recursive construction of ojys.  As a part of the Theorem 3 proof, we provide a recursive procedure
for constructing a o € Xys achieving TDx 3.5, (os) = O (VCD(H, X)).

Proof [Proof of Theorem 3] In a nutshell, the proof consists of three steps: (i) initialization of oy,
(ii) setting the preferences by recursively invoking the constructive procedure for Lemma 4, and (iii)
showing that there exists a teaching sequence of length up to d for any target hypothesis h*. We
summarize the recursive procedure in Algorithm 2.

Step (i). To begin with, we initialize os with default values which induce high o values (i.e.,

low preference), except for o(h'; H,h) = 0 where b’ = h (c.f. Line 2 of Algorithm 2). The
self-preference guarantees that oy is collusion-free as per Definition 1.

Step (ii). The recursion begins at the top level with H = #, current version space V = H, and
initial hypothesis & = hy. Lemma 4 suggests that we can partition H into m = |¥ | + 1 groups
{H!,..., H™}, where for all j € [m], there exists a compact-distinguishable set ¥ ; that satisfies
the properties in Lemma 4.

Now consider the hypothesis & := hg. We show that for j € [m — 1], every (z;,y;), where z; € Uy
and y; = 1 — h(z;), corresponds to a unique version space V7 := {h € V : h(z;) = y;}. To prove
this statement, we consider R’ := VI n H = {h € H : h(x;) = y,}. According to Lemma 8 of
Appendix D.2, we know that none of R’ for j € [m — 1] are equal. This indicates that none of V7
for j € [m — 1] are equal.

We then set the values of the preference function oys(; V7, h) forall j € [m—1] and y; = 1 —h(x;)
(Line 12). Upon receiving (;, y;), the learner will be steered to the next “search space” H7, with
version space V7. By Lemma 4 we have VCD(H7, ¥ ;) < VCD(H, W) — 1.

We will build the preference function oy,s recursively m — 1 times for each (Vj JHI Uy, Pnext)
where hyex corresponds to the unique hypothesis identified by function I (Line 13-Line 14). At



each level of recursion, VCD reduces by 1. We stop the recursion when VCD(H J; W) = 0, which
corresponds to the scenario |H’| = 1.

Step (iii). Given the preference function constructed in Algorithm 2, we can build up the set of
(labeled) teaching examples recursively. Consider the beginning of the teaching process, where the
learner’s current hypothesis is k¢ and version space is H, and the goal of the teacher is to teach h*.
Consider the first level of the recursion in Algorithm 2, where we divide H into m = |U| + 1 groups
{H!,...,H™}. Let us consider the case where h* € Hi" with j* € [m — 1]. The teacher provides
an example given by (z = z;»,y = h*(x;+)). After receiving the teaching example, the resulting
partition H7 " will stay in the version space; meanwhile, hy will be removed from the version space.
The new version space will be V7 *. The learner’s new hypothesis induced by the preference function
is given by hpex € H7". By repeating this teaching process for a maximum of d steps, the learner
reaches a partition of size 1 (see Step (ii) for details). At this step h* must be the only hypothesis left
in the search space. Therefore, hnexc = h*, and the learner has reached h*. |

Figure 4 illustrates the recursive construction of a ops € Xjs for the Warmuth class, with
TDX,H,hO (Ulvs) = 2.

6 Discussion and Conclusion

We now discuss a few thoughts related to different families of preference functions. First of all, the
size of the families grows exponentially as we change our model from Y¢onst, Zgiobal 10 Xgvs/Ziocal
and finally to X, thus resulting in more powerful models with lower teaching complexity. While
run time has not been the focus of this paper, it would be interesting to characterize the presumably
increased run time complexity of sequential learners and teachers with complex preference functions.
Furthermore, as the size of the families grow, the problem of finding the best preference function o in
a given family X that achieve the minima in Eq. (3.2) becomes more computationally challenging.

