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Abstract

Cluster analysis is a fundamental tool for pattern discovery of complex heterogeneous data.
Prevalent clustering methods mainly focus on vector or matrix-variate data and are not
applicable to general-order tensors, which arise frequently in modern scientific and business
applications. Moreover, there is a gap between statistical guarantees and computational
efficiency for existing tensor clustering solutions due to the nature of their non-convex for-
mulations. In this work, we bridge this gap by developing a provable convex formulation of
tensor co-clustering. Our convex co-clustering (CoCo) estimator enjoys stability guarantees
and its computational and storage costs are polynomial in the size of the data. We further
establish a non-asymptotic error bound for the CoCo estimator, which reveals a surprising
“blessing of dimensionality” phenomenon that does not exist in vector or matrix-variate
cluster analysis. Our theoretical findings are supported by extensive simulated studies.
Finally, we apply the CoCo estimator to the cluster analysis of advertisement click tensor
data from a major online company. Our clustering results provide meaningful business
insights to improve advertising effectiveness.
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1. Introduction

In this work, we study the problem of finding structure in multiway data, or tensors, via
clustering. Tensors appear frequently in modern scientific and business applications involv-
ing complex heterogeneous data. For example, data in a neurogenomics study of brain
development consists of a 3-way array of expression level measurements indexed by gene,
space, and time (Liu et al., 2017). Other examples of 3-way data arrays consisting of matri-
ces collected over time include email communications (sender, recipient, time) (Papalexakis
et al., 2013), online chatroom communications (user, keyword, time) (Acar et al., 2006),
bike rentals (source station, destination station, time) (Guigourès et al., 2015), and inter-
net network traffic (source IP, destination IP, time) (Sun et al., 2006). The rise in tensor
data has created new challenges in making predictions, such as in recommender systems for
example (Zheng et al., 2016; Symeonidis, 2016; Symeonidis and Zioupos, 2016; Frolov and
Oseledets, 2017; Bi et al., 2018) as well as inferring latent structure in multiway data (Acar
and Yener, 2009; Anandkumar et al., 2014; Cichocki et al., 2015; Sidiropoulos et al., 2017).

As tensors become increasingly more common, the need for a reliable co-clustering
method grows increasingly more urgent. Prevalent clustering methods, however, mainly
focus on vector or matrix-variate data. The goal of vector clustering is to identify sub-
groups within the vector-variate observations (Ma and Zhong, 2008; Shen and Huang, 2010;
Shen et al., 2012; Wang et al., 2013). Biclustering is the extension of clustering to two-
way data where both the observations (rows) and the features (columns) of a data matrix
are simultaneously grouped together (Hartigan, 1972; Madeira and Oliveira, 2004; Busygin
et al., 2008). In spite of their prevalence, these approaches are not directly applicable to
the cluster analysis of general-order (general-way) tensors. On the other hand, existing
methods for co-clustering general D-way arrays, for D ≥ 3, employ one of three strategies:
(i) extensions of spectral clustering to tensors (Wu et al., 2016b), (ii) directly clustering the
subarrays along each dimension, or way, of the tensor using either k-means or variants on it
(Jegelka et al., 2009), and (iii) low rank tensor decompositions (Sun et al., 2009; Papalex-
akis et al., 2013; Zhao et al., 2016). While all these existing approaches may demonstrate
good empirical performance, they have limitations. For instance, the spectral co-clustering
method proposed by Wu et al. (2016b) is limited to nonnegative tensors and the CoTeC
method proposed by Jegelka et al. (2009), like k-means, requires specifying the number of
clusters along each dimension as a tuning parameter. Most importantly, none of the existing
methods provide statistical guarantees for recovering an underlying co-clustering structure.
There is a conspicuous gap between statistical guarantees and computational efficiency for
existing tensor clustering solutions due to the nature of the non-convex formulations of the
previously mentioned works.

In this paper, we propose a Convex Co-clustering (CoCo) procedure that solves a convex
formulation of the problem of co-clustering a D-way array for D ≥ 3. Our proposed CoCo
estimator affords the following advantages over existing tensor co-clustering methods.

(i) Under modest assumptions on the data generating process, the CoCo estimator is
guaranteed to recover an underlying co-clustering structure with high probability. In
particular, we establish a non-asymptotic error bound for the CoCo estimator, which
reveals a surprising “blessing of dimensionality” phenomenon: As the dimensions
of the array increase, the CoCo estimator is still consistent even if the number of
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underlying co-clusters grows as a function of the number of elements in the tensor
sample. More importantly, an underlying co-clustering structure can be consistently
recovered with even a single tensor sample, which is a typical case in real applications.
This phenomenon does not exist in vector or matrix-variate cluster analysis.

(ii) The CoCo estimator possesses stability guarantees. In particular, the CoCo estimator
is Lipschitz continuous in the data and jointly continuous in the data and its tuning
parameter. We emphasize that Lipschitz continuity in the data guarantees that per-
turbations in the data lead to graceful and commensurate variations in the cluster
assignments, and the continuity in the tuning parameter can be leveraged to expedite
computation through warm starts.

(iii) The CoCo estimator can be iteratively computed with convergence guarantees via an
accelerated first order method with storage and per-iteration cost that is linear in the
size of the data.

In short, the CoCo estimator comes with (i) statistical guarantees, (ii) practically relevant
stability guarantees at all sample sizes, and (iii) an algorithm with polynomial complexity.
The theoretical properties of our CoCo estimator are supported by extensive simulation
studies. To demonstrate its business impact, we apply the CoCo estimator to the cluster
analysis of advertisement click tensor data from a major online company. Our clustering
results provide meaningful business insights to help advertising planning.

Our work is related to, but also clearly distinct from, a number of recent developments
in cluster analysis. The first related line of research tackles convex clustering (Hocking
et al., 2011; Zhu et al., 2014; Chi and Lange, 2015; Chen et al., 2015; Tan and Witten, 2015;
Wang et al., 2018; Radchenko and Mukherjee, 2017) and convex biclustering (Chi et al.,
2017). These existing methods are not directly applicable to general-order tensors, however.
Importantly, our CoCo estimator enjoys a unique “blessing of dimensionality” phenomenon
that has not been established in the aforementioned approaches. Moreover, the CoCo
estimator is similar in spirit to a recent series of work approximating a noisy observed array
with an array that is smooth with respect to some latent organization associated with each
dimension of the array (Gavish and Coifman, 2012; Ankenman, 2014; Mishne et al., 2016;
Yair et al., 2017). Our proposed CoCo procedure seeks an approximating array that is
smooth with respect to a latent clustering along each dimension of the array. While CoCo
shares features with these array approximation techniques, namely the use of data-driven
similarity graphs along tensor modes, a key distinction between our CoCo estimator and
these methods is that CoCo produces an approximating array that explicitly recovers hard
co-clustering assignments. As we will see shortly, focusing our attention in this work on the
co-clustering model paves the way to the discovery and explicit characterization of new and
interesting fundamental behavior in finding intrinsic organization within tensors.

The rest of the paper is organized as follows. In Section 2, we review standard facts and
results about tensors that we will use. In Section 3, we introduce our convex formulation of
the co-clustering problem. In Section 4, we establish the stability properties and prediction
error bounds of the CoCo estimator. In Section 5, we describe the algorithm used to
compute the CoCo estimator. In Section 6, we discuss how to specify weights used in
our CoCo estimator, and in Section 7 we give guidance on how to set and select tuning
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parameters used in the CoCo estimator in practice. In Section 8, we present simulation
results. In Section 9, we discuss the results of applying the CoCo estimator to co-cluster
a real data tensor from online advertising. In Section 10, we close with a discussion. The
Appendix contains a brief review of the two main tensor decompositions that are discussed
in this paper, all technical proofs, as well as additional experiments.

2. Preliminaries

2.1 Notation

We adopt the terminology and notation used by Kolda and Bader (2009). We call the
number of ways or modes of a tensor its order. Vectors are tensors of order one and denoted
by boldface lowercase letters, e.g. a. Matrices are tensors of order two and denoted by
boldface capital letters, e.g. A. Tensors of higher-order, namely order three and greater, we
denote by boldface Euler script letters, e.g. A. Thus, if A represent a D-way data array of
size n1 × n2 × · · · × nD, we say A is a tensor of order D. We denote scalars by lowercase
letters, e.g. a. We denote the ith element of a vector a by ai, the ijth element of a matrix
A by aij , the ijkth element of a third-order tensor A by aijk, and so on.

We can extract a subarray of a tensor by fixing a subset of its indices. For example,
by fixing the first index of a matrix to be i, we extract the ith row of the matrix, and by
fixing the second index of a matrix to be j, we extract a jth column of the matrix. We use
a colon to indicate all elements of a mode. Consequently, we denote the ith row of a matrix
A by Ai: and the jth column of a matrix A by A:j . Fibers are the subarrays of a tensor
obtained by fixing all but one of its indices. In the case of a matrix, a mode-1 fiber is a
matrix column and a mode-2 fiber is a matrix row. Slices are the two-dimensional subarrays
of a tensor obtained by fixing all but two indices. For example, a third-order tensor A has
three sets of slices denoted by Ai::,A:j:, and A::k.

2.2 Basic Tensor Operations

It is often convenient to reorder the elements of a D-way array into a matrix or a vector.
Reordering a tensor’s elements into a matrix is referred to as matricization, while reordering
its elements into a vector is referred to as vectorization. There are many ways to reorder
a tensor into a matrix or vector. In this paper, we use a canonical mode-d matricization,
where the mode-d fibers of a D-way tensor A ∈ Rn1×n2×···×nD become the columns of a
matrix A(d) ∈ Rnd×n−d , where n−d =

∏
j 6=d nj . Recall that the column-major vectorization

of a matrix maps a matrix A ∈ Rp×q to the vector a ∈ Rpq by stacking the columns of A

on top of each other, namely a =
(
AT

:1 AT
:2 · · · AT

:q

)T ∈ Rpq. In this paper, we take the
vectorization of a D-way tensor A, denoted vec(A), to be the column-major vectorization
of the mode-1 matriciziation of A, namely vec(A) = vec(A(1)) ∈ Rn, where n =

∏
d nd the

total number of elements in A. As a shorthand, when the context leaves no ambiguity, we
denote this vectorization of a tensor A by its boldface lowercase version a.

The Frobenius norm of a D-way tensor A ∈ Rn1×n2×···×nD is the natural generalization
of the Frobenius norm of a matrix, namely it is the square root of the sum of the squares
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of all its elements,

‖A‖F =

√√√√ n1∑
i1=1

n2∑
i2=1

· · ·
nD∑
iD=1

a2i1i2···iD .

The Frobenius norm of a tensor is equivalent to the `2-norm of the vectorization of the
tensor, namely ‖A‖F = ‖a‖2.

Let A be a tensor in Rn1×n2×···×nD and B be a matrix in Rm×nd . The d-mode (matrix)
product of the tensor A with the matrix B, denoted by A ×d B, is the tensor of size
n1 × · · · × nd−1 ×m × nd+1 × · · · × nD whose (i1, i2, · · · , id−1, j, id+1, · · · , iD)th element is
given by

(A×d B)i1...id−1jid+1···iD =

nd∑
id=1

ai1i2···iDbjid ,

for j ∈ {1, . . . ,m}. The vectorization of the d-mode product A×d B can be expressed as

vec(A×d B) = (InD ⊗ · · · ⊗ Ind+1
⊗B⊗ Ind−1

⊗ · · · ⊗ In1)a, (1)

where Ip is the p-by-p identity matrix and ⊗ denotes the Kronecker product between two
matrices. The identity given in (1) generalizes the well known formula for the column-major
vectorization of a product of two matrices, namely vec(BA) = (I⊗B)a.

3. A Convex Formulation of Co-clustering

We first consider a convex formulation of co-clustering problem when the data is a 3-way
tensor X ∈ Rn1×n2×n3 before discussing the natural generalization to D-way tensors. Our
basic assumption is that the observed data tensor is a noisy realization of an underlying
tensor that exhibits a checkerbox structure modulo some unknown reordering along each
of its modes. Specifically suppose that there are k1, k2, and k3 clusters along modes 1, 2,
and 3 respectively. If the (i1, i2, i3)-th entry in X belongs to the cluster defined by the
r1th mode-1 group, r2th mode-2 group, and r3th mode-3 group, then we assume that the
observed tensor element xi1i2i3 is given by

xi1i2i3 = c∗r1r2r3 + εi1i2i3 , (2)

where c∗r1r2r3 is the mean of the co-cluster defined by the r1th mode-1 partition, r2th mode-
2 partition, and r3th mode-3 partition, and εi1i2i3 are noise terms. We will specify a joint
distribution on the noise terms later in Section 4.2 in order to derive prediction bounds.
Thus, we model the observed tensor X as the sum of a mean tensor U∗ ∈ Rn1×n2×n3 , whose
elements are expanded from the co-cluster means tensor C∗ ∈ Rk1×k2×k3 , and a noise tensor
E ∈ Rn1×n2×n3 . We can write this expansion explicitly by introducing a membership matrix
Md ∈ {0, 1}nd×kd for the dth mode, where the ikth element of Md is one if and only if the
ith mode-d slice belongs to the kth mode-d cluster for k ∈ {1, . . . , kd}. We require that
each row of the membership matrix sum to one, namely Md1 = 1, to ensure that each of
the mode-d slices belongs to exactly one of the kd mode-d clusters. Then,

U∗ = C∗ ×1 M1 ×2 M2 ×3 M3.
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Figure 1: A 3-way tensor with a checkerbox structure

Figure 1 illustrates an underlying mean tensor U∗ after permuting the slices along each of
the modes to reveal a checkerbox structure.

The co-clustering model in (2) is the 3-way analogue of the checkerboard mean model
often employed in biclustering data matrices (Madeira and Oliveira, 2004; Tan and Witten,
2014; Chi et al., 2017). Moreover, the tensor C∗ of co-cluster means corresponds to the
tensor of cluster “centers” in the tensor clustering work by Jegelka et al. (2009). The model
is complete and exclusive in that each tensor element is assigned to exactly one co-cluster.
This is in contrast to models that allow potentially overlapping co-clusters (Lazzeroni and
Owen, 2002; Bergmann et al., 2003; Turner et al., 2005; Huang et al., 2008; Witten et al.,
2009; Lee et al., 2010; Sill et al., 2011; Bhar et al., 2015).

Estimating the model in (2) consists of finding (i) the partitions along each mode and
(ii) the mean values of each of the k1k2k3 co-clusters. Estimating c∗r1r2r3 , given the mode
clustering assignments is trivial. Let G1,G2, and G3 denote the indices of the r1th mode-1,
r2th mode-2, and r3th mode-3 groups respectively. If the noise terms εi1i2i3 are iid N(0, σ2)
for some positive σ2, then the maximum likelihood estimate of c∗r1r2r3 is simply the sample
mean of the entries of X over the indices defined by G1,G2, and G3, namely

ĉ∗r1r2r3 =
1

|G1||G2|||G3|
∑
i1∈G1

∑
i2∈G2

∑
i3∈G3

xi1i2i3 .

Finding the partitions G1,G2, and G3, on the other hand, is a combinatorially hard
problem. In recent years, however, many combinatorially hard problems, that initially
appear computationally intractable, have been successfully attacked by solving a convex
relaxation to the original combinatorial optimization problem. Perhaps the most celebrated
convex relaxations is the lasso (Tibshirani, 1996), which simultaneously performs variable
selection and parameter estimation for fitting sparse regression models by minimizing a
non-smooth convex criterion.

In light of the lasso’s success, we propose to simultaneously identify partitions along the
modes of X and estimate the co-cluster means by minimizing the following convex objective
function

Fγ(U) =
1

2
‖X−U‖2F + γ

[
R1(U) +R2(U) +R3(U)

]
︸ ︷︷ ︸

R(U)

, (3)
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where

R1(U) =
∑
i<j

w1,ij‖Ui:: −Uj::‖F

R2(U) =
∑
i<j

w2,ij‖U:i: −U:j:‖F

R3(U) =
∑
i<j

w3,ij‖U::i −U::j‖F.

By seeking the minimizer Ûγ ∈ Rn1×n2×n3 of (3), we have cast co-clustering as a signal
approximation problem, modeled as a penalized regression, to estimate the true co-cluster
means tensor U∗. In the following discussion, we drop the dependence of γ in Ûγ and

denote our estimator as Û when there is no confusion. The quadratic term in (3) quantifies
how well U approximates X, while the regularization term R(U) in (3) penalizes deviations
away from a checkerbox pattern. The nonnegative parameter γ tunes the relative emphasis
on these two terms. The parameters wd,ij are nonnegative weights whose purpose will be
discussed shortly.