The recursive procedure in Algorithm 2 creates a preference function oy € Xys that has teaching
complexity at most VCD. It is interesting to note that the resulting preference function oy has the
characteristic of “win-stay, loose shift" [BDGG14, CSMA™18]: Given that for any hypothesis we
have o (h; -, h) = 0, the learner prefers her current hypothesis as long as it remains consistent. Prefer-
ence functions with this characteristic naturally exhibit the collusion-free property in Definition 1.
For some problems, one can achieve lower teaching complexity for a ¢ € ¥s. In fact, the preference
function oy, we provided for the Warmuth class in Table 2e has teaching complexity 1, while the
preference function constructed in Figure 4 has teaching complexity 2.

One fundamental aspect of modeling teacher-learner interactions is the notion of collusion-free
teaching. Collusion-freeness for the batched setting is well established in the research community
and NCTD characterizes the complexity of the strongest collusion-free batch model. In this paper,
we are introducing a new notion of collusion-freeness for the sequential setting (Definition 1). As
discussed above, a stricter condition is the “win-stay lose-shift” model, which is easier to validate
without running the teaching algorithm. In contrast, the condition of Definition 1 is more involved
in terms of validation and is a joint property of the teacher-learner pair. One intriguing question for
future work is defining notions of collusion-free teaching in sequential models and understanding
their implications on teaching complexity.

Another interesting direction of future work is to better understand the properties of the teaching
parameter X.-TD. One question of particular interest is showing that the teaching parameter is not
upper bounded by any constant independent of the hypothesis class, which would suggest a strong
collusion in our model. We can show that for certain hypothesis classes, 3-TD is lower bounded by a
function of VCD. In particular, for the power set class of size d (which has VCD = d), X-TD is lower

bounded by (2 (@). Another direction of future work is to understand whether this parameter is

additive or subadditive over disjoint domains. Also, we consider a generalization of our results to the
infinite VC classes as a very interesting direction for future work.

Our framework provides novel tools for reasoning about teaching complexity by constructing prefer-
ence functions. This opens up an interesting direction of research to tackle important open problems,
such as proving whether NCTD or RTD is linear in VCD [SZ15, CCT16, HWLW17, KSZ19]. In this
paper, we showed that neither of the families ¥gys and Yjoca) dominates the other (Theorem 2). As a
direction for future work, it would be important to further quantify the complexity of ¥ocq family.
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A Supplementary Materials for §4

A.1 An Example Hypothesis Class and the Teaching Sequences for the Batch Models

In this section, we provide an example hypothesis class where Yeongt-TD = TD = 3, Xgjopai-TD =
RTD = 2, and Xgys-TD = NCTD = 1. The hypothesis class is specified in Table 3a. The preference
functions inducing the optimal teaching sets for the examples are specified in Table 3b, 3c, and 3d.

X
H ry T2 T3 T4 T Te Sconst Sglobal ngs
hl 1 0 0 0 0 1 (1'1,1'6> ($1,$6) (.’Ll)
ho o 1 0 0 0 1 (2,26) | (22,76) | (22)
hs 1 1 1 0 0 0| (egaaas) | (1) | (x3)
hy 1 1 1 1 0 0 (x4, 5) (r4,25) | (4)
hs 1 1 1 0 1 0 (w4, 25) | (2a,25) | (25)
hg o 0 0 1 1 1 (xa,75) | (z4,25) | (w6)
(a) An example hypothesis class with the optimal teaching sets under different families of preference functions.
W | hi _hs hs hy hs hg b | h he hs ha hs he
oconst(Ps,) ] O 0 0 0 0 O ogiobal (A5 -,-) | 1 1 0 1 1 1
(b) Preference function ogonst (c) Preference function ogiopal
h h1 ho hs hy hs he

{h1,h3,ha,hs}  {ha, hs, ha,hs}  {h3,ha,hs}  {ha,he} {hs,he} {h1,ho2, he}
{h1,h3, hy} {h2, h3, hy} {h3, ha} {ha} {hs} {h1,he}

H {h1,h3, hs} {h2, h3, hs} {hs, hs} {h2, he}
{h1} {ha} {hs} {he}
Ugvs(h/;H7’) 0 0 0 0 0 0

(d) Preference function ogys. For all other i, H pairs not specified in the table, o(h', H,-) = 1.

Table 3: An example hypothesis class where Xconst-TD = 3, giobai-TD = 2, and Egys-TD = 1.

A.2 Proof of Theorem 1

Before we prove our main results for the batch models, we first establish the following results on the
non-clashing teaching. The notion of a non-clashing teacher was first introduced by [KKWO07]. Our
proof is inspired by [KSZ19] which shows the non-clashing property for collusion-free teacher-learner
pair, under the batch setting.

Lemma 5 Assume o € Ygyys is collusion-free. Then teacher T must be non-clashing on ‘H. i.e., for
any two distinct h, b/ € H such that T(h) is consistent with b/, T(h') cannot be consistent with h.

Proof [Proof of Lemma 5] By definition of the preference function, we have Vo € Ygys, heH,
a(h;H(Z'), ) = go (R, H(Z'")) for some function g-.

We then prove the lemma by contradiction. Assume that the teacher mapping T isn’t non-clashing.
There exists h # h' € H, where Z = T(h), and Z’ = T(h') are consistent with both, h and h'.

Assume that the last current hypothesis before the teacher provides the last example of Z is hy. Then,

h =argmino(h”;H(Z),h1) = argmin o(h";H(ZUZ'),h1) = argmin g,(h", H(ZuZ")).
h'eH(Z) WEH(ZuZ') hIEH(ZuZ)

Where first equality is the definition of a teaching sequence. The second equality is by the definition
of collusion-free preference (Definition 1). Similarly we have

h' = argmin g,(h",H(Z' U Z)).
heH(Z'0Z)

Consequently, h = h’, which is a contradiction. This indicates that T is non-clashing. |
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Now we are ready to provide the proof for Theorem 1. We divide the proof of the Theorem 1 into
three parts, each corresponding to the equivalence results for a different preference function family.

Proof [Proof of Theorem 1] Part 1 (reduction to TD) and Part 2 (reduction to RTD) of the proof are
included in the main paper.

To establish the equivalence between Xgys-TD and NCTD, we aim to show that for any hypotheses
space H, it holds (i) Xgvs-TDx 7¢,n, = NCTD(#), and (ii) Xgvs-TDx 3,n, < NCTD(H).

We first prove (i). According to Lemma 5, for any 0 € Xgs, a successful teacher T with
o is non-clashing on H. Therefore, Xgvs-TDx 71,y = MiNgyccesstul Teacher T MaXper |T(R)| =
IninNon-clashing teacher T INaXpeH |T(h)| = NCTD(H)

We now proceed to prove (ii). Consider any non-clashing teacher mapping T. First we will prove
that there exists o € 3gys such that (T, L, ) is successful on . Here L,, is a learner corresponded to
o as described in §2, and by “successful” we mean that the learner successfully outputs the target
hypothesis when teaching terminates. In the following, we construct a preference function o. First
initialize o(-;-,-) = 1. Then, for every h € H, and every S’ which T(h) < S” and S’ is consistent
with h assign o (h; H(S"),-) = 0.

We then prove (ii) by contradiction. Consider any set of examples .S, and assume there exists two
K # h' € H where o(h; H(S),:) = o(h';H(S),:) = 0. Then T(h) < H(S) and T(h') < H(S),
also S is consistent with both / and &'. This indicates that, both T'(h) and T'(h") must be consistent
with both h, and h'. This contradicts with T being non-clashing. Therefore, for every h, and S’
where S is consistent with  and T(h) < S’, and &’ # h, we have o (h; H(S'),) < o(h'; H(S'),-).
Consequently, after providing the examples T(h) to the learner L, the learner will stay on h even
if she receives more consistent labeled examples. Therefore, (T, L, ) is both collusion-free and
successful on #.