To appreciate how the regularization term R(U) steers the minimizer of (3) towards a
checkerbox pattern, consider the effect of one of the terms Rd(U) in isolation. Specifically,
suppose that R(U) = R1(U). When γ is zero, the minimum of (3) is attained when U = X.
Or stated another way, Ui:: = Xi:: for i ∈ {1, . . . , n1}. As γ increases, the mode-1 slices
Ui:: will shrink towards each other and in fact coalesce due to the non-differentiability of
the Frobenius norm at zero. In other words, as γ gets larger, the pairwise differences of the
mode-1 slices of Û will become increasingly sparser. Sparsity in these pairwise differences
leads to a natural partitioning assignment. Two mode-1 slices Xi:: and Xj:: are assigned to
the same mode-1 partition if Ui:: = Uj::. Under mild regularity conditions, that we will spell

out in Section 4, for sufficiently large γ, all mode-1 slices Û will be identical and therefore
belong to a single cluster. Similar behavior holds if R(U) = R2(U) or R(U) = R3(U).

When R(U) includes all three terms Rd(U) for d = 1, 2, 3, pairs of mode-1, mode-2, and
mode-3 slices are simultaneously shrunk towards each other and coalesce as the parameter γ
increases. By coupling clustering along each of the modes simultaneously, our formulation
explicitly seeks out a solution with a checkerbox mean structure. Moreover, we will show in
Section 4 that the solution Û produces an entire solution path of checkerbox co-clustering
estimates that varies continuously in γ. The solution path spans a range of models from the
least smoothed model, where Û is X and each tensor element occupies its own co-cluster, to
the most smoothed model, where all the elements of Û are identical and all tensor elements
belong to a single co-cluster.

The nonnegative weights wd,ij fine tune the shrinkage of the slices along the dth mode.
For example, if w1,ij > w1,i′j′ , then there will be more pressure for Ui:: and Uj:: to fuse than
for Ui′:: and Uj′:: to fuse as γ increases. Thus, the weight wd,ij quantifies the similarity
between the ith and jth mode-d slices. A very large wd,ij indicates that the two slices are
very similar, while a very small wd,ij indicates that they are very dissimilar. These pairwise
similarities motivate a graphical view of clustering. For the dth mode, define the set Ed as
the edge set of a similarity graph. Each slice is a node in the graph and the set Ed contains
an edge (i, j) if and only if wd,ij > 0. Figure 2 shows an example of a mode-1 similarity
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Figure 2: A graph that summarizes the similarities between pairs of the mode-1 subarrays.
Only edges with positive weight are drawn.

graph, which corresponds to a tensor with seven mode-1 slices and positive weights that
define the edge set

E1 = {(1, 2), (2, 3), (4, 5), (4, 6), (6, 7)}.

Given the connectivity of the graph, as γ increases, the slices U1::,U2::, and U3:: will be
shrunk towards each other while the slices U4::,U5::,U6:: and U7:: shrunk towards each other.
Since wd,ij = 0 for any (i, j) /∈ Ed, we can express the penalty terms for the dth mode as

Rd(U) =
∑

(i,j)∈Ed

wd,ij‖Ui:: −Uj::‖F.

The graph in Figure 2 makes readily apparent that the convex objective in (3) separates
over the connected components of the similarity graph for the mode-d slices. Consequently,
one can solve for the optimal U component by component. Without loss of generality,
we assume that the weights are such that all the similarity graphs are connected. Before
leaving this preliminary description of the weights, however, we want to emphasize that in
practice weights are set once in a data-adaptive manner and should be considered empirically
chosen hyper-parameters rather than tuning parameters. Further discussion of the weights
and practical recommendations for specifying them will be discussed in Section 6.

Having familiarized ourselves with the convex co-clustering of a 3-way array, we now
present the natural extension of (3) for clustering the fibers of a general higher-order tensor
X ∈ Rn1×···×nD along all its D modes. Let ∆d,ij = eTi −eTj where ei is the ith standard basis
vector in Rnd . The objective function of our convex co-clustering for a general higher-order
tensor is as follows.

Fγ(U) =
1

2
‖X−U‖2F + γ

D∑
d=1

∑
(i,j)∈Ed

wd,ij‖U×d ∆d,ij‖F. (4)

The difference between the convex triclustering objective (3) and the general convex
co-clustering objective (4) is in the penalty terms. Previously in (3) we penalized the
difference between pairs slices whereas in (4) we penalize the differences between pairs of
mode-d subarrays.

Note that the function Fγ(U) defined in (4) has a unique global minimizer. This follows
immediately from the fact that Fγ(U) is strongly convex. The unique global minimizer of
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Fγ(U) is our proposed CoCo estimator, which is denoted by Û for the remainder of the
paper.

At times it will be more convenient to work with vectors rather than tensors. By
applying the identity in (1), we can rewrite the objective function in (4) in terms of the
vectorizations of U and X as follows

Fγ(u) =
1

2
‖x− u‖22 + γ

D∑
d=1

∑
(i,j)∈Ed

wd,ij‖Ad,iju‖2. (5)

where Ad,ij is the n−d-by-n matrix

Ad,ij = InD ⊗ · · · ⊗ Ind+1
⊗∆d,ij ⊗ Ind−1

⊗ · · · ⊗ In1 (6)

where Ind is the nd-by-nd identity matrix. We will refer to the unique global minimizer of
(5), û = arg minu Fγ(u), as the vectorized version of our CoCo estimator.

Remark 1 The fusion penalties Rd(U) are a composition of the group lasso (Yuan and Lin,
2006) and the fused lasso (Tibshirani et al., 2005), a special case of the generalized lasso
(Tibshirani and Taylor, 2011). When only a single mode is being clustered and only one
of the terms Rd(U) is employed, we recover the objective function in the convex clustering
problem (Pelckmans et al., 2005; She, 2010; Lindsten et al., 2011; Hocking et al., 2011;
Sharpnack et al., 2012; Zhu et al., 2014; Chi and Lange, 2015; Radchenko and Mukherjee,
2017). Most prior work on convex clustering employ an element-wise `1-norm penalty on
pairwise differences, as in the original fused lasso, however, `2-norm and `∞-norm have
also been considered (Hocking et al., 2011; Chi and Lange, 2015). In this paper, we restrict
ourselves to the `2-norm for two reasons. First, the `2-norm is rotationally invariant. In
general, we are reluctant to adopt a procedure whose co-clustering output may non-trivially
change when the coordinate representation of the data along one of its modes is trivially
changed. Second, the `2-norm promotes the group-wise shrinkage of pairwise differences of
subarrays along each mode leading to more straightforward partitioning along each mode.
Pairwise differences are either exactly zero or not. When the tensor is a matrix and the
rows and columns are being simultaneously clustered, we recover the objective function in
the convex biclustering problem (Chi et al., 2017). In general, the fusion penalties Rd(U)
shrink solutions to vector valued functions that are piece-wise constant over the mode-d
similarity graph defined by the weights wd,ij. Viewed this way, we can see our approach as
simultaneously performing the network lasso (Hallac et al., 2015) on D similarity graphs.

Remark 2 The CoCo estimator is invariant to permutations in the data tensor X in the

following sense. Suppose Û and Û
′

are the CoCo estimators when the data tensors are re-
spectively X and X′ = X×1Π1×2 · · ·×DΠD where Π1 ∈ {0, 1}n1×n1 , . . . ,ΠD ∈ {0, 1}nD×nD
are permutation matrices, namely ΠT

dΠd = I. In words, X′ can be obtained from X by per-
muting the subarrays of X along the dth mode according to Πd for d = 1, . . . , D, and X can
be recovered from X′ by permuting along the dth mode according to ΠT

d for d = 1, . . . , D.
Since ‖U×1 Π1 ×2 · · · ×D ΠD‖F = ‖U‖F, it follows that

Û
′

= Û×1 Π1 ×2 · · · ×D ΠD and Û = Û
′ ×1 ΠT

1 ×2 · · · ×D ΠT
D.
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Permutation invariance is important because it means that the CoCo estimator is essentially
unaltered by any reshuffling along the modes of the data tensor.

Remark 3 Given the co-clustering structure assumed in (2), one may wonder how much is
added by explicitly seeking a co-clustering over clustering along each mode independently. In
other words, why not solve D independent convex clustering problems with R(U) = Rd(U)?
To provide some intuition on why co-clustering should be preferred over independently clus-
tering each mode, consider the following problem. Imagine trying to cluster row vectors
xi ∈ R10,000 for i = 1, . . . , 100 drawn from a two-component mixture of Gaussians, namely

xi
iid∼ 1

2
N(µ, σ2I) +

1

2
N(ν, σ2I).

This is a challenging clustering problem due to the disproportionately small number of ob-
servations compared to the number of features. If, however, we were told that µj = µ1 and
νj = ν1 for j = 1, . . . , 5, 000 and µj = µ2 and νj = ν2 for i = 5, 001, . . . , 10, 000, in other
words that the features were clustered into two groups, our fortunes have reversed and we
now have an abundance of observations compared to the number of effective features. Even
if we lack a clear-cut clustering structure in the features, this example suggests that leverag-
ing similarity structure along the columns can expedite identifying similarity structure along
the rows, and vice versa. Indeed, if there is an underlying checkerbox mean tensor we may
expect that simultaneously clustering along each mode should make the task of clustering
along any one given mode easier. Our prediction error result presented in Section 4.2 in
fact supports this suspicion (See Remark 10).

4. Properties

We first discuss how the CoCo estimator Û behaves as a function of the data tensor X, the
tuning parameter γ, and the weights wd,ij . We will then present its statistical properties
under mild conditions on the data generating process. We highlight that these properties
hold regardless of the algorithm used to minimize (4), as they are intrinsic to its convex
formulation. All proofs are given in Appendix B and Appendix C.

4.1 Stability Properties

The CoCo estimator varies smoothly with respect to X, γ, and {wd,ij}. Let Wd = {wd,ij}
denote the weights matrix for mode d.

Proposition 4 The minimizer Û of (4) is jointly continuous in (X, γ,W1,W2, . . . ,WD).

As noted earlier, in practice we will typically fix the weights wd,ij and compute the CoCo es-
timator over a grid of the penalization parameters γ in order to select a final CoCo estimator
from among the computed candidate estimators of varying levels of smoothness. Since (4)
does not admit a closed form minimizer, we resort to iterative algorithms for computing the
CoCo estimator. Continuity of Û in γ can be leveraged to expedite computation through
warm starts, namely using the solution Ûγ as the initial guess for iteratively computing Ûγ′

where γ′ is slightly larger or smaller than γ. Due to the continuity of Û in γ, small changes
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in γ will result in small changes in Û. Empirically the use of warm starts can lead to a
non-trivial reduction in computation time (Chi and Lange, 2015). From the continuity in
γ, we also see that convex co-clustering performs continuous co-clustering just as the lasso
(Tibshirani, 1996) performs continuous variable selection.

The penalization parameter γ tunes the complexity of the CoCo estimator. Clearly
when γ = 0, the CoCo estimator coincides with the data tensor, namely Û = X. The
key to understanding the CoCo estimator’s behavior as γ increases is to recognize that the
penalty functions Rd(U) are semi-norms. Under suitable conditions on the weights given
in Assumption 4.1 below, Rd(U) vanishes if and only if the mode-d subarrays of U are
identical.

Assumption 4.1 For any pair of mode-d subarrays, indexed by i and j with i < j, there
exists a sequence of indices i → k → · · · → l → j along which the weights, wd,ik, . . . , wd,lj
are positive.

Proposition 5 Under Assumption 4.1, Rd(U) = 0 if and only if U(d) = 1cT for some
c ∈ Rn−d.

To give some intuition for Proposition 5, note that the term Rd(U) separates over the
connected components of the mode-d similarity graph. Therefore, the term Rd(U) penalizes
variation in the mode-d subarrays over the connected components of the mode-d similarity
graph. Assumption 4.1, states that the mode-d similarity graph is connected. Thus, the
only way for Rd(U) to attain its minimum value and vanish under Assumption 4.1, is if
there is no variation in U along its mode-d subarrays.

Proposition 5 suggests that if Assumption 4.1 holds for all d = 1, . . . , D then as γ
increases the CoCo estimator converges to the solution of the following constrained opti-
mization problem:

min
u

1

2
‖x− u‖2F subject to u = c1 for some c ∈ R,

the solution to which is just the global mean x̄, whose entries are all identically the average
value of x over all its entries. The next result formalizes our intuition that as γ increases,
the CoCo estimator will eventually coincide with x̄.

Proposition 6 Suppose Assumption 4.1 holds for d = 1, . . . , D, then Fγ(U) is minimized
by the grand mean X̄ for γ sufficiently large.

Thus, as γ increases from 0, the CoCo estimator Û traces a continuous solution path
that starts from n co-clusters, consisting of ui1···iD = xi1···iD , to a single co-cluster, where
ui1···iD = xT1/n for all i1, . . . , iD.

For a fixed γ, we can derive an explicit bound on sensitivity of the CoCo estimator to
perturbations in the data.

Proposition 7 The minimizer Û of (4) is a nonexpansive or 1-Lipschitz function of the
data tensor X, namely

11
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‖Û(X)− Û(X̃)‖F ≤ ‖X− X̃‖F.

Nonexpansivity of Û in X provides an attractive stability result. Since Û varies smoothly
with the data, small perturbations in the data are guaranteed to not lead to large variability
of Û, or consequently large variability in the cluster assignments. In a special case of our
method, Chi et al. (2017) showed empirically that the co-clustering assignments made by
the 2-way version of the CoCo estimator was noticeably less sensitive to perturbations in
the data than those made by several existing biclustering algorithms.

4.2 Statistical Properties

We next provide a finite sample bound for the prediction error of the CoCo estimator. For
simplicity, we consider the case where we take uniform weights within a mode in (5), namely
wd,ij = wd,i′j′ = 1/nd for all i, j, i′, j′ ∈ {1, . . . , nd}. Such uniform weight assumption has
also been imposed in the analysis of the vector-version of convex clustering (Tan and Witten,
2015).

In order to derive the estimation error of û, we first define an important definition for
the noise and introduce two regularity conditions.

Definition 8 (Vu and Wang (2015)) We say a random vector y ∈ Rn is M -concentrated
if there are constants C1, C2 > 0 such that for any convex, 1-Lipschitz function φ : Rn → R
and any t > 0,

P
(∣∣φ(y)− E[φ(y)]

∣∣ ≥ t) ≤ C1 exp

(
−C2t

2

M2

)
.

The M -concentrated random variable is more general than the Gaussian or sub-Gaussian
random variables, and it allows dependence in its coordinates. Vu and Wang (2015) provided
a few examples of M -concentrated random variables. For instance, if the coordinates of y
are iid standard Gaussian, then y is 1-concentrated. If the coordinates of y are independent
and M -bounded, then y is M -concentrated. If the coordinates of y come from a random
walk with certain mixing properties, then y is M -concentrated for some M .

Assumption 4.2 (Model) We assume the true cluster center C∗ ∈ Rk1×···×kD has a
checkerbox structure such that the mode-d subarrays have kd different values (number of
clusters along the dth mode), and each entry of C∗ is bounded above by a constant C0 > 0.
Define U∗ ∈ Rn1×···×nD as the true parameter expanded based on C∗, namely

U∗ = C∗ ×1 M1 ×2 M2 ×3 · · · ×D MD,

where Md ∈ {0, 1}nd×kd are binary mode-d cluster membership matrices such that Md1 = 1.
Denote u∗ = vec(U∗) ∈ Rn with n =

∏D
d=1 nd. We assume the samples belonging to the

(r1, . . . , rD)-th cluster satisfy

xi1,...,iD = c∗r1,...,rD + εi1,...,iD ,

with id ∈ {1, . . . , nd} and rd ∈ {1, . . . , kd}. Furthermore, we assume ε = vec(E) is a
M -concentrated random variable defined in (8) with mean zero.

12
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The checkerbox means model in Assumption 4.2 provides the underlying cluster struc-
ture of the tensor data. As a special case, Assumption 4.2 with D = 2 reduces to the model
assumption underlying convex biclustering (Chi et al., 2017). In contrast to the indepen-
dent sub-Gaussian condition assumed in vector-version convex clustering (Tan and Witten,
2015), our error condition is much weaker since we allow for non-sub-Gaussian distributions
as well as allow for dependence among its coordinates.

Assumption 4.3 (Tuning) The tuning parameter γ satisfies

2 log(n)
√
n

D
≤ γ ≤ 2c0 log(n)

√
n

D
,

for some constant c0 > 1.

Theorem 9 Suppose that Assumption 4.2 and Assumption 4.3 hold. The estimation error
of û in (5) with uniform weights satisfies,

1

n

∥∥û− u∗
∥∥2
2
≤ 1

D

D∑
d=1

(
1

nd
+

log(n)
√
nnd

)
+
C log(n)

D
√
n

D∑
d=1

nd

√∏
j 6=d

kj , (7)

with a high probability, where C = 12c0C
2
0 is a positive constant, and kd is the true number

of clusters in the dth mode.