Therefore, we conclude that for any teacher mapping T induced by o € gy,
maxpey |[T(h)] = TDx 2,n,(c). Consequently, Ygvs-TDx 2.5, < NCTD(#). Combining
this results with (i) hence completes the proof. |
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B Supplementary Materials for §5: Extension of Table 2

This section provides the details of preference functions for the Warmuth class.

ey ¥ 1 T2 T3 T4 I Seconst = Sglobal ngs Siocal Shvs
hl 1 1 0 0 0 (l‘l,IQ,l‘4) (xhl'g) (Il) (1‘1)
hg 0 1 1 0 0 (l‘g, s, 3?5) (1'27 .%‘3) (33‘3) (:L‘Q)
h3 0 0 1 1 0 (1’1,173,134) ($37I’4) (I37I4) (1’3)
h4 0 0 0 1 1 ($2,$4,$5) ($4,.’E5) (.’175,.%‘4) (3?4)
h5 1 0 0 0 1 (1'1,1'3,(£5) (1'1,1'5) (JJ5) (1’5)
h6 1 1 0 1 0 ($1,$2,$4) (332,.%‘4) (l‘4) ($3)
h7 0 1 1 0 1 ($2,$3,$5) (1'3,1'5) (1’3,1’5) (1’4)
]’Lg 1 0 1 1 0 (1‘1,1‘3,334) (.231,1‘4) (l‘4,$3) (1‘5)
hg 0 1 0 1 1 (x2,24,25) (z2,25) | (z4,25) | (21)
th 1 0 1 0 1 ($1,$3,335) ($1,$3) (565,%‘3) (l‘g)

(a) The Warmuth hypothesis class and the corresponding teaching sequences (denoted by S).

I | VW eH h\R | h1 hy hg hy hs he hy hg hg hig
oconst(R, <y ) 0 Ocal(P;,h=h1) |0 2 4 4 2 1 3 3 3 3
/
Uglobal(h [ ) v

(b) oconst and Tgiobal

() Olocal representing the Hamming distance between A’ and h.

}L/ hl }LQ }1/3 }L4 }1/5 iL(; }L7 hg }Lg h10
H {h1,he} {ha,hr} {3, hs} {ha,ho} {hs,hi0} {he,ho} {h7,hi0} {hs,he} {ho,h7} {hio,hs}
{h1} {ha} {ha} {ha} {hs} {he} {hr} {hs} {ho} hio}
Ogus 0 0 0 0 0 0 0 0 0 0
(d) Ung(h,; Ha )
h/ h1 hz h3 h4 hS
I {h1}u {ha}u {hs}o {hato {hs}u
{h5~,h6,h8,hlo}* {h17h7,h,6,h/9}* {}1,2,}1/7,}7,8,]1,10}* {}Lg,hﬁ,hg,hg}* {h47h77h9,h10}*
h hy hy ho hy h3 hi hy hq hs
Olvs 0 0 0 0 0 0 0 0 0
h/ }lﬁ h7 hg hg th
H {hg}u {h7}u {hg}u {hg}u {hm}u
{h1, ha, hs, ho}* | {ha, ho, hs, hao}™ | {ha, ho, hs, he}™ | {ha, hs, by, e} | {ha, ha, hs, hg}*
h | h he hy h7 hy hs hy hg hy hio
ovs | O 0 0 0 0 0 0 0 0 0

(e) ows(h'; H, h). Here, {-}* denotes all subsets.

Table 4: Teaching sequences with different preference functions for the Warmuth hypothesis class
[DFSZ14]
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C Supplementary Materials for §5: Proof for Theorem 2

We divide the proof into three parts. The first part shows that the interactions of the two families is
Yglobal- In part 2 and part 3 of the proof, we show that there exist examples of hypothesis classes,
such that Yiocai-TDx 7,ho > Zgvs-TDx 74, ho»> OF Liocal- TDx 24,00 < Lgvs-TDx 24,k -

C.1 Partl

In this subsection, we provide the full proof for part 1 of Theorem 2, i.e., Xgys N Xjocal = Yglobal-

Intuitively, observe that the input domains between ojocal € Lgiobal and ogys € Ygys overlaps at
the domain of the first argument, which is the one taken by ogobai. Therefore, Vo € Ygiobal, 0 €
Ygvs N Xiocal. We formalize such idea in the proof below.

Proof Assume o € Yjocal N Xgvs. Then, by the definitions of Yipcq and Xgys, we get

@) Hg sch;h’e'H h’,,h}1 h h and
@) g%, st.Vh e H,HC H K, H)

Now consider ', h', h? € H, and H', H?> < H. According to (i), o(h’; H', h') = o(h’; H?, h1).
Also, according to (ii) o(h'; H%, h') = o(h'; H?,h?). This indicates that, Vh',h',h? €

H;HY, H? < H : o(W; H', h') = o(h'; H?, h?). In other words, there exist g : H — R, such
that V' € H : o(h';-,-) = g*(W'). Thus, o € Zgiopal- [ |

C.2 Part2

Part 2. Next, we show that there exists (#,X), such that Vhg € H, Zioca-TDx #.ny >
Ygvs-TDx 24 1, To prove this statement, we first establish the following lemma.

Lemma 6 For any H, X, and hg € H, if Xjocar TDX,H,hO =1, then Xgjopar- TDX,H,}LU =1

Proof [Proof of Lemma 6] If ¥ioca-TDx 21,5, = 1, there should be some olocal € iocal, such
that TD x 74,n,(0local) = 1. Now consider ogjopal such that VA’ ag|oba|(h’; ) = olocal(P; -, ho).

If Ty, is the best teacher for ojoca, then Vh € H |Tglml( )] = 1, this indicates that
h = argminy, EH (T (1) Olocal(B'; - ho) and | arg ming ey (1, Ty () Olocal(R; +, ho)| = 1. Subse-
quently, b = arg ming, ¢y (1, Toroo (1)) Oglobal(R'; -, -) and | arg minh,eﬂ(Tal ) ogiobal (P, )| = 1. In

other words, Ty, is also a teacher for ojocar. This indicates that, RTD(H) Yglobal- TD X o =
TDX,H,ho (Uglobal) = 1.

Now we are ready to provide the proof for Part 2.

Proof [Proof of Part 2 of Theorem 2] We identify H, X, ho, where Ygys-TDx 715, = 1 and
Yglobal-TDx 24,n, = RTD = 2. Table 3 illustrates such an example. In the example, since RTD = 2,
then by Lemma 6, it must hold that Xioca-TDx 20,1, > 1 = Xgus-TDx 3,1, = NCTD. [ |

C3 Part3

Here, we show that there exists a problem instance (#, X'), such that Vhg € H, Zioca-TDx 0y <

Yvs-TDx 2,1, Consider the hypothesis class which consists of the powerset % = {0, 1}*. First, as
proven in Lemma 7 below, we show that Yho € H, Ygvs-TDx 2,n, = NCTD > [£/2].

Lemma 7 (Based on Theorem 23 of [KSZ19]) Consider the hypothesis class which consists of the
powerset H = {0, 1}*. Then, NCTD > [k/2)].

Proof First we make the following observation: If 7" is a non clashing teacher and h, h’ € H where
h = WAz (i.e., these two hypotheses only differ in their label on one instance), it must be the
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case that (z, h(z)) € T(h), or (z,h'(x)) € T(h'). This holds by nothing that since h, and h’ are
only different on z, if x is absent in their teaching sequences, this would lead to violation of the
non-clashing property of the teacher.

Next we apply this observation on the powerset & hypotheses class where # consists of all hypotheses
which have length k. This indicates that for every h € H, and 0 < j < (k — 1) all k variants
hAxz; € H. Forall 0 < j < (k — 1) by using the above observation, for a pair h and hAz;, we

drive Zigl [T (h;)| = % By applying the pigeon-hole principle, this indicates that there exist an
h € H, where |T'(h)| > %. In other words NCTD(H) > [£]. |

Fix k = 7, we get Xqvs-TDx 21,n, = NCTD(#H) > 4. On the other hand, we construct a preference
function o € Xigcal, Where Zioca-TDx 4, ny < TDx 3.0y (0) =3 fork =17.