Theorem 9 provides a finite sample error bound for the proposed CoCo tensor estima-
tor. Our theoretical bound allows the number of clusters in each mode to diverge, which
reflects a typical large-scale clustering scenario in big tensor data. A notable consequence
of Theorem 9 is that, when D ≥ 3, namely a higher-order tensor with at least 3 modes, the
CoCo estimator can achieve estimation consistency along all the D modes even when we
only have one tensor sample. Here the sample size refers to the number of available tensor
samples. In our tensor clustering problem, we only have access to one tensor sample.

This property is uniquely enjoyed by co-clustering of tensor data with D ≥ 3, and has
not been previously established in the existing literature on vector clustering or biclustering.
To see this, when nd are of the same order as n0, and kd are of the same order as k0, a

sufficient condition for the consistency is that n0 → ∞ and k0 = o
(
n
(D−2)/(D−1)
0

)
up to a

log term. When D = 3, the CoCo estimator is consistent so long as the number of clusters
k0 in each mode diverges slightly slower than

√
n0. Remarkably, as we have more modes

in the tensor data, this constraint on the rate of divergence of k0 gets weaker. In short,
we reap a unique and surprisingly welcome “blessing of dimensionality” phenomenon in the
tensor co-clustering problem.

Remark 10 Next we discuss the connections of our bound (7) with prior results in the
literature. An intermediate step in the proof of Theorem 9 indicates that the estimation

error in the dth mode is on the order of 1/nd + log(n)/
√
nnd + log(n)

√
nd
∏
j 6=d kj/n−d. In

the clustering along the rows of a data matrix, our rate matches with that established for
vector-version convex clustering (Tan and Witten, 2015), up to a log term

√
log(n). Such
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a log term is due to that fact that Tan and Witten (2015) considers the error to be iid sub-
Gaussian while we consider a general M -concentrated error. In practice, the iid assumption
on the noise ε = vec(E) could be restrictive. Consequently, our theoretical analysis is built
upon a new concentration inequality of quadratic forms recently developed in Vu and Wang
(2015). In addition, our rate reveals an interesting theoretical property of the convex bi-
clustering method proposed by Chi et al. (2017). When D = 2, our rate indicates that the
estimation error along the row and column of the data matrix is log(n1n2)

√
n1k2/n2 and

log(n1n2)
√
n2k1/n1, respectively. Clearly, both errors can not converge to zero simultane-

ously. This indicates a disadvantage of matricizing a data tensor for co-clustering.

5. Estimation Algorithm

We next discuss a simple first order method for computing the solution to the convex co-
clustering problem. The proposed algorithm generalizes the variable splitting approach
introduced for convex clustering problem described in Chi and Lange (2015) to the CoCo
problem. The key observation is that the Lagrangian dual of an equivalent formulation
of the convex co-clustering problem is a constrained least squares problem that can be
iteratively solved using the classic projected gradient algorithm.

5.1 A Lagrangian Dual of the CoCo Problem

Recall that we seek to minimize the objective function in (5)

Fγ(u) =
1

2
‖x− u‖22 + γ

D∑
d=1

∑
l∈Ed

wd,l‖Ad,lu‖2.

Note that we have enumerated the edge indices in Ed to simplify the notation for the
following derivation.

We perform variable splitting and introduce the dummy variables vd,l = Ad,lu. Let Vd

denote the n−d×|Ed|matrix whose lth column is vd,l. Further denote the vectorization of Vd

by vd = vec(Vd) and let v =
[
vT
1 vT

2 · · · vT
D

]T
denote the vector obtained by stacking

the vectors vd on top of each other. We now solve the equivalent equality constrained
minimization

min
v,u

1

2
‖x− u‖22 + γ

D∑
d=1

∑
l∈Ed

wd,l‖vd,l‖2 subject to vd = Adu,

where Ad = (InD ⊗ · · · ⊗ Ind+1
⊗Φd ⊗ Ind−1

⊗ · · · ⊗ In1) and Φd is the oriented edge-vertex
incidence matrix for the dth mode graph, namely

Φd,lv =


1 If node v is the head of edge l

−1 If node v is the tail of edge l

0 otherwise.

We introduce dual variables λd corresponding to the equality constraint vd = Adu. Let
Λd denote the n−d× |Ed| matrix whose lth column is λd,l. Further denote the vectorization
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of Λd by λd = vec(Λd) and λ =
[
λT
1 λT

2 · · · λT
D

]T
. The Lagrangian dual objective is

given by

G(λ) =
1

2
‖x‖22 −

1

2
‖x−ATλ‖22 −

D∑
d=1

∑
l∈Ed

ιCd,l(λd,l),

where A =
[
AT

1 AT
2 · · · AT

D

]T
and ιCd,l is the indicator function of the closed convex

set Cd,l = {z : ‖z‖2 ≤ γwd,l}, namely ιCd,l is the function that vanishes on the set of Cd,l
and is infinity on the complement of Cd,l. Details on the derivation of the dual objective
G(λ) are provided in Appendix D.

Maximizing the dual objective G(λ) is equivalent to solving the following constrained
least squares problem:

min
λ∈C

1

2
‖x−ATλ‖22, (8)

where C = {λ : λd,l ∈ Cd,l, l ∈ Ed, d = 1, . . . , D}. We can recover the primal solution via
the relationship:

û = x−ATλ̂,

where λ̂ is a solution to the dual problem (8). The dual problem (8) has at least one solution
by the Weierstrass extreme value theorem, but the solution may not be unique since AT has
a non-trivial kernel. Nonetheless, our CoCo estimator û is still unique since ATλ̂1 = ATλ̂2

for any solutions λ̂1, λ̂2 to the problem (8).
We numerically solve the constrained least squares problem in (8) with the projected

gradient algorithm, which alternates between taking a gradient step and projecting onto
the set C. Algorithm 1 provides pseudocode of the projected gradient algorithm, which
has several good features. The projected gradient algorithm is guaranteed to converge to
a global minimizer of (8). Its per-iteration and storage costs using the weight choices,
described in Section 6, are both O(Dn), namely linear in either the number of dimensions
D or in the number of elements n. For a modest additional computational and storage
cost, we can accelerate the projected gradient method, for example with FISTA (Beck and
Teboulle, 2009) or SpaRSA (Wright et al., 2009). In our experiments, we use a version of the
latter, namely FASTA (Goldstein et al., 2014, 2015). Additional details on the derivation of
the algorithmic updates, convergence guarantees, computational and storage costs, as well
as stopping rules can be found in Appendix E.

6. Specifying Non-Uniform Weights

In Section 4.2, we assumed uniform weights wd,ij in the penalty terms Rd(U) to establish a
prediction error bound, which revealed a surprising and beneficial “blessing of dimensional-
ity” phenomenon. Although this simplifying assumption gives clarity and insight into how
the co-clustering problem gets easier as the number of modes increases, in practice choos-
ing non-uniform weights can substantially improve the quality of the clustering results. In
the context of convex clustering, Chen et al. (2015) and Chi and Lange (2015) provided
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Algorithm 1 Convex Co-Clustering (CoCo) Estimation Algorithm

Initialize λ(0); for m = 0, 1, . . .

repeat
u(m+1) = x−ATλ(m) . Gradient Step
for d = 1, . . . , D do

for l ∈ Ed do

λ
(m+1)
d,l = PCd,l

(
λ
(m)
d,l + ηAd,lu

(m+1)
)

. Projection Step

end for
end for

until convergence
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Figure 3: Uniform versus non-uniform weights: Average Adjusted Rand Index for an in-
creasing size. Here n = n30 refers to a tensor of size n0 × n0 × n0.

empirical evidence that convex clustering with uniform weights struggled to produce exact
sparsity in the pairwise differences of smooth estimates when there was not a strong sep-
aration between groups. Indeed, similar phenomena were observed in earlier work on the
related clustered lasso (She, 2010). Several related works (She, 2010; Hocking et al., 2011;
Chen et al., 2015; Chi and Lange, 2015) recommend a weight assignment strategy described
below. In addition, the use of sparse weights can also lead to non-trivial improvements
in both computational time and clustering performance (Chi and Lange, 2015; Chi et al.,
2017).

To illustrate the practical value of non-uniform weights, we compare CoCo’s ability
to recover co-clusters, using both uniform and non-uniform weights, as the size of a 3-way
tensor increases when there are two clusters per mode with balanced cluster sizes along each
mode. We assess the quality of the recovered clustering performance using the Adjusted
Rand Index (ARI). The ARI (Hubert and Arabie, 1985) varies between -1 and 1, where 1
indicates a perfect match between two clustering assignments whereas a value close to zero
indicates the two clustering assignments match about as might be expected if they were
both randomly generated. Negative values indicate that there is less agreement between
clusterings than expected from random partitions.
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Figure 3 shows a comparison between using non-uniform weights that are described in
Section 6.2 and uniform weights. Each plotted point in Figure 3 is the average ARI over 100
replicates. For CoCo using non-uniform weights, the smoothing parameter γ is chosen with
the data-driven extended BIC method that is detailed in Section 7.1. In contrast, for CoCo
using uniform weights, γ is chosen as the value that produces the estimator that minimizes
the true but unknown MSE.

We see that while using uniform weights in CoCo leads to recovering co-clusters exactly
once a sufficient number of samples have been acquired, using non-uniform weights enables
CoCo to recover the co-clusters exactly with notably fewer samples. The results of this
experiment are especially remarkable because CoCo using non-uniform weights and a data-
adaptive choice of γ outperformed CoCo using uniform weights and an ideally chosen oracle
value of γ.

As in the case of convex clustering, using non-uniform weights can lead to significantly
better performance over using uniform weights in practice. We give some explanation for
why this is expected in Section 6.3 but leave it to future work to develop theory proving this
performance improvement. Nonetheless based on this observation, we employ non-uniform
weights in CoCo for the empirical studies presented later in the paper.

6.1 Basic Procedure for Specifying Weights

We first describe our basic two step procedure for constructing weights before elaborating
on the final refinements used in our numerical experiments.

Step 1: We first calculate pre-weights w̃d,ij between the ith and jth mode-d subarrays as

w̃d,ij = ιk{i,j} exp
(
−τd‖X(d),i: −X(d),j:‖2F

)
. (9)

The first factor on the right hand side of equation (9), ιk{i,j}, is an indicator function that

equals 1 if the jth slice is among the ith slice’s k-nearest neighbors (or vice versa) and 0 oth-
ewise. The purpose of this term is to control the sparsity of the weights. The corresponding
tuning parameter k influences the connectivity of the mode-d similarity graph. One can
explore different levels of granularity in the clustering by varying k (Chen et al., 2015). As
a default, one can use the smallest k such that the similarity graph is still connected. Note
it is not necessary to calculate the exact k-nearest neighbors, which scales quadratically in
the number of fibers in the mode. A fast approximation to the k-nearest neighbors is suffi-
cient for the sake of inducing sparsity into the weights. Chi and Lange (2015) provided two
reasons for using k-nearest neighbor weights. First, we wish to prioritize fusions between
pairs of subarrays that are most similar; the subarrays that are most dissimilar should be
the last pair of subarrays to fuse as the smoothing parameter γ increases. Second, we wish
to use a sparse similarity graph as the computational and storage complexity of the esti-
mation algorithm is proportional to the number of non-zero edges in the similarity graphs
(Appendix E). Using k-nearest-neighbors weights accomplishes both goals.

The second factor on the right hand side of equation (9) is the Gaussian kernel, which
takes on larger values for pairs of mode-d subarrays that are more similar to each other.
Chi and Steinerberger (2019) give a detailed theoretical justification for using weights like
the Gaussian kernel weights in the context of convex clustering. For space considerations,
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we refer readers interested in these technical details to their work and give a brief intuitive
rationale for the employing the Gaussian kernel here. Intuitively, the weights should be
inversely proportional to the distance between the ith and jth mode-d subarrays (Chen
et al., 2015; Chi et al., 2017). The inverse of the nonnegative parameter τd is a measure
of scale. In practice, we can set it to be the median Euclidean distance between the ith
and jth mode-d subarrays that are k-nearest neighbors of each other. A value of τd = 0
corresponds to uniform weights. Note that with minor modification, we can make the in-
verse scale parameter to be pair dependent as described in Zelnik-Manor and Perona (2005).

Step 2: To obtain the mode-d weights wd,ij , we normalize the mode-d pre-weights w̃d,ij
to sum to

√
nd/n. The normalization step puts the penalty terms Rd(U) on the same

scale and ensures that clustering along any given single mode will not dominate the entire
co-clustering as γ increases.

6.2 Improving Weights via the Tucker Decomposition

In our preliminary experiments, we found that substituting a low-rank approximation of X,
namely a Tucker decomposition X̃, in place of X in (9) led to a marked improvement in co-
clustering performance. To understand the boost in performance suppose that X = U∗+E

with U∗ having a checkerbox structure and the entries of E are iid N(0, σ2) for simplicity.
Further suppose that the ith and jth mode-d subarrays of U? belong to the same partition
and ιk{i,j} = 1. Then

w̃d,ij = exp
(
−τd‖E×d ∆ij‖2F

)
= exp

(
−2τdσ

2Zd,ij
)
,

where Z =
‖E×d∆ij‖2F

2σ2 is distributed as a χ2 random variable with nd degrees of freedom.
If we were able to perfectly denoise the tensor X so that σ = 0, then the pre-weight w̃d,ij
would be set to its maximal value of 1, the ideal value for w̃d,ij since we have assumed
the ith and jth mode-d subarrays belong to the same partition. Thus, if we can reduce σ2,
namely denoise the observed tensor X, we can approach the ideal value of pre-weights. Note
that we are more focused with approaching the ideal pre-weight values for pairs of subarrays
that belong to the same partition and not concerned with pairs of subarrays in different
partitions as the Gaussian kernel weights decay very rapidly. The Tucker decomposition is
effective at reducing σ2 when U∗ has a checkerbox pattern as the checkerbox pattern is a
low-rank tensor that can be effectively approximated with the Tucker decomposition.

Employing the Tucker decomposition introduces another tuning parameter, namely the
rank of the decomposition. In our simulation studies described in Section 8, we use two
different methods for choosing the rank as a robustness check to ensure our CoCo estimator’s
performance does not crucially depend on the rank selection method. Details on these two
methods can be found in Appendix F. While we found the Tucker decomposition to work
well in practice, we suspect that other methods of denoising the tensor may work just as
well or could possibly be more effective. We leave it to future work to explore alternatives
to the Tucker decomposition.
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6.3 Weights and Folded-Concave Penalties

We conclude our discussion on weights by highlighting how they provide a connection be-
tween convex clustering and other penalized regression-based clustering methods that use
folded-concave penalties (Pan et al., 2013; Xiang et al., 2013; Zhu et al., 2013; Marchetti
and Zhou, 2014; Wu et al., 2016a). Suppose we seek to minimize the objective

f̃γ(u) =
1

2
‖x− u‖22 + γ

D∑
d=1

∑
(i,j)∈Ed

ϕd (‖Ad,iju‖2) , (10)

where each ϕd : [0,∞) 7→ [0,∞) has the following properties: (i) ϕd is concave and differen-
tiable on (0,∞), (ii) ϕd vanishes at the origin, and (iii) the directional derivative of ϕd exists
and is positive at the origin. Such ϕd is collectively referred to as a folded-concave penalty;
prominent examples of such function include the smoothly clipped absolute deviation (Fan
and Li, 2001) or minimax concave penalty (Zhang, 2010).

Since ϕd is concave and differentiable, for all positive z and z̃

ϕd(z) ≤ ϕd(z̃) + ϕ′d(z̃)(z − z̃). (11)

The inequality (11) indicates that the first order Taylor expansion of a differentiable concave
function ϕd provides a tight global upper bound at the expansion point z̃. Thus, we can
construct a function that is a tight upper bound of the function f̃γ(u)

gγ(u | ũ) =
1

2
‖x− u‖22 + γ

D∑
d=1

∑
(i,j)∈Ed

wd,ij‖Ad,iju‖2 + c, (12)

where the constant c does not depend on u and wd,ij are weights that depend on ũ, namely

wd,ij = ϕ′d (‖Ad,ijũ‖2) . (13)

Note that if we take ũ to be the vectorization of the Tucker approximation of the data,
vec(X̃), and ϕd(z) to be the following variation on the error function

ϕd(z) =
1

√
n−d

∑
(i,j)∈Ed wd,ij

∫ z

0
e−τdω

2
dω,

then the function given in (10) coincides with the CoCo objective using the prescribed
Tucker derived Gaussian kernel weights.