The example is detailed in Figure 5. Intuitively, for any hy € H, we construct a tree of hypotheses
with branching factor 7 at the top level, branching factor of 6 at the next level, and so on. Here,
each branch corresponds to one teaching example, and each path from A to h € H corresponds to a
teaching sequence Tiocal (). We need a tree of depth at most 3 to include all the 27 = 128 hypotheses
to be taught as nodes in the tree. This gives us a constructive procedure of ¢ functions achieving
TDx 2,1 (0) = 3 < Xgus-TDx 24,1, Wwhich completes the proof.

h X Preference Function o(.; h) Teaching Sequence
@ 0000000 hg > h1 > hg > hg > hqy >hs > hg > h7 > others ((xo,O))

hq 1000000 h1 > hg > hg > h1g > h11 > hia > h13 others ((wo,1))

hg 1100000 hg > h44 > h45 > h46 > h47 > h48 > others ((£E07 1), (171, 1))

hg 1110000 hg > h79 > }ng > hgl > hgg > hgg > others ((l‘o, 1), (l’g, 1))
th 1111000 hl() > hi14 > h115 > others ((Io, 1), (.”1)37 1))
h11 1111100 h11 > others ((.T)Q7 1), (1‘4, 1))
hig | 1111110 hi2 > others ((x0,1), (x5,1))
his 1111111 h13 > others ((Io, 1), (.176, 1))
haa 1101000 hy44 > others (($071),(l‘1,1),(1'3,1))
hys 1101100 hys > others ((1071),(1’1,1),(1‘4,1))
hag 1110100 hyg > others ((1‘071),($1,1),(:C2,1))
hs7 | 1100010 hy7 > others ((wo, 1), (z1,1), (x5,1))
h48 1100101 h48 > others ((J}071)7($171)7($631))
hg | 1010000 hrg > others ((wo, 1), (z2,1), (x1,0))
hg(} 1010100 hg() > others ((CE(), 1)7 (ZL‘Q, 1), (ZE4, 1))
hg1 1010110 hg1 > others ((.T}o, 1), (.732, 1), (.1’5, 1))
hgg 1111010 h47 > others ((51307 1), (332, 1), (1'3, 1))
hgs 1011101 hgs > others ((107 ].), (1’27 1), (1’6, 1))
hi14 | 1001000 hi114 > others (($071),(J}3,1),(l'1,0))
hi1i5 | 1001100 hi15 > others ((1071),(1‘3,1),(1‘4,1))

Table 5: More details about Figure 5: This table lists down all the hypotheses in the left branch of
the tree. For each of these hypotheses, it shows the preference function from the hypothesis, as well
as the teaching sequence to teach the hypothesis. Consider hg: We have o(., hg) = {hg > hyg >
hgo > hg1 > hga > hgz > others}. Also, we have teaching sequence for hg as {(xo, 1), (z2,1)}.
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(a) This figure is representing the teaching sequence for first four for direct children of hg (top four most
preferred hypothesis of ho after ho) and all of their children.

(b) This figure is representing the teaching sequence for next three direct children of hq (next three most preferred
hypothesis of h¢) and all of their children.

Figure 5: Details of teaching sequences, for a preference function o € Xigcal, where TDx 4 o (0) = 3
for powerset k = 7 class. For any hypothesis the cell with blue color is representing last teaching
example in teaching sequence, and the cells with red color are representing rest of teaching sequence.
Also see Table 5 that lists down details for all the hypotheses in the left branch of the tree.
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D Supplementary Materials for §5.3

D.1 Proof of Lemma 4

In this section, we extend the proof sketch of Lemma 4 in the main paper into the full proof. A useful
notion for this proof is the notion of H-distinguishable set:

Definition 7 (Based on [DFSZ14]) A set of instances X < X is H-distinguishable, if |H x| = |H|.

For completeness, we also incorporate part of the proof sketch from §5.3 into the extended proof
below.

Proof [(Extended) Proof of Lemma 4] Let us define H, = {h € H : hAzy, € Hyy, }. Here, hAx
denotes the hypothesis that only differs from & on the label of x. Fix a reference hypothesis A .
Vz; € Uy, lety; =1 — hy(x;) be the opposite label of z; as provided by hp. As highlighted in
Line 9 of Algorithm 2, we consider the set HY! = {h € H,, : h(x1) = y1} as the first partition.

H \IIH Iy ZTo Tm—1
ho 0 00...0 Uy -
hy 0 a H,, S Tm-1 7% -
R 1 b I 0 a H! Ty | T2 Tm—1
hs 0 b ho 1 b ho 1 b
h4 1 C h,g 0 b h7 1 a
hs 1 d hr 1 a
he 1 ¢ (©H' = H# !
h7 1 a (b) Hzl
(@ H

Table 6: Illustrative example for constructing the first partition H! = H, o =1

In Table 6, we provide an example hypothesis class where we show how to construct the first partition
H}Y:. Table 6a shows the hypothesis class H (here a # b # ¢ # d # ¢) and hy = hg. Table 6b
shows the resulting set of hypotheses H,, = {h € H : hAz1 )y, € Hyy,, }, and Table 6¢ shows the

first partition HY!=".

We denote H' := HY', and define ¥ ;1 = W\ {21} to be any compact-distinguishable set on H*.

Lower VCD. Letd = VCD(H, ¥y). In the following, we prove that VCD(H*, W) < d — 1.
We consider the following two cases:

1. If d > 1, then
VCD(H', ¥ 1) < VCD(HY:

T1?

\I/H) = VCD(HM,\I/H) —1< VCD(H, \I/H) —-1<d-1
Since ¥ 1 < Yy, the first inequality is due to the monotonicity of VCD. The equality
follows from the fact that, for all h € HY!, it holds that h(x;) = y; and hAx, (o € He, 1Oy
This indicates that, X < W shatters HY!, iff X U {z,} shatters [, . The second inequality
comes from the fact that VCD is monotonic.

2. Ifd = 1and |[HY'| > 2, then
similar to the previous case we have the following: VCD(H,,,¥y) < VCD(H,¥y) =1
and VCD(H,,,¥y) = VCD(HY!, W) + 1. Subsequently, VCD(H', U 1) = 0.

3. Ifd =1and |[HY!| < 2, then
since |[HY!| < 2, by definition, we have VCD(H!, ¥ 1) = 0 and hence is less than d = 1.

That is, the first partition H', ¥ 1 has VCD(H!, U y1) < d — 1, i.e., H! satisfies property (i). In
addition, it is clear that H'|(,,} = {y1} = {1 — hu(21)}. Therefore, H' also satisfies property (ii).

Non-emptiness of H/'. For the sake of contradiction assume that H' is empty. Note that ¥z is
H-distinguishable. Since H* is empty, this means that there is no pair of hypotheses that differ only
on z. This in turn indicates that W\ {21 } is H-distinguishable. However, |U g \{z1}| < |¥ x| and
this is in contradiction to the assumption that Wz is compact-distinguishable on H.
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Continuing to create partitions. Next, we remove the first partition H 1 from H, and continue
to create the above mentioned partitions on Hyeq = H\H' and Xe5y = ¥ \{z1}. We claim that
Hiet, Xiest €xhibit the following properties.

1. Xiest 18 Hieg-distinguishable (see Definition 7).

For the sake of contradiction, assume that there exists a pair of hypotheses h', h? € Hye

such that h|1X = h|2X .- However, we know that h\I\pH £ h\z\pH- Then, these two hypotheses

should have been in H,, and only one of them could have stayed in H,.. Hence, there is
no such pair of hypotheses in H,.y and this completes the proof of the statement.

2. Xiest 1s also a compact-distinguishable on Hieg.

We now provide a concrete proof for the above statement. Imagine X < X is an
H,y-distinguishable set. In the following, we prove that X U {x;} is H-distinguishable.