The function gγ(u | ũ) is said to majorize the function f̃γ(u) at the point ũ (Lange
et al., 2000) and minimizing it corresponds to performing one-step of the local linear-
approximation algorithm (Zou and Li, 2008; Schifano et al., 2010) which is a special case
of the majorization-minimization (MM) algorithm (Lange et al., 2000). The corresponding
MM algorithm would consist of repeating the following two steps: (i) using a previous
CoCo estimate Ũ to compute weights wd,ij according to (13), and (ii) computing a new
CoCo estimate using the new weights. In practice, we have found one-step to be adequate,
however. Indeed, Zou and Li (2008) showed that the solution to the one-step algorithm was
often sufficient in terms of its statistical estimation accuracy.
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7. Other Practical Issues

In this section, we address other considerations for using the method in practice, namely
how to choose the tuning parameter γ and how to recover the partitions along each mode
from the CoCo estimator Û.

7.1 Choosing γ

The first major practical consideration is how to choose γ to produce a final co-clustering
result. Since co-clustering is an exploratory method, it may be suitable for a user to
manually inspect a sequence of CoCo estimators Ûγ for a range of γ and use domain
knowledge tied to a specific application to select γ to recover a co-clustering assignment of
a desired complexity. Since this approach is time consuming and requires expert knowledge,
an automated, data-driven procedure for selecting γ is desirable. Cross-validation (Stone,
1974; Geisser, 1975) and stability selection (Meinshausen and Bühlmann, 2010) are popular
techniques for tuning parameter selection, but since both methods are based on resampling,
they are unattractive in the tensor setting due to the computational burden. We turn to
the extended Bayesian Information Criterion (eBIC) proposed by Chen and Chen (2008,
2012), as it does not rely on resampling and thus is not as computationally costly as cross-
validation or stability selection.

eBIC(γ) = n log

(
RSSγ
n

)
+ 2dfγ log(n),

where RSSγ is the residual sum of squares ‖X − Ûγ‖2F and dfγ is the degrees of freedom

for a particular value of γ. We use the number of co-clusters in the CoCo estimator Ûγ as
an estimate of dfγ , which is consistent with the spirit of degrees of freedom since each co-
cluster mean is an estimated parameter. This criterion balances between model fitting and
model complexity, and a similar version has been commonly employed in tuning parameter
selection of tensor data analysis (Zhou et al., 2013; Sun et al., 2017).

The eBIC is calculated on a grid of values S = {γ1, γ2, . . . γs}, and we select the optimal
γ, denoted γ?, which corresponds to the smallest value of the eBIC over S, namely

γ? = arg min
γ∈S

eBIC(γ).

7.2 Recovering the Partitions along Each Mode

The second major practical consideration is how to extract the partitions from the CoCo
estimator Û. Recall that the ith and jth mode-d subtensors belong to the same partition if
vd,ij = U×d ∆ij = 0. Conversely, the ith and jth mode-d subtensors do not belong to the
same partition if vd,ij 6= 0. Thus, a mode-d partition consists of the maximal set of mode-d
subarrays such that for any pair i and j in this collection vd,ij = 0. We can automatically
identify these maximal sets by extending a simple procedure employed by Chi and Lange
(2015) for extracting clusters in the convex clustering problem. Identifying partitions along
the dth mode is equivalent to finding connected components of a graph, where each node
corresponds to a subarray along the dth mode, and there is an edge between nodes i and j
if and only if vd,ij = 0.
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We would like to read off which centroids have fused as the amount of regularization
increases, namely determine partition assignments as a function of γ. Such assignments
can be performed in O(nd) operations, using the differences variable Vd. We simply apply
breadth-first search to identify the connected components of the following graph induced
by the Vd. The graph identifies a node with every data point and places an edge between
the lth pair of points if and only if vl = 0. Each connected component corresponds to a
partition. Note that the graph constructed to determine partitions is not the same as the
graph described in Section 3 with illustrative examples in Figure 2.

We emphasize that the recovered partition along each mode does not depend on the
ordering of the input data X, since it is based off of the pairwise differences along each
mode, namely Vd for d = 1, . . . , D. Finally, we note that due to finite precision limitations,
the difference variables vd,ij will likely not be exactly 0. In Appendix E.4, we detail a
simple and principled procedure for ensuring sparsity in these difference variables.

8. Simulation Studies

To investigate the performance of the CoCo estimator in identifying co-clusters in tensor
data, we first explore some simulated examples. We compare our CoCo estimator to a k-
means based approach that is representative of various tensor generalizations of the spectral
clustering method common in the tensor clustering literature (Kutty et al., 2011; Liu et al.,
2013b; Zhang et al., 2013; Wu et al., 2016b). We refer to this method as CPD+k-means.
The CPD+k-means method (Papalexakis et al., 2013; Sun and Li, 2019) first performs
a rank-R CP decomposition on the D-way tensor X to reduce the dimensionality of the
problem, and then independently applies k-means clustering to the rows of each of the D
factor matrix from the resulting CP decomposition. The k-means algorithm has also been
used to cluster the factor matrices resulting from a Tucker decomposition (Acar et al., 2006;
Sun et al., 2006; Kolda and Sun, 2008; Sun et al., 2009; Kutty et al., 2011; Liu et al., 2013b;
Zhang et al., 2013; Cao et al., 2015; Oh et al., 2017). We also considered this Tucker+k-
means method in initial experiments, but its co-clustering performance was inferior to that
of CPD+k-means so we only report co-clustering performance results for CPD+k-means
in the comparison experiments that follow. Note, however, that we still use the Tucker
decomposition to compute CoCo weights wd,ij as described Section 6. Both CoCo and
CPD+kmeans account for the multiway structure of the data. To assess the importance of
accounting for this structure, we also include comparisons with the CoTeC method (Jegelka
et al., 2009), which applied k-means clustering along each mode and does not account for
the multiway structure of the data.

All methods being compared have tuning parameters that need to be set. For the rank
of the CP decomposition needed in CPD+k-means, we consider R ∈ {2, 3, 4, 5} and use the
tuning procedure in Sun et al. (2017) to automatically select the rank. A CP decomposition
is then performed using the chosen rank, and those factor matrices are the input into the
k-means algorithm. A well known drawback of k-means is that the number of clusters k
needs to be specified a priori. Several methods for selecting k have been proposed in the
literature, and we use the “gap statistic” developed by Tibshirani et al. (2001) to select
an optimal k∗ from the specified possible values. Since CoCo estimates an entire solution
path of mode-clustering results, ranging from nd clusters to a single cluster along mode d,
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Figure 4: Checkerbox Simulation Results: Impact of Noise Level. Two balanced clusters per
mode across different levels of homoskedastic noise for n1 = n2 = n3 = 60. For each method, the
confidence interval is calculated as the mean value plus/minus one standard error.

we consider a rather large set of possible k values to make the methods more comparable.
Appendix G gives a more detailed description of the CPD+k-means procedure and the
selection of its tuning parameters. CoTeC, which applies k-means clustering along each
mode independently, also requires specifying the number of cluster along each mode. As in
CPD+k-means, we also select this parameter along each mode using the “gap statistic.”

As described in Section 6, we employ a Tucker approximation to the data tensor in
constructing weights wd,ij . In computing the Tucker decomposition we used one of two
methods for selecting the rank. In the plots within this section, TD1 denotes the results
where the Tucker rank was chosen using the SCORE algorithm (Yokota et al., 2017), while
TD2 denotes results where the rank was chosen using a heuristic. Detailed discussion on
these two methods are in Appendix F.

The results presented in this section report the average CoCo estimator performance
quantified by the ARI across 200 simulated replicates. All simulations were performed in
Matlab using the Tensor Toolbox (Bader et al., 2015). All the following plots, except the
heatmaps in Figure 13, were made using the open source R package ggplot2 (Wickham,
2009).

8.1 Cubical Tensors, Checkerbox Pattern

For the first and main simulation setting, we study clustering data in a cubical tensor
generated by a basic checkerbox mean model according to Assumption 4.2. Each entry in the
observed data tensor is generated according to the underlying model (2) with independent
errors εi1i2i3 ∼ N(0, σ2r1r2r3). Unless specified otherwise, there are two true clusters along
each mode for a total of eight underlying co-clusters.

8.1.1 Balanced Cluster Sizes and Homoskedastic Noise

To get an initial feel for how the different co-clustering methods perform at recovering
the true underlying checkerbox structure, we first consider a situation where the clusters
corresponding to the two classes along each mode are all equally-sized, or balanced, and
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Figure 5: Timing Results: Balanced Cluster Size and Homoskedastic Noise. Two balanced
clusters per mode with a fixed level of homoskedastic noise for n1 = n2 = n3 = 20, 30, 60, and 100.
Vertical and horizontal axes are on a log scale.

share the same error variance, namely σr1r2r3 = σ for all r1, r2, and r3. The average co-
clustering performance for this setting in a tensor with dimensions n1 = n2 = n3 = 60 are
given in Figure 4 for different noise levels. Figure 4 shows that all three methods perform
well when the noise level is low (σ = 1). As the noise level increases, however, CPD+k-means
experiences an immediate and noticeable drop off in performance. CoTeC’s performance
decays even more rapidly highlighting the importance of accounting for multiway structure.
The CoCo estimator, on the other hand, is able to maintain near-perfect performance until
the noise level becomes rather high (σ = 8).

Figure 5 shows how the run times of CoCo and CPD+k-means vary as the size of a
cubic tensor, n = n1n2n3 with n1 = n2 = n3 takes on the values 203, 303, 603, and 1003.
These run times include all computations needed to fit and select a final model. For CoCo,
a sequence of models were fit over a grid of γ parameters, and a final γ parameter was
chosen using the eBIC. For CPD+k-means, a sequence of models were fit over a grid of
possible (k1, k2, k3) parameters corresponding to the 3 factor matrices, and a final triple
of (k1, k2, k3) parameters were chosen using the “gap statistic.” Timing comparisons were
performed on a 3.2 GHz quad-core Intel Core i5 processor and 8 GB of RAM. The run time
for CoCo scales linearly in the size of the data tensor as expected, namely proportionately
with n31. Nonetheless, as also might be expected, the clustering performance enjoyed by
CoCo does not come for free, and the simpler but less reliable CPD+k-means algorithm
enjoys a better scaling as the tensor size grows. Timing results were similar for the following
experiments and are omitted for space considerations.

8.1.2 Imbalanced Cluster Sizes

When comparing clustering methods, one factor of interest is the extent to which the relative
sizes of the clusters impact clustering performance. To investigate this, we again use a
cubical tensor of size n1 = n2 = n3 = 60 but introduce different levels of cluster size
imbalance along each mode, which we quantify via the ratio of the number of samples in
cluster 2 of mode d and the total number of samples along mode d, for d = 1, 2, 3. Figure 6a
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Figure 6: Checkerbox Simulation Results: Impact of Cluster Size Imbalance. Two imbalanced
clusters per mode with either low or high homoskedastic noise for n1 = n2 = n3 = 60. Low noise
corresponds to σ = 3 while high noise refers to σ = 6.

shows that when the noise level is low, CPD+k-means is unaffected by the imbalance until
the size of cluster 2 is less than 30% of the mode’s length. At this point, the performance
of CPD+k-means drops off significantly and it performs as well as a random clustering
assignment when the sizes are highly skewed (nd2/nd = 0.1). The CoCo estimator is
more or less invariant to the imbalance, and its performance is almost perfect across all
levels of cluster size imbalance. Figure 6b shows that the CoCo estimator exhibits a slight
deterioration in performance only when the cluster size ratio is 0.1 in the high noise case.
In both low and high noise scenarios, CoTeC performs poorly.

8.1.3 Heteroskedastic Noise

Another factor of interest is how the clustering methods perform when there is heteroskedas-
ticity in the variability of the two classes. Figure 7 displays the co-clustering performance
for different degrees of heteroskedasticity, as measured by the standard deviation for class 2
relative to class 1’s standard deviation, σ2/σ1. In the low noise setting, the CoCo estimator
is immune to the heteroskedasticity until the noise levels differ by a factor of 4. CPD+k-
means in contrast is very sensitive to a deviation from homoskedasticty, experiencing a
decline even when the noise ratio increases from 1 to only 1.5. The CoCo estimator fares
worse in the high noise setting and also has a drop in performance with a small deviation
from homoskedasticty. Once class 2’s standard deviation is more than double the standard
deviation for class 1, all three methods are essentially the same as random clustering. This
result is not terribly surprising since, in the high noise setting, this would result in one class
having a very high standard deviation of σ2 = 12. In both low and high noise scenarios,
CoTeC performs poorly.
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Figure 7: Checkerbox Simulation Results: Impact of Heteroskedasticity. Two balanced
clusters per mode with either low or high heteroskedastic noise for n1 = n2 = n3 = 60. Low
noise corresponds to σ1 = 3 while high noise refers to σ1 = 6.

8.1.4 Different Clustering Structures

So far, we have considered only a simple situation where there are exactly two true clusters
along each mode, for a total of eight triclusters. Another factor of practical importance
is how the clustering methods perform when there are more than two clusters per mode,
and also when the number of clusters along each mode differs. We investigate both of
these settings in this section. As before, the tensor is a perfect cube with n1 = n2 =
n3 = 60 observations along each mode and an underlying checkerbox pattern. To gauge the
performance, we again focus the attention on how the methods perform in the presence of
both low and high noise.
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Figure 8: Checkerbox Simulation Results: Impact of Clustering Structure. Different balanced
clusters per mode with either low or high homoskedastic noise for n1 = n2 = n3 = 60. Low noise
corresponds to σ = 3 while high noise refers to σ = 6.
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The first situation studied is one in which there are three true clusters along each mode,
resulting in a total of 27 triclusters. The left hand side of the graphs in Figure 8 show
the results from this simulation setting. The graphs show that CoCo estimator consis-
tently outperforms CPD+k-means and CoTeC in this setting across both noise levels. The
CoCo estimator is able to recover the true co-clusters almost perfectly, while CPD+k-means
struggles to handle the increased number of clusters per mode.

We also investigated the clustering performance when the number of clusters per mode
varies. In this setting, there are two, three, and four clusters along modes one, two, and
three, respectively. From the right hand side of the graphs in Figure 8, we can see that
the results are similar to the situation with three clusters per mode. CPD+k-means again
performs very poorly across both noise levels, while convex co-clustering is again able to
essentially recover the true co-clustering structure. Compared to the setting with three
clusters per mode, CPD+k-means performs slightly worse in the face of a more complex
clustering structure, while convex co-clustering is able to handle it in stride. These results
bode well for convex co-clustering as the basic clustering structure of only two clusters per
mode is unlikely to be observed in practice.

8.2 Rectangular Tensors

Up to this point, to get an initial feel for CoCo’s performance, we restricted our attention
to cubical tensors with the same number of observations per mode so as to avoid changing
too many factors at once. It is unlikely that the data tensor at hand will be a perfect cube,
however, so it is important to understand the clustering performance when the methods are
applied to rectangular tensors.

Now we turn to cluster a rectangular tensor with one short mode and two longer modes.
Two additional simulations involving rectangular tensors can be found in Appendix H.
Figure 9 shows that CoCo performs very well and better than CPD+k-means and CoTeC
at the lower noise level (σ = 3) but has a sharp decrease in ARI at the higher noise level
(σ = 4). The decline is more pronounced for the longer modes (Figure 9b and Figure 9a)
as the short mode (Figure 9a) is still able to maintain perfect performance despite the
increase in noise. This is not surprising, since the shorter mode has effectively more samples.
Moreover, we see the “blessing of dimensionality” at work when the number of samples along
the short mode are doubled (n1 = 20, n2 = n3 = 50), the performance along the two longer
modes improves drastically in the high noise setting.

We finally note that, along the shorter mode, the use of the heuristic in determining
the rank of the Tucker decomposition for calculating the weights performs better than
the SCORE algorithm method along modes 1 and 2, though ultimately the co-clustering
performance is comparable. This may indicate that the SCORE algorithm struggles to
correctly identify the optimal Tucker rank for short modes in the presence of relatively
higher noise, while the heuristic is more immune to the noise level as it is based simply on
the dimensions of the tensor.

8.3 CANDECOMP/PARAFAC Model

In Section 8.1, we saw that the CoCo estimator performs well and typically better than
CPD+k-means when clustering tensors whose co-clusters have an underlying checkerbox
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(c) Adjusted Rand Index, Mode 3
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Figure 9: Checkerbox Simulation Results: Impact of Tensor Shape. Two balanced clusters
per mode with two levels of homoskedastic noise for a tensor with one short mode and two longer
modes. Average adjusted rand index plus/minus one standard error for different noise levels and
mode lengths.

pattern. To evaluate the performance of our CoCo estimator under model misspecifica-
tion, we consider the generative model as the following CP decomposition model. We first
construct the factor matrix A ∈ R80×2 and construct the following rank-2 CP means tensor

U∗ =

2∑
i=1

ai ◦ ai ◦ ai,

where ◦ denotes the outer product. We then added varying levels of Gaussian noise to the
U∗ to generate the observed data tensor. We consider two different types of factor matrices.
As shown in Figure 10, one shape consists of two half-moon clusters (Hocking et al., 2011;
Chi and Lange, 2015; Tan and Witten, 2015) while the other shape contains a bullseye,
similar to the two-circles shape studied by Ng et al. (2002) and Tan and Witten (2015).
In either case, the triangles in Figure 10 correspond to the first 40 rows of A, whereas the
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Figure 10: Factor Matrices for the CP Models.

circles correspond to the second 40 rows of A. Note that this data generating mechanism
should favor the CPD+k-means method.

Figure 11 shows the simulation results for using the CP model with these two non-
convex shapes generating the data. The discrepancy in performance between the CoCo
estimator and the other two methods is quite large. The CoCo estimator almost perfectly
identifies the true co-clusters. In contrast, both CPD+k-means and CoTeC perform very
poorly, even when the noise variance is small. The poor performance of CPD+k-means
and CoTeC are not completely surprising as other have noted the difficulty that k-means
methods have in recovering non-convex clusters (Ng et al., 2002; Hocking et al., 2011; Tan
and Witten, 2015). These results give us some assurances that the CoCo estimator is able
to still perform well even under some model misspecification since the true co-clusters do
not have a checkerbox pattern.

8.4 Comparison with Convex Biclustering

It is natural to ask how much additional gain there is in using CoCo over convex biclustering
(Chi et al., 2017) on the matricizations of a data tensor. To answer this question, we
compare CoCo to the following strategy for applying convex biclustering to estimate co-
clusters. We explain the strategy for a 3-way tensor; the generalization to D-way tensors
is straightforward. We first matricize the tensor X along mode-1 to obtain the matrix
X(1), apply convex biclustering on X(1), and retain the mode-1 clustering results. Note
that the mode-2 and mode-3 fibers have been mixed together through the matricization
process. We then repeat the two-step procedure for mode-2 and mode-3. The final co-
cluster estimates are obtained by taking the cross-products of the mode-1, mode-2, and
mode-3 cluster assignments.

We consider two illustrative scenarios to understand the value of preserving the full
multiway structure with CoCo: a balanced case and imbalanced case. In the balanced
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Figure 11: CP Model Simulation Results. Two balanced clusters per mode with low homoskedas-
tic noise for n1 = n2 = n3 = 40. “Bullseye” and “Half Moons” refer to the shape embedded in the
factor matrices used to generate the true tensor.
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Figure 12: A Comparison between CoCo and Convex Biclustering Average Adjusted Rand
Index plus/minus one standard error for different noise levels.

case, we have a 3-way data tensor X ∈ R60×60×60 with two clusters along each mode, where
clusters are of equal size and homoskedastic iid Gaussian noise has been added to all elements
of the tensor. This scenario is similar to the one shown in Figure 4. In the imbalanced case,
we have a 3-way data tensor X ∈ R30×40×80. There are two clusters along mode-1 of sizes 10
and 20, three clusters along mode-2 of sizes 8, 12, and 20, and four clusters along mode-3 of
sizes 5, 10, 20, and 45. Homoskedastic iid Gaussian noise has been added to all elements of
the tensor. Finally, we note that the empirical performance of convex biclustering, like that
of CoCo’s, depends on choosing good weights for the rows and columns of the input data
matrix (Chi et al., 2017). To create a fair comparison, we construct convex biclustering
weights based off of the same TD1 and TD2 denoising procedure used for CoCo, putting
the preprocessing for both methods on equal footing.
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Figure 12a and Figure 12b show the co-clustering performance of CoCo and the convex
biclustering method in the balanced and imbalanced cases respectively. We see that in the
balanced case, CoCo’s performance is marginally better than that of the convex biclustering
method. On the other hand, we see that in the imbalanced case, CoCo’s performance
degrades more gracefully than that of the convex biclustering method as the noise level
increases. The example illustrates that CoCo has better co-cluster recovery when there is
more imbalance in the data tensor - the aspect ratios of the tensor dimensions are more
skewed and the number of clusters and the cluster sizes are more heterogenous.

The key formulation difference between CoCo and the convex biclustering method that
provides some insight into these two results is that CoCo imposes a finer level of smoothness
that respects the multi-way structure in the data tensor. Imposing such finer level of
smoothness imparts greater robustness in the presence of increasing noise to recovering
the smaller co-clusters in the imbalanced scenario. An added incentive for using CoCo
and preserving the multiway structure in the data is that the gains in co-cluster recovery
over the convex biclustering method do not come at a greater computational cost. Note
that the computational complexity of convex biclustering is O(n), using sparse weights for
the row and column similarity graphs. For a D-way tensor, the computational complexity
then becomes O(Dn), which is the same as the computational complexity of CoCo applied
directly on the D-way tensor.

To summarize, in comparison to the convex biclustering method, CoCo (i) does not
come at additional computational costs, (ii) can recover underlying co-clustering structure
in imbalanced scenarios which are more likely to be encountered in practice, and (iii) has
the ability to consistently recover an underlying co-clustering structure according to Theo-
rem 9, with even a single tensor sample, which is a typical case in real applications. Since
this phenomenon does not exist in vector or matrix variate cluster analysis, the convex
biclustering method lacks this theoretical guarantee.

9. Real Data Application

Having studied the performance of the CoCo estimator in a variety of simulated settings,
we now turn to using the CoCo estimator on a real data set. The proprietary data set
comes from a major online company and contains the click-through rates for advertisements
displayed on the company’s webpages from May 19, 2016 through June 15, 2016. The click-
through rate is the number of times a user clicks on a specific advertisement divided by
the number of times the advertisement was displayed. The data set contains information
on 1000 users, 189 advertisements, 19 publishers, and 2 different devices, aggregated across
time. Thus, the data forms a fourth-order tensor where each entry in the tensor corresponds
to the click-through rate for the given combination of user, advertisement, publisher, and
device. Here a publisher refers to a different webpage within the online company’s website,
such as the main home page versus a page devoted to either breaking news or sports scores.
The two device types correspond to how the user accessed the page, using either a personal
computer or a mobile device such as a cell phone or tablet computer. The goal in this real
application is to simultaneously cluster users, advertisements, and publishers to improve
user behavior targeting and advertising planning.
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In the click-through rate tensor data, over 99% of the values are missing since one user
likely has seen only a handful of the possible advertisements. If a specific advertisement is
never seen by a user, it is considered as a missing value. Since the proposed CoCo estimator
can only handle complete data, we first preprocess the data by imputing the missing values
before any clustering can be done. To impute the missing entries, we use the CP-based
tensor completion method Jain and Oh (2014) and tune its rank via the information criterion
proposed by Sun et al. (2017). This tuning method chooses the optimal rank as R = 20
from the rank list {1, 2, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 20, 22}. Finally, the imputed values are
truncated to ensure all the values of the tensor are within 0 and 1 since click-through rates
are proportions.

One mode of the fourth-order tensor has only two observations and those observations
already have a natural grouping (device type). Therefore, for the sake of clustering we
analyze the devices separately. We compare our method with CPD+k-means. Further-
more, the tuning parameter for convex co-clustering is automatically selected using the
eBIC (Section 7.1) while the number of clusters in CPD+k-means is chosen via the gap
statistic (Tibshirani et al., 2001). We do not include comparisons with CoTeC given its
poor performance in the simulation experiments.

We first look at the clustering results from clustering the click-through rates for users
accessing the advertisements through a personal computer (PC). Table 1 contains the num-
ber of clusters identified as well as the sizes of the clusters, while Figure 13a visualizes the
advertisement-by-publisher biclusters for a randomly selected user. As to be expected, the
advertisement-by-publisher slices display a checkerbox pattern, which turns into a checker-
box pattern when the slices are meshed together. The clustering results for the users are
omitted in this paper to ensure user privacy. However, co-clustering the tensor does not
result in the loss of information that would occur if the tensor was converted into a matrix
by averaging across users or flattening along one of the modes. Table 1 and Figure 13a
show that the CoCo estimator identifies four advertisement clusters, with one cluster being
much bigger than the others. The advertisements in this large cluster have click-through
rates that are close to the grand average in the data set. One of the small clusters has very
low click-through rates, while the other two clusters tend to have much higher click-through
rates than the rest of the advertisements. On the other hand, CPD+k-means clusters the
advertisements into 57 groups, which is less-useful from a practical standpoint. Many of the
clusters are similarly-sized and contain only a few advertisements, likely due to the inabil-
ity of CPD+k-means to handle imbalanced cluster sizes as was observed in the simulation
experiments (Section 8.1.2). In terms of the publishers, the CoCo estimator identifies 3
clusters while CPD+k-means does not find any underlying grouping and simply identifies
one big cluster, which again is not terribly useful (Table 1). We next provide some inter-
pretations of the obtained clustering results of the publishers. One way online advertisers
can reach more users is by entering agreements with other companies to route traffic to
the advertiser’s website. For example, Google and Apple have a revenue-sharing agreement
in which Google pays Apple a percentage of the revenue generated by searches on iPhones
(McGarry, 2016). Similarly, the online company being studied partners with several in-
ternet service providers (ISPs) to host the defaut home pages for the ISP’s customers. It
would make sense that these slightly different variants of the online company’s main home
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CoCo Estimator CPD+kmeans

Advertisements Publisher Advertisements Publisher

Device
# of

clusters
Cluster
Sizes

# of
clusters

Cluster
Sizes

# of
clusters

# of
clusters

PC 4 (156, 22, 8, 3) 3 (4, 3, 12) 57 1
Mobile 3 (145, 22, 22) 2 (7, 12) 49 13

Table 1: Advertising Data Clustering Results

page would have similar click-through rates, and the CoCo estimator in fact assigned these
variants into the same cluster.

For users accessing the advertisements through a mobile device, such as a mobile phone
or tablet computer, the CoCo estimator results for the advertisements are largely similar
to the results for PCs (Table 1 and Figure 13b). There is one large cluster that contains
click-through rates similar to the overall average, while the two other equally-sized clusters
have relatively very low or very high click-through rates, respectively. The underlying
click-through rates for the PC data have more variability than the mobile data, which
is consistent with the identification of an additional cluster for the PC data. As before,
CPD+k-means finds a large number of advertisement clusters, most of which are roughly
the same size, again likely impacted by the imbalance in the cluster sizes. When compared to
the personal computer device, one difference is that the cluster with the higher click-through
rates for mobile devices is larger and has a higher average click-through rate than the similar
clusters for the personal computer device. This finding is consistent with research by the
Pew Research Center that found that click-through rates for mobile devices are higher than
for advertisements viewed on a personal computer or laptop (Mitchell et al., 2012).

It is also enlightening to take a closer look at the underlying advertisements clustered
across the two devices. All of the advertisements clustered in the high click-through rate
cluster for the mobile devices are in the average click-through rate cluster for personal
computers. In taking a closer look at the ads in these clusters, there are several ads related
to online shopping for personal goods, such as jeans, workout clothes, or neck ties. It makes
sense to shop for these types of goods using a mobile device, such as while at work when
it is not appropriate to do so on a work computer. Conversely, all of the advertisements in
either of the two higher PC click-through rate clusters are in the large, average click-through
rate cluster for the mobile devices. There are several financial-related ads in these two PC
clusters, such as for mortgages or general investment advice. On the other hand, there
are not many online shopping ads in those clusters, with the exception of more expensive
technology-related goods that one may want to invest more time in researching before
making a purchase.

In terms of the publisher clusters on mobile device, Table 1 shows that the CoCo esti-
mator identifies two clusters of publishers while CPD+k-means identifies 13 small clusters.
Contrary to the advertisement clusters, the publisher clusters across both devices are very
similar. In fact, the only difference is that the smaller cluster for the mobile device, which
contains seven publishers, is split into two clusters for personal computers. This can be
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(a) Personal Computers (b) Mobile

Figure 13: Advertisement and Publisher Click-Through Rate Biclusters for a Randomly
Selected User. The rows correspond to different advertisements and the columns correspond to
different publishers. Darker blue corresponds to higher click-through rates for a given device.

seen in the click-through rate heatmaps given in Figure 13 in looking at the right part of
each heatmap. The publishers in these smaller clusters have higher click-through rates on
average than those in the larger cluster. Additionally, five of the seven (71%) publishers
in the high click-through rate clusters have stand-alone apps that display ads, while only
three of the twelve (25%) publishers in the larger cluster do. For mobile devices, it has been
observed that in-app advertisements have higher click-through rates and browser-based ads
(Hof, 2014). We conjecture that this is also true for personal computer apps, which is
consistent with the clustering results. Thus it again appears that the clusters identified by
CoCo also make sense practically.

10. Discussion

In this paper, we formulated and studied the problem of co-clustering of tensors as a con-
vex optimization problem. The resulting CoCo estimator enjoys features in theory and
practice that are arguably lacking in existing alternatives, namely statistical consistency,
stability guarantees, and an algorithm with polynomial computational complexity. Through
a battery of simulations, we observed that the CoCo estimator can identify co-clustering
structures under realistic scenarios such as imbalanced co-cluster sizes, imbalanced number
of clusters along each mode, heteroskedasticity in the noise distribution associated with
each co-cluster, and even some violation of the checkerbox mean tensor assumption.

We have leveraged the power of the convex relaxation to engineer a computationally
tractable co-clustering method that comes with statistical guarantees. These benefits, how-
ever, do not come for free. The CoCo estimator incurs similar costs that using the lasso
incurs as a surrogate for a cardinality constraint or penalty. It is well known that the lasso
leads to parameter estimates that are shrunk towards zero. This shrinkage toward zero
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is the price for simultaneously estimating the support, or locations of the nonzero entries,
in a sparse vector as well as the values of the nonzero entries. In the context of convex
co-clustering, the CoCo estimator Û is shrunk towards the tensor X̄, namely the tensor
whose entries are all equal to the average over all entries of X. The weights, however, play
a critical role in reducing this bias. In fact, the weights can be seen as serving the same
role as weights used in the adaptive lasso (Zou, 2006).

There are several possible extensions and open problems that have been left for future
work. First, we note that there is a gap between what our theory predicts and what seems
possible from our experiments. Specifically, Theorem 9 assumes uniform weights for each
mode, yet simulation experiments indicate that the CoCo estimator using Tucker derived
Gaussian kernel weights (9) can significantly outperform the CoCo estimator using uniform
weights. One open problem is to derive prediction error bounds that relax the uniform
weights assumption.

Second, although we have developed automatic methods for constructing the weights
that work well empirically, other approaches to constructing the weights is a direction of
future search. For example, other tensor approximation methods, such as the use of the
`1-norm to make the decomposition most robust to heavy tail noise as done by Cao et al.
(2015), could possibly improve the quality of the weights.

Third, in this paper we have focused on additive noise that is a zero-meanM -concentrated
random variable. Real data, however, may not follow such a distribution motivating co-
clustering procedures that can handle outliers. To address potential robustness issues, the
CoCo framework could be extended to handle outliers by swapping the sum of squared
residuals term in (5) with an analogous Huber loss or Tukey’s Biweight function.

Finally, while our first order algorithm for co-clustering tensors scales linearly in the
size of the data, data tensors inevitably will only increase in size motivating the need for
more scalable algorithms for computing the CoCo estimator. A natural approach would be
to adopt an existing distributed version of the proximal methods, such as one the methods
proposed by Combettes and Pesquet (2011), Chen and Ozdaglar (2012), Li et al. (2013), or
Eckstein (2017). Another natural approach would be to investigate if stochastic versions of
the recently proposed generalized dual gradient ascent (Ho et al., 2019) could be adapted
to compute the CoCo estimator. Additionally, in practice many data tensors that we would
like to co-cluster may be very sparse. The first order algorithm presented here assumes the
data tensor is dense. Consequently, an important direction of future work is to investigate
alternative optimization algorithms that could leverage the sparsity structure within a data
tensor.
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Appendix A. Tensor Decompositions

We review two basic tensor decompositions that generalize the singular value decomposition
(SVD) of a matrix: (i) the CANDECOMP/PARAFAC (CP) decomposition (Carroll and
Chang, 1970; Harshman, 1970) and (ii) the Tucker decomposition (Tucker, 1966). Just as
the SVD can be used to construct a lower-dimensional approximation to a data matrix,
these two decompositions can be used to construct a lower dimensional approximation to a
D-way tensor X ∈ Rn1×n2×···×nD

The CP decomposition aims to approximate X by a sum of rank-one tensors, namely

X ≈
R∑
i=1

a
(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(D)
i ,

where ◦ represents the outer product and a
(d)
i is the ith column of the dth factor ma-

trix A(d) ∈ Rnd×R. The positive integer R denotes the rank of the approximation. For
sufficiently large R, we can exactly represent X with a CP decomposition.