For the sake of contradiction assume that, X u {1} isn’t H-distinguishable. This indicates
that there exist two hypotheses h' # h? € H, where they are equal on X U {z1}, i.e.,
h|1Xu{zl} = thu{ml}; also this implies h|1X = h|2X. Since H = H,.q u H', we consider
the following three cases.

(i) h',h? € Hyeq. Since X is Hyoq-distinguishable, it is a contradiction that h|1X = th.

(i) h',h? € H'. By the construction of H?, there exist h',h? € Hyeq, such that
h\l)(u{zl} = h'Az1|x 4,y and thu{wl} = h*Axy|x(4,;- Furthermore, since

h‘lx = h|2X, we must have h|1X = h|2X, which contradicts the fact that X is Hieg-
distinguishable.

(iii) h' € H', h? € Hyey. By the construction of H 1 there exist hl e Hey, such that

fAL‘lxu{xl} = hlﬁxl‘XU{ml}. Furthermore, since h|1X = h|2X, we must have h‘lx =

th, which contradicts the fact that X is H.y-distinguishable.

Therefore, we conclude that X U {z;} is H-distinguishable. Recall that ¥ is compact-
distinguishable on H. This indicates that ¥y = X U {z1}, and subsequently X = X o.
This indicates that X,.s is compact-distinguishable on H .

3. If U] > 1, then | Hyeyr| > 1.

We prove the above statement by contradiction. Assume that |H.y| = 1. Since we know
that H' is non empty, hence |Hyes| = 1 implies that |H!| = 1. Let H' = {h}, and
Hese = {h'}, then hf\pH = hAzqy,,. Since we know that H = H' U Hyy , subsequently
{x1} is compact-distinguishable on H, which is in contradiction to the assumption that ¥ p
is compact-distinguishable.

Case of | Xpes¢| > 1. Therefore, we can repeat the above procedure (Line 7- Line 10, Algorithm 2)
to create the subsequent partitions. This process continues until the size of X reduces to 1, i.e.
Xrest = {#m—1}. Until then, we obtain partitions {H*, ..., H™~2}. By construction, H7 satisfy
properties (i) and (ii) for all j € [m — 2].

Note that each step X5t is compact H.-distinguishable set. This implies that we have never lost a
hypothesis in this process, i.e., all hypotheses in H were either in one of H;’s or in Hieg.

Case of | Xyet| = 1. It remains to show that the last two partitions H m=1 and H™ also satisfy
properties (i) and (ii); additionally we need to satisfy property (iii). Since Xieq = {Zm—1},
and |Hpeq| > 1 before we start iteration m — 1, there must exist exactly two hypotheses

in Heg. Therefore |[H™ !|,|H™| = 1, and Hm-_l,l} = {{ym—1}}. This implies that

VCD(H™ , Wym-1) = VCD(H™,¥pm) = 0 < d — 1. Furthermore, notice that for every
j e [m—1],h € H? ,hg(xz;) # h(x;). This indicates hy € Hp,. Since |H,,| = 1, we get
H,, = {hy} which completes the proof. [ |
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D.2 Supplementary Materials for the Proof of Theorem 3

Our proof of Theorem 3 in the main paper relies on the fact that every teaching example (z;,y;),

where z; € Uy and y; = 1 — h(xz;) for some fixed h, corresponds to a unique version space V.
The proof depends on the following lemma.

Lemma 8 Fix H € H, andlet Vg = X be a compact-distinguishable set on H. For any x,x' € Uy
and y,y' € {0, 1} such that (z,y) # (2',y'), the resulting version spaces {h € H : h(z) = y} and
{h e H : h(z') = y'} are different.

Proof [Proof of Lemma 8] Denote A = {h€ H : h(z) =y} and B = {h e H : h(2') = y'}. We
consider the following two cases: (1) y = 4/, and (2) y # 3. For the first case where y = o/, if
A = B, this would violate the first part of property (i) of Lemma 4, (i.e., there do not exist distinct
x,2' s.t. Yh e H : h(x) = h(z'). For the second case, if A = B, this would violate the second part
of property (i). Hence it completes the proof. |
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