The Tucker decomposition aims to approximate X by a core tensor H ∈ RR1×R2×···×RD

multiplied by factor matrices along each of its modes, namely

X ≈H×1 A(1) ×2 A(2) ×3 · · · ×D A(D) =

R1∑
i1=1

R2∑
i2=1

· · ·
RD∑
iD=1

hi1i2···iDa
(1)
i1
◦ a

(2)
i2
◦ · · · ◦ a

(D)
iD

,

where a
(d)
id

is the idth column of the dth factor matrix A(d) ∈ Rnd×Rd . Typically the columns

of A(d) are computed to be orthonomal and can be interpreted as principal components or
basis vectors for the dth mode. For sufficiently large R1, . . . , RD, we can exactly represent
X with a Tucker decomposition.

Appendix B. Proofs of Smoothness Properties

B.1 Proof of Proposition 4

Without loss of generality, we can absorb γ into the weights matrices. Thus, we seek to
show the continuity of Û with respect to (X,W1, . . . ,WD). We use the following compact
representation of the weights

w = (vec(W1)
T, vec(W2)

T, . . . , vec(WD))T ∈ R
∑D
d=1 (nd2 ).

We check to see if the solution Û is continuous in the variable ζ = (xT,wT)T. It is easy to
verify that the following function is jointly continuous in U and ζ

f(U, ζ) =
1

2
‖X−U‖2F +R(U,w),

35



Chi, Gaines, Sun, Zhou, and Yang

where

R(U,w) =
D∑
d=1

∑
i<j

wd,ij‖U×d ∆d,ij‖F

is a convex function of U that is continuous in (U,w). Let

U?(ζ) = arg min
U

f(U, ζ).

Since f(U, ζ) is strongly convex in U, the minimizer U?(ζ) exists and is unique.
We proceed with a proof by contradiction. Suppose U?(ζ) is not continuous at a point

ζ. Then there exists an ε > 0 and a sequence {ζ(m)} converging to a limit ζ such that
‖U(m) −U?(ζ)‖F ≥ ε for all m where

U(m) = arg min
U

f(U, ζ(m)).

Since f(U, ζ) is strongly convex in U, the minimizer U(m) exists and is unique. Without
loss of generality, we can assume ‖ζ(m) − ζ‖F ≤ 1. This fact will be used later in proving
the boundedness of the sequence U(m).

If U(m) is a bounded sequence, then we can pass to a convergent subsequence with limit
Ū. Fix an arbitrary point Ũ. Note that f(U(m), ζ(m)) ≤ f(Ũ, ζ(m)) for all m. Since f is
continuous in (U, ζ), taking limits gives us the inequality

f(Ū, ζ) ≤ f(Ũ, ζ).

Since Ũ was selected arbitrarily, it follows that Ū = U?(ζ), which is a contradiction. It only
remains for us to show that the sequence U(m) is bounded.

Consider the function

g(U) = sup
ζ̃:‖ζ̃−ζ‖F≤1

1

2
‖X̃−U‖2F +Rw̃(U).

Note that g is convex, since it is the point-wise supremum of a collection of convex functions.
Since f(U, ζ(m)) ≤ g(U) and f is strongly convex in U, it follows that g(U) is also strongly
convex and therefore has a unique global minimizer U∗ such that g(U∗) <∞. It also follows
that

f(U(m), ζ(m)) ≤ f(U∗, ζ(m)) ≤ g(U∗) (14)

for all m. By the reverse triangle inequality it follows that

1

2

(
‖U(m)‖F − ‖X(m)‖F

)2
≤ 1

2
‖U(m) −X(m)‖2F ≤ f(U(m), ζ(m)). (15)

Combining the inequalities in (14) and (15), we arrive at the conclusion that

1

2

(
‖U(m)‖F − ‖X(m)‖F

)2
≤ g(U∗),

for all m. Suppose the sequence U(m) is unbounded, namely ‖U(m)‖F →∞. But since X(m)

converges to X, the left hand side must diverge. Thus, we arrive at a contradiction if U(m)

is unbounded. �
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B.2 Proof of Proposition 5

First suppose that U(d) = 1cT, namely all the mode-d subarrays of U are identical. Recall

that Z = U×d A if and only if Z(d) = AU(d). Therefore, Rd(U) = 0 since ∆d,ij1cT = 0 for
all (i, j) ∈ Ed.

Now suppose that Rd(U) is zero. Take an arbitrary pair (i, j) with i < j. By Assumption
4.1, there exists a path i → k → · · · → l → j along which the weights are positive. Let
w denote the smallest weight along this path, namely w = min{wd,ik, . . . , wd,lj}. By the
triangle inequality

‖U×d ∆d,ij‖F ≤ ‖U×d ∆d,ik‖F + · · ·+ ‖U×d ∆d,lj‖F.

We can then conclude that

w‖U×d ∆d,ij‖F ≤ Rd(U) = 0.

It follows that eTi U(d) = eTj U(d), since w is positive. Since the pair (i, j) is arbitrary, it

follows that all the rows of U(d) are identical or in other words, U(d) = 1cT for some
c ∈ Rn−d . �

B.3 Proof of Proposition 6

We will show that there is a γmax such that for all γ ≥ γmax, the grand mean tensor X̄ is the
unique global minimizer to the primal objective (4). We will certify that X̄ is the solution
to the primal problem by showing that the optimal value of a dual problem, which lower
bounds the primal, equals Fγ(X̄).

Note that the Lagrangian dual given in (28) is a tight lower bound on Fγ(U).

max
λ∈Cγ

− 1

2
‖ATλ‖22 + 〈λ,Ax〉.

For sufficiently large γ, the solution to the dual maximization problem coincides with
the solution to the unconstrained maximization problem

max
λ
− 1

2
‖ATλ‖22 + 〈λ,Ax〉,

whose solution is λ? =
(
AAT

)†
Ax. Plugging λ? into the dual objective gives an optimal

value of

1

2
‖AT

(
AAT

)†
Ax‖22 =

1

2
‖x−

[
I−AT

(
AAT

)†
A

]
x‖22.

Note that
[
I−AT

(
AAT

)†
A
]

is the projection onto the orthogonal complement of the

column space of AT, which is equivalent to the null space or kernel of A, denoted Ker(A).
We will show below that Ker(A) is the span of the all ones vector. Consequently,

[
I−AT

(
AAT

)†
A

]
x =

1

n
〈x,1〉1.
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Note that the smallest γ such that λ? ∈ Cγ is an upper bound on γmax.
We now argue that Ker(A) is the span of 1 ∈ Rn. We rely on the following fact: If Φd

is an incidence matrix of a connected graph with nd vertices, then the rank of Φd is nd − 1
(Deo, 1974, Theorem 7.2). According to Assumption 4.1, the mode-d graphs are connected;
it follows that Φd ∈ {−1, 0, 1}|Ed|×nd has rank nd − 1. It follows then that Ker(Φd) has
dimension one. Furthermore, since each row of Φd has one 1 and one −1, it follows that
1 ∈ Ker(Φd) ⊂ Rnd . A vector z ∈Ker(A) if and only if z ∈ Ker(Ad) for all d.

Recall that the rank of the Kronecker product A⊗B is the product of the ranks of the
matrices A and B. This rank property of Kronecker products of matrices implies that the
dimension of Ker(Ad) equals n−d. Let bi = 1nD ⊗· · ·⊗1nd+1

⊗ei⊗1nd−1
⊗· · ·⊗1n1 where

1p ∈ Rp is the vector of all ones and ei ∈ Rnd is the ith standard basis vector. Then that
the set of vectors B = {b1,b2, . . . ,bnd} forms a basis for Ker(Ad).

Take an arbitrary element from Ker(Ad), namely a vector of the form 1n′ ⊗ a ⊗ 1n′′ ,
where n′ =

∏D
j=d+1 nj and n′′ =

∏d−1
j=1 . We will show that in order for 1n′ ⊗ a ⊗ 1d′′ ∈

Ker(I⊗Φd), a must be a multiple of 1nd . Consider the relevant matrix-vector product

Ad

(
1nD ⊗ a⊗ 1n1

)
= (1nD ⊗ · · · ⊗ 1nd+1

⊗Φda⊗ 1nd−1
⊗ · · · ⊗ 1n1).

Therefore, Ad

(
1n′ ⊗ a⊗ 1n′′

)
= 0 if and only if Φda = 0. But the only way for Φda to be

zero is for a = c1nd for some c ∈ R. Thus, Ker(A) is the span of 1n. �

B.4 Proof of Proposition 7

Note that Û is the proximal mapping of the closed, convex function

D∑
d=1

Rd(U)

Then Û is firmly nonexpansive in X (Combettes and Wajs, 2005, Lemma 2.4). Finally,
firmly nonexpansive mappings are nonexpansive, which completes the proof. �

Appendix C. Proof of Theorem 9

We first prove some auxiliary lemmas before proving our prediction error result.

C.1 Auxiliary Lemmas

The following lemma considers the concentration of a random quadratic form yTBy for
a M -concentrated random vector y and a deterministic matrix B (Vu and Wang, 2015).
It can be viewed as a generalization of the standard Hanson and Wright inequality for the
quadratic forms of independent sub-Gaussian random variables (Hanson and Wright, 1971).

Lemma 11 Let y ∈ Rn be a M -concentrated random vector, see Definition 8. Then there
are constants C,C

′
> 0 such that for any matrix B ∈ Rn×n,

P
(
|yTBy − tr(B)|≥ t

)
≤ C log(n) exp

{
−C ′M−2 min

[
t2

‖B‖2F log(n)
,

t

‖B‖2

]}
.
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The next lemma studies the properties of the matrix Ad,ij , defined in (6), in the penalty
function. Denote Sd as the matrix constructed by concatenating Ad,ij , i < j vertically.
That is,

Sd =
(
AT
d,12 AT

d,13 . . . AT
d,nd−1nd

)T ∈ R[(nd2 )n−d]×n. (16)

Lemma 12 For each d = 1, . . . , D, the rank of the matrix Sd is (nd − 1)n−d. Denote
σmin(Sd) and σmax(Sd) as the minimum non-zero singular value and maximum singular
value of Sd, respectively. We have σmin(Sd) = σmax(Sd) =

√
nd.

The proof of Lemma 12 follows from Lemma 1 in Tan and Witten (2015) and is omitted.
According to Lemma 12, we can construct a singular value decomposition of Sd = UdΛdV

T
d ,

where Ud ∈ R[(nd2 )n−d]×(nd−1)n−d , Λd ∈ R(nd−1)n−d×(nd−1)n−d , and Vd ∈ Rn×(nd−1)n−d .
Denote

Gd = UdΛd ∈ R[(nd2 )n−d]×(nd−1)n−d , (17)

and its pseudo-inverse as G†d ∈ R(nd−1)n−d×[(nd2 )n−d]. The following lemma studies the

properties of Gd and G†d, for each d = 1, . . . , D.

Lemma 13 For each d = 1, . . . , D, the rank of the matrix Gd is (nd−1)n−d. The minimal
non-zero singular value and maximal singular value of Gd are σmin(Gd) = σmax(Gd) =

√
nd.

Moreover, σmin(G†d) = σmax(G†d) = 1/
√
nd.

Lemma 13 follows directly from the conclusions in Lemma 12.

C.2 Proof of Main Theorem

We first reformulate our optimization problem via a decomposition approach to simplify
the theoretical analysis. Such strategy was developed in Liu et al. (2013a) and has been
successfully applied in Tan and Witten (2015); Wang et al. (2018).

Denote γd = γ/nd. Our convex tensor co-clustering method is equivalent to solving

û = arg min
u

1

2
‖x− u‖22 +

D∑
d=1

γd
∑

(i,j)∈Ed

‖Ad,iju‖2

 . (18)

According to the definition of Sd in (16), we define the penalty function R(·) such that

R(Sdu) =
∑

(i,j)∈Ed

‖Ad,iju‖2.

According to the singular value decomposition of Sd = UdΛdV
T
d , there exists a matrix

Wd ∈ Rn×n−d such that Ṽd = [Wd,Vd] ∈ Rn×n is an orthogonal matrix and WT
dVd = 0.

Let αd = WT
du ∈ Rn−d and βd = VT

du ∈ Rn. Clearly, we have

Wdαd + Vdβd = WdW
T
du + VdV

T
du = ṼdṼ

T
du = u, (19)
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for any d = 1, . . . , D. This fact together with the definition of Gd = UdΛd in (17) imply
that solving our convex tensor clustering in (18) is equivalent to solving

min
αd,βd,d=1,...,D

D∑
d=1

{
1

2D
‖x−Wdαd + Vdβd‖22 + γdR(Gdβd)

}
(20)

Denote the solution of (20) as α̂d, β̂d, d = 1, . . . , D, which corresponds to the estimator
û in (18) according to (19). Similarly, we denote the true parameters as α∗d,β

∗
d that corre-

sponds to u∗ defined in Assumption 4.2. Our goal is to derive the upper bound of ‖û−u∗‖22
by above reparametrization. Since α̂d, β̂d, d = 1, . . . , D minimizes the objective function in
(20), we have

D∑
d=1

{
1

2D
‖x−Wdα̂d + Vdβ̂d‖22 + γdR(Gdβ̂d)

}

≤
D∑
d=1

{
1

2D
‖x−Wdα

∗
d + Vdβ

∗
d‖22 + γdR(Gdβ

∗
d)

}
.

Note that ‖x− û‖22−‖x−u∗‖22 = ‖û‖22−‖u∗‖22− 2xT(û−u∗) = ‖û−u∗‖22 + 2εT(û−u∗),
where the last equality is due to the model assumption x = u∗ + ε. Therefore, we have

1

2
‖û− u∗‖22 +

D∑
d=1

γdR(Gdβ̂d) ≤ 1

2D

D∑
d=1

εT(u∗ − û) +
D∑
d=1

γdR(Gdβ
∗
d)

≤ 1

2D

D∑
d=1

∣∣∣εT[Wd(α
∗
d − α̂d) + Vd(β

∗
d − β̂d)]

∣∣∣︸ ︷︷ ︸
f(α̂d,β̂d)

+
D∑
d=1

γdR(Gdβ
∗
d). (21)

Next we derive the bound for f(α̂d, β̂d). Note that the optimization over αd in (20)
has a closed-form since the penalty term is independent of αd. In particular, by setting
the derivative of ‖x −Wdαd + Vdβd‖22 with respect to αd to be zero, we obtain that
αd = WT

d (x−Vdβd). This implies that

α̂d = WT
d (x−Vdβ̂d)

= WT
d (Wdα

∗
d + Vdβ

∗
d + ε−Vdβ̂d) (22)

= α∗d + WT
d ε,

where the second equality is due to x = u∗ + ε and the last equality is due to the fact that
WT

dVd = 0 and WT
dWd = I. According to (22), we have

f(α̂d, β̂d) =
∣∣∣εTWdW

T
d ε+ εTVd(β

∗
d − β̂d)]

∣∣∣
≤

∣∣∣εTWdW
T
d ε
∣∣∣︸ ︷︷ ︸

(I)

+
∣∣∣εTVd(β

∗
d − β̂d)]

∣∣∣︸ ︷︷ ︸
(II)

. (23)
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Bound (I): We apply the concentration inequality in Lemma 11 to bound (I). It
remains to compute ‖WdW

T
d ‖2F and ‖WdW

T
d ‖2. By construction, WdW

T
d ∈ Rn×n is a

projection matrix since ṼdṼ
T
d = WdW

T
d + VdV

T
d = I. Therefore, the rank of WdW

T
d is∏

j 6=d nj , ‖WdW
T
d ‖2F =

∏
j 6=d nj , ‖WdW

T
d ‖2 = 1, and tr(WdW

T
d ) =

∏
j 6=d nj .

Denote n =
∏D
d=1 nd. By Lemma 11 and Assumption 4.2, we have

P
(
εTWdW

T
d ε ≥ t+ n−d

)
≤ C log(n) exp

{
−C ′M−2 min

[
t2

log(n)n−d
, t

]}
.

Setting t =
√
n−d log(n)2, we have

P
(
εTWdW

T
d ε ≥ log(n)

√
n−d + n−d

)
≤ C exp

{
log log(n)− C ′M−2 log(n)

}
, (24)

where the right hand side converges to zero as the dimension n =
∏D
d=1 nd →∞. Note that

our error ε in Assumption 4.2 is assumed to be a M -concentrated random variable. If we
assume a stronger condition such that ε is a vector with iid sub-Gaussian, we can obtain a
upper bound

√
log(n)n−d + n−d according to the Hanson and Wright inequality (Hanson

and Wright, 1971). Therefore, in spite of the relaxation in the error assumption, our bound
in (24) is only up to a log-term larger.

Bound (II): By definitions of Gd in (17) and G†d, we have G†dGd = I. Furthermore,

let G†d,ij refer to the column of G†d that corresponds to the index (i, j), and let Gd,ij refer
to the row of Gd that corresponds to the index (i, j). We have

(II) =
∣∣∣εTVd(β

∗
d − β̂d)

∣∣∣ =
∣∣∣εTVdG

†
dGd(β

∗
d − β̂d)

∣∣∣ =

∣∣∣∣∣∣
∑
i<j

εTVdG
†
d,ijGd,ij(β

∗
d − β̂d)

∣∣∣∣∣∣
≤

∑
i<j

‖εTVdG
†
d,ij‖2‖Gd,ij(β

∗
d − β̂d)‖2 ≤ max

i<j
‖εTVdG

†
d,ij‖2︸ ︷︷ ︸

II1

·
∑
i<j

‖Gd,ij(β
∗
d − β̂d)‖2

Bound II1: By construction, εTVdG
†
d,ij ∈ Rn−d . We have

‖εTVdG
†
d,ij‖2 ≤ √

n−d ‖εTVdG
†
d,ij‖∞,

and hence

max
i<j
‖εTVdG

†
d,ij‖2 ≤ √

n−d max
i<j
‖εTVdG

†
d,ij‖∞ =

√
n−d ‖εTVdG

†
d‖∞

Let ηj = eTj G†>d VT
d ε ∈ R, where ej ∈ R(nd2 )n−d is the basis vector with the jth entry

one and the rest zeros. According to Lemma 13 and the property of Vd which consists of
singular vectors, we have σmax(Vd) = 1 and σmax(G†d) = 1/

√
nd. Therefore, we have ηj

is a M/
√
nd-concentrated random variable with mean zero. According to the definition of

concentrated random variable in Definition 8, we have

P (|ηj | ≥ t1) ≤ C1 exp

(
−C2ndt

2
1

M2

)
.
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Therefore, by union bound, we have

P
(

max
j
|ηj | ≥ t1

)
≤ C1

(
nd
2

)
(n−d) exp

(
−C2ndt

2
1

M2

)
.

By setting t1 =

√
log(n) log

[(
nd
2

)
n−d

]
/nd, we have

P

(
‖εTVdG

†
d‖∞ ≥

√
log(n) log

[(
nd
2

)
n−d

]
/nd

)
≤ C3

n
,

for some constant C3 > 0. Hence with probability at least 1− C3/n, we have

II1 ≤

√
n−d log(n) log

[(
nd
2

)
n−d

]
/nd. (25)

Plugging the results in (24) and (25) into (23), we obtain that, for each d = 1, . . . , D

f(α̂d, β̂d) ≤ log(n)
√
n−d + n−d +

√
n−d log(n) log

[(
nd
2

)
n−d

]
/nd

∑
i<j

‖Gd,ij(β
∗
d − β̂d)‖2.

Therefore, Assumption 4.3 on the tuning parameter γd implies that

f(α̂d, β̂d) ≤ log(n)
√
n−d + n−d +Dγd

D∑
d=1

γd
∑
i<j

‖Gd,ij(β
∗
d − β̂d)‖2,

by noting that log(
(
nd
2

)
n−d) ≤ log(n2dn−d) ≤ 2 log(n). This combines with the inequality in

(21) lead to

1

2
‖û− u∗‖22 ≤ 1

2D

D∑
d=1

[
log(n)

√
n−d + n−d

]
+

3

2

D∑
d=1

γdR(Sdu
∗). (26)

According to the cluster structure assumption in Assumption 4.2, there are kd clusters
along the dth mode of the tensor. Therefore, along each mode the true parameter U∗ only
has a few different slices. Denote U∗···i··· as the i-th mode-d subarray. Formally, we have

R(Sdu
∗) =

∑
(i,j),i<j,i,j=1,...,nd

‖Ad,iju‖2

=
∑

(i,j),i<j,i,j=1,...,nd

‖U∗···i··· −U∗···j···‖F ≤ 4C2
0

(
nd
2

)√∏
j 6=d

kj , (27)

where C0 is a constant upper bound for the entries of U∗. Combining the inequalities in
(26) and (27) with the condition on γd given in Assumption 4.3 implies that

1

2
‖û− u∗‖22 ≤ 1

2D

D∑
d=1

(
log(n)

√
n−d + n−d

)
+

3

2

D∑
d=1

2c0 log(n)
√
n

Dnd
4C2

0

(
nd
2

)√∏
j 6=d

kj .

Dividing both sides by n gives to the prediction error bound in (7). This ends the proof of
Theorem 9. �
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Appendix D. Derivation of Lagrangian Dual

Let U×d A denote the multiplication of U along mode d by the matrix A. Recall that for
a tensor U ∈ Rn1×···×nd and a matrix A ∈ RL×nd

vec(U×d A) = (InD ⊗ · · · ⊗ Ind+1
⊗A⊗ Ind−1

⊗ · · · ⊗ In1)u,

where u = vec(U) = vec(U(1)), namely the column-major vectorization of the mode-1
matricization of the tensor U. So, Note that Y = U ×d A is equivalent to Y(d) = AU(d).
We rewrite the penalty function Rd as follows.

Rd(U) =
∑
l∈Ed

wd,l‖U×d ∆d,l‖F =
∑
l∈Ed

wd,l‖vec(U×d ∆d,l)‖2 =
∑
l∈Ed

wd,l‖Ad,lu‖2,

where Ad,l = (InD ⊗ · · · ⊗ Ind+1
⊗∆d,l ⊗ Ind−1

⊗ · · · ⊗ In1).
We now write down the Lagrangian:

L(u,v,λ) =
1

2
‖x− u‖22 +

D∑
d=1

∑
l∈Ed

{
γwd,l‖vd,l‖2 + 〈λd,l,Ad,lu− vd,l〉

}

=

{
1

2
‖x− u‖22 +

D∑
d=1

〈AT
dλd,u〉

}
−

D∑
d=1

∑
l∈Ed

{
〈λd,l,vd,l〉 − γwd,l‖vd,l‖2

}

=

{
1

2
‖x− u‖22 + 〈ATλ,u〉

}
−

D∑
d=1

∑
l∈Ed

{
〈λd,l,vd,l〉 − γwd,l‖vd,l‖2

}
.

The Lagrangian dual objective is given by G(λ) by minimizing the Lagrangian L(u,v,λ)
over the primal variables u and v, namely

G(λ) = min
u,v
L(u,v,λ)

= min
u

{
1

2
‖x− u‖22 + 〈ATλ,u〉

}
−

D∑
d=1

∑
l∈Ed

max
vd,l

{
〈λd,l,vd,l〉 − γwd,l‖vd,l‖2

}

=
1

2
‖x‖22 −

1

2
‖x−ATλ‖22 −

D∑
d=1

∑
l∈Ed

ιCd,l(λd,l), (28)

where ιCd,l is the indicator function of the closed convex set Cd,l = {z : ‖z‖2 ≤ γwd,l}.
The last equality in (28) follows from the fact that the Fenchel conjugate of a norm is

the indicator function of the unit dual norm ball. Recall that the Fenchel conjugate f? of
a function f is given by

f?(λ) = sup
v

{
〈λ,v〉 − f(v)

}
.

Let B = {λ : ‖λ‖2 ≤ 1} denote the unit `2-norm ball. Since the `2-norm is self dual, we
arrive at the identity

ιB(λ) = sup
v

{
〈λ, v〉 − ‖v‖2

}
.
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Appendix E. Projected Gradient Applied to the Lagrangian Dual

Note that the dual problem (8) has the form

minimize g(λ)

subject to λ ∈ C,
(29)

where g(λ) is a convex and Lipschitz-differentiable function and the constraint set C is a
closed convex set, which implies that every point λ possesses a unique orthogonal projec-
tion, PC(λ) = arg minθ∈C‖θ − λ‖2, onto C. When PC(λ) can be computed analytically, a
simple and effective iterative algorithm for solving problems like (29) is the projected gra-
dient descent algorithm, a special case of proximal gradient descent algorithm (Combettes
and Wajs, 2005; Combettes and Pesquet, 2011). Recall that projected gradient descent
alternates between taking a gradient step and projecting onto the set C. Thus, at the mth
iteration, we perform the following update

λ(m) = PC
(
λ(m−1) − η∇g(λ)

)
, (30)

where η is a step-length parameter.
Applying the update rule in (30) to the dual problem (8), we obtain the following rule

for computing the mth iteration

u(m) = x−ATλ(m−1)

λ(m) = PC
(
λ(m−1) + ηAu(m)

)
.

Note that, at the mth iteration, the gradient of the least squares objective in (8) is given by
−Au(m). Thus, we automatically update our CoCo estimator u(m) as part of our gradient
calculation. Finally, we note that the projection onto the set C consists of independent
projections onto the sets Cd,l that can be carried out in parallel.

E.1 Per-Iteration and Storage Costs

The gradient update is dominated by the matrix-vector multiplications ATλ and Au. Al-
though A is a

∑D
d=1|Ed|n−d-by-n matrix it has only 2

∑D
d=1|Ed|n−d non-zero elements. Thus,

computing the gradient step requires O(
∑D

d=1|Ed|n−d) flops. Projecting onto the set C also

requires O(
∑D

d=1|Ed|n−d) flops since projecting onto the set Cd,l requires O(n−d) flops.

Thus, the per-iteration cost is O(
∑D

d=1|Ed|n−d) flops. The storage cost is dominated by

storing the dual variable λ, which has
∑D

d=1|Ed|n−d elements. At first glance these storage
and per-iteration costs may seem prohibitive, as |Ed| can be as large as O(n2d) for a fully
connected mode-d graph. Shrinking together all combinations of pairs of mode-d subarrays,
however, typically produces poor clustering results in comparison to shrinking together
mode-d subarrays that are nearest-neighbors as observed in prior work in convex cluster-
ing (Chen et al., 2015; Chi and Lange, 2015) and convex biclustering (Chi et al., 2017).
Consequently, we employ sparse weights. Specifically, we keep positive weights between
approximately nearest-neighbor mode-d subarrays so that |Ed| is O(nd). By using these
sparse weights, the per-iteration and storage costs scale more reasonably as O(Dn), namely
linearly in either the number of dimensions D or in the number of elements n. Details on
our weights choices are elaborated in Section 6.
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E.2 Convergence

The sequence of dual iterates λ(m) is guaranteed to converge to a solution λ̂ of (8) provided
that the step-size parameter η is less than twice the reciprocal of the spectral radius of
the matrix ATA (Combettes and Wajs, 2005, Theorem 3.4). Consequently, the sequence
of primal iterates u(m) is guaranteed to converge to the CoCo estimator û. We note that
under the same step-size conditions, convergence of the sequence u(m) can also be guaranteed
by observing that the projected gradient algorithm applied to the dual problem (8) is an
example of the alternating minimization algorithm (Tseng, 1991, Proposition 2).

E.3 Monitoring Convergence via the Duality Gap

Recall that we can bound the suboptimality of the mth iterate, Fγ(u(m)) − Fγ(û), by the

duality gap Fγ(u(m))−G(λ(m)), which can be expressed solely in terms of the mth iterate
of the primal variable u(m), namely

Fγ(u(m))−G(λ(m)) = ‖u(m)‖22 − 〈x,u(m)〉+ γ
D∑
d=1

∑
l∈Ed

wd,l‖Ad,lu
(m)‖2.

For any optimal dual solution λ̂, the gap vanishes, namely Fγ(û) = G(λ̂). Note that
computing the duality gap incurs minimal additional cost as u(m) and Ad,lu

(m) are already
computed as part of the gradient step. In short, including a duality gap computation will
not change the O(Dn) per-iteration cost of the projected gradient algorithm. In practice,
we can terminate the algorithm once the duality gap falls below some small tolerance.

E.4 Computing Mode-d Difference Variables

In Section 7.2, we explained how clustering assignments along the dth mode are made using
the mode-d difference variables vd,l = U×d∆d,l. In practice we must deal with the fact that

the û recovered by computing x −ATλ̂ may exhibit a nearly but not exactly checkerbox
structure due to limitations in numerical precision. This creates a practical issue as a small
but non-zero difference variable will lead to an incorrect clustering assignment. Addressing
this issue, however, is simple. The projected gradient algorithm used to compute CoCo is
a natural generalization of the projected gradient algorithm used in Chi and Lange (2015)
for convex clustering. Consequently, we can use the obvious adaptation of the procedure
for computing the differences variables in convex clustering. The following brief technical
discussion is expanded in more detail in Chi and Lange (2015).

The key fact that we use is that the projected gradient algorithm is equivalent to the
alternating minimization algorithm (AMA) applied to the following augmented Lagrangian
function

Lη(u,v,λ) =
1

2
‖x− u‖22 +

D∑
d=1

∑
l∈Ed

[
γwd,l‖vd,l‖2 + 〈λd,l,vd,l −Ad,lu〉+

η

2
‖vd,l −Ad,lu‖22

]
.
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The mode-d difference vector vd,l is determined by the proximal map

vd,l = arg min
vd,l

1

2

[
‖vd,l −Ad,lu− η−1λd,l‖22 +

γwd,l
η
‖vd,l‖2

]
= proxσd,l‖·‖2

(
Ad,lu− η−1λd,l

)
,

(31)

where σd,l = γwd,l/η. Because the proximal mapping can produce mode-d difference vari-
ables that are exactly zero, the procedure for computing vd,l in (31) is immune to the

numerical precision issues that hinder the direct computation Û×d ∆d,l.

Appendix F. Details on Denoising with the Tucker Decomposition for
Setting Weights

Employing the Tucker decomposition introduces another tuning parameter, namely the rank
of the decomposition. When applicable, a user can leverage problem-specific knowledge
to select the rank for the decomposition. Nonetheless, the availability of an automatic
approach is desirable to handle cases when such knowledge is unavailable. Selecting the rank
in a tensor decomposition, however, is an open question (Kolda and Bader, 2009; Yokota
et al., 2017). During initial experiments, a few different methods for selecting the Tucker
decomposition rank from the literature were compared: an L-curve approach that attempts
to strike a balance between the decomposition’s relative error and compression ratio, as
implemented by the mlrankest function in the Tensorlab Matlab toolbox (Vervliet et al.,
2016), minimum description length (Rissanen, 1978; Yokota et al., 2017), and the recently-
proposed SCORE algorithm (Yokota et al., 2017). Out of these, the SCORE algorithm
produced the best average CoCo estimator performance. The SCORE algorithm itself
includes a tuning parameter, ρ̂, and Yokota et al. (2017) suggest setting ρ̂ ∈ [10−4, 10−2].
We considered ρ̂ ∈ {10−4, 10−3, 10−2} and found 10−3 to perform the best, which also
matches the value used in the experiments by Yokota et al. (2017).

We also developed a simple yet effective heuristic for choosing the rank where we set
the Tucker rank for the dth mode to be the floor of

√
nd/2. Two principles motivating the

heuristic are that the rank of the decomposition should be both small relative to and also
in proportion to the length of the modes. Both the SCORE algorithm and our heuristic
were employed in our simulations described in Section 8 as a robustness check to ensure our
CoCo estimator’s performance does not crucially depend on the choice of the rank.

The basic Tucker decomposition computation is accomplished by the higher order SVD
(HOSVD) method (De Lathauwer et al., 2000) which computes for each mdoe k the rk
leading left singular values of the mode-k matricization and stores them as a factor matrix
Uk. The HOSVD then computes the core tensor by contracting the data tensor X×k Uk.
Thus, the main cost is computing D SVDs. This is an illustrative calculation, however, and
more efficient alternatives exist (Vannieuwenhoven et al., 2012; Minster et al., 2020).

Appendix G. CPD+k-means

We describe in greater detail the CPD+k-means method for co-clustering a D-way tensor
X ∈ Rn1×···×nD . The method consists of two steps
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Step 1. Compute a rank-R CP decomposition

X ≈
R∑
i=1

a
(1)
i ◦ a

(2)
i ◦ · · · ◦ a

(D)
i ,

where ◦ represents the outer product and a
(d)
i is the ith column of the dth factor

matrix A(d) ∈ Rnd×R.

Step 2. For each factor matrices A(d), apply k-means clustering on the nd rows of A(d).
Note that the D applications of k-means are done independently for each mode-d
factor matrix A(d).

Tuning parameters: There are two sets of tuning parameters: (i) the rank parameter R,
used in Step 1, and (ii) the D cluster number parameters for each factor matrix, used in
Step 2. To choose the rank parameter R, we create a candidate set of ranks Rcandidate ⊂
{1, 2, 3, . . .} and select R? ∈ Rcandidate using the tuning procedure in Sun et al. (2017).
We then compute a CP decomposition using the selected rank R? and obtain the factor
matrices A(d) for d = 1, . . . , D. To choose the D cluster number parameters, we create D
candidate sets of cluster numbers Kdcandidate ⊂ {1, 2, 3, . . . , nd} and select k?d ∈ Kdcandidate for
d = 1, . . . , D using the gap statistic procedure in Tibshirani et al. (2001). We use the D
clustering results from running k-means on the rows of each of the A(d) using k?d.

Appendix H. Additional Simulations on Rectangular Tensors

The first rectangular tensor is one in which there are two short modes (n1 = n2 = 10)
and one relatively longer mode (n3 = 50). Figure 14 presents the clustering results for this
tensor shape.

At a lower noise level (σ = 2), CoCo performs very well and outperforms CPD+k-
means and CoTeC in terms of both single-mode clustering and co-clustering. When the
noise level is bumped up (σ = 3), both methods experience a noticeable drop off in their
performance and now perform more similarly. Interestingly, CoCo’s single-mode clustering
results are better along the two shorter modes (modes 1 and 2), which is not what we
expected. This provides some evidence that the performance along a mode depends on
both the length of that mode as well as the lengths of the other modes. When the length of
the shorter modes are increased slightly (from nd = 10 to nd = 20 for d = 1, 2), CoCo has
near-perfect performance while CPD+k-means performs roughly the same as before. Thus,
CoCo struggles with this tensor shape only when the short modes are really short (only 10
observations).

To further investigate the mode-by-mode performance with rectangular tensors, we also
apply the clustering methods to a “Goldilocks” tensor with mode lengths that are short,
medium, and long. This setting was again motivated by the results from the previous
two tensor shapes to see how the performance is impacted when the size of a longer mode
is increased. The ARI results for this tensor shape are given in Figure 15d, and they
are consistent with what was observed previously. When the short mode has only 10
observations, CoCo initially performs very well until the noise reaches a certain level. At
this point, its performance for the longer modes declines sharply and actually performs worse
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(a) Adjusted Rand Index, Mode 1
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(b) Adjusted Rand Index, Mode 2
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Figure 14: Checkerbox Simulation Results: Impact of Tensor Shape. Two balanced clusters
per mode with two levels of homoskedastic noise for a tensor with two short modes and one longer
mode. Average adjusted rand index plus/minus one standard error for different noise levels and
mode lengths.

than CPD+k-means, and this pattern is more pronounced for the longest mode (n3 = 100).
The overall co-clustering performance for both methods remains similar, however. As before,
CoCo does not experience as much of a decrease when the shortest mode is made slightly
longer (n1 = 20), and does noticeably better than CPD+k-means for the most part.

Overall, from clustering these different tensor shapes we see that CoCo still generally
performs very well and better than CPD+k-means. The main issue it encounters is when
at least one mode is very short (nd = 10). CoCo performs very well a lower noise levels but
has a sharp decline in performance once the noise reaches a certain level. Unexpectedly, the
decline in single-mode performance is worse for the longer modes. However, even when this
happens, CoCo’s overall co-clustering performance is still comparable to CPD+k-means.
Additionally, this pattern is much less striking when the length of the shortest mode is
increased slightly.
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(c) Adjusted Rand Index, Mode 3
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Figure 15: Checkerbox Simulation Results: Impact of Tensor Shape. Two balanced clusters
per mode with two levels of homoskedastic noise for a tensor with short, medium, and long mode
lengths. Average adjusted rand index plus/minus one standard error for different noise levels and
mode lengths.
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Nicolai Meinshausen and Peter Bühlmann. Stability Selection. Journal of the Royal Statis-
tical Society: Series B (Statistical Methodology), 72(4):417–473, 2010.

53

http://www.control.isy.liu.se/research/reports/2011/2992.pdf
https://arxiv.org/abs/1702.07449
http://www.macworld.com/article/3025783/iphone-ipad/report-google-is-the-default-iphone-search-engine-because-it-paid-apple-1-billion.html
http://www.macworld.com/article/3025783/iphone-ipad/report-google-is-the-default-iphone-search-engine-because-it-paid-apple-1-billion.html
http://www.macworld.com/article/3025783/iphone-ipad/report-google-is-the-default-iphone-search-engine-because-it-paid-apple-1-billion.html


Chi, Gaines, Sun, Zhou, and Yang

Rachel Minster, Arvind K. Saibaba, and Misha E. Kilmer. Randomized algorithms for
low-rank tensor decompositions in the Tucker format. SIAM Journal on Mathematics of
Data Science, 2(1):189–215, 2020.

Gal Mishne, Ronen Talmon, Ron Meir, Jackie Schiller, Maria Lavzin, Uri Dubin, and
Ronald R. Coifman. Hierarchical coupled-geometry analysis for neuronal structure and
activity pattern discovery. IEEE Journal of Selected Topics in Signal Processing, 10(7):
1238–1253, 2016.

Amy Mitchell, Tom Rosenstiel, Laura Houston Santhanam, and Leah Christian. Future of
mobile news. Project for Excellence in Journalism (PEJ)— Understanding News in the
Information Age, 2012.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in Neural Information Processing Systems, pages 849–856, 2002.

Jinoh Oh, Kijung Shin, Evangelos E. Papalexakis, Christos Faloutsos, and Hwanjo Yu.
S-HOT: Scalable High-Order Tucker Decomposition. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pages 761–770. ACM, 2017.

Wei Pan, Xiaotong Shen, and Binghui Liu. Cluster analysis: Unsupervised learning via
supervised learning with a non-convex penalty. Journal of Machine Learning Research,
14:1865–1889, 2013.

Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, and Rasmus Bro. From K-Means
to Higher-Way Co-Clustering: Multilinear Decomposition With Sparse Latent Factors.
IEEE Transactions on Signal Processing, 61(2):493–506, 2013.

Kristiaan Pelckmans, Jos De Brabanter, Johan A.K. Suykens, and Bart L.R. De Moor.
Convex clustering shrinkage. In PASCAL Workshop on Statistics and Optimization of
Clustering Workshop, 2005.

Peter Radchenko and Gourab Mukherjee. Convex clustering via l1 fusion penalization.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(5):1527–
1546, 2017.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

Elizabeth D. Schifano, Robert L. Strawderman, and Martin T. Wells. Majorization-
minimization algorithms for nonsmoothly penalized objective functions. Electronic Jour-
nal of Statistics, 4:1258–1299, 2010.

James Sharpnack, Aarti Singh, and Alessandro Rinaldo. Sparsistency of the edge lasso over
graphs. In Neil D. Lawrence and Mark Girolami, editors, Proceedings of the Fifteenth In-
ternational Conference on Artificial Intelligence and Statistics, volume 22 of Proceedings
of Machine Learning Research, pages 1028–1036, 2012.

Yiyuan She. Sparse regression with exact clustering. Electronic Journal of Statistics, 4:
1055–1096, 2010.

54



Provable Convex Co-clustering of Tensors

Xiaotong Shen and Hsin-Cheng Huang. Grouping pursuit through a regularization solution
surface. Journal of the American Statistical Association, 105(490):727–739, 2010.

Xiaotong Shen, Hsin-Cheng Huang, and Wei Pan. Simultaneous supervised clustering and
feature selection over a graph. Biometrika, 99:899–914, 2012.

Nicholas D. Sidiropoulos, Lieven De Lathauwer, Xiao Fu, Kejun Huang, Evangelos E. Pa-
palexakis, and Christos Faloutsos. Tensor decomposition for signal processing and ma-
chine learning. IEEE Transactions on Signal Processing, 65(13):3551–3582, 2017.

Martin Sill, Sebastian Kaiser, Axel Benner, and Annette Kopp-Schneider. Robust biclus-
tering by sparse singular value decomposition incorporating stability selection. Bioinfor-
matics, 27(15):2089–2097, 2011.

Mervyn Stone. Cross-validatory choice and assessment of statistical predictions. Journal of
the Royal Statistical Society: Series B (Statistical Methodology), pages 111–147, 1974.

Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proceedings of the 12th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pages 374–383. ACM, 2006.

Jimeng Sun, Spiros Papadimitriou, Ching-Yung Lin, Nan Cao, Shixia Liu, and Weihong
Qian. Multivis: Content-based social network exploration through multi-way visual anal-
ysis. In Proceedings of the 2009 SIAM International Conference on Data Mining, pages
1064–1075. SIAM, 2009.

Will Wei Sun and Lexin Li. Dynamic tensor clustering. Journal of the American Statistical
Association, 114(528):1894–1907, 2019.

Will Wei Sun, Junwei Lu, Han Liu, and Guang Cheng. Provable sparse tensor decomposi-
tion. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):
899–916, 2017.

Panagiotis Symeonidis. Matrix and tensor decomposition in recommender systems. In
Proceedings of the 10th ACM Conference on Recommender Systems, RecSys ’16, pages
429–430, New York, NY, USA, 2016. ACM.

Panagiotis Symeonidis and Andreas Zioupos. Matrix and Tensor Factorization Techniques
for Recommender Systems. Springer International Publishing, 1 edition, 2016.

Kean Ming Tan and Daniela Witten. Statistical properties of convex clustering. Electronic
Journal of Statistics, 9:2324–2347, 2015.

Kean Ming Tan and Daniela M. Witten. Sparse biclustering of transposable data. Journal
of Computational and Graphical Statistics, 23(4):985–1008, 2014.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 58(1):267–288, 1996.

55



Chi, Gaines, Sun, Zhou, and Yang

Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters
in a data set via the gap statistic. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 63(2):411–423, 2001.

Robert Tibshirani, Michael Saunders, Saharon Rosset, Ji Zhu, and Keith Knight. Sparsity
and smoothness via the fused lasso. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 67(1):91–108, 2005.

Ryan J. Tibshirani and Jonathan Taylor. The solution path of the generalized lasso. The
Annals of Statistics, 39(3):1335–1371, 2011.

Paul Tseng. Applications of a Splitting Algorithm to Decomposition in Convex Program-
ming and Variational Inequalities. SIAM Journal on Control and Optimization, 29(1):
119–138, 1991.

Ledyard R. Tucker. Some mathematical notes on three-mode factor analysis. Psychometrika,
31(3):279–311, 1966.

Heather Turner, Trevor Bailey, and Wojtek Krzanowski. Improved biclustering of microar-
ray data demonstrated through systematic performance tests. Computational Statistics
and Data Analysis, 48(2):235–254, 2005.

Nick. Vannieuwenhoven, Raf. Vandebril, and Karl. Meerbergen. A new truncation strategy
for the higher-order singular value decomposition. SIAM Journal on Scientific Computing,
34(2):A1027–A1052, 2012.

Nico Vervliet, Otto Debals, Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer.
Tensorlab 3.0, Mar. 2016. URL http://www.tensorlab.net. Available online.

Van Vu and Ke Wang. Random weighted projections, random quadratic forms and random
eigenvectors. Random Structures and Algorithms Archive, 47(4):792–821, 2015.

Binhuan Wang, Yilong Zhang, Will Wei Sun, and Yixin Fang. Sparse Convex Clustering.
Journal of Computational and Graphical Statistics, 27(2):393–403, 2018.

Yuxiang Wang, Huan Xu, and Chenlei Leng. Provable subspace clustering: When LRR
meets SSC. In C. J. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 26, pages 64–
72. Curran Associates, Inc., 2013.

Hadley Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York,
2009. ISBN 978-0-387-98140-6. URL http://ggplot2.org.

Daniela M. Witten, Robert Tibshirani, and Trevor Hastie. A penalized matrix decomposi-
tion, with applications to sparse principal components and canonical correlation analysis.
Biostatistics, 10(3):515–534, 2009.

Stephen J. Wright, Robert D. Nowak, and Mário A.T. Figueiredo. Sparse reconstruction
by separable approximation. IEEE Transactions on Signal Processing, 57(7):2479–2493,
July 2009.

56

http://www.tensorlab.net
http://ggplot2.org


Provable Convex Co-clustering of Tensors

Chong Wu, Sunghoon Kwon, Xiaotong Shen, and Wei Pan. A new algorithm and theory for
penalized regression-based clustering. Journal of Machine Learning Research, 17(188):
1–25, 2016a.

Tao Wu, Austin R. Benson, and David F. Gleich. General tensor spectral co-clustering for
higher-order data. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Garnett,
editors, Advances in Neural Information Processing Systems 29, pages 2559–2567. Curran
Associates, Inc., 2016b.

Shuo Xiang, Xiaoshen Tong, and Jieping Ye. Efficient sparse group feature selection via
nonconvex optimization. In Sanjoy Dasgupta and David McAllester, editors, Proceedings
of the 30th International Conference on Machine Learning, volume 28, pages 284–292,
Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR.

Or Yair, Ronen Talmon, Ronald R. Coifman, and Ioannis G. Kevrekidis. Reconstruction of
normal forms by learning informed observation geometries from data. Proceedings of the
National Academy of Sciences, 114(38):E7865–E7874, 2017.

Tatsuya Yokota, Namgil Lee, and Andrzej Cichocki. Robust multilinear tensor rank esti-
mation using higher order singular value decomposition and information criteria. IEEE
Transactions on Signal Processing, 65(5):1196–1206, 2017.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 68(1):49–67,
2006.

Lihi Zelnik-Manor and Pietro Perona. Self-tuning spectral clustering. In L. K. Saul,
Y. Weiss, and L. Bottou, editors, Advances in Neural Information Processing Systems
17, pages 1601–1608. MIT Press, 2005.

Cun-Hui Zhang. Nearly unbiased variable selection under minimax concave penalty. The
Annals of Statistics, 38(2):894–942, 2010.

Zhong-Yuan Zhang, Tao Li, and Chris Ding. Non-negative tri-factor tensor decomposition
with applications. Knowledge and Information Systems, 34(2):243–265, 2013.

Hongya Zhao, Debby D. Wang, Long Chen, Xinyu Liu, and Hong Yan. Identifying multi-
dimensional co-clusters in tensors based on hyperplane detection in singular vector spaces.
PLOS ONE, 11(9):1–27, 09 2016.

Xiaolin Zheng, Weifeng Ding, Zhen Lin, and Chaochao Chen. Topic tensor factorization for
recommender system. Information Sciences, 372(Supplement C):276 – 293, 2016.

Hua Zhou, Lexin Li, and Hongtu Zhu. Tensor regression with applications in neuroimaging
data analysis. Journal of the American Statistical Association, 108:540–552, 2013.

Changbo Zhu, Huan Xu, Chenlei Leng, and Shuicheng Yan. Convex optimization procedure
for clustering: Theoretical revisit. In Z. Ghahramani, M. Welling, C. Cortes, N. D.
Lawrence, and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 1619–1627. Curran Associates, Inc., 2014.

57



Chi, Gaines, Sun, Zhou, and Yang

Yunzhang Zhu, Xiaotong Shen, and Wei Pan. Simultaneous grouping pursuit and feature
selection over an undirected graph. Journal of the American Statistical Association, 108
(502):713–725, 2013.

Hui Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical
Association, 101(476):1418–1429, 2006.

Hui Zou and Runze Li. One-step sparse estimates in nonconcave penalized likelihood models.
The Annals of Statistics, 36(4):1509–1533, 2008.

58


	Introduction
	Preliminaries
	Notation
	Basic Tensor Operations

	A Convex Formulation of Co-clustering
	Properties
	Stability Properties
	Statistical Properties

	Estimation Algorithm
	A Lagrangian Dual of the CoCo Problem

	Specifying Non-Uniform Weights
	Basic Procedure for Specifying Weights
	Improving Weights via the Tucker Decomposition
	Weights and Folded-Concave Penalties

	Other Practical Issues
	Choosing 
	Recovering the Partitions along Each Mode

	Simulation Studies
	Cubical Tensors, Checkerbox Pattern
	Balanced Cluster Sizes and Homoskedastic Noise
	Imbalanced Cluster Sizes
	Heteroskedastic Noise
	Different Clustering Structures

	Rectangular Tensors
	CANDECOMP/PARAFAC Model
	Comparison with Convex Biclustering

	Real Data Application
	Discussion
	Tensor Decompositions
	Proofs of Smoothness Properties
	Proof of [prop:cont]Proposition 4
	Proof of [prop:zero]Proposition 5
	Proof of [prop:coalesce]Proposition 6
	Proof of [prop:nonexpansive]Proposition 7

	Proof of [thm:finalerror]Theorem 9
	Auxiliary Lemmas
	Proof of Main Theorem

	Derivation of Lagrangian Dual
	Projected Gradient Applied to the Lagrangian Dual
	Per-Iteration and Storage Costs
	Convergence
	Monitoring Convergence via the Duality Gap
	Computing Mode-d Difference Variables

	Details on Denoising with the Tucker Decomposition for Setting Weights
	CPD+k-means
	Additional Simulations on Rectangular Tensors

